
The
Oaklisp Implementation Guide

July 30, 2018

DRAFT

Barak A. Pearlmutter
Dept. of Computer Science

Maynooth University
Co. Kildare

Ireland
barak+oaklisp@pearlmutter.net

Kevin J. Lang
Yahoo! Research

langk@yahoo-inc.com

The information in this document is subject to change at any time.

Copyright c©1985, 1986, 1987, 1988, 1989 by Barak A. Pearlmutter and Kevin J. Lang.

Contents

1 Introduction 1
1.1 Disclaimer . 1

2 Language 2
2.1 Special Forms . 2
2.2 Macros . 3
2.3 Primitive Types . 5
2.4 Open-Coded Operations . 5
2.5 Subprimitives . 10
2.6 Defined Types . 12
2.7 Defined Operations . 13

3 Internal Data Format 14
3.1 Tag Types . 14
3.2 Other Immediate Types . 14
3.3 Memory Structure . 15
3.4 Representation of Specific Types . 15
3.5 System Types . 16

3.5.1 Methods . 16
3.5.2 Environment Vectors . 16
3.5.3 Code Vectors . 17
3.5.4 Endianity . 17
3.5.5 Stack Implementation . 18
3.5.6 Escape Objects . 18
3.5.7 Types . 19

3.6 Storage Reclamation . 20

4 Stack Machine Architecture 21
4.1 Registers in the Emulator . 21
4.2 Instruction Set . 22
4.3 Weak Pointers . 26

i

5 Stack Discipline 27
5.1 Stack Overview . 27
5.2 Method Invocation/Return . 27
5.3 The Context Stack . 28

6 Methods 30
6.0.1 Invoking Methods . 30
6.0.2 Adding Methods . 31

7 Oaklisp Level Implementation 33
7.1 Fluid Variables . 33
7.2 Unwind Protection . 34
7.3 Catch . 34
7.4 Call/CC . 34
7.5 The Error System . 35
7.6 Numbers . 38
7.7 Vectors and Strings . 38
7.8 Symbols . 39
7.9 Variable Numbers of Arguments . 40

8 The Compiler 42
8.0.1 File Types . 42
8.0.2 Object File Formats . 42
8.0.3 Compiler Internals . 42

9 Bootstrapping 43

10 Administrative Details 45
10.1 Getting a Copy . 45
10.2 Bugs . 45
10.3 Copyright and Lack of Warranty . 46

ii

Chapter 1

Introduction

This document describes the internals of the CMU implementation of Oaklisp. Although this im-
plementation is designed for portability through the use of a bytecode interpreter written in C, the
fundemental data structures and memory formats would also be suitable for a high performance
implementation. In spite of the fact that Oaklisp has the potential performance penalty of being
uniformly object-oriented, this implementation has proven more than competitive with other byte-
code based implementations of Scheme, such at MIT’s CScheme and Semantic Microsystems’
MacScheme. An abbreviated version of some of the information presented here is available as a
book chapter [2].

1.1 Disclaimer
Warning: this document may contain inaccuracies, and it lags behind the implementation as the
system evolves.

1

Chapter 2

Language

This document is a description of one particular implementation of Oaklisp, and therefore contains
information that is subject to change and may not be significant to users in any case. For a de-
scription of the language that does not contain a lot of arbitrary distinctions, refer to The Oaklisp
Language Manual.

2.1 Special Forms
These special forms all work by magic, and can’t be redefined or shadowed.

(%quote x) Special Form
Does what you would expect.

(%if predicate consequent alternative) Special Form
Does what you would expect.

(%labels ((variable value)...)form) Special Form
If all references to the labels are calls from tail recursive positions, this is compiled
using jumps. Otherwise, it is rewritten using let and set!.

(native-catch variable . body) Special Form
Evaluates body within the lexical scope of variable, which is bound to a catch tag that
is valid within the dynamic scope of this form. This is actually macro expanded to
something pretty wierd.

(%add-method (operation (type . ivarlist). arglist)form)Special
Form

Yields the specified method object.

(%make-locative variable) Special Form
Returns a locative pointing to variable.

(%block . forms) Special Form
Making this a primitive special form simplifies the compiler.

2

2.2 Macros
Most constructs that users think of as primitive are actually macros. This simplifies the compiler by
both reducing the number of special forms to be handled and eliminating the need for the compiler
to check whether special forms it encounters are syntactically correct.

(quote x) Macro
≡ (%quote x)

(add-method (operation (type . ivar-list). arg-list). body)Macro
This turns into %add-method, filling in the default type and putting a block around
the body if necessary.

(lambda arglist . body) Macro
≡ (add-method ((make operation) . arglist) . body)

Functions are made by hanging methods off of object. There is an optimization in
the compiler that expands car-position lambdas inline.

(catch var . body) Macro
≡ (native-catch x (let ((var (lambda (y) (throw x y)))) . body))

(define symbol value) Macro
≡ (set! symbol value)

(define (fluid symbol)value) Macro
≡ (set! (fluid symbol) value)

(define (variable . arglist). body) Macro
≡ (set! variable (lambda arglist . body))

(set! symbol value) Macro
≡ (set! (contents (make-locative symbol)) value)

(set! (op a1 . . . an)value) Macro
≡ ((setter op) a1 . . . an value)

(set location value) Macro
An obsolete form with semantics identical to set!.

(make-locative symbol) Macro

3

≡ (%make-locative symbol)

(make-locative (op . args)) Macro
≡ ((locater op) . args)

(if test thenform) Macro
≡ (%if test thenform (undefined-value))

(if test thenform elseform) Macro
≡ (%if test thenform elseform)

(fluid symbol) Macro
≡ (%fluid (quote symbol))

(bind-error-handler) Macro
See the language manual for a semantic definition.

(catch-errors) Macro
Implemented with bind-error-handler and native-catch.

(bind (((fluid symbol) value)...). body) Macro
Implemented using let and set!. Hacks to native-catch and call/cc are
also necessary. Essentially, the bindings are pushed onto fluid-bindings-alist
for the dynamic scope of the bind. For details, see Section 7.1.

(wind-protect before form after) Macro
≡ (dynamic-wind (lambda () before) (lambda () form) (lambda
() after))

(funny-wind-protect before abnormal-before form after abnormal-after)
Macro

A wind-protect evaluates before, form, and after, returning the value of form.
If form is entered or exited abnormally (due to call/cc or catch) the before and
after forms, respectively, are automatically executed. funny-wind-protect is
the same except that different guard forms are evaluated depending on whether the
dynamic context is entered or exited normally or abnormally.

4

The following macro definitions may be found in The Revised3 Report on Scheme [3].
(let) Macro

(let*) Macro

(cond) Macro

(or) Macro

(and) Macro

2.3 Primitive Types
The following types are immediates. They have no instance variables, occupy no heap storage, and
are directly manipulated by the micro-engine. Their references have special tag bits. See section
3.1.

fixnum Type

character Type

locative Type

2.4 Open-Coded Operations
Because arithmetic on fixnums is so common, a special mechanism is used to perform opera-
tions for which byte-codes exist. When the compiler sees one of these operations in a program, it
emits the corresponding byte-codes inline. At run-time, the micro-engine checks the tag-bits of the
operands to verify that they are fixnums. If they are, the arithmetic is performed immediately.
Otherwise, a hardware trap occurs which causes the usual search up the type hierarchy to find the
appropriate method to perform the operation. The only restriction this places on the full general-
ity of the usual method system is that new methods cannot be defined for the simple arithmetic
operations on fixnums.

The operations which fall under this restriction are the following:
(zero? number) Operation

(!= number1 number2) Operation

(* number ...) Operation

5

(+ number ...) Operation

(- number1 number2 ...) Operation

(1+ number) Operation

(< number1 number2) Operation

(<= number1 number2) Operation

(= number1 number2) Operation

(> number1 number2) Operation

(>= number1 number2) Operation

(ash-left integer1 integer2) Operation

(ash-right integer1 integer2) Operation

(bit-and integer1 integer2) Operation

(bit-andca integer1 integer2) Operation

(bit-equiv integer1 integer2) Operation

(bit-nand integer1 integer2) Operation

(bit-nor integer1 integer2) Operation

(bit-not integer) Operation

(bit-or integer1 integer2) Operation

(bit-xor integer1 integer2) Operation

(object-unhash integer) Operation

(positive? number) Operation

(quotient number1 number2) Operation

6

(rot-left fixnum1 fixnum2) Operation

(rot-right fixnum1 fixnum2) Operation

(minus number) Operation

(modulo number1 number2) Operation

(negative? number) Operation

The following operations are also open-coded and take type-mismatch traps if necessary. They
can be add-method’ed to, but only for types that are not handled by the microcode. It should be
clear from the discussion below which types the bytecode expects.

(throw tag value) Operation
Causes control to return from the native-catch form that generated tag.

(contents locative) Locatable Operation
Dereferences locative. ((setter contents) locative value) puts value
in the cell pointed to by locative.

(object-unhash fixnum) Operation
Returns the object that the weak pointer fixnum points to, or #f if the object has been
reclaimed by the garbage collector.

The following operations are open-coded, and the microcode can handle objects of any type,
so they can’t be add-method’ed.

(get-type object) Operation
Returns the type of object.

(eq? x y) Operation
Determines whether x and y are the same object. Implemented by checking if the
references are identical.

(object-hash x) Operation
Returns a “weak pointer” to x.

(cons x y) Operation
Conses x onto y in the usual lisp fashion.

(identity x) Operation
Returns x.

(list . args) Operation

7

Constructs a list; (list a b c) ≡ (cons a (cons b (cons c ’()))).
Actually, the list operation is open coded and has backwards-args-mixin
mixed into the type, so its arguments are pushed onto the stack in left to right order.
The code emitted for the operation itself is just a (load-reg nil) followed by a
bunch of reverse-cons instructions, one for each argument.

(list* a1 . . . an) Operation
≡ (cons a1 . . . (cons an−1 an) . . .).

This is open coded in nearly the same way as list.

(not x) Operation
≡ (eq? x #f)

(null? x) Operation
≡ (eq? x ’())

(second-arg x y . rest) Operation
Returns y. Remember, Oaklisp does not guarantee any particular order of evaluation
of arguments.

The following operations are open-coded, but the microcode traps out if the arguments are not
simple cons cells. They can not be add-method’ed to for the type cons-pair.

(car pair) Locatable Operation

(cdr pair) Locatable Operation

(caar pair) Locatable Operation

(cadr pair) Locatable Operation

(cdar pair) Locatable Operation

(cddr pair) Locatable Operation

(caaar pair) Locatable Operation

(caadr pair) Locatable Operation

(cadar pair) Locatable Operation

(caddr pair) Locatable Operation

8

(cdaar pair) Locatable Operation

(cdadr pair) Locatable Operation

(cddar pair) Locatable Operation

(cdddr pair) Locatable Operation

(caaaar pair) Locatable Operation

(caaadr pair) Locatable Operation

(caadar pair) Locatable Operation

(caaddr pair) Locatable Operation

(cadaar pair) Locatable Operation

(cadadr pair) Locatable Operation

(caddar pair) Locatable Operation

(cadddr pair) Locatable Operation

(cdaaar pair) Locatable Operation

(cdaadr pair) Locatable Operation

(cdadar pair) Locatable Operation

(cdaddr pair) Locatable Operation

(cddaar pair) Locatable Operation

(cddadr pair) Locatable Operation

(cdddar pair) Locatable Operation

(cddddr pair) Locatable Operation

9

2.5 Subprimitives
The following operations should be used only deep within the system. Unless otherwise noted
below, when a subprimitive encounters a domain error normal Oaklisp code is not trapped to.
Rather, you’re lucky if the system dumps core.

(%assq object alist) Operation
Does the usual association list lookup, but assumes that alist is made out of simple
cons pairs. Passing it lazy lists or things like that will crash the system.

(%big-endian?) Operation
Returns #t or #f depending on whether instructions are ordered starting at the high
half of a reference or the low half of a reference, respectively. On all machines that I
know of, this is the same as the endianity of bytes.

(%continue stack-photo) Operation
Resumes stack-photo, abandoning the current stack.

(%fill-continuation empty-stack-photo) Operation
Fills in the template stack snapshot empty-stack-photo with the appropriate informa-
tion, copying sections of the stack into the heap where necessary, and returns its argu-
ment.

(%filltag empty-catch-tag) Operation
Fills in empty-catch-tag with the current stack heights.

(%crunch data tag) Operation
Returns a reference with the data portion data and a tag of tag. Traps if either argument
is not a fixnum.

(%data x) Operation
Returns the non-tag field of x as a fixnum.

(%tag x) Operation
Returns the tag of x as a fixnum.

(%gc) Operation
Forces an immediate normal garbage collection.

(%full-gc) Operation
Forces an immediate full garbage collection. At the end of the full garbage collection,
new space size is set back to its original value.

(%get-length x) Operation
Returns the number of storage cells occupied by x. Zero for immediates.

(%increment-locative locative n) Operation

10

Returns a locative to the cell n beyond the cell pointed to by locative.

(%load-bp-i n) Locatable Operation
Loads the contents of self’s instance variable number n. Not for the squeamish, as
who is really “self” and who would be self except that the compiler is compiling away
intermediate lambdas is very implementation specific.

(%make-cell value) Operation
Returns a locative to a new cell containing value. Could be defined with (define
(%make-cell x) (make-locative x)).

(%make-closed-environment a1 . . . an) Operation
Returns a new environment containing a1 . . . an. At least one object is required. To
get an empty environment, look in %empty-environment.

(%print-digit n) Operation
Prints n as a single decimal digit to stdout. Used to indicate various error conditions
during the boot process.

(%push . args) Operation
Pushes args onto the stack, returning (so to speak) the leftmost argument. This would
be about the same as values, if we had multiple value return.

(%read-char) Operation
Returns a character read from stdin. No buffering. For use by the cold load stream.

(%return) Operation
Generates the return bytecode. Doesn’t push anything onto the stack. Will corrupt
the stack unless you really know what you are doing.

(%allocate type size) Operation
Allocates a block of storage size long, filling in the type field with type. Type should
not be variable length.

(%varlen-allocate type size) Operation
Allocates a block of storage size long, filling in the type field with type and the
size field with size. Type should be a variable length type. Using this instead of
%allocate where appropriate avoids a window of gc vulnerability.

(%write-char char) Operation
Writes the character char to stdout. No buffering or anything.

(%↑super-tail type operation object) Operation
Generates the ↑super-tail bytecode, passing it appropriate arguments. This is
used only used in the implementation of ↑super. Once the compiler is modified to
handle the ↑super construct directly this will no longer be needed.

11

2.6 Defined Types
The following types are completely defined in Lisp.

object Type
This type is the top of the inheritance hierarchy. Ordinary functions are installed as
methods for this type.

type Type
New types are generated by instantiating this type.

variable-length-mixin Type
This mixin allows each instance of a type to have a vector of anonymous cells tacked
on the end. It also provides several low-level methods for indexed references into such
vectors. Currently, the only variable-length types are vector, %code-vector and
%closed-environment.

open-coded-mixin Type
If this is mixed in to an operation, the compiler will send it a get-byte-code-list
message, and use the result instead of a regular function call whenever the operation
appears in a program.

pair Type

cons-pair Type

null-type Type

vector Type

operation Type

settable-operation Type

locatable-operation Type

%method Type

%code-vector Type

%closed-environment Type

locale Type

12

general-error Type

foldable-mixin Type

2.7 Defined Operations
The methods for these operations are written in low level Oaklisp.

(apply operation a1 . . . an arglist) Operation
Calls operation with arguments a1 . . . an and the contents of arglist. For instance,
(apply + 1 2 ’(3 4))⇒ 10.

(make type . args) Operation
Returns a new instance of type that has been initialized by sending it an initialize
message with the extra arguments args passed along.

(%install-method-with-env type operation code-body environment)
Operation

Adds the specified method to the search table of type. It returns operation, since this
is what some instances of add-method are compiled into. Methods that don’t close
over anything can refer to %empty-environment, whose value is an environment
object whose vector portion has length zero. It takes care of instance variable mapping
conflicts.

(initialize object) Operation
Returns object. This no-op is what is shadowed when you define initialize meth-
ods for new types. (initialize type supertype-list ivar-list) does
the work involved in making a new type. The list of supertypes is used to make a
list of all ancestors that is searched at run time to find methods for operations. The
ancestor tree is considered to be ordered from bottom to top and from left to right
while constructing this list, and duplicates are removed. An error is generated if more
than one top-wired type is found in the resulting ancestor list. The instance-variable
map of the type is created, with any top-wired type appearing at the beginning, and
variable-length-mixin appearing at the end if it is present. Any method you
define to handle an initialize message should return self.

(dynamic-wind before-op main-op after-op) Operation
Calls the operation before-op, calls the operation main-op, calls the operation after-op,
and returns the value returned by main-op. If main-op is exited abnormally, after-op
is called automatically on the way out. Similarly, if main-op is entered abnormally,
before-op is called automatically on the way in.

(call-with-current-continuation operation) Operation
Calls operation with one argument, the current continuation. The synonym call/cc
is provided for those who feel that call-with-current-continuation is ex-
cessively verbose.

13

Chapter 3

Internal Data Format

This chapter describes how memory and tags are set up, and how this implements the object se-
mantics of the language.

3.1 Tag Types
In an effort to reduce the complexity of the bytecode interpreter and to simplify the system in
general, there are only four tag types. Tags are stored in the two low order bits of each reference
thus simplifying tag manipulation, particularly in the presence of indexed addressing modes.

31 30 29 28 27 26 . . . 11 10 9 8 7 6 5 4 3 2 1 0 type
twos complement integer 0 0 fixnum

data subtype 1 0 other immediate type
address 0 1 locative (pointer to cell)
address 1 1 reference to boxed object

This tagging scheme, along with our object format, does not allow for arbitrarily scannable
heaps (in which the divisions between objects can be figured out starting the scan at any point in
the heap.) In fact, if solitary cells are permitted, as they are in our implementation, scanning the
heap starting at the begining is not even possible. However, our garbage collector never needs to
scan the heap in such a fashion. Note that there is no extra “gc” bit in every word, but again, our
garbage collector requires no such bit.

3.2 Other Immediate Types

References with a tag of 1 0 use the next six bits to specify a subtype.

31 . . . 24 23 . . . 16 15 . . . 8 7 . . . 2 1 0 type
reserved font ascii code 0 0 0 0 0 0 1 0 character

14

Character is currently the only “other immediate type.” More may be added later, in particular
Macintosh handles. (At one time weak pointers were represented as their own immediate type, but
they are now represented using integers for compatibility with the Scheme standard [3].)

3.3 Memory Structure
Memory is a linear array of cells, 32-bit aligned words. These cells are divided into two contiguous
chunks: free cells and allocated cells. The free pointer points to the division between these two
chunks, and it is incremented as memory is allocated. When allocating an object would push the
free pointer beyond the limits of memory, a garbage collection is performed.

The allocated portion of memory is divided into aggregate objects and solitary cells. Each
aggregate object is a contiguous chunk of cells. The first cell of an object is a reference to its type;
if the type is variable length, the second cell holds the length of the object, including the first two
cells. The remainder of the cells hold the instance variables. Solitary cells are cells that are not part
of any object, but are the targets of locatives. Solitary cells are used heavily in the implementation
of mutable variables.

A reference to an object consists of a pointer to that object with a tag of boxed-object. Refer-
ences to solitary cells are locatives. Furthermore, locatives may reference cells that are the instance
variables of objects. If such an object is ever deallocated by the garbage collector, all of the cells
making up the object are made free except for those cells that are referenced by locatives, which
are not deallocated. These become solitary cells.

3.4 Representation of Specific Types
Consider an object of type foo, which is based on bar and baz. Bar had instance variables bar-1
and bar-2, baz has instance variables baz-1, baz-2 and baz-3, and foo has instance variable
foo-1. Foo inherits the instance variables of the types it is based on, but methods defined for type
foo can not refer to these inherited variables.

Each type’s local instance variables are stored contiguously, and in order of lexical definition, in
instances of that type, and of types that inherit it; this allows variable reference to instance variables
to be resolved into offsets from the start of the relevent instance variable frame at compile time.
Here is an instance of foo as it might actually be stored in memory:

reference to type foo
value of foo-1
value of baz-1
value of baz-2
value of baz-3
value of bar-1
value of bar-2

15

Observe that instances of type foo are divided into contiguous chunks of instance variables,
each inherited from a different supertype. When a type inherits another type through two different
routes, it still only inherits the instance variables once.1 Furthermore, if the instance variables of
two types inherited by a third have the same names they are still distinct instance variables.2 These
semantics allow us to reference instance variables very quickly, once the local instance variable
block has been located. It also allows us to use the same compiled code for a single method
regardless of whether it is being invoked upon an instance of the type it was added to or on an
instance of an inheriting type.

3.5 System Types
This section describes the format of various objects that are directly referenced by the microcode,3

such as code vectors and catch tags.
It should be emphasized that these system objects are full-fledged objects. They have types

which can be inherited and have their methods overridden, just like any other object. The only
“magic” thing about these types is that their local instance variables (ie. the system ones) must
live at the top of their memory representation, even when inherited. This allows the microcode to
locate the values it needs without going through the type heirarchy.

The only constraint this places on the user is that a type may not inherit two types both of which
are top-wired, for obvious reasons. For example, it is impossible to make a type whose instances
are both operations and types.

3.5.1 Methods
A method has two instance variables which hold the code object containing the code that imple-
ments the method and the environment vector that holds references to variables that were closed
over.4

3.5.2 Environment Vectors
Environment vectors have a block of cells, each of which contains a locative to a cell. When the
running code needs to reference a closed-over variable, it finds the location of the cell by indexing
into the environment vector. This index is calculated at compile time, and such references consume
only one instruction.

Just as it is possible for a number of methods to share the same code, differing only in the
associated environment, it is also possible for a number of methods to share the same environment,

1This aspect of the language is in flux, and should not be relied upon by users.
2This is in marked contrast to ZetaLisp flavors–that’s why variable references in flavors go through mapping tables,

resulting in considerable overhead. There are also important modularity considerations in favor of our scheme which
are beyond the scope of this document, but are discussed in detail in [4].

3Our microcode is C.
4Well, not all closed over variables. Only ones above the locale level. Locale variable references are implemented

as inline references to value cells.

16

differing only in the associated code. Currently the compiler does not generate such sophisticated
constructs.

3.5.3 Code Vectors
Code lives in vectors of integers, which are interpreted as instructions by the bytecode emulator.
This format allows code to be stored in the same space as all other objects, and allows the garbage
collector to be ignorant of its existance, treating code vectors like any other vector. Bytecodes are
16 bits long, with the low 2 bits always 0. Here is an example of some stuff taken from the middle
of a code vector.

...
8 bit inline arg 6 bit opcode 0 0 8 bit inline arg 6 bit opcode 0 0

14 bit instruction 0 0 8 bit inline arg 6 bit opcode 0 0
14 bit relative address 0 0 8 bit inline arg 6 bit opcode 0 0

8 bit inline arg 6 bit opcode 0 0 8 bit inline arg 6 bit opcode 0 0
14 bit instruction 0 0 14 bit instruction 0 0
arbitrary reference used by last instruction of previous word
14 bit instruction 0 0 8 bit inline arg 6 bit opcode 0 0

...

Note the arbitrary reference right in the middle of code. To allow the garbage collector to
properly handle code vectors, as well as to allow the processor to fetch the cell efficiently, this
reference must be cell aligned. When the processor encounters an instruction that requires such
an inline argument, if the pc is not currently pointing to an aligned location then the pc is suitably
incremented. This means that the assembler must sometimes emit a padding instuction, which will
be ignored, between instructions that require inline arguments and their arguments.

An alternative that was used earlier in the design process was to mandate that all instructions
requiring inline arguments occur in a position where the following reference can be fetched with-
out realigning the pc. This requires sometimes inserting a padding noop before an instruction
that requires an inline argument, and analysis showed that the time required to process a noop
instruction is much greater than the time required to check if the low bit of a register is on and
increment that register if so.

3.5.4 Endianity
The logical order of the instructions in a code vector depends on the endianity of the CPU running
the emulator. If the machine is big endian, ie. addresses start at the most significant and of a word
and go down (eg. a 68000 or an IBM 370) then instructions are executed left to right in the picture
above. Conversely, on a littleendian machine (eg. a VAX) instructions are executed right to left. Of
course, the Oaklisp loader has to be able to pack instructions into words in the appropriate order.
The format of cold world loads is insensitive to endianity, but binary world loads are sensitive to

17

it, so binary worlds are distributed in both big endian (with extensions beginning with .ol) and
little endian (with extensions beginning with .lo) versions.

(%big-endian?) Operation
This returns the endianity of the machine that Oaklisp is running on. Endianity is
determined by the order in which instructions are fetched, in other words, the order of
two 16-bit words within a 32-bit word. This returns true if the first instruction fetched
is from the more significant half.

3.5.5 Stack Implementation
Although the value and context stacks are logically contiguous, they are sometimes physically
discontinuous. The instructions all assume that stacks live in a designated chunk of memory called
the stack buffer. They check if they are about to overflow or enderflow the stack buffer, and if so
they take appropriate actions to fill or flush it, as appropriate, before proceeding.

If the stack buffer is about to overflow, most of it is copied to a stack segment which is allocated
on the heap. These overflown segments form a linked list, so upon stack underflow the top segment
is removed from this list and copied back to the stack buffer.

There is one more circumstance in which the stack buffer is flushed. The call/cc construct
of Scheme [3] is implemented in terms of stack photos, which are snapshots of the current state
of the two stacks, and which can be restored in the future. A fill-continuation instruction
forces the stack buffers to be flushed and then copies references to the linked lists of overflow
segments into a continuation object.

Actually, in the above treatment we have oversimplified the concept of flushing a stack buffer.
The emulator constant MAX SEGMENT SIZE determines the maximum size of any flushed stack
segment. When flushing the stack, if the buffer has more than that number of references then it is
flushed into a number of segments. This provides some hysteresis, speeding call/cc by taking
advantage of coherence in its usage patterns. A possibility opened by our stack buffer scheme,
which we do not currently exploit, is that of using virtual memory faults to detect stack buffer
overflows, thus eliminating the overhead of explicitly checking for stack overflow and underflow.

As a historical note, an early version did not use a stack buffer but instead implemented stacks
as linked lists of segments which always lived in the heap. When pushing over the top of a segment,
a couple references were copied from the top of that segment onto a newly allocated segment,
providing sufficient hysteresis to prevent repeated pushing and poping along a segment boundary
from incurring inordinate overhead. Regretably, substantial storage is wasted by the hysteresis
and the overflow and underflow limits vary dynamically wereas in the new system these limits are
C link-time constants. Presumably due to these factors, in spite of its old world charm, timing
experiments between the old system and the new system were definitive.

3.5.6 Escape Objects
In our implementation of Oaklisp we provide two different escape facilities: call/cc and catch.
The call/cc construct is that described in the Scheme standard [3]. The catch facility pro-

18

vides with user with a second class catch tag, which is valid only within the dynamic extent of the
catch.

The implementation of catch tags is very simple: they contain heights for the value and context
stacks. When a catch tag is thrown to, the value and context stacks are chopped off to the appropri-
ate heights. The slot saved-wind-count is used for unwind protection and saved-fluid-binding-list
is used for fluid variables. Details are given in Sections 7.3 and 7.2.

type: escape-object
value stack height: 25

context stack height: 19
saved wind count: 3

saved fluid binding list: ((print-length . #f) ...)

Actually, there are two variants of catch. In the regular variant, which is compatible with
T, the escape object is invoked by calling it like a procedure, as in (catch a (+ (a ’done)
12)). In the other variant, the escape object is not called but rather thrown to using the throw op-
eration, as in (native-catch a (+ (throw a ’done) 12)). Although the latter con-
struct is slightly faster, the real motivation for its inclusion is to remind the user that the the escape
object being thrown to is not first class. In order to ensure that an escape object is not used out-
side of the extent of its dynamic validity, references to them should not be retained beyond the
appropriate dynamic context.

3.5.7 Types
Type objects are used when tracing up the type heirarchy in order to find appropriate methods
and bp offsets. Since the types are used to find methods, they must be system objects so that
reference to their instance variables can be done without sending them explicit messages. The
operation-method-alist maps from operations to methods handled by the type itself, not
any supertype. The type-bp-alistmaps from types to offsets which are where the appropriate
frame of instance variables may be found. The microengine uses a simple move-to-front heuristic
in an attempt to reduce the overhead of searching these alists. The supertype-list contains a
list of the immediate supertypes. Supertypes by inheritance that have instance variables are present
in type-bp-alist, however.

This is a picture of the cons-pair type, as it actually appears in memory:

type
instance-length: 3
variable-length?: #f

supertype-list: (pair object)
ivar-list: (the-car the-cdr)

ivar-count: 2
type-bp-alist: ((cons-pair . 1))

operation-method-alist: ((car . meth) . . .)
top-wired?: #f

19

3.6 Storage Reclamation
Our garbage collector [1] is a variant of Baker’s algorithm, a so-called “stop and copy” collector.
The spaces to be reclaimed are renamed old, all accessible objects in the old spaces are transported
to a new space, and the old spaces are reclaimed. The data present in the initial world is considered
“static” and is not part of old space in normal garbage collections, only in “full” garbage collec-
tions, which also move everything not reclaimed into static space. Due to locatives, the collector
makes an extra pass over the data; a paper with more complete details on this latter complication
is in press. The weak pointer table is scanned at the end of garbage collection, and references to
deallocated objects are discarded.

The user interface to the garbage collector is quite simple. Normally, the user need not be
concerned with storage reclamation; upon the exhaustion of storage, the garbage collector is auto-
matically invoked. When this happens some messages are printed; these messages can be supressed
with the -Q switch. The default size of new space is 1Mb, or 256k references. This can be altered
with the -h size switch, where size is measured in bytes. The operations %gc and %full-gc in-
voke the garbage collector explicitly. Programs that use weak pointers can be effected by garbage
collection; for details, see Section 4.3.

The -G switch indicates that if and when the world is dumped, and if Oaklisp terminates with
an exit code of zero, a full garbage collection should be performed. In full garbage collections
preceding world dumps, the root set does not include the stacks.

New space is resized dynamically, being expanded to RECLAIM FRACTION times the amount
of unreclaimed data if the fraction of unreclaimed data is above more than one RECLAIM FRACTION’th
of new space after a normal garbage collection, or by the minimal amount needed if there is in-
sufficient space available in new space to fulfill the allocation request that triggered the collector.
Currently RECLAIM FRACTION is two. The next newspace size register says how big the
next new space allocated will be, and is accessible to Oaklisp code. Its value should not be lowered
casually, as the garbage collector will fail if new space is too small to hold all of the non-reclaimed
storage from old space. A full garbage collection sets the size of new space back to the value orig-
inally specified by the user when Oaklisp was invoked, or the default value if none was specified.

20

Chapter 4

Stack Machine Architecture

4.1 Registers in the Emulator
This section describes the registers that make up the state of the bytecode emulator, called the
processor below.

pc: The program counter points to a half reference address, and can not be accessed by register
instructions.

val stk: The top of the value stack. Can not be accessed by register instructions.

cxt stk: The top of the context stack. Can not be accessed by register instructions.

bp: The base pointer points to the base of the instance variable frame of the current object.

env: The current environment object is indexed into to find locatives to lexically closed variables.

current method: The method whose code is currently being executed. This is maintained
solely to simplify garbage collection and debugging.

nargs: The number of args register is set before a function call and checked as the first action
within each function.

t: Holds the cannonical truth object, #t.

nil: Holds the cannonical false object, #f, which is also used as the empty list, ().

fixnum type: Holds the type of objects with a tag of fixnum.

loc type: Holds the type of objects with a tag of locative.

subtype table: Holds a table of the types of all the immediate subtypes. Currently only the
first entry is used.

21

cons type: Holds the cons-pair type, the type of simple conses which are directly manipulated
by the processor.

env type: Holds that type of environment vectors, used when making new environment objects.

object type: Holds the type object which is at the root of the type hierarchy. Used when
calling an operation with no parameters. This should not be necessary in the next version.

segment type: Holds the type of stack segments, for use when the stack is being copied into
the heap.

argless tag trap table: Holds a table of operations to be called when various instructions
fail.

arged tag trap table: Holds a table of operations to be called when various instructions
fail.

boot code: Holds the method to be called first thing at boot time.

uninitialized: Holds the value that gets stuck into newly allocated storage.

free point: Holds the point at which the next heap object will be allocated. Not accessed
directly by even the most internal Oaklisp code, as the processor takes care of initialization
and gc itself.

new.end: Holds the point at which we’ve run out of storage. An attempt to allocate past here
necessitates a garbage collection. Not directly accessed by even the most internal Oaklisp
code.

next newspace size: Holds the size in references of the next new space to be allocated by
the garbage collector. This is dynamically adjusted by the garbage collector, so there is
usually no need for it to be modified from the Oaklisp level.

4.2 Instruction Set
The instructions follow the same argument order conventions as the language itself. For example,
(store-loc loc ref) expects to get loc on the top of the value stack and ref below it. The
instruction format

8 bits 6 bits 2 bits
inline argument opcode 0 0

leaves eight bits for an inline argument. Instructions that do not require any inline argument actu-
ally have “argless instruction” in their instruction field and use the argument field to code for the
actual instruction.

22

Some instructions, eg. load-imm, require a complete arbitrary reference as an inline argu-
ment. This in incorporated, aligned, directly in the instruction stream. See Section 3.5.3 for details.
Other instructions, in particular the long branches, require more than an eight bit inline argument
but do not need an entire reference. These instructions get a 14 bit inline argument by using the
space where the next instruction would normally go, with the last two bits set to zero in case the
argument ends up in the low half of a word.

Arithmetic
instruction inline arg initial stack final stack extra cell args
plus 2 (fix,fix) 1 (fix)
minus 1 (fix) 1 (fix)
subtract 2 (fix,fix) 1 (fix)
times 2 (fix,fix) 1 (fix)
mod 2 (fix,fix) 1 (fix)
div 2 (fix,fix) 1 (fix)
log-op n (4 bits) 2 (fix,fix) 1 (fix)
bit-not 1 (fix) 1 (fix)
rot 2 (fix,fix) 1 (fix)
ash 2 (fix,fix) 1 (fix)

Predicates
instruction inline arg initial stack final stack extra cell args
eq? 2 (ref,ref) 1 (bool)
not 1 (ref) 1 (bool)
<0? 1 (fix) 1 (bool)
=0? 1 (fix) 1 (bool)
= 2 (fix,fix) 1 (bool)
< 2 (fix,fix) 1 (bool)

Control
instruction inline arg initial stack final stack extra cell args
branch rel-addr
branch-nil rel-addr 1 (ref)
branch-t rel-addr 1 (ref)
long-branch 0.5
long-branch-nil rel-addr 1 (ref) 0.5
long-branch-t rel-addr 1 (ref) 0.5
return

catch and call/cc Related
instruction inline arg initial stack final stack extra cell args
filltag 1 (tag) 1 (tag)
throw 2 (tag,ref) 1 (ref)
fill-continuation 1 (photo) 1 (photo)
continue 2 (photo,ref) 1 (ref)

23

Stack Manipulation
instruction inline arg initial stack final stack extra cell args
All stack references are zero-based. (swap 0) is a noop.
(blast n) ≡(store-stack n)(pop 1).
pop n n (refs)
swap n n (refs) n (refs)
blast n n (refs) n-1 (refs)
blt-stack n,m n+m (refs) n (refs)
8 bit ref splits to 4-bit n and m, which are 1 . . . 16.

Register Manipulation
instruction inline arg initial stack final stack extra cell args
store-reg register 1 (ref) 1 (ref)
load-reg register 1 (ref)

Addressing Modes
instruction inline arg initial stack final stack extra cell args
store-env offset 1 (ref) 1 (ref)
store-stack offset 1 (ref) 1 (ref)
store-bp offset 1 (ref) 1 (ref)
store-bp-i 2 (fix,ref) 1 (ref)
contents 1 (loc) 1 (ref)
set-contents 2 (loc,ref) 1 (ref)
The next two instructions are the same.
load-glo 1 (ref) 1 (ref)
load-imm 1 (ref) 1 (ref)
load-imm-fix n 1 (fix)
load-env offset 1 (ref)
load-stack offset 1 (ref)
load-bp offset 1 (ref)
load-bp-i 1 (fix) 1 (ref)
Make a locative to the location offset in beyond the bp
register:
make-bp-loc offset 1 (loc)
locate-bp-i 1 (fix) 1 (loc)

24

Memory Model and Tag Cleaving
instruction inline arg initial stack final stack extra cell args
get-tag 1 (ref) 1 (fix)
get-data 1 (ref) 1 (fix)
crunch 2 (fix,fix:tag) 1 (ref)
load-type 1 (ref) 1 (ref:type)
load-length 1 (ref) 1 (fix)
The next two instructions are not currently used.
peek 1 (fix) 1 (fix:16-bit)
poke 2 (fix,fix:16-bit) 1 (fix:16-bit)

Misc
instruction inline arg initial stack final stack extra cell args
check-nargs n 1 (op)
check-nargs-gte n 1 (op)
store-nargs n
noop
allocate 2 (typ,len) 1 (ref)
vlen-allocate 2 (typ,len) 1 (ref)
funcall-tail 2 (op,obj) 1 (op,obj)
funcall-cxt-br rel-addr 2 (op,obj) 1 (op,obj)
push-cxt rel-addr
push-cxt-long 0.5
big-endian? 1 (bool)
object-hash 1 (ref) 1 (fix)
object-unhash 1 (fix) 1 (ref)
gc 1 (ref)
full-gc 1 (ref)
inc-loc 2 (loc,fix) 1 (loc)

List related instructions
instruction inline arg initial stack final stack extra cell args
cons 2 (ref,ref) 1 (ref)
reverse-cons 2 (ref,ref) 1 (ref)
car 1 (pair) 1 (ref)
cdr 1 (pair) 1 (ref)
set-car 2 (pair,ref) 1 (ref)
set-cdr 2 (pair,ref) 1 (ref)
locate-car 1 (pair) 1 (loc)
locate-cdr 1 (pair) 1 (loc)
assq 2 (ref,alist) 1 (ref:pair/nil)

25

4.3 Weak Pointers
Weak pointers allow users to maintain tenuous references to objects, in the following sense. Let
α be a weak pointer to the object foo, found by executing the code (object-hash foo).
This α can be dereferenced to yield a normal reference, (object-unhash α)⇒ foo. How-
ever, if there is no other way to get a reference to foo then the system is free to invalidate α, so
(object-unhash α) ⇒ #f. In practice, when the garbage collector sees that there are no
references to foo except for weak pointers it reclaims foo and invalidates any weak pointers to it.

Weak pointers are implemented directly by bytecodes because the emulator handles all details
of storage allocation and reclamation directly. Weak pointers are represented by integers. Each
time object-hash is called the argument is looked up in the weak pointer hash table. If no
entry is found, a counter is incremented and the value of that counter is returned. An entry is
made in the weak pointer table at an index corresponding to the current value of the counter, so
that the weak pointer can be used to get back the original reference, and an entry is make in the
weak pointer hash table to ensure that if the weak pointer to the same object is requested twice,
the same number will be returned both times. After a garbage collection the weak pointer table
is scanned and entries to objects which have been reclaimed are discarded, the weak pointer hash
table is cleared, and the data in the weak pointer table is entered into the weak pointer hash table.
Although these algorithms are poor if objects with weak pointers to them are frequently reclaimed,
in practice this has not been a problem.

26

Chapter 5

Stack Discipline

This chapter describes how the stacks are organized at the logical level: how temporaries are
allocated, how functions call and return work, how escape objects (used in the implementation of
catch and throw) work, and how stack snapshots (used in the implementation of call/cc) work.

5.1 Stack Overview
The Oaklisp bytecode machine has a two-stack architecture. The value stack contains arbitrary
references and is used for storing temporary variables, passing arguments, and returning results.
The context stack is used for saving non-variable context when calling subroutines. Only context
frames are stored on the context stack. This two stack architecture makes tail recursion particularly
fast, and is in large part responsible for the speed of function call in this implementation.

Most of the bytecodes are the usual sort of stack instructions, and use only value stack, for
instance plus and (swap n). All arguments are passed on the value stack, and the value stack
is not divided into frames. Methods consume their arguments, returning when they have replaced
their arguments with their result or tail recursing when they have replaced their arguments with the
appropriate arguments to the operations they are tail recursing to.

Under the current language definition there is no multiple value return, although the bytecode
architecture admits such a construct. There are facilities for variable numbers of arguments, which
are described in Section 7.9.

5.2 Method Invocation/Return
When a method is to be invoked, the arguments and operation are assembled on the value stack in
right to left order, ie. the rightmost argument is pushed first and the operation is pushed last. Let
us walk through the invokation of (f x y z), where f is on operations which is being passed
three arguments. Since we evaluate right to left, first we push z, thus:

...
z

27

continuing, we push the rest of the arguments and the operation, until the stack is of this form.

...
z
y
x
f

A (store-nargs 3) instruction is now executed to place the number of arguments in the
nargs register, and one of the funcall instructions is executed, which variant depending on
whether this is a tail recursive call. If this is not a tail recursive call, the funcall instruction
first pushes a frame containing the contents of the current method, bp and env registers and
a return pc onto the context stack. The instruction then examines the top two values, f and x,
and looks f up in the operation-method-alist of the type of x, potentially also scanning
the supertypes until it finds the appropriate method to be invoked. This method is placed in the
current method register, the method’s environment is placed in the env register, the pc is set
to the beginning of the method’s code block, and the address of the appropriate instance variable
frame within x is placed in the bp register. The funcall instruction leaves the value stack and
nargs register unchanged:

...
z
y
x
f

The first thing the code block of the resultant method executes is one of the check-nargs
instructions, in this case perhaps (check-nargs 3). A (check-nargs n) instruction tests
if nargs is n, trapping if not. After that, it pops the operation f off the stack. By leaving the op-
eration to be popped off by the check-nargs instruction rather than the funcall instruction,
when an an incorrect number of arguments is detected the operation is still available to the error
system. The return instruction pops the top frame off the context stack, loads the popped context
into the processor, and continues execution. Before a return is executed all of the arguments
have been consumed and the result is the only thing left on the stack,

...
(f x y z)

5.3 The Context Stack
The only things that can be stored on the context stack are context frames, which each have four
values, as shown below. The push-cxt instruction pushes a context frame onto the context stack.
It takes an inline argument, which is the relative address of the desired return point. This allows

28

a context to be pushed whenever convenient, perhaps before the assembly of arguments begins.
Earlier in the implementation process there was only one variant of the funcall instruction,
which was tail recursive. Non tail recursive calls were compiled as a push-cxt followed by a
funcall-tail, but because this sequence occured so frequently a combined instruction was
implemented to improve code density.

...
pc
bp
env

current method

pc
bp
env

current method

pc
bp
env

current method

Actually, the pc stored in the context stack is not a raw pointer to the next instruction but
rather the offset from the beginning of the current code block, stored as a fixnum. This makes
the return instruction slightly slower, as the actual return pc must be recomputed, but simplifies
the garbage collector. The bp is analogously stored with a tag of locative so that the garbage
collector need not treat it specially. This would cause a problem if the current object were reclaimed
and afterwards had one of its instance variables refered to, as all that would be left of the object
would be the solitary cell that the saved bp was pointing to, and the rest of the relevent instance
variable frame would be gone. This is avoided by having the compiler ensure that a reference to
the object in question is retained long enough.

29

Chapter 6

Methods

In this chapter we describe how methods are created, represented, and looked up. This is intimately
related to instance variable reference, so we describe how that works here as well.

6.0.1 Invoking Methods
Methods are looked up by by doing a depth first search of the inheritance tree. Some Oaklisp code
to find a method would look like this,

(define (%find-method op typ)
(let ((here (assq op (type-operation-method-alist typ))))

(if (null? here)
(any? (lambda (typ) (%find-method op typ))

(type-supertype-list typ))
(list typ (cdr here)))))

Once this information is found, we need to find the offset of the appropriate block of instance
variables, put a pointer to the instance variable frame in the bp register, set the other registers
correctly, and branch.

(define (%send-operation op obj)
(let ((typ (get-type obj)))

(destructure (found-typ method) (%find-method op typ)
(set! ((%register ’current-method)) method)
(set! ((%register ’bp))

(increment-locative
(%crunch (%data obj) %loc-tag)
(cdr (assq found-typ (type-bp-offset-alist typ)))))

(set! ((%register ’env)) (method-env method))
(set! ((%register ’pc))

(code-body-instr (method-code (%method))))))

30

Of course, the actual code to find a method is written in C and has a number of tricks to improve
efficiency.

• Simple lambdas (operations which have only one method defined at the type object) are
ubiquitous, so the overhead of method lookup is avoided for them by having a lambda? slot
in each operation. This slot holds a zero if no methods are defined for the given operation.
If the only method defined for the operation is for the type object then the lambda? slot
holds that method, and the method is not incorporated in the operation-method-alist
of type object. If neither of these conditions holds, the lambda? slot holds #f.

• To reduce the frequency of full blown method lookup, each operation has three slots devoted
to a method cache. When op is sent to obj, we check if the cache-type slot of op is equal
to the type of obj. If so, instead of doing a method search and finding the instance variable
frame offset, we can use the cached values from cache-method and cache-offset.
In addition, after each full blown method search, the results of the search are inserted into
the cache.

Giving the -M switch to a version of the emulator compiled with FAST not defined will print
an H when there is a method cache hit and an M when there is a miss. The method cache
can be completely disabled by defining NO METH CACHE when compiling the emulator. We
note in passing that we have one method cache for each operation. In contrast, the Smalltalk-
80 system has an analogous cache at each call point. We know of no head to head comparison
of the two techniques, but suspect that if we were to switch to the Smalltalk-80 technique we
would achieve a higher average hit rate at considerable cost in storage.

• In order to speed up full blown method searches, a move to front heuristic reorders the
association lists inside the types. In addition, the C code for method lookup was tuned for
speed, is coded inline, and uses an internal stack to avoid recursion.

For most of this tuning we used the time required to compile compile-bench.oak as our
primary benchmark for determining the speed of generic operations, since the compiler is written
in a highly object-oriented style and makes extensive use of inheritance.

6.0.2 Adding Methods
A serious complication results from the fact that the type field in an add-method form is not
evaluated until the method is installed at run time. Since the target type for the method is unknown
at compile time the appropriate instance variable map is also unknown, and hence the correct
instance variable offsets cannot be determined. Our solution is to have the compiler guess the
order1 or simply invent one, compile the offsets accordingly, and incorporate this map in the header
of the emitted code block. When the add-method form is actually executed at run time, the
assumed instance variable map is compared to the actual map for the type that is the recipient of
the method, and the code is copied and patched if necessary. The code only needs to be copied

1The compiler guesses by attempting to evaluate the type expression at compile time.

31

in the rare case when a single add-method is performed on multiple types that require different
offsets.

After instance variable references in the code block have been resolved, which usually involves
no work at all since the compiler almost always guesses correctly, the method can actually be
created and installed. Creating the method involves pairing the code block with an appropriate
environment vector containing references to variables that have been closed over. Because this
environment vector is frequently empty, a special empty environment vector is kept in the global
variable %empty-environment so a new one doesn’t have to be created on such occations.
All other environment vectors are created by pushing the elements of the environment onto the
stack and executing the make-closed-environment opcode. Environment vectors are never
shared in our current implementation, with the exception of the empty environment.

After the method is created it must be installed. The method cache for the involved oper-
ation is invalidated, and the method is either put in the lambda? slot of the operation or the
operation-method-alist of the type it is being installed in. If there is already a value in
the lambda? slot and the new method is not being installed for type object, the lambda? slot
is cleared and the method that used to reside there is added to operation-method-alist of
type object.

(%install-method-with-env type operation code-body environment)
Operation

This flushes the method cache of operation, ensures that the instance variable maps of
code-body and type agree (possibly by copying code-body and remapping the instance
variable references), creates a method out of code-body and environment, and adds this
method to the operation-method-alist of type, modulo the simple lambda
optimization if type is object.

(%install-method type operation code-body) Operation
≡ (%install-method-with-env type operation code-body %empty-environment)

(%install-lambda-with-env code-body environment) Operation
≡ (%install-method-with-env object (make operation) code-body
environment)
but more efficient.

(%install-lambda code-body) Operation
≡ (%install-method-with-env object (make operation) code-body
%empty-environment)
but more efficient.

32

Chapter 7

Oaklisp Level Implementation

Once the core of the language is up, the rest of the language is implemented using the language
core. Some of these new language constructs require some support from the bytecode emulator
along with considerable Oaklisp level support. These include such features as call/cc and its
simple cousin catch. Others are implemented entirely in the core language without the use of
special purpose bytecodes; in this latter class fall things like infinite precision integers (so called
bignums), fluid variables, and the error system.

In this chapter we describe the implementation of these constructs, albeit sketchily. For more
details, the source code is publicly available. We do not describe the implementation of locales or
other extremely high level features; read the source for the details, which are quite straightforward.

7.1 Fluid Variables
Our implementation of fluid variables uses deep binding. A shallow bound or hybrid technology
would presumably speed fluid variable reference considerably, but they are used rarely enough that
we have not bothered with such optimizations. In addition, shallow binding interacts poorly with
multiprocessing.

fluid-binding-list Global Variable
Hold an association list which associates fluid variables to their values. The bind
construct simply pushes variable/value pairs onto this list before executing its body
and pops them off afterwards.

It would be easy to implement fluid variables using the unwind protection facilities, but instead
the abnormal control constructs (native-catch and call/cc) are careful to save and restore
fluid-binding-list properly. This avoids the overhead of using the wind facilities and
makes sure that (ignoring wind-protect) fluid-binding-list is only manipulated once
for every abnormal exit, no matter how many bind constructs are exited and entered along the
way.

(%fluid symbol) Locatable Operation

33

This looks symbol up on fluid-binding-list. If it is not found an error is
signaled. In contrast, (setter %fluid) silently adds new fluid variables to the
end of the association list, thus creating new top level fluid bindings.

7.2 Unwind Protection
In the presence of call/cc, a simple unwind-protect construct a. la. Common Lisp does not
suffice. Because control can enter a dynamic context which has previously been exited, symmetry
requires that if we have forms that get executed automatically when a context is abnormally exited,
we must also have ones that get executed automatically when a context is abnormally entered. For
this purpose the system maintains some global variables that reflect the state of the current dynamic
context with respect to these automatic actions.

%windings Global Variable
This is a list of wind/unwind action pairs, one of which is pushed on each time we
enter a dynamic-wind and poped off when we leave it. The wind/unwind action
pairs are of the form (after before . saved-fluid-binding-list)
where before and after are operations, guards to be called when leaving and entering
this dynamic context respectively, and saved-fluid-binding-list is the appropriate value
for fluid-binding-list when calling these guard operations.

%wind-count Global Variable
To reduce find-join-point’s complexity from quadratic to linear, we maintain
%wind-count = (length %windings).

7.3 Catch
The format of catch tags is describe in Section 3.5.6. The simplest implementation of native-catch
would have the native-catch macro expand into something that executed the appropriate un-
wind protect actions and restored the fluid binding list before resuming execution. Regretably,
the unwind protect actions can themselves potentially throw, so the stacks must not be chopped
off until after the unwind protect actions have been completed. For this reason the throw oper-
ation doesn’t just call the throw instruction, but first performs all the appropriate unwind pro-
tect actions. Along with stack heights, the catch tag contains saved-wind-count, which
is used to compute how many elements of %windings must be popped off and called, and
saved-fluid-binding-list, which is restored immediately before the stacks are actually
chopped off.

7.4 Call/CC
The call/cc construct is just like native-catch, except that the saved stack state isn’t just
some offsets but is an entire stack photo (see Section 3.5.5), and that not only unwinding but

34

also rewinding actions might need to be done. Because the winding actions might throw, it is
necessary for the unwind actions to be executed in the stack context where the continuation is
invoked, and similarly the rewind actions must be executed in the destination stack context.

%%join-count Global Variable

%%new-windings Global Variable

%%new-wind-count Global Variable

%%cleanup-needed Global Variable
These global are used to pass information about which rewind actions need to be
executed by the destination of the continuation, since the normal parameter passing
mechanisms are not available. This would have to be done on a per processor basis in
a multithreaded implementation.

Continuations contain saved-windings and saved-wind-count instance variables,
which have the values of %windings and %wind-count at the time the %call/cc was en-
tered. Before the continuation is actually invoked and the destination stack photos restored, the
highest join point between current and the destination winding lists is found, and all the unwind
actions needed to get down to the join point are executed. Then the stack photo is restored, and in
the destination context the rewinding actions are done to get up from the join point to the destina-
tion point.

7.5 The Error System
The error system is pretty complete, but is actually not only easy to use, but also intuitive and fun,
particularly at the user level.

(error-return message . body) Macro
Evaluates body in a dynamic context in which a restart handler is available that can
force the form to return. The handler is identified by string in the list of choices
printed out by the debugger. If the handler is invoked by calling ret with an argument
in addition to the handler number, the error-return form returns this additional
value; otherwise it returns #f. If no error occurs, an error-return form yields the
value of body.

(error-restart message let-clauses . body) Macro
Acts like a let, binding the let-clauses as you would expect, except that if an error
occurs while evaluating body, the user is given the option of specifying new values
for the variables of the let-clauses and starting body again. This is implemented with
a native-catch and some tricky restart handlers that get pushed onto (fluid
restart-handlers).

(fluid restart-handlers) Fluid Variable

35

A list of actions that the user can invoke from the debugger in order to restart the
computation at various places. Not normally manipulated by user code.

(fluid debug-level) Fluid Variable
The number of recursive debuggers we’re inside. Zero for the top level. Not normally
manipulated by user code.

(catch-errors (error-type [error-lambda [non-error-lambda]]). body)
Macro

Evaluates body. If an error which is a subtype of error-type occurs, #f is returned,
unless error-lambda is given, in which case it is called on the error object. If no
error occurs then the result of evaluating body is returned, unless non-error-lambda is
provided in which case it is called on the result of the evaluation of body within the
context of of the error handler, and the resultant value returned.

(bind-error-handler (error-type handler). body) Macro
This binds a handler to errors which are subtypes of error-type. When such an error
occurs, an appropriate error object is created and handler is applied to it.

(invoke-debugger error) Operation
This error handler, when sent to an error object, invokes the debugger.

(remember-context error after-op) Operation
Used to make an error remember the context it occured in, so that even after the context
has been exited the error can still be proceeded from, or the debugger can be entered
back at the error context. This should always be called tail recursively from a handler,
and after it stashes away the continuation it calls after-op on error. Of course, after-op
should never return.

(invoke-in-error-context error operation) Operation
Go back to the context in which error occured and invoke operation there.

(report error stream) Operation
Write a human readable account of the error to stream. Controlled studies have shown
that error messages can never be too verbose.

(proceed error value) Operation
Proceed from error, returning value. Of course, it is actually the call to signal that
returns value.

(signal error-type . args) Operation
This signals creates an error of type error-type with initialization arguments args. It
then scans down (fluid error-handlers) until it finds a type of error which
is a supertype of error-type, at which point it sends the corresponding handler to the
newly minted error object. If the handler returns, that value is returned by the call to
signal. One day we’ll add a way for a handler to refuse to handle an error, in which
case the search for an applicable handler will proceed down the list.

36

(fluid error-handlers) Fluid Variable
An association list of mapping error types to error handlers. Users should not touch
this directly.

Of course, there are a large number of types of errors used by the system. A few of the more
useful to know about are:

general-error Type
The supertype of all errors. Abstract.

proceedable-error Type
The supertype of all errors that can be recovered from. Abstract.

fs-error Type
File system error. Abstract. It has all kinds of subtypes for all the different possible
file system error conditions.

error-opening Type
Abstract. Signaled when a file can’t be opened for some reason. Proceeding from this
kind of error with a string lets you try opening a different file.

operation-not-found Type
Signaled when an operation is sent to an object that can’t handle it. Proceeding from
this kind of error will return a value from the failed call.

nargs-error Type
Signaled when there are an incorrect number of arguments passed to a function. Pro-
ceeding from this will return a value from the failed call. Abstract

nargs-exact-error Type
Signaled when there are an incorrect number of arguments passed to a method that
expects a particular number of arguments.

nargs-gte-error Type
Signaled when there are an insufficient number of arguments passed to a method that
can tolerate extra arguments.

infinite-loop Type
Signaled when an infinite loop is entered. User programs may wish to signal this as
well.

read-error Type
Some kind of reader syntax error. Abstract. There are about fifty million subtypes,
corresponding to all the different constructs that can be malformed, and all the different
ways in which they can be malformed. We probably went a little overboard with these.

user-interrupt Type
Oaklisp received a DEL signal. Through a convoluted series of events in which the
UNIX trap handler sets the variable del , which is detected by the bytecode emulator
which pretends that a noop instruction failed and passes the nargs register to the
Oaklisp trap handler which salts the old nargs away for restoration upon return and
signals this error type, the user usually lands in the debugger after typing Control-C.

37

7.6 Numbers
Small integers (between−229 and 229−1 inclusive) are represented as immediates of type fixnum
and handled directly by microcode. When arithmetic instructions trap out, due to either their
arguments not being fixnums or to overflow, an Oaklisp operation corresponding to the bytecode
is called. Most of these operations are written in terms of other bytecodes, and should never be
shadowed. For instance,

(add-method (subtract/2 (number) x y)
(+ x (- y)))

defines subtraction in terms of negation and addition. The trap code also handles fixnum overflow,
promoting the operands to bignums and dispatching appropriately. The only really primitive
operations, which must handle all types of numbers, are <, =, minus, negative?, plus/2,
times/2, /, /r, quotient, remainder, quotientm and modulo. Whenever a new type
of number is defined, methods for all of the above operations should be added for it, unless the new
type is not a subtype of real, in which case methods wouldn’t make sense for <, negative?,
and perhaps quotient, remainder, quotientm and modulo.

7.7 Vectors and Strings
Rather than being built into the emulator, vectors are defined entirely within Oaklisp, albeit with
some rather low level constructs.

variable-length-mixin Type
This type provides a variable amount of stuff at the end of its instances. When a
type has this mixed in, whether immediately or deep down in the inheritance tree, it
always takes an extra initialization argument which says has long the variable length
block at the end should be. This is mixed into such system types as %code-vector,
stack-segment, and %closed-environment.

In general, variable-length-mixin is used at the implementation level
only and should never appear in user code. Typically if you think you want a sub-
type of variable-length-mixin, what you really want is an instance variable
bound to a vector.

(%vref variable-length-object n) Locatable Operation
This is the accessor operation to get at the extra cells of subtypes of variable-length-mixin.
It is used in the implementation of variable length structures, and in things like describe
that look at their internals.

simple-vector Type
This is a subtype of vector with variable-length-mixin added and an ap-
propriate nth method defined.

38

Characters are packed into strings more densely than one character per ref-
erence, so strings are not just vectors with odd print methods; they also
have accessor methods which unpack characters from their internals. Un-
fortunately, it is not possible to pack four eight bit characters into a sin-
gle reference without violating the memory format conventions by putting
something other than 0 0 in the tag field. We could pack four seven bit
characters into each reference, but some computers use eight bit fonts, and
the characters within the string would not be aligned compatibly with C
strings. We therefore use the following somewhat wasteful format.

string Type
This is a subtype of simple-vector with the nth method shadowed by one that
packs three eight bit characters into the low 24 bits of each fixnum, in littleendian
order. The unused high bits of each word are set to zero to simplify equality testing and
hash key computation. No trailing null character is required, although one is present
two thirds of the time due to padding. Below is the string "Oaklisp Rules!" as
represented in memory.

31 . . . 26 25 . . . 18 17 . . . 10 9 . . . 2 1 0
string

object length: 8 0 0
string length: 14 0 0

0 0 0 0 0 0 #\k #\a #\O 0 0
0 0 0 0 0 0 #\s #\i #\l 0 0
0 0 0 0 0 0 #\R #\space #\p 0 0
0 0 0 0 0 0 #\e #\l #\u 0 0
0 0 0 0 0 0 #\null #\! #\s 0 0

7.8 Symbols
We do not use any of the fancy techniques used by older dialects, like oblists or symbol buckets.
Instead, the standard hash table facility is used for the symbol table.

symbol-table Generic Hash Table
Maps strings to symbols, using string-hash-key to compute the hash and equal?
to compare strings for equality.

(intern string) Operation
Returns a symbol with print name string by looking it up in the symbol-table and
making and installing a new symbol if it isn’t found. Strings passed to intern should
never be side effected afterwards or the symbol table could be corrupted.

39

(fluid print-escape) Fluid Variable
This flags whether symbols with weird characters in them should be with the weird
characters escaped. It also applies to strings.

(fluid symbol-slashification-style) Fluid Variable
This flag is only relevent if (fluid print-escape) is on. With the value t-compatible
then the empty symbol is printed as #[symbol ""] and all other symbols requiring
escaping are printed with a \ character preceding every character of the symbol. With
any other value, escaped symbols are delimited by | characters and internal characters
\ and | are preceded by \.

7.9 Variable Numbers of Arguments
The formal parameter list of a method is permitted to be improper, with the terminal atom being a
magic token representing the rest of the arguments. The only legal use for this magic token is as
the terminal member of an improper argument list of a tail recursive call, and as an argument to
the special form rest-length. Methods that accept a variable number of arguments must exit
tail recursively and must pass along their magic token in their tail recursive call, unless they know
that they actually received no extra arguments.

(rest-length varargs-token) Special Form
Returns the number of trailing arguments represented by varargs-token.

For example, this is legal,

(define (okay x y . rest)
(if (zero? (rest-length rest))

’nanu-nanu
(list ’you x y ’sucker . rest)))

while the following are not, the first because it has an exit when there might be extra arguments
which does not pass the extra arguments along tail recursively, and the second because it tries to
pass along the extra arguments in a non tail recursive position.

(define (not-okay x y . rest)
(if (eq? x y)

’nanu-nanu
(list ’you x y ’sucker . rest)))

(define (also-bad x y . rest)
(append (list ’you x ’sucker . rest) y))

The implementation behind this is very simple: extra arguments are ignored by the compiler,
except that it emits a check-nargs-gte in place of a chech-nargs at the top of the method
code body and does a little computation to figure out what the value to put in the nargs register

40

when it sees rest argument at the tail of a call. When all the user wishes to do is pass the extra
arguments along in the way that the make method passes extra args along to initialize, this
mechanism is both convenient and efficient. Sometimes the user needs to actually get into the
extra arguments though, so some operations are provided to make handling variable numbers of
arguments easier.

(consume-args value . extra) Operation
Returns value.

(listify-args operation . args) Operation
Calls operation with a single argument, a list of args.

There is also a macro package that implements optional and keyword arguments using these
facilities, and the Scheme compatiblity package redefines add-method so that, as required by
the Scheme standard [3], extra arguments are made into a list.

41

Chapter 8

The Compiler

8.0.1 File Types
There are a number of different kinds of object files, distinguished by extension.

extension file type
.oak Oaklisp source file
.omac Macroexpanded Oaklisp source file
.ou Assembly file, not peephole optimized
.oc Assembly file, peephole optimized
.oa Assembled object file

compiler-from-extension Global Variable
The extension of the input files the compiler will read. Default ".oak". This variable
is in the compiler locale.

compiler-to-extension Global Variable
The extension the the output files the compiler will produce. Default ".oa". This
variable is in the compiler locale.

compiler-noisiness Global Variable
The amount of noise the compiler should produce; zero for none, 1 for a little, and 2
for a lot. Default value is 1, but the oakliszt batch file compiler sets it to zero. This
variable is in the compiler locale.

8.0.2 Object File Formats

8.0.3 Compiler Internals
Some compiler internals documentation. Very sketchy, just enough to give people a vague idea of
what the internal program representation is and what the various passes are for.

42

Chapter 9

Bootstrapping

In this chapter we describe new versions of Oaklisp are created. Essentially, the process is quite
similar to the way in which a C program is created. First the Oaklisp source files which make up
the cold world load are compiled to produce object files. Then a linker, originally written in T
but now an Oaklisp program, takes these object files and lays them all out in memory, resolving
references to global variables and laying out quoted constants refered to in the code. The linker
also puts a map of where it allocated various globals and such in memory. At this point, the cold
world (named oaklisp.cold) is booted, and the files that the linker layed out in memory are
thereby executed, sequentially. These files gradually build all the infrastructure required for a full
Oaklisp world. The first files are written at an extremely low level, and make things like make and
cons work. Later files bring up more advanced constructs, until finally there is enough for object
files to be loaded. At this point the world is dumped to oaklisp.ol, and then this world is
booted and has files loaded into it using the normal file loading mechanisms until the full Oaklisp
world, oaklisp.olc, is built.

The formats of these files is very simple. They contain a header which gives the length of the
various segments and the values of some registers. This is followed by a memory image, with
pointers given as offsets from the beginning of the image. This is followed by the weak pointer
table.

The cold world is in a hexidecimal format, with each reference represented as a space followed
by a sequence of hexidecimal digits. Carriage returns may optionally preceed spaces. Actually,
the space referred to above can be either a space character or the ↑ character. The later indicates
that the following reference contains bytecodes. Since bytecodes are ordered differently depending
on the endianity of the machine, the hex format world loader swaps the two instructions on little
endian machines but not on big endian machines. This keeps the cold load file independent of
endianity.

The warm world loads are in a binary format and are not independent of endianity. For this
reason, warm world extensions start with .ol for big endian versions and .lo for little endian
versions. The emulator replaces the characters %% in the command line file argument (or the default
world in config.h) with either ol or lo, depending on whether BIG ENDIAN is defined.

To make Oaklisp dump itself upon exiting use the -d -b switches when invoking Oaklisp.
After Oaklisp has exited, the emulator will prompt for a filename to dump the world image to,

43

unless this filename has been provided with the -f filename switch. Usually the -G switch is also
given when the world is being dumped.

44

Chapter 10

Administrative Details

10.1 Getting a Copy
The most recent released version of Oaklisp, along with the manuals, are available at http://www.
bcl.hamilton.ie/∼barak/oaklisp/, but this is to be superseded by a new site: http://oaklisp.alioth.
debian.org/.

10.2 Bugs
The following are known serious problems and inadequacies of the current implementation. People
are invited to work on remedying them. None of these are fundamental; they’re simply due to lack
of either effort or motivation.

• Floating point numbers are not supported. Rationals can be used to make up for this lack.

• In contrast to the error handling system, which is Industrial Strength, the debugger barely
exists.

• There is no foreign function interface for loading and calling C routines from a running
Oaklisp.

Bug reports, enhancements, and the like should be posted using the facilities on http://oaklisp.
alioth.debian.org/; queries can also be sent to barak+oaklisp@pearlmutter.net.

We appreciate enhancements (especially in the form of patch files), bug fixes, and bug reports.
We are particularly grateful for porting problem fixes. In a bug report, please include the precise
version of Oaklisp, which is indicated by the date at the end of the tar file. And please try to make
sure that it’s really a bug and not a feature, and pretty please, if at all possible, find a very short
program that manifests your bug. In any case please be aware that we are under no obligation to
respond to bug reports in any way whatsoever.

45

10.3 Copyright and Lack of Warranty
The Oaklisp copyright belongs to its authors. It is authorized for distribution under the GNU
General Public License, version 2, copies of which are readily obtainable from the Free Software
Foundation. There is no warranty; use at your own risk. For more precise information, see the
COPYING file in the Oaklisp source distribution.

46

Bibliography

[1] Barak A. Pearlmutter. Garbage collection with pointers to individual cells. Communications
of the ACM, 39(12):202–6, December 1996. doi: 10.1145/272682.272712.

[2] Barak A. Pearlmutter and Kevin J. Lang. The implementation of Oaklisp. In Peter Lee,
editor, Topics in Advanced Language Implementation, pages 189–215. MIT Press, 1991. ISBN
0262121514.

[3] Jonathan A. Rees, William Clinger, et al. The revised3 report on the algorithmic language
Scheme. SIGPLAN Notices, 21(12):37–79, December 1986.

[4] Alan Snyder. Encapsulation and inheritance in object-oriented programming languages. In
ACM Conference on Object-Oriented Systems, Programming, Languages and Applications,
pages 38–45, September 1986. Special issue of ACM SIGPLAN Notices 21(11).

47

Index

swap, 27
(store-nargs 3), 28
*

Operation, 5
+

Operation, 5
-G

switch, 20, 44
-M

switch, 31
-Q

switch, 20
-b

switch, 43
-d

switch, 43
-f

switch, 44
-h

switch, 20
-

Operation, 6
.lo, 18, 43
.ol, 18, 43
/r, 38
/, 38
1+

Operation, 6
<0?, 23
<=

Operation, 6
<, 23, 38
<

Operation, 6
=0?, 23

=, 23, 38
=

Operation, 6
>=

Operation, 6
>

Operation, 6
BIG ENDIAN, 43
FAST, 31
MAX SEGMENT SIZE, 18
NO METH CACHE, 31
RECLAIM FRACTION, 20
#f, 7, 31, 35, 36
%%cleanup-needed

Global Variable, 35
%%join-count

Global Variable, 35
%%new-wind-count

Global Variable, 35
%%new-windings

Global Variable, 35
%add-method, 3
%add-method

Special Form, 2
%allocate, 11
%allocate

Operation, 11
%assq

Operation, 10
%big-endian?

Operation, 10, 18
%block

Special Form, 2
%call/cc, 35
%closed-environment, 12, 38

48

%closed-environment
Type, 12

%code-vector, 12, 38
%code-vector

Type, 12
%continue

Operation, 10
%crunch

Operation, 10
%data

Operation, 10
%empty-environment, 11, 13, 32
%fill-continuation

Operation, 10
%filltag

Operation, 10
%fluid

Locatable Operation, 33
%full-gc, 20
%full-gc

Operation, 10
%gc, 20
%gc

Operation, 10
%get-length

Operation, 10
%if

Special Form, 2
%increment-locative

Operation, 10
%install-lambda-with-env

Operation, 32
%install-lambda

Operation, 32
%install-method-with-env

Operation, 13, 32
%install-method

Operation, 32
%labels

Special Form, 2
%load-bp-i

Locatable Operation, 11

%make-cell
Operation, 11

%make-closed-environment
Operation, 11

%make-locative
Special Form, 2

%method
Type, 12

%print-digit
Operation, 11

%push
Operation, 11

%quote
Special Form, 2

%read-char
Operation, 11

%return
Operation, 11

%tag
Operation, 10

%varlen-allocate
Operation, 11

%vref
Locatable Operation, 38

%wind-count, 34, 35
%wind-count

Global Variable, 34
%windings, 34, 35
%windings

Global Variable, 34
%write-char

Operation, 11
%↑super-tail

Operation, 11
del , 37
add-method, 7, 8, 13, 31, 32, 41
add-method

Macro, 3
allocate, 25
and

Macro, 5
apply

49

Operation, 13
ash-left

Operation, 6
ash-right

Operation, 6
ash, 23
assq, 25
backwards-args-mixin, 8
big-endian?, 25
bignum, 38
bind-error-handler, 4
bind-error-handler

Macro, 4, 36
bind, 4, 33
bind

Macro, 4
bit-andca

Operation, 6
bit-and

Operation, 6
bit-equiv

Operation, 6
bit-nand

Operation, 6
bit-nor

Operation, 6
bit-not, 23
bit-not

Operation, 6
bit-or

Operation, 6
bit-xor

Operation, 6
blast, 24
blt-stack, 24
bp, 24, 28–30
branch-nil, 23
branch-t, 23
branch, 23
caaaar

Locatable Operation, 9
caaadr

Locatable Operation, 9
caaar

Locatable Operation, 8
caadar

Locatable Operation, 9
caaddr

Locatable Operation, 9
caadr

Locatable Operation, 8
caar

Locatable Operation, 8
cache-method, 31
cache-offset, 31
cache-type, 31
cadaar

Locatable Operation, 9
cadadr

Locatable Operation, 9
cadar

Locatable Operation, 8
caddar

Locatable Operation, 9
cadddr

Locatable Operation, 9
caddr

Locatable Operation, 8
cadr

Locatable Operation, 8
call-with-current-continuation, 13
call-with-current-continuation

Operation, 13
call/cc, 4, 13, 18, 23, 33, 34
car, 25
car

Locatable Operation, 8
catch-errors

Macro, 4, 36
catch, 4, 18, 19, 23, 33
catch

Macro, 3
cdaaar

Locatable Operation, 9

50

cdaadr
Locatable Operation, 9

cdaar
Locatable Operation, 8

cdadar
Locatable Operation, 9

cdaddr
Locatable Operation, 9

cdadr
Locatable Operation, 9

cdar
Locatable Operation, 8

cddaar
Locatable Operation, 9

cddadr
Locatable Operation, 9

cddar
Locatable Operation, 9

cdddar
Locatable Operation, 9

cddddr
Locatable Operation, 9

cdddr
Locatable Operation, 9

cddr
Locatable Operation, 8

cdr, 25
cdr

Locatable Operation, 8
character

Type, 5
chech-nargs, 40
check-nargs-gte, 25, 40
check-nargs, 25, 28
compile-bench.oak, 31
compiler-from-extension

Global Variable, 42
compiler-noisiness

Global Variable, 42
compiler-to-extension

Global Variable, 42
cond

Macro, 5
config.h, 43
cons-pair, 8, 19
cons-pair

Type, 12
consume-args

Operation, 41
cons, 25, 43
cons

Operation, 7
contents, 24
contents

Locatable Operation, 7
continue, 23
crunch, 25
current method, 28, 29
debug-level

Fluid Variable, 36
define

Macro, 3
describe, 38
div, 23
dynamic-wind, 34
dynamic-wind

Operation, 13
env, 28, 29
eq?, 23
eq?

Operation, 7
equal?, 39
error-handlers

Fluid Variable, 37
error-opening

Type, 37
error-restart

Macro, 35
error-return, 35
error-return

Macro, 35
fill-continuation, 18, 23
filltag, 23
find-join-point, 34

51

fixnum, 5, 38
fixnum

Type, 5
fluid-binding-list, 33, 34
fluid-binding-list

Global Variable, 33
fluid-bindings-alist, 4
fluid

Macro, 4
foldable-mixin

Type, 13
fs-error

Type, 37
full-gc, 25
funcall-cxt-br, 25
funcall-tail, 25, 29
funcall, 28, 29
funny-wind-protect, 4
funny-wind-protect

Macro, 4
gc, 25
general-error

Type, 12, 37
get-byte-code-list, 12
get-data, 25
get-tag, 25
get-type

Operation, 7
identity

Operation, 7
if

Macro, 4
inc-loc, 25
infinite-loop

Type, 37
initialize, 13, 41
initialize

Operation, 13
intern, 39
intern

Operation, 39
invoke-debugger

Operation, 36
invoke-in-error-context

Operation, 36
lambda?, 31, 32
lambda

Macro, 3
let*

Macro, 5
let, 2, 4, 35
let

Macro, 5
list*

Operation, 8
listify-args

Operation, 41
list, 8
list

Operation, 7
load-bp-i, 24
load-bp, 24
load-env, 24
load-glo, 24
load-imm-fix, 24
load-imm, 23, 24
load-length, 25
load-reg, 24
load-stack, 24
load-type, 25
locale

Type, 12
locatable-operation

Type, 12
locate-bp-i, 24
locate-car, 25
locate-cdr, 25
locative, 29
locative

Type, 5
log-op, 23
long-branch-nil, 23
long-branch-t, 23
long-branch, 23

52

make-bp-loc, 24
make-closed-environment, 32
make-locative

Macro, 3, 4
make, 41, 43
make

Operation, 13
minus, 23, 38
minus

Operation, 7
modulo, 38
modulo

Operation, 7
mod, 23
nargs-error

Type, 37
nargs-exact-error

Type, 37
nargs-gte-error

Type, 37
nargs, 28, 37, 40
native-catch, 4, 7, 33–35
native-catch

Special Form, 2
negative?, 38
negative?

Operation, 7
next newspace size, 20
noop, 17, 25, 37
not, 23
not

Operation, 8
nth, 38, 39
null-type

Type, 12
null?

Operation, 8
oaklisp.cold, 43
oaklisp.olc, 43
oaklisp.ol, 43
oakliszt, 42
object-hash, 25, 26

object-hash
Operation, 7

object-unhash, 25
object-unhash

Operation, 6, 7
object, 3, 31, 32
object

Type, 12
open-coded-mixin

Type, 12
operation-method-alist, 19, 28, 31, 32
operation-not-found

Type, 37
operation

Type, 12
or

Macro, 5
pair

Type, 12
pc, 28, 29
peek, 25
plus/2, 38
plus, 23, 27
poke, 25
pop, 24
positive?

Operation, 6
print-escape

Fluid Variable, 40
proceedable-error

Type, 37
proceed

Operation, 36
push-cxt-long, 25
push-cxt, 25, 28, 29
quote

Macro, 3
quotientm, 38
quotient, 38
quotient

Operation, 6
read-error

53

Type, 37
real, 38
remainder, 38
remember-context

Operation, 36
report

Operation, 36
rest-length, 40
rest-length

Special Form, 40
restart-handlers

Fluid Variable, 35
return, 11, 23, 28, 29
ret, 35
reverse-cons, 8, 25
rot-left

Operation, 6
rot-right

Operation, 7
rot, 23
saved-fluid-binding-list, 19, 34
saved-wind-count, 19, 34, 35
saved-windings, 35
second-arg

Operation, 8
self, 13
set-car, 25
set-cdr, 25
set-contents, 24
set!, 2–4
set!

Macro, 3
settable-operation

Type, 12
set

Macro, 3
signal, 36
signal

Operation, 36
simple-vector, 39
simple-vector

Type, 38

stack-segment, 38
stdin, 11
stdout, 11
store-bp-i, 24
store-bp, 24
store-env, 24
store-loc, 22
store-nargs, 25
store-reg, 24
store-stack, 24
string-hash-key, 39
string

Type, 39
subtract, 23
supertype-list, 19
swap, 24
symbol-slashification-style

Fluid Variable, 40
symbol-table, 39
symbol-table

Generic Hash Table, 39
t-compatible, 40
throw, 19, 23, 34, 35
throw

Operation, 7
times/2, 38
times, 23
type-bp-alist, 19
type

Type, 12
unwind-protect, 34
user-interrupt

Type, 37
variable-length-mixin, 13, 38
variable-length-mixin

Type, 12, 38
vector, 12, 38
vector

Type, 12
vlen-allocate, 25
wind-protect, 4, 33
wind-protect

54

Macro, 4
zero?

Operation, 5
!=

Operation, 5
↑super-tail, 11
↑super, 11

Smalltalk-80, 31

55

