Internet Engineering Task Force (IETF) R. Fielding, Ed.

Request for Comments: 7230 Adobe
Obsoletes: 2145, 2616 J. Reschke, Ed.
Updates: 2817, 2818 greenbytes

Category: Standards Track June 2014

ISSN: 2070-1721

Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing
Abstract

The Hypertext Transfer Protocol (HTTP) is a stateless application-

level protocol for distributed, collaborative, hypertext information
systems. This document provides an overview of HTTP architecture and
its associated terminology, defines the "http" and "https" Uniform
Resource Identifier (URI) schemes, defines the HTTP/1.1 message
syntax and parsing requirements, and describes related security
concerns for implementations.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7230.

Fielding & Reschke Standards Track [Page 1]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Table of Contents

1. INtrodUCHION ...ceeeeiiiiiee e 5
1.1. Requirements Notationccccccevveeeeeeieiiinnns 6
1.2. Syntax NOtationcccceevvveveeeniiiiiiee e, 6
2. ArChiteCturecoovvieiiiiiiiee e 6
2.1. Client/Server Messagingccccceevvevuvivreeeeeeeenn 7
2.2. Implementation DIVersitycccccveeeieeenniinninns 8
2.3. Intermediariesccccovvveeeeiiiiiiee e 9
2.4.CaChesoocvviiiiii 11
2.5. Conformance and Error Handlingc..cccceveennee 12
2.6. Protocol Versioningccccoovvveeeeiiniieeeeeen 13
2.7. Uniform Resource Identifiersccocecvvinnnen. 16
2.7.1. http URI Schemecccooiiiiiiiiiinnnnenn. 17
2.7.2. https URI Schemeccccceeeveeeeeiiiiiinn, 18
2.7.3. http and https URI Normalization and Comparison19
3. Message FOrmatcccceeeeiiiiiiiniiieeinee e 19
3.1, Start LiNe .ooeeeveeeeeeieiiieeeeee e 20
3.1.1. Request LiNeccooviiiiiiiiiiiieeeee e 21
3.1.2. Status LiNeccevvviiieieiieeeeeiiiee 22
3.2. Header Fieldsoccoveeiiiiiiiieiiee e 22

Fielding & Reschke Standards Track [Page 2]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

3.2.1. Field Extensibilityccccccvveeeiiiiiinnnns 23
3.2.2. Field Ordercccccvveveeeeeeiieiiiiieee, 23
3.2.3. Whitespacecccccevviieveeinniieeee e, 24
3.2.4. Field Parsingccccceeeeeeeeiiniiiiiiee 25
3.2.5. Field LimitSccveeiiiiiiiiiiiiieeeeenn. 26
3.2.6. Field Value Componentscccccvvveeeennnn. 27
3.3. Message Bodyccccvvviiiiiiiie e 28
3.3.1. Transfer-Encodingccccoeevvviereennnnn. 28
3.3.2. Content-Lengthcccccevieiniiiineennnn, 30
3.3.3. Message Body Lengthccccccoiiiiinnnnnn. 32
3.4. Handling Incomplete Messagescccccvveeeeeeennn. 34
3.5. Message Parsing Robustnessccccocvveveeeeeennn, 34
4, Transfer Codingsvvveeevieieeeiiiiiiiiiiieeee e 35
4.1. Chunked Transfer Codingcccceveevriiiieeennnnne. 36
4.1.1. Chunk EXtensionscccccovevvvvieennnnnnn. 36
4.1.2. Chunked Trailer Partcccccceeeiiiiiinnns 37
4.1.3. Decoding Chunkedcccccviiiiiiieeneennnn. 38
4.2. Compression CodinNgsccevvvveeeeiiiiiiiiiiiieeeeeeenn, 38
4.2.1. Compress Codingcccvvveeeeeeeeeeeeiiiiinnnns 38
4.2.2. Deflate Codingovvvevviiiieieiiiiiieee 38
4.2.3. GzZip Codingcvvveeiiiiiiieeiiiieee e, 39
4.3, TE ot 39
A4, Traller ..o 40
5. Message ROULINGueeevveeeeeniiiiiiiiiiiieeeeee e 40
5.1. Identifying a Target Resourcecccccvveveeeennn. 40
5.2. Connecting Inboundcccoooiiiiinniine e, 41
5.3. Request Targetccccccvveeeeiinnniiiiiieeeeeeenn 41
5.3.1. origin-form ..o 42
5.3.2. absolute-formccccooviiiiiiiiieennennnn, 42
5.3.3. authority-formcccocvveeveeeeniiins 43
5.3.4. asterisk-formccccooiiiiiiniiii 43
5.4, HOSE ..o 44
5.5. Effective Request URIccccceviiiiiieininnenen, 45
5.6. Associating a Response to a Requestc.... 46
5.7. Message Forwardingccccccveveeeiiniiiiiiiiieen, 47
5.7.0. Vi@t 47
5.7.2. Transformationscccccocvveveiiiiiinenenns 49
6. Connection Managementcceeeeeiniieeeeniniiieeeens 50
6.1. CONNECLION ..cooveeiiiiiiiiieeee e 51
6.2. Establishmentcccooiiiis 52
6.3. Persistenceoooccvviiiiiie 52
6.3.1. Retrying ReqUESLScccvvvvveeeeeeeeiiiinns 53
6.3.2. Pipeliningccccceeevviiiiiiiiieeceee e 54
6.4. CONCUITENCY ...veeiiiiieeieeee e 55
6.5. Failures and Timeoutscccccceeeeeeeiiiiiinnneee. 55
6.6. TeAr-dOWNcceeeiiiiiiiiiiiiiiee e 56
6.7.Upgrade ..o 57
7. ABNF List Extension: #ruleccccoccvvveiiiiiieneennee, 59

Fielding & Reschke Standards Track [Page 3]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

8. IANA Considerationsccccocveeeeeiiiieee e 61
8.1. Header Field Registrationccccocuveeeriinnnnnn. 61
8.2. URI Scheme Registrationcccccevvvveeeennnnn. 62
8.3. Internet Media Type Registrationccccceeeeeenn. 62
8.3.1. Internet Media Type message/http 62
8.3.2. Internet Media Type application/http 63
8.4. Transfer Coding RegiStrycccccccveveeevieiicnnnnnen. 64
8.4.1. Procedurecccccvveveeeeeiiiiiiiiiiineeeens 65
8.4.2. Registrationcccccevvivieeeeiniiineeenns 65
8.5. Content Coding Registrationcccccceeeeeeeeenn. 66
8.6. Upgrade Token Registryccccvveeeeevieeennniinnns 66
8.6.1. Procedurecccccovvveveeeiiiiece e 66
8.6.2. Upgrade Token Registrationccccceeeeeenn. 67
9. Security Considerationscccccvvveirereeeeeeiinnnns 67
9.1. Establishing Authorityccccocoveeiiiiiiinnene 67
9.2. Risks of Intermediariescccccceeeeeiiiiiiinnns 68
9.3. Attacks via Protocol Element Length 69
9.4. Response Splittingcooecvvivieeeieeeeeeieeinns 69
9.5. Request SMUggIiNgccovveeeeeviiiviiiiiiinieeeeeee, 70
9.6. Message INtegritycccccevvvvveeeeiniiiine e 70
9.7. Message Confidentialityccccccovviviereennnnne 71
9.8. Privacy of Server Log Information 71
10. Acknowledgmentsccceeeeeniiiiiiiiiiieieeeee e 72
11. Referencesocccevveiiiiieie e 74
11.1. Normative Referencescccccvvvveeeeiniieenennnns 74
11.2. Informative Referencesccoccccvvvvveveeneennnn. 75
Appendix A. HTTP Version Historycccccocveveiniinnneen. 78
A.1. Changes from HTTP/1.0cccoooiiiiiiiiiiiiiieeeeen, 78
A.1.1. Multihomed Web Serverscccccoevuunnnee 78
A.1.2. Keep-Alive Connectionscccceeeeeeeiennns 79
A.1.3. Introduction of Transfer-Encoding 79
A.2. Changes from RFC 2616cccccovvuvvieeeininnenen. 80
Appendix B. Collected ABNFccceeeiiiiiieiiiiieeeees 82
INAEX i 85

Fielding & Reschke Standards Track [Page 4]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

1. Introduction

The Hypertext Transfer Protocol (HTTP) is a stateless application-
level request/response protocol that uses extensible semantics and
self-descriptive message payloads for flexible interaction with
network-based hypertext information systems. This document is the
first in a series of documents that collectively form the HTTP/1.1
specification:

1. "Message Syntax and Routing" (this document)
2. "Semantics and Content" [RFC7231]

3. "Conditional Requests" [RFC7232]

4. "Range Requests" [RFC7233]

5. "Caching" [RFC7234]

6. "Authentication" [RFC7235]

This HTTP/1.1 specification obsoletes RFC 2616 and RFC 2145 (on HTTP
versioning). This specification also updates the use of CONNECT to
establish a tunnel, previously defined in RFC 2817, and defines the

"https" URI scheme that was described informally in RFC 2818.

HTTP is a generic interface protocol for information systems. Itis
designed to hide the details of how a service is implemented by
presenting a uniform interface to clients that is independent of the
types of resources provided. Likewise, servers do not need to be
aware of each client’s purpose: an HTTP request can be considered in
isolation rather than being associated with a specific type of client

or a predetermined sequence of application steps. The resultis a
protocol that can be used effectively in many different contexts and

for which implementations can evolve independently over time.

HTTP is also designed for use as an intermediation protocol for
translating communication to and from non-HTTP information systems.
HTTP proxies and gateways can provide access to alternative
information services by translating their diverse protocols into a
hypertext format that can be viewed and manipulated by clients in the
same way as HTTP services.

One consequence of this flexibility is that the protocol cannot be
defined in terms of what occurs behind the interface. Instead, we
are limited to defining the syntax of communication, the intent of
received communication, and the expected behavior of recipients. If
the communication is considered in isolation, then successful actions

Fielding & Reschke Standards Track [Page 5]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

ought to be reflected in corresponding changes to the observable

interface provided by servers. However, since multiple clients might
act in parallel and perhaps at cross-purposes, we cannot require that
such changes be observable beyond the scope of a single response.

This document describes the architectural elements that are used or
referred to in HTTP, defines the "http" and "https" URI schemes,
describes overall network operation and connection management, and
defines HTTP message framing and forwarding requirements. Our goal
is to define all of the mechanisms necessary for HTTP message
handling that are independent of message semantics, thereby defining
the complete set of requirements for message parsers and message-
forwarding intermediaries.

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Conformance criteria and considerations regarding error handling are
defined in Section 2.5.

1.2. Syntax Notation

This specification uses the Augmented Backus-Naur Form (ABNF)
notation of [RFC5234] with a list extension, defined in Section 7,
that allows for compact definition of comma-separated lists using a
'# operator (similar to how the '*' operator indicates repetition).
Appendix B shows the collected grammar with all list operators
expanded to standard ABNF notation.

The following core rules are included by reference, as defined in
[RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF
(CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),
HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF (line

feed), OCTET (any 8-bit sequence of data), SP (space), and VCHAR (any
visible [USASCII] character).

As a convention, ABNF rule names prefixed with "obs-" denote
"obsolete” grammar rules that appear for historical reasons.

2. Architecture
HTTP was created for the World Wide Web (WWW) architecture and has
evolved over time to support the scalability needs of a worldwide

hypertext system. Much of that architecture is reflected in the
terminology and syntax productions used to define HTTP.

Fielding & Reschke Standards Track [Page 6]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

2.1. Client/Server Messaging

HTTP is a stateless request/response protocol that operates by
exchanging messages (Section 3) across a reliable transport- or
session-layer "connection” (Section 6). An HTTP "“client" is a

program that establishes a connection to a server for the purpose of
sending one or more HTTP requests. An HTTP "server" is a program
that accepts connections in order to service HTTP requests by sending
HTTP responses.

The terms "client" and "server" refer only to the roles that these
programs perform for a particular connection. The same program might
act as a client on some connections and a server on others. The term
"user agent" refers to any of the various client programs that

initiate a request, including (but not limited to) browsers, spiders
(web-based robots), command-line tools, custom applications, and
mobile apps. The term "origin server" refers to the program that can
originate authoritative responses for a given target resource. The
terms "sender" and "recipient” refer to any implementation that sends

or receives a given message, respectively.

HTTP relies upon the Uniform Resource Identifier (URI) standard
[RFC3986] to indicate the target resource (Section 5.1) and
relationships between resources. Messages are passed in a format
similar to that used by Internet mail [RFC5322] and the Multipurpose
Internet Mail Extensions (MIME) [RFC2045] (see Appendix A of
[RFC7231] for the differences between HTTP and MIME messages).

Most HTTP communication consists of a retrieval request (GET) for a
representation of some resource identified by a URI. In the simplest
case, this might be accomplished via a single bidirectional
connection (===) between the user agent (UA) and the origin

server (O).

request >
UA O
< response

A client sends an HTTP request to a server in the form of a request
message, beginning with a request-line that includes a method, URI,
and protocol version (Section 3.1.1), followed by header fields
containing request modifiers, client information, and representation
metadata (Section 3.2), an empty line to indicate the end of the
header section, and finally a message body containing the payload
body (if any, Section 3.3).

Fielding & Reschke Standards Track [Page 7]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

A server responds to a client’s request by sending one or more HTTP
response messages, each beginning with a status line that includes
the protocol version, a success or error code, and textual reason
phrase (Section 3.1.2), possibly followed by header fields containing
server information, resource metadata, and representation metadata
(Section 3.2), an empty line to indicate the end of the header

section, and finally a message body containing the payload body (if
any, Section 3.3).

A connection might be used for multiple request/response exchanges,
as defined in Section 6.3.

The following example illustrates a typical message exchange for a
GET request (Section 4.3.1 of [RFC7231]) on the URI
"http://lwww.example.com/hello.txt":

Client request:

GET /hello.txt HTTP/1.1

User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.71 zlib/1.2.3
Host: www.example.com

Accept-Language: en, mi

Server response:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
ETag: "34aa387-d-1568eb00"

Accept-Ranges: bytes

Content-Length: 51

Vary: Accept-Encoding

Content-Type: text/plain

Hello World! My payload includes a trailing CRLF.
2.2. Implementation Diversity

When considering the design of HTTP, it is easy to fall into a trap

of thinking that all user agents are general-purpose browsers and all
origin servers are large public websites. That is not the case in

practice. Common HTTP user agents include household appliances,
stereos, scales, firmware update scripts, command-line programs,
mobile apps, and communication devices in a multitude of shapes and
sizes. Likewise, common HTTP origin servers include home automation

Fielding & Reschke Standards Track [Page 8]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

units, configurable networking components, office machines,
autonomous robots, news feeds, traffic cameras, ad selectors, and
video-delivery platforms.

The term "user agent" does not imply that there is a human user
directly interacting with the software agent at the time of a

request. In many cases, a user agent is installed or configured to
run in the background and save its results for later inspection (or
save only a subset of those results that might be interesting or
erroneous). Spiders, for example, are typically given a start URI

and configured to follow certain behavior while crawling the Web as a
hypertext graph.

The implementation diversity of HTTP means that not all user agents
can make interactive suggestions to their user or provide adequate
warning for security or privacy concerns. In the few cases where
this specification requires reporting of errors to the user, it is
acceptable for such reporting to only be observable in an error
console or log file. Likewise, requirements that an automated action
be confirmed by the user before proceeding might be met via advance
configuration choices, run-time options, or simple avoidance of the
unsafe action; confirmation does not imply any specific user
interface or interruption of normal processing if the user has

already made that choice.

2.3. Intermediaries

HTTP enables the use of intermediaries to satisfy requests through a
chain of connections. There are three common forms of HTTP
intermediary: proxy, gateway, and tunnel. In some cases, a single
intermediary might act as an origin server, proxy, gateway, or

tunnel, switching behavior based on the nature of each request.

> > > >

UA A B C

< < < <

The figure above shows three intermediaries (A, B, and C) between the
user agent and origin server. A request or response message that
travels the whole chain will pass through four separate connections.
Some HTTP communication options might apply only to the connection
with the nearest, non-tunnel neighbor, only to the endpoints of the
chain, or to all connections along the chain. Although the diagram

is linear, each participant might be engaged in multiple,

simultaneous communications. For example, B might be receiving
requests from many clients other than A, and/or forwarding requests

to servers other than C, at the same time that it is handling A’s

Fielding & Reschke Standards Track [Page 9]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

request. Likewise, later requests might be sent through a different
path of connections, often based on dynamic configuration for load
balancing.

The terms "upstream” and "downstream" are used to describe
directional requirements in relation to the message flow: all

messages flow from upstream to downstream. The terms "inbound" and
"outbound" are used to describe directional requirements in relation

to the request route: "inbound" means toward the origin server and
"outbound" means toward the user agent.

A "proxy" is a message-forwarding agent that is selected by the

client, usually via local configuration rules, to receive requests

for some type(s) of absolute URI and attempt to satisfy those

requests via translation through the HTTP interface. Some
translations are minimal, such as for proxy requests for "http" URIs,
whereas other requests might require translation to and from entirely
different application-level protocols. Proxies are often used to

group an organization's HTTP requests through a common intermediary
for the sake of security, annotation services, or shared caching.

Some proxies are designed to apply transformations to selected
messages or payloads while they are being forwarded, as described in
Section 5.7.2.

A "gateway" (a.k.a. "reverse proxy") is an intermediary that acts as
an origin server for the outbound connection but translates received
requests and forwards them inbound to another server or servers.
Gateways are often used to encapsulate legacy or untrusted
information services, to improve server performance through
"accelerator" caching, and to enable partitioning or load balancing
of HTTP services across multiple machines.

All HTTP requirements applicable to an origin server also apply to

the outbound communication of a gateway. A gateway communicates with
inbound servers using any protocol that it desires, including private
extensions to HTTP that are outside the scope of this specification.
However, an HTTP-to-HTTP gateway that wishes to interoperate with
third-party HTTP servers ought to conform to user agent requirements

on the gateway’s inbound connection.

A "tunnel” acts as a blind relay between two connections without
changing the messages. Once active, a tunnel is not considered a
party to the HTTP communication, though the tunnel might have been
initiated by an HTTP request. A tunnel ceases to exist when both
ends of the relayed connection are closed. Tunnels are used to
extend a virtual connection through an intermediary, such as when
Transport Layer Security (TLS, [RFC5246]) is used to establish
confidential communication through a shared firewall proxy.

Fielding & Reschke Standards Track [Page 10]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

The above categories for intermediary only consider those acting as
participants in the HTTP communication. There are also
intermediaries that can act on lower layers of the network protocol
stack, filtering or redirecting HTTP traffic without the knowledge or
permission of message senders. Network intermediaries are
indistinguishable (at a protocol level) from a man-in-the-middle
attack, often introducing security flaws or interoperability problems
due to mistakenly violating HTTP semantics.

For example, an "interception proxy" [RFC3040] (also commonly known
as a "transparent proxy" [RFC1919] or "captive portal”) differs from

an HTTP proxy because it is not selected by the client. Instead, an
interception proxy filters or redirects outgoing TCP port 80 packets

(and occasionally other common port traffic). Interception proxies

are commonly found on public network access points, as a means of
enforcing account subscription prior to allowing use of non-local
Internet services, and within corporate firewalls to enforce network
usage policies.

HTTP is defined as a stateless protocol, meaning that each request
message can be understood in isolation. Many implementations depend
on HTTP’s stateless design in order to reuse proxied connections or
dynamically load balance requests across multiple servers. Hence, a
server MUST NOT assume that two requests on the same connection are
from the same user agent unless the connection is secured and

specific to that agent. Some non-standard HTTP extensions (e.g.,
[RFC4559]) have been known to violate this requirement, resulting in
security and interoperability problems.

2.4. Caches

A "cache" is a local store of previous response messages and the
subsystem that controls its message storage, retrieval, and deletion.
A cache stores cacheable responses in order to reduce the response
time and network bandwidth consumption on future, equivalent
requests. Any client or server MAY employ a cache, though a cache
cannot be used by a server while it is acting as a tunnel.

The effect of a cache is that the request/response chain is shortened
if one of the participants along the chain has a cached response
applicable to that request. The following illustrates the resulting
chain if B has a cached copy of an earlier response from O (via C)
for a request that has not been cached by UA or A.

> >

UA A B C------ o)
< <

Fielding & Reschke Standards Track [Page 11]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

A response is "cacheable" if a cache is allowed to store a copy of

the response message for use in answering subsequent requests. Even
when a response is cacheable, there might be additional constraints
placed by the client or by the origin server on when that cached
response can be used for a particular request. HTTP requirements for
cache behavior and cacheable responses are defined in Section 2 of
[RFC7234].

There is a wide variety of architectures and configurations of caches
deployed across the World Wide Web and inside large organizations.
These include national hierarchies of proxy caches to save
transoceanic bandwidth, collaborative systems that broadcast or
multicast cache entries, archives of pre-fetched cache entries for

use in off-line or high-latency environments, and so on.

2.5. Conformance and Error Handling

This specification targets conformance criteria according to the role

of a participant in HTTP communication. Hence, HTTP requirements are
placed on senders, recipients, clients, servers, user agents,
intermediaries, origin servers, proxies, gateways, or caches,

depending on what behavior is being constrained by the requirement.
Additional (social) requirements are placed on implementations,
resource owners, and protocol element registrations when they apply
beyond the scope of a single communication.

The verb "generate" is used instead of "send" where a requirement
differentiates between creating a protocol element and merely
forwarding a received element downstream.

An implementation is considered conformant if it complies with all of
the requirements associated with the roles it partakes in HTTP.

Conformance includes both the syntax and semantics of protocol
elements. A sender MUST NOT generate protocol elements that convey a
meaning that is known by that sender to be false. A sender MUST NOT
generate protocol elements that do not match the grammar defined by

the corresponding ABNF rules. Within a given message, a sender MUST
NOT generate protocol elements or syntax alternatives that are only
allowed to be generated by participants in other roles (i.e., a role

that the sender does not have for that message).

When a received protocol element is parsed, the recipient MUST be
able to parse any value of reasonable length that is applicable to

the recipient’s role and that matches the grammar defined by the
corresponding ABNF rules. Note, however, that some received protocol
elements might not be parsed. For example, an intermediary

Fielding & Reschke Standards Track [Page 12]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

forwarding a message might parse a header-field into generic
field-name and field-value components, but then forward the header
field without further parsing inside the field-value.

HTTP does not have specific length limitations for many of its

protocol elements because the lengths that might be appropriate will
vary widely, depending on the deployment context and purpose of the
implementation. Hence, interoperability between senders and

recipients depends on shared expectations regarding what is a
reasonable length for each protocol element. Furthermore, what is
commonly understood to be a reasonable length for some protocol
elements has changed over the course of the past two decades of HTTP
use and is expected to continue changing in the future.

At a minimum, a recipient MUST be able to parse and process protocol
element lengths that are at least as long as the values that it
generates for those same protocol elements in other messages. For
example, an origin server that publishes very long URI references to
its own resources needs to be able to parse and process those same
references when received as a request target.

A recipient MUST interpret a received protocol element according to
the semantics defined for it by this specification, including
extensions to this specification, unless the recipient has determined
(through experience or configuration) that the sender incorrectly
implements what is implied by those semantics. For example, an
origin server might disregard the contents of a received
Accept-Encoding header field if inspection of the User-Agent header
field indicates a specific implementation version that is known to

fail on receipt of certain content codings.

Unless noted otherwise, a recipient MAY attempt to recover a usable
protocol element from an invalid construct. HTTP does not define
specific error handling mechanisms except when they have a direct
impact on security, since different applications of the protocol

require different error handling strategies. For example, a Web
browser might wish to transparently recover from a response where the
Location header field doesn't parse according to the ABNF, whereas a
systems control client might consider any form of error recovery to

be dangerous.

2.6. Protocol Versioning

HTTP uses a "<major>.<minor>" numbering scheme to indicate versions
of the protocol. This specification defines version "1.1". The

protocol version as a whole indicates the sender’s conformance with

the set of requirements laid out in that version’s corresponding
specification of HTTP.

Fielding & Reschke Standards Track [Page 13]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

The version of an HTTP message is indicated by an HTTP-version field
in the first line of the message. HTTP-version is case-sensitive.

HTTP-version = HTTP-name "/" DIGIT "." DIGIT
HTTP-name = %x48.54.54.50 ; "HTTP", case-sensitive

The HTTP version number consists of two decimal digits separated by a
"." (period or decimal point). The first digit ("major version™)

indicates the HTTP messaging syntax, whereas the second digit ("minor
version") indicates the highest minor version within that major

version to which the sender is conformant and able to understand for
future communication. The minor version advertises the sender’s
communication capabilities even when the sender is only using a
backwards-compatible subset of the protocol, thereby letting the
recipient know that more advanced features can be used in response
(by servers) or in future requests (by clients).

When an HTTP/1.1 message is sent to an HTTP/1.0 recipient [RFC1945]
or a recipient whose version is unknown, the HTTP/1.1 message is
constructed such that it can be interpreted as a valid HTTP/1.0

message if all of the newer features are ignored. This specification
places recipient-version requirements on some new features so that a
conformant sender will only use compatible features until it has
determined, through configuration or the receipt of a message, that

the recipient supports HTTP/1.1.

The interpretation of a header field does not change between minor
versions of the same major HTTP version, though the default behavior
of a recipient in the absence of such a field can change. Unless
specified otherwise, header fields defined in HTTP/1.1 are defined

for all versions of HTTP/1.x. In particular, the Host and Connection
header fields ought to be implemented by all HTTP/1.x implementations
whether or not they advertise conformance with HTTP/1.1.

New header fields can be introduced without changing the protocol
version if their defined semantics allow them to be safely ignored by
recipients that do not recognize them. Header field extensibility is
discussed in Section 3.2.1.

Intermediaries that process HTTP messages (i.e., all intermediaries
other than those acting as tunnels) MUST send their own HTTP-version
in forwarded messages. In other words, they are not allowed to

blindly forward the first line of an HTTP message without ensuring

that the protocol version in that message matches a version to which
that intermediary is conformant for both the receiving and sending of
messages. Forwarding an HTTP message without rewriting the

Fielding & Reschke Standards Track [Page 14]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

HTTP-version might result in communication errors when downstream
recipients use the message sender’s version to determine what
features are safe to use for later communication with that sender.

A client SHOULD send a request version equal to the highest version
to which the client is conformant and whose major version is no
higher than the highest version supported by the server, if this is
known. A client MUST NOT send a version to which it is not
conformant.

A client MAY send a lower request version if it is known that the
server incorrectly implements the HTTP specification, but only after
the client has attempted at least one normal request and determined
from the response status code or header fields (e.g., Server) that
the server improperly handles higher request versions.

A server SHOULD send a response version equal to the highest version
to which the server is conformant that has a major version less than

or equal to the one received in the request. A server MUST NOT send
a version to which it is not conformant. A server can send a 505

(HTTP Version Not Supported) response if it wishes, for any reason,

to refuse service of the client’'s major protocol version.

A server MAY send an HTTP/1.0 response to a request if it is known or
suspected that the client incorrectly implements the HTTP

specification and is incapable of correctly processing later version
responses, such as when a client fails to parse the version number
correctly or when an intermediary is known to blindly forward the
HTTP-version even when it doesn’t conform to the given minor version
of the protocol. Such protocol downgrades SHOULD NOT be performed
unless triggered by specific client attributes, such as when one or

more of the request header fields (e.g., User-Agent) uniquely match

the values sent by a client known to be in error.

The intention of HTTP’s versioning design is that the major number

will only be incremented if an incompatible message syntax is
introduced, and that the minor number will only be incremented when
changes made to the protocol have the effect of adding to the message
semantics or implying additional capabilities of the sender.

However, the minor version was not incremented for the changes
introduced between [RFC2068] and [RFC2616], and this revision has
specifically avoided any such changes to the protocol.

When an HTTP message is received with a major version number that the
recipient implements, but a higher minor version number than what the
recipient implements, the recipient SHOULD process the message as if

it were in the highest minor version within that major version to

which the recipient is conformant. A recipient can assume that a

Fielding & Reschke Standards Track [Page 15]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

message with a higher minor version, when sent to a recipient that
has not yet indicated support for that higher version, is

sufficiently backwards-compatible to be safely processed by any
implementation of the same major version.

2.7. Uniform Resource Identifiers

Uniform Resource Identifiers (URIs) [RFC3986] are used throughout
HTTP as the means for identifying resources (Section 2 of [RFC7231]).
URI references are used to target requests, indicate redirects, and
define relationships.

The definitions of "URI-reference”, "absolute-URI", "relative-part",
"scheme", "authority", "port", "host", "path-abempty", "segment",
"query"”, and "fragment" are adopted from the URI generic syntax. An
"absolute-path” rule is defined for protocol elements that can

contain a non-empty path component. (This rule differs slightly from
the path-abempty rule of RFC 3986, which allows for an empty path to
be used in references, and path-absolute rule, which does not allow
paths that begin with "//".) A "partial-URI" rule is defined for

protocol elements that can contain a relative URI but not a fragment
component.

URI-reference = <URI-reference, see [RFC3986], Section 4.1>
absolute-URI = <absolute-URI, see [RFC3986], Section 4.3>
relative-part = <relative-part, see [RFC3986], Section 4.2>
scheme = <scheme, see [RFC3986], Section 3.1>
authority = <authority, see [RFC3986], Section 3.2>

uri-host = <host, see [RFC3986], Section 3.2.2>

port = <port, see [RFC3986], Section 3.2.3>
path-abempty = <path-abempty, see [RFC3986], Section 3.3>
segment = <segment, see [RFC3986], Section 3.3>

query = <query, see [RFC3986], Section 3.4>

fragment = <fragment, see [RFC3986], Section 3.5>

absolute-path = 1*("/" segment)
partial-URI = relative-part ["?" query]

Each protocol element in HTTP that allows a URI reference will
indicate in its ABNF production whether the element allows any form
of reference (URI-reference), only a URI in absolute form
(absolute-URI), only the path and optional query components, or some
combination of the above. Unless otherwise indicated, URI references
are parsed relative to the effective request URI (Section 5.5).

Fielding & Reschke Standards Track [Page 16]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

2.7.1. http URI Scheme

The "http" URI scheme is hereby defined for the purpose of minting
identifiers according to their association with the hierarchical
namespace governed by a potential HTTP origin server listening for
TCP ([RFCO0793]) connections on a given port.

http-URI = "http:" "//" authority path-abempty ["?" query]
["#" fragment]

The origin server for an "http" URI is identified by the authority
component, which includes a host identifier and optional TCP port
([RFC3986], Section 3.2.2). The hierarchical path component and
optional query component serve as an identifier for a potential

target resource within that origin server’'s name space. The optional
fragment component allows for indirect identification of a secondary
resource, independent of the URI scheme, as defined in Section 3.5 of
[RFC3986].

A sender MUST NOT generate an "http" URI with an empty host
identifier. A recipient that processes such a URI reference MUST
reject it as invalid.

If the host identifier is provided as an IP address, the origin

server is the listener (if any) on the indicated TCP port at that IP
address. If host is a registered name, the registered name is an
indirect identifier for use with a name resolution service, such as
DNS, to find an address for that origin server. If the port
subcomponent is empty or not given, TCP port 80 (the reserved port
for WWW services) is the default.

Note that the presence of a URI with a given authority component does
not imply that there is always an HTTP server listening for

connections on that host and port. Anyone can mint a URI. What the
authority component determines is who has the right to respond
authoritatively to requests that target the identified resource. The
delegated nature of registered names and IP addresses creates a
federated namespace, based on control over the indicated host and
port, whether or not an HTTP server is present. See Section 9.1 for
security considerations related to establishing authority.

When an "http" URI is used within a context that calls for access to
the indicated resource, a client MAY attempt access by resolving the
host to an IP address, establishing a TCP connection to that address
on the indicated port, and sending an HTTP request message
(Section 3) containing the URI's identifying data (Section 5) to the
server. If the server responds to that request with a non-interim

Fielding & Reschke Standards Track [Page 17]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

HTTP response message, as described in Section 6 of [RFC7231], then
that response is considered an authoritative answer to the client’s
request.

Although HTTP is independent of the transport protocol, the "http"
scheme is specific to TCP-based services because the name delegation
process depends on TCP for establishing authority. An HTTP service
based on some other underlying connection protocol would presumably
be identified using a different URI scheme, just as the "https"

scheme (below) is used for resources that require an end-to-end
secured connection. Other protocols might also be used to provide
access to "http" identified resources -- it is only the authoritative
interface that is specific to TCP.

The URI generic syntax for authority also includes a deprecated

userinfo subcomponent ([RFC3986], Section 3.2.1) for including user
authentication information in the URI. Some implementations make use
of the userinfo component for internal configuration of

authentication information, such as within command invocation

options, configuration files, or bookmark lists, even though such

usage might expose a user identifier or password. A sender MUST NOT
generate the userinfo subcomponent (and its "@" delimiter) when an
"http" URI reference is generated within a message as a request

target or header field value. Before making use of an "http" URI
reference received from an untrusted source, a recipient SHOULD parse
for userinfo and treat its presence as an error; it is likely being

used to obscure the authority for the sake of phishing attacks.

2.7.2. https URI Scheme

The "https" URI scheme is hereby defined for the purpose of minting
identifiers according to their association with the hierarchical
namespace governed by a potential HTTP origin server listening to a
given TCP port for TLS-secured connections ([RFC5246]).

All of the requirements listed above for the "http" scheme are also
requirements for the "https" scheme, except that TCP port 443 is the
default if the port subcomponent is empty or not given, and the user
agent MUST ensure that its connection to the origin server is secured
through the use of strong encryption, end-to-end, prior to sending

the first HTTP request.

https-URI = "https:" "//" authority path-abempty ["?" query]
["#" fragment]

Note that the "https" URI scheme depends on both TLS and TCP for

establishing authority. Resources made available via the "https”
scheme have no shared identity with the "http" scheme even if their

Fielding & Reschke Standards Track [Page 18]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

resource identifiers indicate the same authority (the same host
listening to the same TCP port). They are distinct namespaces and
are considered to be distinct origin servers. However, an extension
to HTTP that is defined to apply to entire host domains, such as the
Cookie protocol [RFC6265], can allow information set by one service
to impact communication with other services within a matching group
of host domains.

The process for authoritative access to an "https" identified
resource is defined in [RFC2818].

2.7.3. http and https URI Normalization and Comparison

Since the "http" and "https" schemes conform to the URI generic
syntax, such URIs are normalized and compared according to the
algorithm defined in Section 6 of [RFC3986], using the defaults
described above for each scheme.

If the port is equal to the default port for a scheme, the normal

form is to omit the port subcomponent. When not being used in

absolute form as the request target of an OPTIONS request, an empty
path component is equivalent to an absolute path of "/", so the

normal form is to provide a path of "/" instead. The scheme and host

are case-insensitive and normally provided in lowercase; all other
components are compared in a case-sensitive manner. Characters other
than those in the "reserved" set are equivalent to their

percent-encoded octets: the normal form is to not encode them (see
Sections 2.1 and 2.2 of [RFC3986]).

For example, the following three URIs are equivalent:

http://example.com:80/ smith/home.html
http://[EXAMPLE.com/%7Esmith/home.html
http://[EXAMPLE.com:/%7esmith/home.html

3. Message Format

All HTTP/1.1 messages consist of a start-line followed by a sequence
of octets in a format similar to the Internet Message Format
[RFC5322]: zero or more header fields (collectively referred to as

the "headers" or the "header section™), an empty line indicating the
end of the header section, and an optional message body.

HTTP-message = start-line
*(header-field CRLF)
CRLF
[message-body |

Fielding & Reschke Standards Track [Page 19]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

The normal procedure for parsing an HTTP message is to read the
start-line into a structure, read each header field into a hash table

by field name until the empty line, and then use the parsed data to
determine if a message body is expected. If a message body has been
indicated, then it is read as a stream until an amount of octets

equal to the message body length is read or the connection is closed.

A recipient MUST parse an HTTP message as a sequence of octets in an
encoding that is a superset of US-ASCII [USASCII]. Parsing an HTTP
message as a stream of Unicode characters, without regard for the
specific encoding, creates security vulnerabilities due to the

varying ways that string processing libraries handle invalid

multibyte character sequences that contain the octet LF (%x0A).
String-based parsers can only be safely used within protocol elements
after the element has been extracted from the message, such as within

a header field-value after message parsing has delineated the

individual fields.

An HTTP message can be parsed as a stream for incremental processing
or forwarding downstream. However, recipients cannot rely on
incremental delivery of partial messages, since some implementations
will buffer or delay message forwarding for the sake of network

efficiency, security checks, or payload transformations.

A sender MUST NOT send whitespace between the start-line and the
first header field. A recipient that receives whitespace between the
start-line and the first header field MUST either reject the message
as invalid or consume each whitespace-preceded line without further
processing of it (i.e., ignore the entire line, along with any
subsequent lines preceded by whitespace, until a properly formed
header field is received or the header section is terminated).

The presence of such whitespace in a request might be an attempt to
trick a server into ignoring that field or processing the line after

it as a new request, either of which might result in a security
vulnerability if other implementations within the request chain
interpret the same message differently. Likewise, the presence of
such whitespace in a response might be ignored by some clients or
cause others to cease parsing.

3.1. Start Line

An HTTP message can be either a request from client to server or a
response from server to client. Syntactically, the two types of
message differ only in the start-line, which is either a request-line
(for requests) or a status-line (for responses), and in the algorithm
for determining the length of the message body (Section 3.3).

Fielding & Reschke Standards Track [Page 20]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

In theory, a client could receive requests and a server could receive
responses, distinguishing them by their different start-line formats,
but, in practice, servers are implemented to only expect a request (a
response is interpreted as an unknown or invalid request method) and
clients are implemented to only expect a response.

start-line = request-line / status-line
3.1.1. Request Line

A request-line begins with a method token, followed by a single space
(SP), the request-target, another single space (SP), the protocol
version, and ends with CRLF.

request-line = method SP request-target SP HTTP-version CRLF

The method token indicates the request method to be performed on the
target resource. The request method is case-sensitive.

method = token

The request methods defined by this specification can be found in
Section 4 of [RFC7231], along with information regarding the HTTP
method registry and considerations for defining new methods.

The request-target identifies the target resource upon which to apply
the request, as defined in Section 5.3.

Recipients typically parse the request-line into its component parts
by splitting on whitespace (see Section 3.5), since no whitespace is
allowed in the three components. Unfortunately, some user agents
fail to properly encode or exclude whitespace found in hypertext
references, resulting in those disallowed characters being sent in a
request-target.

Recipients of an invalid request-line SHOULD respond with either a

400 (Bad Request) error or a 301 (Moved Permanently) redirect with
the request-target properly encoded. A recipient SHOULD NOT attempt
to autocorrect and then process the request without a redirect, since

the invalid request-line might be deliberately crafted to bypass

security filters along the request chain.

HTTP does not place a predefined limit on the length of a

request-line, as described in Section 2.5. A server that receives a
method longer than any that it implements SHOULD respond with a 501
(Not Implemented) status code. A server that receives a

Fielding & Reschke Standards Track [Page 21]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

request-target longer than any URI it wishes to parse MUST respond
with a 414 (URI Too Long) status code (see Section 6.5.12 of
[RFC7231]).

Various ad hoc limitations on request-line length are found in
practice. It is RECOMMENDED that all HTTP senders and recipients
support, at a minimum, request-line lengths of 8000 octets.

3.1.2. Status Line

The first line of a response message is the status-line, consisting
of the protocol version, a space (SP), the status code, another
space, a possibly empty textual phrase describing the status code,
and ending with CRLF.

status-line = HTTP-version SP status-code SP reason-phrase CRLF

The status-code element is a 3-digit integer code describing the
result of the server’s attempt to understand and satisfy the client’s
corresponding request. The rest of the response message is to be
interpreted in light of the semantics defined for that status code.
See Section 6 of [RFC7231] for information about the semantics of
status codes, including the classes of status code (indicated by the
first digit), the status codes defined by this specification,
considerations for the definition of new status codes, and the IANA
registry.

status-code = 3DIGIT
The reason-phrase element exists for the sole purpose of providing a
textual description associated with the numeric status code, mostly
out of deference to earlier Internet application protocols that were
more frequently used with interactive text clients. A client SHOULD
ignore the reason-phrase content.

reason-phrase = *(HTAB / SP / VCHAR / obs-text)

3.2. Header Fields

Each header field consists of a case-insensitive field name followed

by a colon (":"), optional leading whitespace, the field value, and
optional trailing whitespace.

Fielding & Reschke Standards Track [Page 22]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

header-field = field-name ":" OWS field-value OWS

field-name = token

field-value = *(field-content / obs-fold)

field-content = field-vchar [1*(SP / HTAB) field-vchar]
field-vchar = VCHAR / obs-text

obs-fold = CRLF 1*(SP/HTAB)
; obsolete line folding
; see Section 3.2.4

The field-name token labels the corresponding field-value as having
the semantics defined by that header field. For example, the Date
header field is defined in Section 7.1.1.2 of [RFC7231] as containing
the origination timestamp for the message in which it appears.

3.2.1. Field Extensibility

Header fields are fully extensible: there is no limit on the
introduction of new field names, each presumably defining new
semantics, nor on the number of header fields used in a given
message. Existing fields are defined in each part of this
specification and in many other specifications outside this document
set.

New header fields can be defined such that, when they are understood
by a recipient, they might override or enhance the interpretation of
previously defined header fields, define preconditions on request
evaluation, or refine the meaning of responses.

A proxy MUST forward unrecognized header fields unless the field-name
is listed in the Connection header field (Section 6.1) or the proxy

is specifically configured to block, or otherwise transform, such

fields. Other recipients SHOULD ignore unrecognized header fields.
These requirements allow HTTP’s functionality to be enhanced without
requiring prior update of deployed intermediaries.

All defined header fields ought to be registered with IANA in the
"Message Headers" registry, as described in Section 8.3 of [RFC7231].

3.2.2. Field Order

The order in which header fields with differing field names are

received is not significant. However, it is good practice to send

header fields that contain control data first, such as Host on

requests and Date on responses, so that implementations can decide
when not to handle a message as early as possible. A server MUST NOT
apply a request to the target resource until the entire request

Fielding & Reschke Standards Track [Page 23]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

header section is received, since later header fields might include
conditionals, authentication credentials, or deliberately misleading
duplicate header fields that would impact request processing.

A sender MUST NOT generate multiple header fields with the same field
name in a message unless either the entire field value for that

header field is defined as a comma-separated list [i.e., #(values)]

or the header field is a well-known exception (as noted below).

A recipient MAY combine multiple header fields with the same field
name into one "field-name: field-value" pair, without changing the
semantics of the message, by appending each subsequent field value to
the combined field value in order, separated by a comma. The order

in which header fields with the same field name are received is
therefore significant to the interpretation of the combined field

value; a proxy MUST NOT change the order of these field values when
forwarding a message.

Note: In practice, the "Set-Cookie" header field ([RFC6265]) often
appears multiple times in a response message and does not use the
list syntax, violating the above requirements on multiple header
fields with the same name. Since it cannot be combined into a
single field-value, recipients ought to handle "Set-Cookie" as a
special case while processing header fields. (See Appendix A.2.3
of [Kri2001] for detalils.)

3.2.3. Whitespace

This specification uses three rules to denote the use of linear
whitespace: OWS (optional whitespace), RWS (required whitespace), and
BWS ("bad" whitespace).

The OWS rule is used where zero or more linear whitespace octets
might appear. For protocol elements where optional whitespace is
preferred to improve readability, a sender SHOULD generate the
optional whitespace as a single SP; otherwise, a sender SHOULD NOT
generate optional whitespace except as needed to white out invalid or
unwanted protocol elements during in-place message filtering.

The RWS rule is used when at least one linear whitespace octet is
required to separate field tokens. A sender SHOULD generate RWS as a
single SP.

The BWS rule is used where the grammar allows optional whitespace
only for historical reasons. A sender MUST NOT generate BWS in
messages. A recipient MUST parse for such bad whitespace and remove
it before interpreting the protocol element.

Fielding & Reschke Standards Track [Page 24]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

OwWSs =*(SP/HTAB)
; optional whitespace
RWS =1*(SP/HTAB)
; required whitespace
BWS = OWS

; "bad" whitespace
3.2.4. Field Parsing

Messages are parsed using a generic algorithm, independent of the
individual header field names. The contents within a given field
value are not parsed until a later stage of message interpretation
(usually after the message’s entire header section has been
processed). Consequently, this specification does not use ABNF rules
to define each "Field-Name: Field Value" pair, as was done in
previous editions. Instead, this specification uses ABNF rules that
are named according to each registered field name, wherein the rule
defines the valid grammar for that field’'s corresponding field values
(i.e., after the field-value has been extracted from the header
section by a generic field parser).

No whitespace is allowed between the header field-name and colon. In
the past, differences in the handling of such whitespace have led to
security vulnerabilities in request routing and response handling. A

server MUST reject any received request message that contains
whitespace between a header field-name and colon with a response code
of 400 (Bad Request). A proxy MUST remove any such whitespace from a
response message before forwarding the message downstream.

A field value might be preceded and/or followed by optional
whitespace (OWS); a single SP preceding the field-value is preferred
for consistent readability by humans. The field value does not
include any leading or trailing whitespace: OWS occurring before the
first non-whitespace octet of the field value or after the last
non-whitespace octet of the field value ought to be excluded by
parsers when extracting the field value from a header field.

Historically, HTTP header field values could be extended over

multiple lines by preceding each extra line with at least one space

or horizontal tab (obs-fold). This specification deprecates such

line folding except within the message/http media type

(Section 8.3.1). A sender MUST NOT generate a message that includes
line folding (i.e., that has any field-value that contains a match to

the obs-fold rule) unless the message is intended for packaging

within the message/http media type.

Fielding & Reschke Standards Track [Page 25]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

A server that receives an obs-fold in a request message that is not
within a message/http container MUST either reject the message by
sending a 400 (Bad Request), preferably with a representation
explaining that obsolete line folding is unacceptable, or replace
each received obs-fold with one or more SP octets prior to
interpreting the field value or forwarding the message downstream.

A proxy or gateway that receives an obs-fold in a response message
that is not within a message/http container MUST either discard the
message and replace it with a 502 (Bad Gateway) response, preferably
with a representation explaining that unacceptable line folding was
received, or replace each received obs-fold with one or more SP

octets prior to interpreting the field value or forwarding the

message downstream.

A user agent that receives an obs-fold in a response message that is
not within a message/http container MUST replace each received
obs-fold with one or more SP octets prior to interpreting the field
value.

Historically, HTTP has allowed field content with text in the
ISO-8859-1 charset [ISO-8859-1], supporting other charsets only
through use of [RFC2047] encoding. In practice, most HTTP header
field values use only a subset of the US-ASCII charset [USASCII].
Newly defined header fields SHOULD limit their field values to
US-ASCII octets. A recipient SHOULD treat other octets in field
content (obs-text) as opaque data.

3.2.5. Field Limits

HTTP does not place a predefined limit on the length of each header
field or on the length of the header section as a whole, as described
in Section 2.5. Various ad hoc limitations on individual header

field length are found in practice, often depending on the specific
field semantics.

A server that receives a request header field, or set of fields,

larger than it wishes to process MUST respond with an appropriate 4xx
(Client Error) status code. Ignoring such header fields would

increase the server’s vulnerability to request smuggling attacks
(Section 9.5).

A client MAY discard or truncate received header fields that are

larger than the client wishes to process if the field semantics are

such that the dropped value(s) can be safely ignored without changing
the message framing or response semantics.

Fielding & Reschke Standards Track [Page 26]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

3.2.6. Field Value Components

Most HTTP header field values are defined using common syntax
components (token, quoted-string, and comment) separated by
whitespace or specific delimiting characters. Delimiters are chosen
from the set of US-ASCII visual characters not allowed in a token
(DQUOTE and "(),/:;<=>?@[\{}").

token = 1*tchar

tchar =S e &N T
T A A A A e A B Y
/ DIGIT / ALPHA
; any VCHAR, except delimiters

A string of text is parsed as a single value if it is quoted using
double-quote marks.

quoted-string = DQUOTE *(qdtext / quoted-pair) DQUOTE
gdtext = HTAB / SP /%x21 | %x23-5B / %x5D-7E / obs-text
obs-text = %x80-FF

Comments can be included in some HTTP header fields by surrounding
the comment text with parentheses. Comments are only allowed in
fields containing "comment" as part of their field value definition.

comment ="(" *(ctext / quoted-pair / comment) ")"
ctext =HTAB / SP / %x21-27 | %x2A-5B / %x5D-7E / obs-text

The backslash octet ("\") can be used as a single-octet quoting
mechanism within quoted-string and comment constructs. Recipients
that process the value of a quoted-string MUST handle a quoted-pair
as if it were replaced by the octet following the backslash.

quoted-pair ="\"(HTAB/SP /VCHAR / obs-text)

A sender SHOULD NOT generate a quoted-pair in a quoted-string except
where necessary to quote DQUOTE and backslash octets occurring within
that string. A sender SHOULD NOT generate a quoted-pair in a comment
except where necessary to quote parentheses ['(" and ")"] and

backslash octets occurring within that comment.

Fielding & Reschke Standards Track [Page 27]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

3.3. Message Body

The message body (if any) of an HTTP message is used to carry the
payload body of that request or response. The message body is
identical to the payload body unless a transfer coding has been
applied, as described in Section 3.3.1.

message-body = *OCTET

The rules for when a message body is allowed in a message differ for
requests and responses.

The presence of a message body in a request is signaled by a
Content-Length or Transfer-Encoding header field. Request message
framing is independent of method semantics, even if the method does
not define any use for a message body.

The presence of a message body in a response depends on both the
request method to which it is responding and the response status code
(Section 3.1.2). Responses to the HEAD request method (Section 4.3.2
of [RFC7231]) never include a message body because the associated
response header fields (e.g., Transfer-Encoding, Content-Length,

etc.), if present, indicate only what their values would have been if

the request method had been GET (Section 4.3.1 of [RFC7231]). 2xx
(Successful) responses to a CONNECT request method (Section 4.3.6 of
[RFC7231]) switch to tunnel mode instead of having a message body.
All 1xx (Informational), 204 (No Content), and 304 (Not Modified)
responses do not include a message body. All other responses do
include a message body, although the body might be of zero length.

3.3.1. Transfer-Encoding

The Transfer-Encoding header field lists the transfer coding names
corresponding to the sequence of transfer codings that have been (or
will be) applied to the payload body in order to form the message
body. Transfer codings are defined in Section 4.

Transfer-Encoding = 1#transfer-coding

Transfer-Encoding is analogous to the Content-Transfer-Encoding field
of MIME, which was designed to enable safe transport of binary data
over a 7-hit transport service ([RFC2045], Section 6). However, safe
transport has a different focus for an 8bit-clean transfer protocol.

In HTTP’s case, Transfer-Encoding is primarily intended to accurately
delimit a dynamically generated payload and to distinguish payload
encodings that are only applied for transport efficiency or security

from those that are characteristics of the selected resource.

Fielding & Reschke Standards Track [Page 28]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

A recipient MUST be able to parse the chunked transfer coding

(Section 4.1) because it plays a crucial role in framing messages

when the payload body size is not known in advance. A sender MUST
NOT apply chunked more than once to a message body (i.e., chunking an
already chunked message is not allowed). If any transfer coding

other than chunked is applied to a request payload body, the sender
MUST apply chunked as the final transfer coding to ensure that the
message is properly framed. If any transfer coding other than

chunked is applied to a response payload body, the sender MUST either
apply chunked as the final transfer coding or terminate the message

by closing the connection.

For example,
Transfer-Encoding: gzip, chunked

indicates that the payload body has been compressed using the gzip
coding and then chunked using the chunked coding while forming the
message body.

Unlike Content-Encoding (Section 3.1.2.1 of [RFC7231]),
Transfer-Encoding is a property of the message, not of the
representation, and any recipient along the request/response chain
MAY decode the received transfer coding(s) or apply additional
transfer coding(s) to the message body, assuming that corresponding
changes are made to the Transfer-Encoding field-value. Additional
information about the encoding parameters can be provided by other
header fields not defined by this specification.

Transfer-Encoding MAY be sent in a response to a HEAD request or in a
304 (Not Modified) response (Section 4.1 of [RFC7232]) to a GET
request, neither of which includes a message body, to indicate that

the origin server would have applied a transfer coding to the message
body if the request had been an unconditional GET. This indication

is not required, however, because any recipient on the response chain
(including the origin server) can remove transfer codings when they

are not needed.

A server MUST NOT send a Transfer-Encoding header field in any
response with a status code of 1xx (Informational) or 204 (No

Content). A server MUST NOT send a Transfer-Encoding header field in
any 2xx (Successful) response to a CONNECT request (Section 4.3.6 of
[RFC7231]).

Transfer-Encoding was added in HTTP/1.1. It is generally assumed
that implementations advertising only HTTP/1.0 support will not
understand how to process a transfer-encoded payload. A client MUST
NOT send a request containing Transfer-Encoding unless it knows the

Fielding & Reschke Standards Track [Page 29]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

server will handle HTTP/1.1 (or later) requests; such knowledge might
be in the form of specific user configuration or by remembering the
version of a prior received response. A server MUST NOT send a
response containing Transfer-Encoding unless the corresponding
request indicates HTTP/1.1 (or later).

A server that receives a request message with a transfer coding it
does not understand SHOULD respond with 501 (Not Implemented).

3.3.2. Content-Length

When a message does not have a Transfer-Encoding header field, a
Content-Length header field can provide the anticipated size, as a
decimal number of octets, for a potential payload body. For messages
that do include a payload body, the Content-Length field-value

provides the framing information necessary for determining where the
body (and message) ends. For messages that do not include a payload
body, the Content-Length indicates the size of the selected
representation (Section 3 of [RFC7231]).

Content-Length = 1*DIGIT
An example is
Content-Length: 3495

A sender MUST NOT send a Content-Length header field in any message
that contains a Transfer-Encoding header field.

A user agent SHOULD send a Content-Length in a request message when
no Transfer-Encoding is sent and the request method defines a meaning
for an enclosed payload body. For example, a Content-Length header
field is normally sent in a POST request even when the value is O
(indicating an empty payload body). A user agent SHOULD NOT send a
Content-Length header field when the request message does not contain
a payload body and the method semantics do not anticipate such a

body.

A server MAY send a Content-Length header field in a response to a
HEAD request (Section 4.3.2 of [RFC7231]); a server MUST NOT send
Content-Length in such a response unless its field-value equals the
decimal number of octets that would have been sent in the payload
body of a response if the same request had used the GET method.

A server MAY send a Content-Length header field in a 304 (Not

Modified) response to a conditional GET request (Section 4.1 of
[RFC7232]); a server MUST NOT send Content-Length in such a response

Fielding & Reschke Standards Track [Page 30]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

unless its field-value equals the decimal number of octets that would
have been sent in the payload body of a 200 (OK) response to the same
request.

A server MUST NOT send a Content-Length header field in any response
with a status code of 1xx (Informational) or 204 (No Content). A

server MUST NOT send a Content-Length header field in any 2xx
(Successful) response to a CONNECT request (Section 4.3.6 of
[RFC7231]).

Aside from the cases defined above, in the absence of
Transfer-Encoding, an origin server SHOULD send a Content-Length
header field when the payload body size is known prior to sending the
complete header section. This will allow downstream recipients to
measure transfer progress, know when a received message is complete,
and potentially reuse the connection for additional requests.

Any Content-Length field value greater than or equal to zero is
valid. Since there is no predefined limit to the length of a
payload, a recipient MUST anticipate potentially large decimal
numerals and prevent parsing errors due to integer conversion
overflows (Section 9.3).

If a message is received that has multiple Content-Length header
fields with field-values consisting of the same decimal value, or a
single Content-Length header field with a field value containing a

list of identical decimal values (e.g., "Content-Length: 42, 42"),
indicating that duplicate Content-Length header fields have been
generated or combined by an upstream message processor, then the
recipient MUST either reject the message as invalid or replace the
duplicated field-values with a single valid Content-Length field
containing that decimal value prior to determining the message body
length or forwarding the message.

Note: HTTP’s use of Content-Length for message framing differs
significantly from the same field’s use in MIME, where it is an
optional field used only within the "message/external-body"
media-type.

Fielding & Reschke Standards Track [Page 31]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

3.3.3. Message Body Length

The length of a message body is determined by one of the following
(in order of precedence):

1. Any response to a HEAD request and any response with a 1xx
(Informational), 204 (No Content), or 304 (Not Modified) status
code is always terminated by the first empty line after the
header fields, regardless of the header fields present in the
message, and thus cannot contain a message body.

2. Any 2xx (Successful) response to a CONNECT request implies that
the connection will become a tunnel immediately after the empty
line that concludes the header fields. A client MUST ignore any
Content-Length or Transfer-Encoding header fields received in
such a message.

3. If a Transfer-Encoding header field is present and the chunked
transfer coding (Section 4.1) is the final encoding, the message
body length is determined by reading and decoding the chunked
data until the transfer coding indicates the data is complete.

If a Transfer-Encoding header field is present in a response and
the chunked transfer coding is not the final encoding, the

message body length is determined by reading the connection until
it is closed by the server. If a Transfer-Encoding header field

is present in a request and the chunked transfer coding is not

the final encoding, the message body length cannot be determined
reliably; the server MUST respond with the 400 (Bad Request)
status code and then close the connection.

If a message is received with both a Transfer-Encoding and a
Content-Length header field, the Transfer-Encoding overrides the
Content-Length. Such a message might indicate an attempt to
perform request smuggling (Section 9.5) or response splitting
(Section 9.4) and ought to be handled as an error. A sender MUST
remove the received Content-Length field prior to forwarding such
a message downstream.

4. If a message is received without Transfer-Encoding and with
either multiple Content-Length header fields having differing
field-values or a single Content-Length header field having an
invalid value, then the message framing is invalid and the
recipient MUST treat it as an unrecoverable error. If this is a
request message, the server MUST respond with a 400 (Bad Request)
status code and then close the connection. If this is a response
message received by a proxy, the proxy MUST close the connection
to the server, discard the received response, and send a 502 (Bad

Fielding & Reschke Standards Track [Page 32]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Gateway) response to the client. If this is a response message
received by a user agent, the user agent MUST close the
connection to the server and discard the received response.

5. If a valid Content-Length header field is present without
Transfer-Encoding, its decimal value defines the expected message
body length in octets. If the sender closes the connection or
the recipient times out before the indicated number of octets are
received, the recipient MUST consider the message to be
incomplete and close the connection.

6. If this is a request message and none of the above are true, then
the message body length is zero (no message body is present).

7. Otherwise, this is a response message without a declared message
body length, so the message body length is determined by the
number of octets received prior to the server closing the
connection.

Since there is no way to distinguish a successfully completed,
close-delimited message from a partially received message interrupted
by network failure, a server SHOULD generate encoding or
length-delimited messages whenever possible. The close-delimiting
feature exists primarily for backwards compatibility with HTTP/1.0.

A server MAY reject a request that contains a message body but not a
Content-Length by responding with 411 (Length Required).

Unless a transfer coding other than chunked has been applied, a
client that sends a request containing a message body SHOULD use a
valid Content-Length header field if the message body length is known
in advance, rather than the chunked transfer coding, since some
existing services respond to chunked with a 411 (Length Required)
status code even though they understand the chunked transfer coding.
This is typically because such services are implemented via a gateway
that requires a content-length in advance of being called and the
server is unable or unwilling to buffer the entire request before
processing.

A user agent that sends a request containing a message body MUST send
a valid Content-Length header field if it does not know the server

will handle HTTP/1.1 (or later) requests; such knowledge can be in

the form of specific user configuration or by remembering the version

of a prior received response.

If the final response to the last request on a connection has been

completely received and there remains additional data to read, a user
agent MAY discard the remaining data or attempt to determine if that

Fielding & Reschke Standards Track [Page 33]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

data belongs as part of the prior response body, which might be the
case if the prior message’s Content-Length value is incorrect. A
client MUST NOT process, cache, or forward such extra data as a
separate response, since such behavior would be vulnerable to cache
poisoning.

3.4. Handling Incomplete Messages

A server that receives an incomplete request message, usually due to
a canceled request or a triggered timeout exception, MAY send an
error response prior to closing the connection.

A client that receives an incomplete response message, which can
occur when a connection is closed prematurely or when decoding a
supposedly chunked transfer coding fails, MUST record the message as
incomplete. Cache requirements for incomplete responses are defined
in Section 3 of [RFC7234].

If a response terminates in the middle of the header section (before

the empty line is received) and the status code might rely on header
fields to convey the full meaning of the response, then the client
cannot assume that meaning has been conveyed; the client might need
to repeat the request in order to determine what action to take next.

A message body that uses the chunked transfer coding is incomplete if
the zero-sized chunk that terminates the encoding has not been
received. A message that uses a valid Content-Length is incomplete

if the size of the message body received (in octets) is less than the
value given by Content-Length. A response that has neither chunked
transfer coding nor Content-Length is terminated by closure of the
connection and, thus, is considered complete regardless of the number
of message body octets received, provided that the header section was
received intact.

3.5. Message Parsing Robustness

Older HTTP/1.0 user agent implementations might send an extra CRLF
after a POST request as a workaround for some early server

applications that failed to read message body content that was not
terminated by a line-ending. An HTTP/1.1 user agent MUST NOT preface
or follow a request with an extra CRLF. If terminating the request
message body with a line-ending is desired, then the user agent MUST
count the terminating CRLF octets as part of the message body length.

In the interest of robustness, a server that is expecting to receive

and parse a request-line SHOULD ignore at least one empty line (CRLF)
received prior to the request-line.

Fielding & Reschke Standards Track [Page 34]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Although the line terminator for the start-line and header fields is
the sequence CRLF, a recipient MAY recognize a single LF as a line
terminator and ignore any preceding CR.

Although the request-line and status-line grammar rules require that

each of the component elements be separated by a single SP octet,
recipients MAY instead parse on whitespace-delimited word boundaries
and, aside from the CRLF terminator, treat any form of whitespace as

the SP separator while ignoring preceding or trailing whitespace;

such whitespace includes one or more of the following octets: SP,

HTAB, VT (%x0B), FF (%x0C), or bare CR. However, lenient parsing can
result in security vulnerabilities if there are multiple recipients

of the message and each has its own unique interpretation of

robustness (see Section 9.5).

When a server listening only for HTTP request messages, or processing
what appears from the start-line to be an HTTP request message,
receives a sequence of octets that does not match the HTTP-message
grammar aside from the robustness exceptions listed above, the server
SHOULD respond with a 400 (Bad Request) response.

4. Transfer Codings

Transfer coding names are used to indicate an encoding transformation
that has been, can be, or might need to be applied to a payload body

in order to ensure "safe transport" through the network. This

differs from a content coding in that the transfer coding is a

property of the message rather than a property of the representation
that is being transferred.

transfer-coding = "chunked" ; Section 4.1
/ "compress" ; Section 4.2.1
/ "deflate" ; Section 4.2.2
/ "gzip" ; Section 4.2.3
/ transfer-extension
transfer-extension = token *(OWS ";" OWS transfer-parameter)

Parameters are in the form of a name or name=value pair.
transfer-parameter = token BWS "=" BWS (token / quoted-string)

All transfer-coding names are case-insensitive and ought to be

registered within the HTTP Transfer Coding registry, as defined in

Section 8.4. They are used in the TE (Section 4.3) and
Transfer-Encoding (Section 3.3.1) header fields.

Fielding & Reschke Standards Track [Page 35]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

4.1. Chunked Transfer Coding

The chunked transfer coding wraps the payload body in order to
transfer it as a series of chunks, each with its own size indicator,
followed by an OPTIONAL trailer containing header fields. Chunked
enables content streams of unknown size to be transferred as a
sequence of length-delimited buffers, which enables the sender to
retain connection persistence and the recipient to know when it has
received the entire message.

chunked-body = *chunk
last-chunk
trailer-part
CRLF

chunk = chunk-size [chunk-ext] CRLF
chunk-data CRLF

chunk-size =1*HEXDIG

last-chunk = 1*("0") [chunk-ext] CRLF

chunk-data = 1*OCTET ; a sequence of chunk-size octets

The chunk-size field is a string of hex digits indicating the size of

the chunk-data in octets. The chunked transfer coding is complete
when a chunk with a chunk-size of zero is received, possibly followed
by a trailer, and finally terminated by an empty line.

A recipient MUST be able to parse and decode the chunked transfer
coding.

4.1.1. Chunk Extensions

The chunked encoding allows each chunk to include zero or more chunk
extensions, immediately following the chunk-size, for the sake of
supplying per-chunk metadata (such as a signature or hash),
mid-message control information, or randomization of message body
size.

chunk-ext =*(";" chunk-ext-name ["=" chunk-ext-val])

chunk-ext-name = token
chunk-ext-val = token / quoted-string

The chunked encoding is specific to each connection and is likely to
be removed or recoded by each recipient (including intermediaries)
before any higher-level application would have a chance to inspect
the extensions. Hence, use of chunk extensions is generally limited

Fielding & Reschke Standards Track [Page 36]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

to specialized HTTP services such as "long polling" (where client and
server can have shared expectations regarding the use of chunk
extensions) or for padding within an end-to-end secured connection.

A recipient MUST ignore unrecognized chunk extensions. A server
ought to limit the total length of chunk extensions received in a
request to an amount reasonable for the services provided, in the
same way that it applies length limitations and timeouts for other
parts of a message, and generate an appropriate 4xx (Client Error)
response if that amount is exceeded.

4.1.2. Chunked Trailer Part

A trailer allows the sender to include additional fields at the end

of a chunked message in order to supply metadata that might be
dynamically generated while the message body is sent, such as a
message integrity check, digital signature, or post-processing
status. The trailer fields are identical to header fields, except

they are sent in a chunked trailer instead of the message’s header
section.

trailer-part = *(header-field CRLF)

A sender MUST NOT generate a trailer that contains a field necessary
for message framing (e.g., Transfer-Encoding and Content-Length),
routing (e.g., Host), request modifiers (e.g., controls and

conditionals in Section 5 of [RFC7231]), authentication (e.g., see
[RFC7235] and [RFC6265]), response control data (e.g., see Section
7.1 of [RFC7231]), or determining how to process the payload (e.g.,
Content-Encoding, Content-Type, Content-Range, and Trailer).

When a chunked message containing a non-empty trailer is received,
the recipient MAY process the fields (aside from those forbidden
above) as if they were appended to the message’s header section. A
recipient MUST ignore (or consider as an error) any fields that are
forbidden to be sent in a trailer, since processing them as if they
were present in the header section might bypass external security
filters.

Unless the request includes a TE header field indicating "trailers"
is acceptable, as described in Section 4.3, a server SHOULD NOT
generate trailer fields that it believes are necessary for the user
agent to receive. Without a TE containing "trailers", the server
ought to assume that the trailer fields might be silently discarded
along the path to the user agent. This requirement allows
intermediaries to forward a de-chunked message to an HTTP/1.0
recipient without buffering the entire response.

Fielding & Reschke Standards Track [Page 37]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

4.1.3. Decoding Chunked

A process for decoding the chunked transfer coding can be represented
in pseudo-code as:

length :=0
read chunk-size, chunk-ext (if any), and CRLF
while (chunk-size > 0) {

read chunk-data and CRLF

append chunk-data to decoded-body

length := length + chunk-size

read chunk-size, chunk-ext (if any), and CRLF

read trailer field
while (trailer field is not empty) {
if (trailer field is allowed to be sent in a trailer) {
append trailer field to existing header fields

read trailer-field

}
Content-Length := length

Remove "chunked" from Transfer-Encoding
Remove Trailer from existing header fields

4.2. Compression Codings

The codings defined below can be used to compress the payload of a
message.

4.2.1. Compress Coding
The "compress" coding is an adaptive Lempel-Ziv-Welch (LZW) coding
[Welch] that is commonly produced by the UNIX file compression
program "compress". A recipient SHOULD consider "x-compress" to be
equivalent to "compress".

4.2.2. Deflate Coding
The "deflate" coding is a "zlib" data format [RFC1950] containing a
"deflate” compressed data stream [RFC1951] that uses a combination of
the Lempel-Ziv (LZ77) compression algorithm and Huffman coding.

Note: Some non-conformant implementations send the "deflate"
compressed data without the zlib wrapper.

Fielding & Reschke Standards Track [Page 38]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

4.2.3. Gzip Coding

The "gzip" coding is an LZ77 coding with a 32-bit Cyclic Redundancy
Check (CRC) that is commonly produced by the gzip file compression
program [RFC1952]. A recipient SHOULD consider "x-gzip" to be
equivalent to "gzip".

43. TE

The "TE" header field in a request indicates what transfer codings,
besides chunked, the client is willing to accept in response, and
whether or not the client is willing to accept trailer fields in a
chunked transfer coding.

The TE field-value consists of a comma-separated list of transfer
coding names, each allowing for optional parameters (as described in
Section 4), and/or the keyword "trailers”. A client MUST NOT send

the chunked transfer coding name in TE; chunked is always acceptable
for HTTP/1.1 recipients.

TE = #t-codings
t-codings = "trailers" / (transfer-coding [t-ranking])
t-ranking = OWS ";" OWS "g="rank
rank = ("0"["."0*3DIGIT])
/("1 [0%3('0) 1)

Three examples of TE use are below.

TE: deflate
TE:
TE: trailers, deflate;q=0.5

The presence of the keyword "trailers" indicates that the client is
willing to accept trailer fields in a chunked transfer coding, as
defined in Section 4.1.2, on behalf of itself and any downstream
clients. For requests from an intermediary, this implies that

either: (a) all downstream clients are willing to accept trailer

fields in the forwarded response; or, (b) the intermediary will
attempt to buffer the response on behalf of downstream recipients.
Note that HTTP/1.1 does not define any means to limit the size of a
chunked response such that an intermediary can be assured of
buffering the entire response.

When multiple transfer codings are acceptable, the client MAY rank

the codings by preference using a case-insensitive "q" parameter
(similar to the qvalues used in content negotiation fields, Section

Fielding & Reschke Standards Track [Page 39]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

5.3.1 of [RFC7231]). The rank value is a real number in the range 0
through 1, where 0.001 is the least preferred and 1 is the most
preferred; a value of 0 means "not acceptable”.

If the TE field-value is empty or if no TE field is present, the only
acceptable transfer coding is chunked. A message with no transfer
coding is always acceptable.

Since the TE header field only applies to the immediate connection, a
sender of TE MUST also send a "TE" connection option within the
Connection header field (Section 6.1) in order to prevent the TE

field from being forwarded by intermediaries that do not support its
semantics.

4.4. Trailer

When a message includes a message body encoded with the chunked
transfer coding and the sender desires to send metadata in the form
of trailer fields at the end of the message, the sender SHOULD
generate a Trailer header field before the message body to indicate
which fields will be present in the trailers. This allows the

recipient to prepare for receipt of that metadata before it starts
processing the body, which is useful if the message is being streamed
and the recipient wishes to confirm an integrity check on the fly.

Trailer = 1#field-name
5. Message Routing

HTTP request message routing is determined by each client based on
the target resource, the client’s proxy configuration, and
establishment or reuse of an inbound connection. The corresponding
response routing follows the same connection chain back to the
client.

5.1. Identifying a Target Resource

HTTP is used in a wide variety of applications, ranging from
general-purpose computers to home appliances. In some cases,
communication options are hard-coded in a client’s configuration.
However, most HTTP clients rely on the same resource identification
mechanism and configuration techniques as general-purpose Web
browsers.

HTTP communication is initiated by a user agent for some purpose.
The purpose is a combination of request semantics, which are defined
in [RFC7231], and a target resource upon which to apply those
semantics. A URI reference (Section 2.7) is typically used as an

Fielding & Reschke Standards Track [Page 40]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

identifier for the "target resource”, which a user agent would

resolve to its absolute form in order to obtain the "target URI".

The target URI excludes the reference’s fragment component, if any,
since fragment identifiers are reserved for client-side processing
([RFC3986], Section 3.5).

5.2. Connecting Inbound

Once the target URI is determined, a client needs to decide whether a
network request is necessary to accomplish the desired semantics and,
if so, where that request is to be directed.

If the client has a cache [RFC7234] and the request can be satisfied
by it, then the request is usually directed there first.

If the request is not satisfied by a cache, then a typical client

will check its configuration to determine whether a proxy is to be
used to satisfy the request. Proxy configuration is implementation-
dependent, but is often based on URI prefix matching, selective
authority matching, or both, and the proxy itself is usually

identified by an "http" or "https" URI. If a proxy is applicable,

the client connects inbound by establishing (or reusing) a connection
to that proxy.

If no proxy is applicable, a typical client will invoke a handler

routine, usually specific to the target URI's scheme, to connect

directly to an authority for the target resource. How that is
accomplished is dependent on the target URI scheme and defined by its
associated specification, similar to how this specification defines

origin server access for resolution of the "http" (Section 2.7.1) and
"https" (Section 2.7.2) schemes.

HTTP requirements regarding connection management are defined in
Section 6.

5.3. Request Target

Once an inbound connection is obtained, the client sends an HTTP
request message (Section 3) with a request-target derived from the
target URI. There are four distinct formats for the request-target,
depending on both the method being requested and whether the request
is to a proxy.

request-target = origin-form
[/ absolute-form
[/ authority-form
[asterisk-form

Fielding & Reschke Standards Track [Page 41]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

5.3.1. origin-form
The most common form of request-target is the origin-form.
origin-form = absolute-path ["?" query]

When making a request directly to an origin server, other than a
CONNECT or server-wide OPTIONS request (as detailed below), a client
MUST send only the absolute path and query components of the target
URI as the request-target. If the target URI's path component is

empty, the client MUST send "/" as the path within the origin-form of
request-target. A Host header field is also sent, as defined in

Section 5.4.

For example, a client wishing to retrieve a representation of the
resource identified as

http://www.example.org/where?g=now
directly from the origin server would open (or reuse) a TCP
connection to port 80 of the host "www.example.org" and send the

lines:

GET /where?g=now HTTP/1.1
Host: www.example.org

followed by the remainder of the request message.
5.3.2. absolute-form
When making a request to a proxy, other than a CONNECT or server-wide
OPTIONS request (as detailed below), a client MUST send the target
URI in absolute-form as the request-target.
absolute-form = absolute-URI
The proxy is requested to either service that request from a valid
cache, if possible, or make the same request on the client’s behalf
to either the next inbound proxy server or directly to the origin
server indicated by the request-target. Requirements on such
"forwarding” of messages are defined in Section 5.7.
An example absolute-form of request-line would be:

GET http://www.example.org/pub/WWW)/TheProject.ntml HTTP/1.1

Fielding & Reschke Standards Track [Page 42]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

To allow for transition to the absolute-form for all requests in some
future version of HTTP, a server MUST accept the absolute-form in
requests, even though HTTP/1.1 clients will only send them in
requests to proxies.

5.3.3. authority-form

The authority-form of request-target is only used for CONNECT
requests (Section 4.3.6 of [RFC7231]).

authority-form = authority
When making a CONNECT request to establish a tunnel through one or
more proxies, a client MUST send only the target URI's authority
component (excluding any userinfo and its "@" delimiter) as the
request-target. For example,

CONNECT www.example.com:80 HTTP/1.1

5.3.4. asterisk-form

The asterisk-form of request-target is only used for a server-wide
OPTIONS request (Section 4.3.7 of [RFC7231]).

asterisk-form ="*"
When a client wishes to request OPTIONS for the server as a whole, as
opposed to a specific named resource of that server, the client MUST
send only "*" (%x2A) as the request-target. For example,

OPTIONS * HTTP/1.1
If a proxy receives an OPTIONS request with an absolute-form of
request-target in which the URI has an empty path and no query
component, then the last proxy on the request chain MUST send a
request-target of "*" when it forwards the request to the indicated
origin server.
For example, the request

OPTIONS http://www.example.org:8001 HTTP/1.1
would be forwarded by the final proxy as

OPTIONS *HTTP/1.1
Host: www.example.org:8001

after connecting to port 8001 of host "www.example.org".

Fielding & Reschke Standards Track [Page 43]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

5.4, Host

The "Host" header field in a request provides the host and port
information from the target URI, enabling the origin server to
distinguish among resources while servicing requests for multiple
host names on a single IP address.

Host = uri-host [":" port] ; Section 2.7.1

A client MUST send a Host header field in all HTTP/1.1 request
messages. If the target URI includes an authority component, then a
client MUST send a field-value for Host that is identical to that

authority component, excluding any userinfo subcomponent and its "@"
delimiter (Section 2.7.1). If the authority component is missing or
undefined for the target URI, then a client MUST send a Host header
field with an empty field-value.

Since the Host field-value is critical information for handling a
request, a user agent SHOULD generate Host as the first header field
following the request-line.

For example, a GET request to the origin server for
<http://www.example.org/pub/WWW/> would begin with:

GET /pub/WWW/ HTTP/1.1
Host: www.example.org

A client MUST send a Host header field in an HTTP/1.1 request even if
the request-target is in the absolute-form, since this allows the

Host information to be forwarded through ancient HTTP/1.0 proxies
that might not have implemented Host.

When a proxy receives a request with an absolute-form of
request-target, the proxy MUST ignore the received Host header field
(if any) and instead replace it with the host information of the
request-target. A proxy that forwards such a request MUST generate a
new Host field-value based on the received request-target rather than
forward the received Host field-value.

Since the Host header field acts as an application-level routing
mechanism, it is a frequent target for malware seeking to poison a
shared cache or redirect a request to an unintended server. An
interception proxy is particularly vulnerable if it relies on the

Host field-value for redirecting requests to internal servers, or for
use as a cache key in a shared cache, without first verifying that
the intercepted connection is targeting a valid IP address for that
host.

Fielding & Reschke Standards Track [Page 44]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

A server MUST respond with a 400 (Bad Request) status code to any
HTTP/1.1 request message that lacks a Host header field and to any
request message that contains more than one Host header field or a

Host header field with an invalid field-value.

5.5. Effective Request URI

Since the request-target often contains only part of the user agent’'s
target URI, a server reconstructs the intended target as an
"effective request URI" to properly service the request. This
reconstruction involves both the server’s local configuration and
information communicated in the request-target, Host header field,
and connection context.

For a user agent, the effective request URI is the target URI.

If the request-target is in absolute-form, the effective request URI
is the same as the request-target. Otherwise, the effective request
URI is constructed as follows:

If the server’s configuration (or outbound gateway) provides a

fixed URI scheme, that scheme is used for the effective request
URI. Otherwise, if the request is received over a TLS-secured TCP
connection, the effective request URI's scheme is "https"; if not,

the scheme is "http".

If the server’s configuration (or outbound gateway) provides a
fixed URI authority component, that authority is used for the
effective request URI. If not, then if the request-target is in
authority-form, the effective request URI's authority component is
the same as the request-target. If not, then if a Host header
field is supplied with a non-empty field-value, the authority
component is the same as the Host field-value. Otherwise, the
authority component is assigned the default name configured for
the server and, if the connection’s incoming TCP port number
differs from the default port for the effective request URI's
scheme, then a colon (":") and the incoming port number (in
decimal form) are appended to the authority component.

If the request-target is in authority-form or asterisk-form, the
effective request URI's combined path and query component is
empty. Otherwise, the combined path and query component is the
same as the request-target.

The components of the effective request URI, once determined as

above, can be combined into absolute-URI form by concatenating the
scheme, "://", authority, and combined path and query component.

Fielding & Reschke Standards Track [Page 45]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

Example 1: the following message received over an insecure TCP
connection

GET /pub/WWW/TheProject.html HTTP/1.1
Host: www.example.org:8080

has an effective request URI of
http://www.example.org:8080/pub/WWW/TheProject.html

Example 2: the following message received over a TLS-secured TCP
connection

OPTIONS * HTTP/1.1
Host: www.example.org

has an effective request URI of
https://lwww.example.org

Recipients of an HTTP/1.0 request that lacks a Host header field
might need to use heuristics (e.g., examination of the URI path for
something unique to a particular host) in order to guess the
effective request URI's authority component.

Once the effective request URI has been constructed, an origin server
needs to decide whether or not to provide service for that URI via
the connection in which the request was received. For example, the
request might have been misdirected, deliberately or accidentally,
such that the information within a received request-target or Host
header field differs from the host or port upon which the connection
has been made. If the connection is from a trusted gateway, that
inconsistency might be expected; otherwise, it might indicate an
attempt to bypass security filters, trick the server into delivering
non-public content, or poison a cache. See Section 9 for security
considerations regarding message routing.

5.6. Associating a Response to a Request

HTTP does not include a request identifier for associating a given

request message with its corresponding one or more response messages.
Hence, it relies on the order of response arrival to correspond

exactly to the order in which requests are made on the same

connection. More than one response message per request only occurs
when one or more informational responses (1xx, see Section 6.2 of
[RFC7231]) precede a final response to the same request.

Fielding & Reschke Standards Track [Page 46]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

A client that has more than one outstanding request on a connection
MUST maintain a list of outstanding requests in the order sent and
MUST associate each received response message on that connection to
the highest ordered request that has not yet received a final

(non-1xx) response.

5.7. Message Forwarding

As described in Section 2.3, intermediaries can serve a variety of
roles in the processing of HTTP requests and responses. Some
intermediaries are used to improve performance or availability.
Others are used for access control or to filter content. Since an
HTTP stream has characteristics similar to a pipe-and-filter
architecture, there are no inherent limits to the extent an
intermediary can enhance (or interfere) with either direction of the
stream.

An intermediary not acting as a tunnel MUST implement the Connection
header field, as specified in Section 6.1, and exclude fields from
being forwarded that are only intended for the incoming connection.

An intermediary MUST NOT forward a message to itself unless it is
protected from an infinite request loop. In general, an intermediary
ought to recognize its own server names, including any aliases, local
variations, or literal IP addresses, and respond to such requests
directly.

5.7.1. Via

The "Via" header field indicates the presence of intermediate
protocols and recipients between the user agent and the server (on
requests) or between the origin server and the client (on responses),
similar to the "Received" header field in email (Section 3.6.7 of
[RFC5322]). Via can be used for tracking message forwards, avoiding
request loops, and identifying the protocol capabilities of senders
along the request/response chain.

Via = 1#(received-protocol RWS received-by [RWS comment])

received-protocol = [protocol-name "/"] protocol-version
; see Section 6.7

received-by = (uri-host [":" port]) / pseudonym

pseudonym = token

Multiple Via field values represent each proxy or gateway that has
forwarded the message. Each intermediary appends its own information
about how the message was received, such that the end result is
ordered according to the sequence of forwarding recipients.

Fielding & Reschke Standards Track [Page 47]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

A proxy MUST send an appropriate Via header field, as described
below, in each message that it forwards. An HTTP-to-HTTP gateway
MUST send an appropriate Via header field in each inbound request
message and MAY send a Via header field in forwarded response
messages.

For each intermediary, the received-protocol indicates the protocol
and protocol version used by the upstream sender of the message.
Hence, the Via field value records the advertised protocol
capabilities of the request/response chain such that they remain
visible to downstream recipients; this can be useful for determining
what backwards-incompatible features might be safe to use in
response, or within a later request, as described in Section 2.6.

For brevity, the protocol-name is omitted when the received protocol
is HTTP.

The received-by portion of the field value is normally the host and
optional port number of a recipient server or client that
subsequently forwarded the message. However, if the real host is
considered to be sensitive information, a sender MAY replace it with
a pseudonym. If a port is not provided, a recipient MAY interpret
that as meaning it was received on the default TCP port, if any, for
the received-protocol.

A sender MAY generate comments in the Via header field to identify
the software of each recipient, analogous to the User-Agent and
Server header fields. However, all comments in the Via field are
optional, and a recipient MAY remove them prior to forwarding the
message.

For example, a request message could be sent from an HTTP/1.0 user
agent to an internal proxy code-named "fred", which uses HTTP/1.1 to
forward the request to a public proxy at p.example.net, which

completes the request by forwarding it to the origin server at
www.example.com. The request received by www.example.com would then
have the following Via header field:

Via: 1.0 fred, 1.1 p.example.net

An intermediary used as a portal through a network firewall SHOULD
NOT forward the names and ports of hosts within the firewall region
unless it is explicitly enabled to do so. If not enabled, such an
intermediary SHOULD replace each received-by host of any host behind
the firewall by an appropriate pseudonym for that host.

Fielding & Reschke Standards Track [Page 48]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

An intermediary MAY combine an ordered subsequence of Via header
field entries into a single such entry if the entries have identical
received-protocol values. For example,

Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy
could be collapsed to
Via: 1.0 ricky, 1.1 mertz, 1.0 lucy

A sender SHOULD NOT combine multiple entries unless they are all

under the same organizational control and the hosts have already been
replaced by pseudonyms. A sender MUST NOT combine entries that have
different received-protocol values.

5.7.2. Transformations

Some intermediaries include features for transforming messages and
their payloads. A proxy might, for example, convert between image
formats in order to save cache space or to reduce the amount of
traffic on a slow link. However, operational problems might occur
when these transformations are applied to payloads intended for
critical applications, such as medical imaging or scientific data
analysis, particularly when integrity checks or digital signatures

are used to ensure that the payload received is identical to the
original.

An HTTP-to-HTTP proxy is called a "transforming proxy" if it is
designed or configured to modify messages in a semantically
meaningful way (i.e., modifications, beyond those required by normal
HTTP processing, that change the message in a way that would be
significant to the original sender or potentially significant to
downstream recipients). For example, a transforming proxy might be
acting as a shared annotation server (modifying responses to include
references to a local annotation database), a malware filter, a

format transcoder, or a privacy filter. Such transformations are
presumed to be desired by whichever client (or client organization)
selected the proxy.

If a proxy receives a request-target with a host name that is not a
fully qualified domain name, it MAY add its own domain to the host
name it received when forwarding the request. A proxy MUST NOT
change the host name if the request-target contains a fully qualified
domain name.

Fielding & Reschke Standards Track [Page 49]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

A proxy MUST NOT modify the "absolute-path" and "query" parts of the
received request-target when forwarding it to the next inbound
server, except as noted above to replace an empty path with "/" or

Hgn

A proxy MAY modify the message body through application or removal of
a transfer coding (Section 4).

A proxy MUST NOT transform the payload (Section 3.3 of [RFC7231]) of
a message that contains a no-transform cache-control directive
(Section 5.2 of [RFC7234]).

A proxy MAY transform the payload of a message that does not contain
a no-transform cache-control directive. A proxy that transforms a
payload MUST add a Warning header field with the warn-code of 214
("Transformation Applied") if one is not already in the message (see
Section 5.5 of [RFC7234]). A proxy that transforms the payload of a
200 (OK) response can further inform downstream recipients that a
transformation has been applied by changing the response status code
to 203 (Non-Authoritative Information) (Section 6.3.4 of [RFC7231]).

A proxy SHOULD NOT modify header fields that provide information
about the endpoints of the communication chain, the resource state,
or the selected representation (other than the payload) unless the
field’s definition specifically allows such modification or the
modification is deemed necessary for privacy or security.

6. Connection Management

HTTP messaging is independent of the underlying transport- or
session-layer connection protocol(s). HTTP only presumes a reliable
transport with in-order delivery of requests and the corresponding
in-order delivery of responses. The mapping of HTTP request and
response structures onto the data units of an underlying transport
protocol is outside the scope of this specification.

As described in Section 5.2, the specific connection protocols to be
used for an HTTP interaction are determined by client configuration
and the target URI. For example, the "http" URI scheme

(Section 2.7.1) indicates a default connection of TCP over IP, with a
default TCP port of 80, but the client might be configured to use a
proxy via some other connection, port, or protocol.

Fielding & Reschke Standards Track [Page 50]

RFC 7230 HTTP/1.1 Message Syntax and Routing June 2014

HTTP implementations are expected to engage in connection management,
which includes maintaining the state of current connections,

establishing a new connection or reusing an existing connection,
processing messages received on a connection, detecting connection
failures, and closing each connection. Most clients maintain

multiple connections in parallel, including more than one connection

per server endpoint. Most servers are designed to maintain thousands

of concurrent connections, while controlling request queues to enable

fair use and detect denial-of-service attacks.

6.1. Connection

The "Connection" header field allows the sender to indicate desired
control options for the current connection. In order to avoid

confusing downstream recipients, a proxy or gateway MUST remove or
replace any received connection options before forwarding the
message.

When a header field aside from Connection is used to supply control
information for or about the current connection, the sender MUST list

the corresponding field-name within the Connection header field. A
proxy or gateway MUST parse a received Connection header field before
a message is forwarded and, for each connection-option in this field,
remove any header field(s) from the message with the same name as the
connection-option, and then remove the Connection header field itself
(or replace it with the intermediary’s own connection options for the
forwarded message).

Hence, the Connection header field provides a declarative way of
distinguishing header fields that are only intended for the immediate
recipie