
A Scalable Parallel Sorting Algorithm for Contemporary

Architectures

David R. Cheng∗ Viral B. Shah† John R. Gilbert‡ Alan Edelman§

March 20, 2009

Abstract

Modern scientic codes often combine numerical methods with combinatorial methods. Sort-
ing, a widely studied problem in computer science, is an important primitive for combinatorial
scientic computing. Increasingly, scientic codes target parallel computers. Scientic programming
environments such as Matlab, Python, R, and Star-P provide sorting as a built-in function.

We present a parallel sorting algorithm that is close to optimal in computation and com-
munication, along with scaling results for shared and distributed memory architectures. One
of the core motivations for developing this code was the lack of a quality scalable parallel
sorting library. Our sorting library is available as open source and is written to be com-
patible with the C++ Standard Template Library. The code is available for download at
http://gauss.cs.ucsb.edu/code/index.shtml

1 Introduction

We describe the design and implementation of an algorithm for parallel sorting on contemporary ar-
chitectures. Distributed memory architectures are widely in use today. The cost of communication
is an order of magnitude larger than the cost of computation on such architectures. Often, it is not
enough to tune existing algorithms. Newer architectures demand a fresh look at the problems be-
ing solved and new algorithms to yield good performance. We propose a parallel sorting algorithm
which moves a minimal amount of data over the network. Our algorithm is close to optimal in
both the computation and communication required. It moves lesser data than widely used sample
sorting algorithms, and is computationally a lot more efficient on distributed and shared memory
architectures.

Blelloch et al. [1] compare several parallel sorting algorithms on the CM–2, and report that
a sampling based sort and radix sort are good algorithms to use in practice. We first tried a
sampling based sort, but quickly ran into performance problems. The cost of sampling is often
quite high, and sample sort requires a redistribution phase at the end, so that the output has the
desired distribution. The sampling process itself requires “well chosen” parameters to yield “good”
samples. We noticed that we can do away with both these steps if we can determine exact splitters
∗Goldman Sachs. Part of this work was done as part of David Cheng’s MS thesis at MIT
†Interactive Supercomputing. Part of this work was done as part of Viral Shah’s PhD thesis at UC Santa Barbara
‡UC Santa Barbara
§MIT, Interactive Supercomputing

1

Algorithm.
Input: A vector v of n total elements, evenly distributed among p
processors.
Output: An evenly distributed vector w with the same distribution
as v, containing the sorted elements of v.

1. Sort the local elements vi into a vector v′i.

2. Determine the exact splitting of the local data:

(a) Compute the partial sums r0 = 0 and rj =
∑j

k=1 dk for
j = 1 . . . p.

(b) Use a parallel select algorithm to find the elements
e1, . . . , ep−1 of global rank r1, . . . , rp−1, respectively.

(c) For each rj, have processor i compute the local index sij so
that rj =

∑p
i=1 sij and the first sij elements of v′i are no

larger than ej.

3. Reroute the sorted elements in v′i according to the indices sij:
processor i sends elements in the range sij−1 . . . sij to processor
j.

4. Locally merge the p sorted sub-vectors into the output wi.

Figure 1: Parallel sorting with exact splitters

quickly. Saukas and Song [14] describe a quick parallel selection algorithm. Our algorithm extends
this work to efficiently find p− 1 exact splitters in O(p log n) rounds of communication.

Our goal was to design a scalable, robust, portable and high performance sorting code which
would form a building block for higher level combinatorial algorithms. We built our code using
standards based library software such as the C++ STL (Standard Template Library) and MPI [6],
which allows us to achieve our goals of scalability, robustness and portability without sacrificing
performance. Our code is highly modular, which lets the user replace any stage of the algorithm
with platform or application specific routines for higher performance, if need be.

2 Algorithm Description

We have p processors to sort n total elements in a vector v. Assume that the input elements are
already load balanced, or evenly distributed over the p processors - this is not a requirement but
makes the description and analysis simpler. We rank the processors 1 . . . p, and define vi to be the
elements held locally by processor i. The distribution of v is a vector d where di = |vi|. We say v
is evenly distributed if it is formed by the concatenation v = v1 . . . vp, and di ≤ dnp e for all i.

We describe our algorithm in Figure 2. We assume the task is to sort the input in increasing
order. Naturally, the choice is arbitrary and any other comparison function may be used.

2

2.1 Local sort

The first step may invoke any local sort applicable to the problem at hand. It is beyond the
scope of this study to devise an efficient sequential sorting algorithm, as this problem is very well
studied. We simply impose the restriction that the algorithm used here should be identical to the
one used for a baseline comparison on a non-parallel computer. Define the computation cost for
this algorithm on an input of size n to be Ts(n). Therefore, the amount of computation done by
processor i is just Ts(di). Since the local sorting must be completed on each processor before the
next step can proceed, the global cost is maxi Ts(di) = Ts(dnp e). For a comparison based sort, this
is O(n

p lg n
p).

2.2 Exact splitting

This step is nontrivial, and the main result of this paper follows from the observation that exact
splitting over locally sorted data can be done efficiently.

The method used for simultaneous selection was given by Saukas and Song in [14], with two main
differences: local ranking is done by binary search rather than partition, and we perform O(lg n)
rounds of communication rather than terminating the selection process earlier. For completeness,
the single selection algorithm is described next.

2.2.1 Single selection

First, we consider the simpler problem of selecting just one target, an element of global rank1 r.
The algorithm for this task is motivated by the sequential methods for the same problem, most
notably the one given in [2].

Although it may be clearer to define the selection algorithm recursively, the practical implemen-
tation and extension into simultaneous selection proceed more naturally from an iterative descrip-
tion. Define an active range to be the contiguous sequence of elements in v′i that may still have rank
r, and let ai represent its size. Note that the total number of active elements is

∑p
i=1 ai. Initially,

the active range on each processor is the entire vector v′i and ai is just the input distribution di. In
each iteration of the algorithm, a “pivot” is found that partitions the active range in two. Either
the pivot is determined to be the target element, or the next iteration continues on one of the
partitions.

Each processor i performs the following steps:

1. Let mi be the median of the active range of v′i. Broadcast it to all processors.

2. Weigh median mi by aiPp
k=1 ak

. Find the weighted median of medians mm. By definition, the

weights of the {mi|mi < mm} sum to at most 1
2 , as do the weights of the {mi|mi > mm}.

3. Find mm with binary search over the active range of v′i to determine the first and last positions
fi and li it can be inserted into the sorted vector v′i. Broadcast these two values.

4. Compute f =
∑p

i=1 fi and l =
∑p

i=1 li. The element mm has ranks [f, l] in v.

1To handle the case of non-unique input elements, any element may actually have a range of global ranks. To be
more precise, we want to find the element whose set of ranks contains r.

3

1

2

3

4

5

Iteration
[1 2 3|]

[1 2|]

[1|2]

[1] [|2]

[3|]

[|3]

[3|]

Figure 2: Example execution of selecting three elements. Each node corresponds to a contiguous
range of v′i, and gets split into its two children by the pivot. The root is the entire v′i, and the
bold traces which ranges are active at each iteration. The array at a node represents the target
ranks that may be found by the search path, and the vertical bar in the array indicates the relative
position of the pivot’s rank.

5. If r ∈ [f, l], then mm is the target element and we exit. Otherwise the active range is truncated
as follows:

Increase the bottom index to li + 1 if l < r; or decrease the top index to fi − 1 if r < f .

Loop on the truncated active range.

We can think of the weighted median of medians as a pivot, because it is used to split the
input for the next iteration. It is a well-known result that the weighted median of medians can be
computed in linear time [5, 13]. One possible way is to partition the values with the (unweighted)
median, accumulate the weights on each side of the median, and recurse on the side that has too
much weight. Therefore, the amount of computation in each round is O(p) + O(lg ai) + O(1) =
O(p+ lg n

p) per processor.
Furthermore, as shown in [14], splitting the data by the weighted median of medians will

eliminate at least 1
4 of the elements. Because the step begins with n elements under consideration,

there are O(lg n) iterations. The total single-processor computation for selection is then O(p lg n+
lg n

p lg n) = O(p lg n+ lg2 n).
The amount of communication is straightforward to compute: two broadcasts per iteration, for

O(p lg n) total bytes being transferred over O(lg n) rounds.

2.2.2 Simultaneous selection

The problem is now to select multiple targets, each with a different global rank. In the context of
the sorting problem, we want the p−1 elements of global rank d1, d1 +d2, . . . ,

∑p−1
i=1 di. One simple

way to do this would call the single selection problem for each desired rank. Unfortunately, doing
so would increase the number of communication rounds by a factor of O(p). We can avoid this
inflation by solving multiple selection problems independently, but combining their communication.
Stated another way, instead of finding p− 1 paths one after another from root to leaf of the binary
search tree, we take a breadth-first search with breadth at most p− 1 (see Figure 2).

To implement simultaneous selection, we augment the single selection algorithm with a set A
of active ranges. Each of these active ranges will produce at least one target. An iteration of the
algorithm proceeds as in single selection, but finds multiple pivots: a weighted median of medians

4

for each active range. If an active range produces a pivot that is one of the target elements, we
eliminate that active range from A (as in the leftmost branch of Figure 2). Otherwise, we examine
each of the two partitions induced by the pivot, and add it to A if it may yield a target. Note that
as in iterations 1 and 3 in Figure 2, it is possible for both partitions to be added.

In slightly more detail, we handle the augmentation by looping over A in each step. The local
medians are bundled together for a single broadcast at the end of Step 1, as are the local ranks
in Step 3. For Step 5, we use the fact that each active range in A has a corresponding set of the
target ranks: those targets that lie between the bottom and top indices of the active range. If we
keep the subset of target ranks sorted, a binary search over it with the pivot rank2 will split the
target set as well. The left target subset is associated with the left partition of the active range,
and the right sides follow similarly. The left or right partition of the active range gets added to A
for the next iteration only if the corresponding target subset is non-empty.

The computation time necessary for simultaneous selection follows by inflating each step of the
single selection by a factor of p (because |A| ≤ p). The exception is the last step, where we also need
to binary search over O(p) targets. This amount to O(p+ p2 + p lg n

p + p+ p lg p) = O(p2 + p lg n
p)

per iteration. Again, there are O(lg n) iterations for total computation time of O(p2 lg n+ p lg2 n).
This step runs in O(p) space, the scratch area needed to hold received data and pass state

between iterations.
The communication time is similarly inflated: two broadcasts per round, each having one

processor send O(p) data to all the others. The aggregate amount of data being sent is O(p2 lg n)
over O(lg n) rounds.

2.2.3 Producing indices

Each processor computes a local matrix S of size p× (p+ 1). Recall that S splits the local data v′i
into p segments, with sk0 = 0 and skp = dk for k = 1 . . . p. The remaining p − 1 columns come as
output of the selection. For simplicity of notation, we briefly describe the output procedure in the
context of single selection; it extends naturally for simultaneous selection. When we find that a
particular mm has global ranks [f, l) 3 rk, we also have the local ranks fi and li. There are rk − f
excess elements with value mm that should be routed to processor k. In order to get a stable sorting
algorithm, we assign ski from i = 1 to p, taking as many elements as possible without overstepping
the excess. More precisely,

ski = min

fi + (rk − f)−
i−1∑
j=1

(skj − fj), li

The computation requirements for this step are O(p2) to populate the matrix S; the space used

is also O(p2).

2.3 Element routing

The minimum amount of communication in a parallel sorting algorithm involves moving elements
from the locations they start out to where they eventually belong (in the sorted order). An optimal

2Actually, we binary search for the first position f may be inserted, and for the last position l may be inserted. If
the two positions are not the same, we have found at least one target.

5

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4

Height

Figure 3: An example of tree merging when the number of processors is not a power of 2.

parallel sorting algorithm will communicate every element from its current location to a location in
remote memory at most once. Our algorithm is optimal in this sense. For instance, if the input is
already sorted, no data movement occurs. However, if the input is in reverse sorted order, almost all
elements may need to be communicated to their destinations. This amount of data communicated
in this element routing step is θ(n).

2.4 Merging

Now each processor has p sorted sub-vectors, and we want to merge them into a single sorted
sequence. The simple approach we take for this problem is to conceptually build a binary tree on
top of the vectors. To handle the case of p that are not powers of 2, we say a node of height i has
at most 2i leaf descendants, whose ranks are in [k · 2i, (k+ 1) · 2i) for some k (Figure 3). It is clear
that the tree has height ≤ dlg pe.

For reasons of cache efficiency, we merge pairs of sub-vectors out-of-place from this tree. Cache
oblivious algorithms may yield better performance across a variety of architectures. We refer the
reader to the literature on cache-oblivious data structures and algorithms [3, 8].

Notice that a merge will move a particular element exactly once (from one buffer to its sorted
position in the other buffer). Furthermore, there is at most one comparison for each element move.
Finally, every time an element gets moved, it goes into a sorted sub-vector at a higher level in the
tree. Therefore each element moves at most dlg pe times, for a total computation time of didlg pe.
Again, we take the time of the slowest processor, for computation time of dnp edlg pe.

2.5 Theoretical performance

Let the total computation time T ∗s (n, p) = 1
pTs(n) for 1 ≤ p ≤ P . This is the linear speedup in p

over any sequential sorting algorithm with running time Ts(n). We examine the time complexities
of each step of the algorithm, which results in the total computation time:

T ∗s (n, p) +O(p2 lg n+ p lg2 n) + (dnp e if p not a power of 2) (1)

The total space usage aside from the input is O(p2 + n
p). We will provide proofs of the bounds

on theoretical computation and communication in the full version of our paper.
We want to compare this algorithm against an arbitrary parallel sorting algorithm with the

following properties:

1. Total computation time T ∗s (n, p) = 1
pTs(n) for 1 ≤ p ≤ P , linear speedup in p over any

sequential sorting algorithm with running time Ts(n).

6

2. Minimal amount of cross-processor communication T ∗c (v), the number of elements that begin
and end on different processors.

We will not go on to claim that such an algorithm is truly an optimal parallel algorithm, because we
do not require Ts(n) to be optimal. However, optimality of Ts(n) does imply optimality of T ∗s (n, p)
for p ≤ P . Briefly, if there were a faster T ′s(n, p) for some p, then we could simulate it on a single
processor for total time pT ′s(n, p) < pT ∗s (n, p) = Ts(n), which is a contradiction.

2.6 Computation

We can examine the total computation time by adding together the time for each step, and com-
paring against the theoretical T ∗s (n, p):

Ts(dnp e) +O(p2 lg n+ p lg2 n) + dnp edlg pe

≤ 1
p
Ts(n+ p) +O(p2 lg n+ p lg2 n) + dnp edlg pe

= T ∗s (n+ p, p) +O(p2 lg n+ p lg2 n) + dnp edlg pe

The inequality follows from the fact that T ∗s (n) = Ω(n).
It is interesting to note the case where a comparison sort is necessary. Then we use a sequential

sort with Ts(n) ≤ cdnp e lgdnp e for some c ≥ 1. We can then combine this cost with the time required
for merging (Step 4):

cdnp e lgdnp e+ dnp edlg pe
≤ cdnp e lg(n+ p) + dnp e(dlg pe − c lg p)

≤ cdnp e lg n+ cdnp e lg(1 + p
n) + dnp e(dlg pe − c lg p)

≤ cn lg n
p

+ lg n+ 2c+ (dnp e if p not a power of 2)

With comparison sorting, the total computation time becomes:

T ∗s (n, p) +O(p2 lg n+ p lg2 n) + (dnp e if p not a power of 2) (2)

Furthermore, T ∗s (n, p) is optimal to within the constant factor c.

2.7 Communication

We have already established that the exact splitting algorithm will provide the final locations of the
elements. The amount of communication done in the routing phase is then the optimal amount.
Therefore, total cost is:

T ∗c (v) in 1 round +O(p2 lg n) in lg n rounds

2.7.1 Space

The total space usage aside from the input is:

O

(
p2 +

n

p

)

7

2.8 Requirements

Given these bounds, it is clear that this algorithm is only practical for p2 ≤ n
p ⇒ p3 ≤ n. Returning

to the formulation given earlier, we have p = bn1/3c. This requirement is a common property of
other parallel sorting algorithms, particularly sample sort (i.e. [1, 15, 12], as noted in [11]).

2.9 Analysis in the BSP Model

A bulk-synchronous parallel computer, described in [16], models a system with three parameters: p,
the number of processors; L, the minimum amount of time between subsequent rounds of communi-
cation; and g, a measure of bandwidth in time per message size. Following the naming conventions
of [10], define π to be the ratio of computation cost of the BSP algorithm to the computation cost
of a sequential algorithm. Similarly, define µ to be the ratio of communication cost of the BSP
algorithm to the number of memory movements in a sequential algorithm. We say an algorithm is
c-optimal in computation if π = c+ o(1) as n→∞, and similarly for µ and communication.

We may naturally compute the ratio π to be Equation 2 over T ∗s (n, p) = cn lg n
p . Thus,

π = 1 +
p3

cn
+
p2 lg n
cn

+
1

c lg n
= 1 + o(1) as n→∞

Furthermore, there exist movement-optimal sorting algorithms (i.e. [7]), so we compute µ against
gn
p . It is straightforward to verify that the BSP cost of exact splitting is O(lg nmax{L, gp2 lg n}),

giving us

µ = 1 +
pL lg n
gn

+
p3 lg2 n

n
= 1 + o(1) as n→∞

Therefore the algorithm is 1-optimal in both computation and communication.
Exact splitting dominates the cost beyond the local sort and the routing steps. The total

running time is therefore O(n lg n
p + gn

p + lg nmax{L, gp2 lg n}). This bound is an improvement on
that given by [11], for small L and p2 lg2 n. The tradeoff is that we have decreased one round of
communicating much data, to use many rounds of communicating little data. Our experimental
results indicate that this choice is reasonable.

3 Experimental results

The communication cost of our sorting algorithm is near optimal if p is small. Furthermore, the
sequential computation speedup is near linear if p � n. Notice that the speedup is given with
respect to a sequential algorithm, rather than to itself with small p. The intention is that efficient
sequential sorting algorithms and implementations can be developed without any consideration for
parallelization, and then be simply dropped in for good parallel performance.

We now turn to empirical results, which suggest that the exact splitting uses little computation
and communication time.

3.1 Experimental setup

We implemented our parallel sorting algorithm in C++ using MPI [6] for communication. The
motivation is for our code to be used as a library with a simple interface; it is therefore templated,
and comparison based.

8

Figure 4: Scalability tests are performed for a fixed problem size, while changing the number of
processors. Good scaling is observed on shared memory architectures (left) as well as on clusters
(right).

We use std::sort and std::stable sort from the C++ Standard Template Library (STL)
library for sequential sorting.The C++ STL has one of the fastest general purpose sorting routines
available [4].

We use MPI (Message Passing Interface) for communication. It is the most portable and widely
used method for communication in parallel computing. Since vendor optimized MPI implementa-
tions are available on most platforms nowadays, we expect reasonable performance on distributed
as well as shared memory architectures. We use the MPI libraries provided by the SGI MPT on
the Altix, and OpenMPI [9] on clusters.

Our choice of the C++ STL sequential sorting routines and MPI allows our code to be robust,
scalable and portable without sacrificing performance. We tested our implementation on an SGI
Altix and a commodity cluster. The SGI Altix had 256 Itanium 2 processors and 4TB of RAM in
a single system image. The beowulf cluster had 32 Xeon processors and 3 GB of memory per node
connected via gigabit ethernet.

We run every test instance twice, timing only the second invocation. As a result, setup time
such as page table initializations etc. are not counted in our timings.

Figure 3.1 shows the scaling of our algorithm as the same number of elements are sorted on
different numbers of processors. We do not provide comparison to sequential performance because
the datasets do not fit on any single processor. The largest problem we solved is sorting 100 billion
elements with 254 processors in under 4 minutes. Figure 5 shows the scaling of our algorithm with
the problem size, the number of processors being fixed. In all the cases, we observe very good
scaling on very large problem sizes on a shared memory Altix as well as on a cluster.

For clusters, we also present sequential speedup in Figure 6. For small problems, we do not
observe good scaling with small problem sizes. As the problems get larger, we observe better
scaling as expected. For the largest problem size (1 billion), it is not possible to run the code on

9

Figure 5: Scalability tests are performed for a fixed problem size while changing the number of
processors. Good scaling is observed on large problems on shared memory architectures (left) as
well as on clusters (right).

small numbers of processors. We extrapolate the performance for small numbers of processors, and
present actual performance for 16 processors and higher.

We also experimented with cache oblivious strategies. We tried using funnel sort [4] for sequen-
tial sorting, but found it to be slower than the STL sorting algorithms. On the other hand, a funnel
merge did yield slightly better performance than the out-of-place tree merge we use in our code.
We compare the performance of the two merging algorithms on the Altix in Figure 7

3.2 Comparison with Sample sorting

Several prior works [1, 12, 15] conclude that sample sort is the most efficient parallel sorting
algorithm for large n and p. Such algorithms are characterized by having each processor distribute
its dnp e elements into p buckets, where the bucket boundaries are determined by some form of
sampling. Once the buckets are formed, a single round of all-to-all communication follows, with
each processor i receiving the contents of the ith bucket from everybody else. Finally, each processor
performs some local computation to place all its received elements in sorted order.

One of the problems we encountered with sample sorting was the cost of picking samples, and
picking splitters from those samples. Since we are interested in sorting extremely large amounts of
data, the sampling step and picking splitters turns out to be very expensive.

The other drawback of sample sort is that the final distribution of elements may be uneven.
Much of the work in sample sorting is directed towards reducing the amount of imbalance, providing
schemes that have theoretical bounds on the largest amount of data a processor can collect in the
routing. The problem with one processor receiving too much data is that the computation time in
the subsequent steps is dominated by this one overloaded processor. Furthermore, some applications
require an exact output distribution; this is often the case when sorting is just one part of a multi–

10

Figure 6: The 45 degree line represents perfect scaling. As the problem size gets larger, better
scaling is observed. However, for small to moderate sized problems, the scaling is poor - as expected
on beowulf clusters.

Figure 7: The performance of cache-oblivious merging is compared with simple tree based merging.
Cache oblivious outperforms tree merging on very large problem sizes with a large number of
processors by up to 15%. The savings are much smaller as a fraction of total sorting time.

11

Figure 8: Several parallel sorting algorithms are compared. A parallel sort with exact splitters
determined through parallel selection outperforms both implementations of sample sort.

step process. In such cases, an additional redistribution step would be necessary, where elements
across the boundaries are communicated.

We compare the performance of our algorithm with two different implementations of sampling
based sorts in Figure 8. “Psort with median splitters” is our parallel sorting algorithm which
uses medians on each processor to pick exact splitters. “Psort with sampled splitters” is the same
algorithm, but it uses random sampling to pick splitters instead of medians. “Sample sort” is the
traditional sampling based sorting algorithm, and usually has the following steps:

1. Pick splitters by sampling or oversampling.

2. Partition local data to prepare for the communication phase.

3. Route elements to their destinations.

4. Sort local data.

5. Redistribute to adjust processor boundaries.

The steps in Sample sort differ from the Psort algorithms in two ways. Psort sorts local data first,
whereas Sample sort sorts local data as the last step in the algorithm. Sample sort may need to
do an extra round of communication to adjust processor boundaries if the resulting distribution is
different from the required one.

Our algorithm works much faster than the traditional sample sort although both show good
scalability. We do not experiment with a wide range of sampling methods - picking p2 splitters
for p processors. Since our input is uniformly distributed, we do get good splitters. The main
performance differences are explained by:

12

1. Partitioning local data in Sample sort before the element routing step is much slower than
merging streams of data received from other processors in Psort. This is because merging is
much more cache-friendly than partitioning.

2. Sample sort also has to perform an extra round of communication to re-balance the data
distribution, which adds extra penalty to performance. If the sampled splitters do not ap-
proximate the distribution well, the load imbalance may be large and this extra round of
communication may incur a larger penalty.

4 Conclusion

We present a high performance, highly scalable parallel sorting algorithm which compares favorably
against the traditional sample sort algorithm. Our code is uses only the C++ Standard Template
Library and MPI, making it robust and portable.

There may be room for further improvement in our implementation. The cost of merging can
be reduced by interleaving the p-way merge step with the element rerouting, merging sub-arrays
as they are received. Alternatively, using a data structure such as a funnel (i.e. [3, 8]) may allow
better cache efficiency to reduce the merging time. Another potential area of improvement is the
exact splitting. Instead of traversing search tree to completion, a threshold can be set; when the
active range becomes small enough, a single processor gathers all the remaining active elements
and completes the computation sequentially. This method, used by Saukas and Song in [14],
helps reduce the number of communication rounds in the tail end of the step. Finally, this parallel
sorting algorithm will directly benefit from future improvements to sequential sorting and all–to–all
communication schemes.

To the best of our knowledge, we have presented a new deterministic algorithm for parallel
sorting that makes a strong case for exact splitting on modern high performance computers. Leaving
aside some intricacies of determining the exact splitters, the algorithm is conceptually simple to
understand, analyze, and implement. Our implementation powers the Star-P sort and we hope
our efforts will guide other implementations.

References

[1] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. A
comparison of sorting algorithms for the connection machine CM-2. In Proceedings of the third
annual ACM symposium on Parallel algorithms and architectures, pages 3–16. ACM Press,
1991.

[2] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection.
Journal of Computer and System Sciences, 7:448–460, August 1973.

[3] G. S. Brodal and R. Fagerberg. Funnel heap – A cache oblivious priority queue. In Proceedings
of the 13th International Symposium on Algorithms and Computation, pages 219–228. Springer-
Verlag, 2002.

[4] G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a cache-oblivious sorting algorithm.
In L. Arge, G. F. Italiano, and R. Sedgewick, editors, Proceedings of the Sixth Workshop on

13

http://doi.acm.org/10.1145/113379.113380
http://doi.acm.org/10.1145/113379.113380
http://portal.acm.org/citation.cfm?id=646345.689897
http://doi.acm.org/10.1145/1227161.1227164

Algorithm Engineering and Experiments and the First Workshop on Analytic Algorithmics and
Combinatorics, pages 4–17. SIAM, 2004.

[5] T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press, 1990.

[6] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. A message passing standard for MPP
and workstations. Communications of the ACM, 39(7):84–90, 1996.

[7] G. Franceschini and V. Geffert. An in-place sorting with O(n log n) comparisons and O(n)
moves. Journal of the ACM, 52(4):515–537, 2005.

[8] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In
Proceedings of the 40th Annual Symposium on Foundations of Computer Science, Los Alamitos,
CA, USA, 1999. IEEE Computer Society.

[9] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. M. Squyres, V. Sahay, P. Kam-
badur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham, and T. S.
Woodall. Open MPI: Goals, concept, and design of a next generation MPI implementation.
In D. Kranzlmüller, P. Kacsuk, and J. Dongarra, editors, PVM/MPI, volume 3241 of Lecture
Notes in Computer Science, pages 97–104. Springer, 2004.

[10] A. V. Gerbessiotis and C. J. Siniolakis. Deterministic sorting and randomized median finding
on the BSP model. In SPAA, pages 223–232, 1996.

[11] M. T. Goodrich. Communication-efficient parallel sorting. In Proceedings of the 28th Annual
ACM Symposium on the Theory of Computing, pages 247–256, 1996.

[12] D. R. Helman, J. JáJá, and D. A. Bader. A new deterministic parallel sorting algorithm with
an experimental evaluation. J. Exp. Algorithmics, 3, 1998.

[13] A. Reiser. A linear selection algorithm for sets of elements with weights. Information Processing
Letters, 7(3):159–162, 1978.

[14] E. L. G. Saukas and S. W. Song. A note on parallel selection on coarse grained multicomputers.
Algorithmica, 24(3/4):371–380, 1999.

[15] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of Parallel and Distributed
Computing, 14(4):361–372, 1992.

[16] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

14

http://mitpress.mit.edu/algorithms/
http://doi.acm.org/10.1145/233977.234000
http://doi.acm.org/10.1145/233977.234000
http://doi.acm.org/10.1145/1082036.1082037
http://doi.acm.org/10.1145/1082036.1082037
http://doi.ieeecomputersociety.org/10.1109/SFFCS.1999.814600
http://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/euro-pvmmpi-2004-overview.pdf
http://doi.acm.org/10.1145/237502.237561
http://doi.acm.org/10.1145/237502.237561
http://dx.doi.org/10.1137/S0097539795294141
http://doi.acm.org/10.1145/297096.297128
http://doi.acm.org/10.1145/297096.297128
http://dx.doi.org/10.1007/PL00008268
http://dx.doi.org/10.1016/0743-7315(92)90075-X
http://doi.acm.org/10.1145/79173.79181

	Introduction
	Algorithm Description
	Local sort
	Exact splitting
	Single selection
	Simultaneous selection
	Producing indices

	Element routing
	Merging
	Theoretical performance
	Computation
	Communication
	Space

	Requirements
	Analysis in the BSP Model

	Experimental results
	Experimental setup
	Comparison with Sample sorting

	Conclusion

