
polymaking

Interfacing the geometry software
polymake

Version 0.8.6

8 July 2021

Marc Roeder

Marc Roeder
Email: roeder.marc@gmail.com

mailto://roeder.marc@gmail.com

polymaking 2

Abstract
This package provides a very basic interface to the polymake program by Ewgenij Gawrilow, Michael Joswig
et al. [GJ]. The polymake program itself is not included.

Copyright
© 2007–2013 Marc Roeder.

This package is distributed under the terms of the GNU General Public License version 2 or later (at your
convenience). See the file "LICENSE" or https://www.gnu.org/copyleft/gpl.html

Acknowledgements

This work has been supported by Marie Curie Grant No. MTKD-CT-2006-042685

https://www.gnu.org/copyleft/gpl.html

Contents

1 Installation and Preface 4
1.1 A few words about the installation of polymake . 4
1.2 Setting variables for external programs . 4

2 Polymake interaction 6
2.1 Creating Polymake Objects . 6
2.2 Accessing Properties of Polymake Objects . 7
2.3 Example: Creating and Accessing Polymake Objects 8
2.4 Writing to Polymake Objects . 9
2.5 Calling Polymake and converting its output . 10
2.6 An Example . 11

3 Global Variables 13
3.1 Getting information about polymake output . 13
3.2 Variables for system interaction . 13

4 Converting Polymake Output 15
4.1 The General Method . 15
4.2 Conversion Functions . 16

References 19

Index 20

3

Chapter 1

Installation and Preface

To install the package, just unpack it in your packages directory (usually ~/gap/pkg for lo-
cal installation). To use polymaking, you need a working installation of the program polymake
https://polymake.org. The package has been tested on linux and Mac OS X (10.4, 10.5 and
10.6). But it should be as platform independent as GAP and polymake.

The interaction with polymake is restricted to writing files and carrying out simple operations.
These looked like
polymake file KEYWORD1 KEYWORD2 KEYWORD3
on the command line for polymake versions before 4. The keywords are polymake methods without
arguments. Since polymake no longer supports this interface the polymaking package provides the
script lib/pm_script_arg.pl to emulate this.
polymake ––script lib/pm_script_arg.pl KEYWORD1 KEYWORD2 KEYWORD3
Using custom scripts is not supported.
Every call to polymake will re-start the program anew. This causes considerable overhead. The
number of calls to polymake is reduced by caching the results in the so-called PolymakeObject in
GAP. As of polymaking version 0.8.0, old versions of polymake (i.e. versions before 2.7.9) are not
supported anymore.

1.1 A few words about the installation of polymake

polymaking will try to guess the location of polymake. If this fails, a warning is issued at load time
(InfoWarning level 1). Note that the guessing procedure is suppressed when POLYMAKE_COMMAND
(3.2.1) is set manually (see 1.2.3).
setenv PATH ${PATH}:<your polymakepath>
The general rule is: If polymaking finds polymake by itself, there is nothing to worry about.

1.2 Setting variables for external programs

As polymaking uses the program polymake, it needs to know where this program lives. The commu-
nication with polymake is done by writing files for polymake and reading its output (as returned to
standard output "the prompt"). Note that the interface does not read any polymake file.

4

https://polymake.org

polymaking 5

1.2.1 SetPolymakeDataDirectory

. SetPolymakeDataDirectory(dir) (method)

Sets the directory in which all polymake files are created to dir . The standard place for
these files is a temporary directory generated when the package is loaded. This manipulates
POLYMAKE_DATA_DIR (3.2.2).

1.2.2 SetPolymakeCommand

. SetPolymakeCommand(command) (method)

Sets the name for the polymake program to command . This manipulates POLYMAKE_COMMAND
(3.2.1).

1.2.3 Setting variables permanently

To permanently set the values of POLYMAKE_COMMAND (3.2.1), and POLYMAKE_DATA_DIR (3.2.2), add
the lines

POLYMAKE_DATA_DIR:=Directory("/home/mypolymakedatadir");
POLYMAKE_COMMAND:=Filename(Directory("/home/mypolymakebindir/"),"polymake");

to your .gaprc file (see The .gaprc file???). Note that these have to be before the
LoadPackage("polymaking"); line. Or you can change the values of the above variables by editing
lib/environment.gi

Chapter 2

Polymake interaction

2.1 Creating Polymake Objects

The interaction with the polymake program is done via files. A PolymakeObject is mainly a pointer
to a file and a list of known properties of the object. These properties need not be stored in the
file. Whenever polymake is called, the returned value is read from standard output and stored in the
PolymakeObject corresponding to the file for which polymake is called. The files for polymake
are written in the old (non-xml) format. The first run of polymake converts them into the new (xml)
format. This means that changes to the file by means of the methods outlined below after the first run
of polymake will probably lead to corrupted files.

2.1.1 CreateEmptyFile

. CreateEmptyFile(filename) (method)

Returns: nothing
Creates an empty file with name filename . Note that filename has to include the full path and

the directory for the file must exist.

2.1.2 CreatePolymakeObject

. CreatePolymakeObject() (method)

. CreatePolymakeObject(appvertyp) (method)

. CreatePolymakeObject(dir) (method)

. CreatePolymakeObject(dir, appvertyp) (method)

. CreatePolymakeObject(prefix, dir) (method)

. CreatePolymakeObject(prefix, dir, appvertyp) (method)

Returns: PolymakeObject
If called without arguments, this method generates an empty file in the directory defined by

POLYMAKE_DATA_DIR (3.2.2). If a directory dir is given (this directory must exist), an empty file
is generated in this directory. If prefix is not given, the file is called polyN where N is the current
runtime. If a file of this name already exists, a number is appended separated by a dot (example:
"poly1340" and "poly1340.1"). If prefix is given, the filename starts with this prefix. Option-
ally, the file can be generated with a header specifying application, version and type of the object.
This is done by passing the triple of strings appvertyp to CreatePolymakeObject. A valid triple

6

polymaking 7

is ["polytope","2.3","RationalPolytope"]. Validity is checked by CheckAppVerTypList
(2.1.3).

2.1.3 CheckAppVerTypList

. CheckAppVerTypList(appvertyp) (method)

Returns: bool
Checks if the triple arppvertyp of strings specifies an application and type of

polymake version 2.3. More specifically, the first entry has to be an application from
["polytope","surface","topaz"] and the third entry has to be a type corresponding to the
application given in the first entry. The second entry is not checked.

2.1.4 CreatePolymakeObjectFromFile

. CreatePolymakeObjectFromFile(filename) (method)

. CreatePolymakeObjectFromFile(dir, filename) (method)

Returns: PolymakeObject
This method generates a PolymakeObject corresponding to the file filename in the directory

dir . If dir is not given, the POLYMAKE_DATA_DIR is used.If no file with name filename exists in
dir (or POLYMAKE_DATA_DIR, respectively), an empty file is created. Note that the contents of the
file do not matter for the generation of the object. In particular, the object does not know any of
the properties that might be encoded in the file. The only way to transfer information from files to
PolymakeObjects is via Polymake (2.5.1).

2.2 Accessing Properties of Polymake Objects

A PolymakeObject contains information about the directory of its file, the name of its file and about
properties calculated by calling Polymake (2.5.1). The properties returned by the polymake pro-
gram are stored under the name polymake assigns to them (that is, the name of the data block in
the corresponding file). The following methods can be used to access the information stored in a
PolymakeObject. But be careful! All functions return the actual object. No copies are made. So if
you change one of the returned objects, you change the PolymakeObject itself.

2.2.1 DirectoryOfPolymakeObject

. DirectoryOfPolymakeObject(poly) (method)

Returns: Directory
Returns the directory of the file associated with poly .

2.2.2 FilenameOfPolymakeObject

. FilenameOfPolymakeObject(poly) (method)

Returns: String
Returns the name of the file associated with poly . This does only mean the name of the file, not

the full path. For the full path and file name see FullFilenameOfPolymakeObject (2.2.3)

polymaking 8

2.2.3 FullFilenameOfPolymakeObject

. FullFilenameOfPolymakeObject(poly) (method)

Returns: String
Returns the file associated with the PolymakeObject poly with its complete path.

2.2.4 NamesKnownPropertiesOfPolymakeObject

. NamesKnownPropertiesOfPolymakeObject(poly) (method)

Returns: List of Strings
Returns a list of the names of all known properties. This does only include the properties returned

by Polymake (2.5.1), "dir" and "filename" are not included. If no properties are known, fail is
returned.

2.2.5 KnownPropertiesOfPolymakeObject

. KnownPropertiesOfPolymakeObject(poly) (method)

Returns: Record
Returns the record of all known properties. If no properties are known, fail is returned.

2.2.6 PropertyOfPolymakeObject

. PropertyOfPolymakeObject(poly, name) (method)

Returns the value of the property name if it is known. If the value is not known, fail is returned.
name must be a String.

2.3 Example: Creating and Accessing Polymake Objects

Suppose the file /tmp/threecube.poly contains the three dimensional cube in polymake form. Now
generate a PolymakeObject from this file and call Polymake (2.5.1) to make the vertices of the cube
known to the object.

Example

suppose we have a polymake file /tmp/threecube.poly
containing a cube in three dimensions
gap> cube:=CreatePolymakeObjectFromFile(Directory("/tmp"),"threecube.poly");
<polymake object. No properties known>
gap> FilenameOfPolymakeObject(cube);
"threecube.poly"
gap> FullFilenameOfPolymakeObject(cube);
"/tmp/threecube.poly"

#nothing is known about the cube:
gap> NamesKnownPropertiesOfPolymakeObject(cube);
fail
gap> Polymake(cube,"VERTICES");
[[-1, -1, -1], [1, -1, -1], [-1, 1, -1], [1, 1, -1], [-1, -1, 1],

[1, -1, 1], [-1, 1, 1], [1, 1, 1]]
Now <cube> knows its vertices:

polymaking 9

gap> Print(cube);
<polymake object threecube.poly. Properties known: ["VERTICES"]>
gap> PropertyOfPolymakeObject(cube,"VERTICES");
[[-1, -1, -1], [1, -1, -1], [-1, 1, -1], [1, 1, -1], [-1, -1, 1],

[1, -1, 1], [-1, 1, 1], [1, 1, 1]]
gap> KnownPropertiesOfPolymakeObject(cube);
rec(

VERTICES := [[-1, -1, -1], [1, -1, -1], [-1, 1, -1], [1, 1, -1],
[-1, -1, 1], [1, -1, 1], [-1, 1, 1], [1, 1, 1]])

2.4 Writing to Polymake Objects

To transfer data from GAP to polymake, the following methods can be used. But bear in mind that
none of these functions test if the resulting polymake file is still consistent.

2.4.1 AppendToPolymakeObject

. AppendToPolymakeObject(poly, string) (method)

Returns: nothing
This appends the string string to the file associated to the PolymakeObject poly . It is not

tested if the string is syntactically correct as a part of a polymake file. It is also not tested if the string
is compatible with the data already contained in the file.

INEQUALITIES, POINTS and VERTICES can be appended to a polymake object using the fol-
lowing functions:

2.4.2 AppendPointlistToPolymakeObject

. AppendPointlistToPolymakeObject(poly, pointlist) (method)

Returns: nothing
Takes a list pointlist of vectors and converts it into a string which represents a polymake block

labeled "POINTS". This string is then added to the file associated with poly . The "POINTS" block of
the file associated with poly then contains points with leading ones, as polymake uses affine notation.

2.4.3 AppendVertexlistToPolymakeObject

. AppendVertexlistToPolymakeObject(poly, pointlist) (method)

Returns: nothing
Does the same as AppendPointlistToPolymakeObject, but with "VERTICES" instead of

"POINTS".

2.4.4 AppendInequalitiesToPolymakeObject

. AppendInequalitiesToPolymakeObject(poly, ineqlist) (method)

Returns: nothing
Just appends the inequalities given in ineqlist to the polymake object poly (with caption "IN-

EQUALITIES"). Note that this does not check if an "INEQUALITIES" section does already exist in
the file associated with poly .

polymaking 10

2.4.5 ConvertMatrixToPolymakeString

. ConvertMatrixToPolymakeString(name, matrix) (method)

Returns: String
This function takes a matrix matrix and converts it to a string. This string can then be appended

to a polymake file via AppendToPolymakeObject (2.4.1) to form a block of data labeled name . This
may be used to write blocks like INEQUALITIES or FACETS.

2.4.6 ClearPolymakeObject

. ClearPolymakeObject(poly) (method)

. ClearPolymakeObject(poly, appvertyp) (method)

Returns: nothing
Deletes all known properties of the PolymakeObject poly and replaces its file with an empty

one.
If the triple of strings appvertyp specifying application, version and type (see CheckAppVerTypList
(2.1.3)) is given, the file is replaced with a file that contains only a header specifying application,
version and type of the polymake object.

There are also methods to manipulate the known values without touching the file of the
PolymakeObject:

2.4.7 WriteKnownPropertyToPolymakeObject

. WriteKnownPropertyToPolymakeObject(poly, name, data) (method)

Takes the object data and writes it to the known properties section of the PolymakeObject poly .
The string name is used as the name of the property. If a property with that name already exists, it is
overwritten. Again, there is no check if data is consistent, correct or meaningful.

2.4.8 UnbindKnownPropertyOfPolymakeObject

. UnbindKnownPropertyOfPolymakeObject(poly, name) (method)

If the PolymakeObject poly has a property with name name , that property is unbound. If there
is no such property, fail is returned.

2.5 Calling Polymake and converting its output

2.5.1 Polymake

. Polymake(poly, option: PolymakeNolookup) (method)

This method calls the polymake program (see POLYMAKE_COMMAND (3.2.1)) with the option
option . You may use several keywords such as "FACETS VERTICES" as an option. The returned
value is cut into blocks starting with keywords (which are taken from output and not looked up in
option). Each block is then interpreted and translated into GAP readable form. This translation is
done using the functions given in ObjectConverters (4.1.4). The first line of each block of poly-
make output is taken as a keyword and the according entry in ObjectConverters (4.1.4) is called

polymaking 11

to convert the block into GAP readable form. If no conversion function is known, an info string is
printed and fail is returned. If only one keyword has been given as option , Polymake returns the
result of the conversion operation. If more than one keyword has been given or the output consists of
more than one block, Polymake returns fail. In any case, the calculated values for each block are
stored as known properties of the PolymakeObject poly as long as they are not fail. If Polymake
is called with an option that corresponds to a name of a known property of poly , the known property
is returned. In this case, there is no call of the external program. (see below for suppression of this
feature).

Note that the command Polymake returns fail if nothing is returned by the program
polymake or more than one block of data is returned. For example, the returned value of
Polymake(poly,"VISUAL") is always fail. Likewise, Polymake(poly,"POINTS VERTICES")
will return fail (but may add new known properties to poly). For a description of the conversion
functions, see chapter 4.

If the option PolymakeNolookup is set to anything else than false, the polymake program is called
even if poly already has a known property with name option .

Note that whenever Polymake (2.5.1) returns fail, a description of the problem is stored in
POLYMAKE_LAST_FAIL_REASON (3.1.2). If you call Polymake (2.5.1) with more than one keyword,
POLYMAKE_LAST_FAIL_REASON (3.1.2) is changed before polymake is called. So any further reason
to return fail will overwrite it.

2.6 An Example

Let’s generate a three dimensional permutahedron.
Example

gap> S:=SymmetricGroup(3);
Sym([1 .. 3])
gap> v:=[1,2,3];
[1, 2, 3]
gap> points:=Orbit(S,v,Permuted);;
gap> permutahedron:=CreatePolymakeObject();
<polymake object. No properties known>
gap> AppendPointlistToPolymakeObject(permutahedron,points);
gap> Polymake(permutahedron,"VOLUME");
3
gap> Polymake(permutahedron,"N_VERTICES");
6

#Now <permutahedron> knows its number of vertices, but not the vertices:
gap> PropertyOfPolymakeObject(permutahedron,"VERTICES");
fail
gap> NamesKnownPropertiesOfPolymakeObject(permutahedron);
["VOLUME", "N_VERTICES"]

#Let’s look at the object!
gap> Polymake(permutahedron,"VISUAL");
#I There was no or wrong polymake output
fail
gap> Polymake(permutahedron,"DIM");
2

polymaking 12

Chapter 3

Global Variables

3.1 Getting information about polymake output

3.1.1 InfoPolymaking

. InfoPolymaking (info class)

If set to at least 2, the output of polymake is shown. At level 1, warnings are shown. This is the
default. And at level 0, the polymake package remains silent.

3.1.2 POLYMAKE_LAST_FAIL_REASON

. POLYMAKE_LAST_FAIL_REASON (global variable)

Contains a string that explains the last occurence of fail as a return value of Polymake (2.5.1).

3.2 Variables for system interaction

The variables for interaction with the system are contained in the file environment.gi. Each of
these variables has a function to set it, see 1.2. If POLYMAKE_COMMAND or POLYMAKE_DATA_DIR are
set at startup, they are not overwritten. So if you don’t want (or don’t have the rights) to modify
environment.gi, you can set the variables in your .gaprc file.

3.2.1 POLYMAKE_COMMAND

. POLYMAKE_COMMAND (global variable)

This variable should contain the name of the polymake program in the form as returned by
Filename So a probable value is Filename(Directory("/usr/local/bin"),"polymake").

3.2.2 POLYMAKE_DATA_DIR

. POLYMAKE_DATA_DIR (global variable)

13

polymaking 14

In this directory the files for polymake will be created. By default, this generates a temporary
directory using DirectoryTemporary

Chapter 4

Converting Polymake Output

4.1 The General Method

When polymake is called, its output is read as a string and then processed as follows:

1. the lines containing upper case letters are found. These are treated as lines containing the
keywords. Each of those lines marks the beginning of a block of data.

2. The string is then cut into a list of blocks (also strings). Each block starts with a line containing
the keyword and continues with some lines of data.

3. for each of the blocks, the appropriate function of ObjectConverters is called. Here "appro-
priate" just means, that the keyword of the block coincides with the name of the function.

4. The output of the conversion function is then added to the known properties of the
PolymakeObject for which Polymake was called.

4.1.1 Converter- Philosopy

The converter functions should take meaningful polymake data into meaningful GAP data. This
sometimes means that the (mathematical) representation is changed. Here is an example: polymake
writes vectors as augmented affine vectors of the form 1 a1 a2 a3... which does not go very
well with the usual GAP conventions of column vectors and multiplying matrices from the right. So
polymaking converts such a vector to [a1,a2,a3,...] and the user is left with the problem of
augmentation and left or right multiplication.

Another area where the GAP object isn’t a literal translation from the polymake world is combina-
torics. In Polymake, list elements are enumerated starting from 0. GAP enumerates lists starting at 1.
So the conversion process adds 1 to the numbers corresponding to vertices in facet lists, for example.

The conversion process is done by the following methods:

4.1.2 ConvertPolymakeOutputToGapNotation

. ConvertPolymakeOutputToGapNotation(string) (method)

Returns: Record having polymake keywords as entry names and the respective converted poly-
make output as entries.

15

polymaking 16

Given a the output of the polymake program as a string string , this method first calls
SplitPolymakeOutputStringIntoBlocks (4.1.3). For each of the returned blocks, the name
(=first line) of the block is read and the record ObjectConverters (4.1.4) is looked up for an
entry with that name. If such an entry exists, it (being a function!) is called and passed the
block. The returned value is then given the name of the block and added to the record returned by
ConvertPolymakeOutputToGapNotation.

4.1.3 SplitPolymakeOutputStringIntoBlocks

. SplitPolymakeOutputStringIntoBlocks(string) (method)

Returns: List of strings – "blocks"–
The string string is cut at the lines starting with an upper case character and consisting only of

upper case letters, numbers and underscore (_) characters. The parts are returned as a list of strings.
The initial string string remains unchanged.

4.1.4 ObjectConverters

. ObjectConverters (global variable)

The entries of this record are labeled by polymake keywords. Each of the entries is a function
which converts a string returned by polymake to GAP format. So far, only a few converters are
implemented. To see which, try RecNames(ObjectConverters);

You can define new converters using the basic functions described in section 4.2.

4.2 Conversion Functions

The following functions are used for the functions in ObjectConverters (4.1.4).

4.2.1 ConvertPolymakeNumber

. ConvertPolymakeNumber(string) (method)

The string string is converted to a rational number. Unlike Rat, it tests, if the number represented
by string is a floating point number an converts it correctly. If this is the case, a waring is issued.

4.2.2 ConvertPolymakeScalarToGAP

. ConvertPolymakeScalarToGAP(list) (method)

If list contains a single string, this string is converted into a number using
ConvertPolymakeNumber (4.2.1).

4.2.3 ConvertPolymakeMatrixOrListOfSetsToGAP

. ConvertPolymakeMatrixOrListOfSetsToGAP(list) (method)

. ConvertPolymakeMatrixOrListOfSetsToGAPPlusOne(list) (method)

polymaking 17

Tries to decide if the list list of strings represents a matrix or a list of sets
by testing if they start with "{". It then calls either ConvertPolymakeMatrixToGAP
(4.2.4) or ConvertPolymakeListOfSetsToGAP (4.2.8). The "PlusOne" version calls
ConvertPolymakeListOfSetsToGAPPlusOne (4.2.8) if list represents a list of sets.

4.2.4 ConvertPolymakeMatrixToGAP

. ConvertPolymakeMatrixToGAP(list) (method)

. ConvertPolymakeMatrixToGAPKillOnes(list) (method)

The list list of strings is interpreted as a list of row vectors and converted into a matrix. The
"KillOnes" version removes the leading ones.

4.2.5 ConvertPolymakeVectorToGAP

. ConvertPolymakeVectorToGAP(list) (method)

. ConvertPolymakeVectorToGAPKillOne(list) (method)

. ConvertPolymakeIntVectorToGAPPlusOne(list) (method)

As the corresponding "Matrix" version. Just for vectors.
ConvertPolymakeIntVectorToGAPPlusOne requires the vector to contain integers. It also
adds 1 to every entry.

4.2.6 ConvertPolymakeBoolToGAP

. ConvertPolymakeBoolToGAP(list) (method)

If list contains a single string, which is either 0,false,1, or true this function returns false or
true, respectively.

4.2.7 ConvertPolymakeSetToGAP

. ConvertPolymakeSetToGAP(list) (method)

Let list be a list containing a single string, which is a list of numbers separated by whitespaces
and enclosed by { and } . The returned value is then a set of rational numbers (in the GAP sense).

4.2.8 ConvertPolymakeListOfSetsToGAP

. ConvertPolymakeListOfSetsToGAP(list) (method)

. ConvertPolymakeListOfSetsToGAPPlusOne(list) (method)

Let list be a list containing several strings representing sets. Then each of these strings is con-
verted to a set of rational numbers and the returned value is the list of all those sets. The "PlusOne"
version adds 1 to every entry.

polymaking 18

4.2.9 ConvertPolymakeGraphToGAP

. ConvertPolymakeGraphToGAP(list) (method)

Let list be a list of strings representing sets (that is, a list of integers enclosed by { and }). Then
a record is returned containing two sets named .vertices and .edges.

References

[GJ] Ewgenij Gawrilow and Michael Joswig. polymake. http://polymake.org/. 2

19

Index

AppendInequalitiesToPolymakeObject, 9
AppendPointlistToPolymakeObject, 9
AppendToPolymakeObject, 9
AppendVertexlistToPolymakeObject, 9

CheckAppVerTypList, 7
ClearPolymakeObject, 10
ConvertMatrixToPolymakeString, 10
ConvertPolymakeBoolToGAP, 17
ConvertPolymakeGraphToGAP, 18
ConvertPolymakeIntVectorToGAPPlusOne,

17
ConvertPolymakeListOfSetsToGAP, 17
ConvertPolymakeListOfSetsToGAPPlusOne,

17
ConvertPolymakeMatrixOrListOfSets-

ToGAP, 16
ConvertPolymakeMatrixOrListOfSetsToGA-

PPlusOne, 16
ConvertPolymakeMatrixToGAP, 17
ConvertPolymakeMatrixToGAPKillOnes, 17
ConvertPolymakeNumber, 16
ConvertPolymakeOutputToGapNotation, 15
ConvertPolymakeScalarToGAP, 16
ConvertPolymakeSetToGAP, 17
ConvertPolymakeVectorToGAP, 17
ConvertPolymakeVectorToGAPKillOne, 17
CreateEmptyFile, 6
CreatePolymakeObject, 6
CreatePolymakeObjectFromFile, 7

DirectoryOfPolymakeObject, 7

FilenameOfPolymakeObject, 7
FullFilenameOfPolymakeObject, 8

InfoPolymaking, 13

KnownPropertiesOfPolymakeObject, 8

NamesKnownPropertiesOfPolymakeObject, 8

ObjectConverters, 16

Polymake, 10
POLYMAKE_COMMAND, 13
POLYMAKE_DATA_DIR, 13
POLYMAKE_LAST_FAIL_REASON, 13
PropertyOfPolymakeObject, 8

SetPolymakeCommand, 5
SetPolymakeDataDirectory, 5
SplitPolymakeOutputStringIntoBlocks, 16

UnbindKnownPropertyOfPolymakeObject, 10

WriteKnownPropertyToPolymakeObject, 10

20

	Installation and Preface
	A few words about the installation of polymake
	Setting variables for external programs

	Polymake interaction
	Creating Polymake Objects
	Accessing Properties of Polymake Objects
	Example: Creating and Accessing Polymake Objects
	Writing to Polymake Objects
	Calling Polymake and converting its output
	An Example

	Global Variables
	Getting information about polymake output
	Variables for system interaction

	Converting Polymake Output
	The General Method
	Conversion Functions

	References
	Index

