I nt ernet Engi neering Task Force (I ETF) M Bj orklund, Ed.
Request for Comments: 6020 Tail -f Systens
Cat egory: Standards Track Cct ober 2010
| SSN: 2070-1721

YANG - A Data Mdeling Language for
the Network Configuration Protocol (NETCONF)

Abst r act

YANG i s a data nodeling | anguage used to nodel configuration and
state data mani pul ated by the Network Configuration Protoco
(NETCONF), NETCONF renmpte procedure calls, and NETCONF notifications.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc6020

Copyright Notice

Copyright (c) 2010 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Bj or kl und St andards Track [Page 1]

RFC 6020 YANG Cct ober 2010

This docunent nay contain material from | ETF Docunents or |ETF
Contributions published or nmade publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
materi al may not have granted the I ETF Trust the right to all ow
nmodi fi cations of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |license fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
outside the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format
it for publication as an RFC or to translate it into |anguages other
than Engli sh.

Tabl e of Contents

1
2.
3

6.

Introducti ON 8
KeYWOr S . .o 8
Term NOl OQY . . .ot 8
3.1, Mandatory Nodes i e 10
YANG OVeI Vi W . oottt e e 11
4.1, Functional OVervi ew 11
4.2. Language OVerVi BWt 13
4.2.1. Modules and Submodules 13
4.2.2. Data Modeling BasicCs 13
4.2.3. State Data 18
4.2.4. BUilt-1n TYPES .. i e e 18
4.2.5. Derived Types (typedef) 19
4.2.6. Reusable Node G oups (grouping) 20
4.2.7. ChOi CBS ..ttt e 21
4.2.8. Extending Data Mddels (augment) 22
4.2.9. RPC Definitions 23
4.2.10. Notification Definitions 24
Language CoNnCePt S . .. it 25
5.1. Mdules and Subnodules 25
5.1.1. Inport and Include by Revision 26
5.1.2. Module Hierarchies i, 27
5.2, File Layout 28
5. 3. XML NaMESPACES . o ottt it e et e e e e e 29
5.3. 1. YANG XML NaMBSPACE . . .ottt e 29
5.4. Resolving Gouping, Type, and Identity Nanes 29
5.5. Nested Typedefs and Goupingsuiiiiiinnan.. 29
5.6. CoNfOrmanCe 30
5.6.1. Basic Behavior 31
5.6.2. Optional Features 31
5.6.3. Deviations 31
5.6.4. Announci ng Conformance Information in the
<hel | 0> MeSSAQe i 32
5.7. Data Store Mudification 34
YANG SYNt @X o .ottt e e e e e 34

Bj or kl und St andards Track [Page 2]

RFC 6020

7.4.

Bj or kl und

YANG Cct ober 2010

Lexical Tokenizati on i 34
6. 1. 1. COMMBNt S . . 34
6.1.2. TOKENS e 34
6.1.3. QUOLI NG ..o 35
ldentifiers e 36
6.2.1. ldentifiers and Their Namespaces 36
Stat EMBNt S . . e 37
6.3.1. Language EXtensionsy 37
XPath Evaluati ons e 38
6.4.1. XPath Context i 38
Schema Node ldentifier 39
St At EBMBNT S . . . 39
The nmodul e Statement e 39
7.1.1. The nodul e’s Substatenents 41
7.1.2. The yang-version Statement 41
7.1.3. The nanmespace Statement u.... 42
7.1.4. The prefix Statement 42
7.1.5. The inport Statement 42
7.1.6. The include Statenmento, 43
7.1.7. The organization Statement 44
7.1.8. The contact Statement, 44
7.1.9. The revision Statenment, 44
7.1.10. Usage Exanple 45
The subrmodul e Statement 46
7.2.1. The subnodul e’ s Substatenents 48
7.2.2. The belongs-to Statenment 48
7.2.3. Usage Exanple 49
The typedef Statement i 49
7.3.1. The typedef’s Substatenents 50
7.3.2. The typedef’'s type Statement 50
7.3.3. The units Statenment 50
7.3.4. The typedef’'s default Statenment 50
7.3.5. Usage Exanple 51
The type Statement 51
7.4.1. The type’s Substatements 51
The container Statement 51
7.5.1. Containers with Presence 52
7.5.2. The container’s Substatenents 53
7.5.3. The nust Statement 53
7.5.4. The nust’s Substatenents 55
7.5.5. The presence Statenment 56
7.5.6. The container’s Child Node Statenents 56
7.5.7. XML Mapping Rules 56
7.5.8. NETCONF <edit-config> Operations 56
7.5.9. Usage Exanple 57
The leaf Statement 58
7.6.1. The leaf’s default value 58
7.6.2. The leaf’s Substatenents 59

St andards Track [Page 3]

RFC 6020 YANG Cct ober 2010
7.6.3. The leaf’s type Statenent 59
7.6.4. The leaf’'s default Statement 59
7.6.5. The leaf’s mandatory Statement 60
7.6.6. XML Mapping Rules 60
7.6.7. NETCONF <edit-config> Qperations 60
7.6.8. Usage Exanple e 61

7.7. The leaf-list Statement 62
T.7.1. Odering 62
7.7.2. The leaf-list’'s Substatements 63
7.7.3. The min-elements Statement 63
7.7.4. The max-elements Statenment 63
7.7.5. The ordered-by Statenment 64
7.7.6. XML Mapping Rules i, 64
7.7.7. NETCONF <edit-config> Operations 65
7.7.8. Usage Exanple 66

7.8. The list Statement 67
7.8.1. The list’s Substatements 68
7.8.2. The list’s key Statenent 68
7.8.3. The list’s unique Statenent 69
7.8.4. The list's Child Node Statenments 70
7.8.5. XML Mapping Rules i 70
7.8.6. NETCONF <edit-config> Qperations 71
7.8.7. Usage Exanple 72

7.9. The choice Statement 75
7.9.1. The choice’s Substatements 76
7.9.2. The choice’s case Statenent 76
7.9.3. The choice’'s default Statement 77
7.9.4. The choice’s mandatory Statenent 79
7.9.5. XML Mapping Rules 79
7.9.6. NETCONF <edit-config> Qperations 79
7.9.7. Usage Exanpl e 79

7.10. The anyxml Statenment 80
7.10.1. The anyxm's Substatements 81
7.10.2. XM. Mapping Rules 81
7.10.3. NETCONF <edit-config> Operations 81
7.10.4. Usage Exanple 82

7.11. The grouping Statement 82
7.11.1. The grouping’ s Substatenments 83
7.11.2. Usage Exanple 84

7.12. The uses Statement 84
7.12.1. The uses’s Substatenents 85
7.12.2. The refine Statement 85
7.12.3. XM Mapping Rules i 86
7.12. 4. Usage Exanple 86

7.13. The rpc Statement 87
7.13.1. The rpc’s Substatements 88
7.13.2. The input Statement 88
7.13.3. The output Statement, 89

Bj or kl und

St andards Track [Page 4]

RFC 6020 YANG Cct ober 2010
7.13.4. XM Mapping Rules 90
7.13.5. Usage Exanple 91

7.14. The notification Statement 91
7.14.1. The notification's Substatenents 92
7.14.2. XM Mapping Rules 92
7.14.3. Usage Exanple 93

7.15. The augnent Statement 93
7.15.1. The augnent’s Substatenents 94
7.15.2. XML Mapping Rules 94
7.15.3. Usage Exanple 95

7.16. The identity Statement 97
7.16.1. The identity’'s Substatements 97
7.16.2. The base Statenment i 97
7.16.3. Usage Exanple 98

7.17. The extension Statenment 98
7.17.1. The extension's Substatenments 99
7.17.2. The argunment Statement 99
7.17.3. Usage Exanple e 100

7.18. Conformance-Related Statenents 100
7.18.1. The feature Statenent 100
7.18.2. The if-feature Statement 102
7.18.3. The deviation Statement 102

7.19. Common Statements 105
7.19.1. The config Statement 105
7.19.2. The status Statement 105
7.19.3. The description Statement 106
7.19.4. The reference Statenent 106
7.19.5. The when Statenent 107

8. CONStral NS ... 108

8.1. Constraints on Datat 108

8.2. Hierarchy of Constraints 109

8.3. Constraint Enforcement Model 109
8.3.1. Payload Parsing 109
8.3.2. NETCONF <edit-config> Processing 110
8.3.3. Validation 111

9. BuUilt-1Nn TYPES ..o 111

9.1. Canonical Representation i, 112

9.2. The Integer Built-In Types 112
9.2.1. Lexical Representation 113
9.2.2. Canonical Form........... e 114
9.2.3. RestricCtions i 114
9.2.4. The range Statenment 114
9.2.5. Usage Exanpl e e 115

9.3. The decimal 64 Built-In Type 115
9.3.1. Lexical Representation 115
9.3.2. Canonical Form........... e 115
9.3.3. RestricCtions 116
9.3.4. The fraction-digits Statenment 116

Bj or kl und

St andards Track [Page 5]

RFC 6020 YANG Cct ober 2010
9.3.5. Usage Exanpl e 117

9.4. The string Built-In Type i 117
9.4.1. Lexical Representation 117
9.4.2. Canonical Form........ 117
9.4.3. RestricCtions e 117
9.4.4. The length Statement 117
9.4.5. Usage Exanpl e 118
9.4.6. The pattern Statement 119
9.4.7. Usage Exanple 119

9.5. The boolean Built-In Type i, 120
9.5.1. Lexical Representation 120
9.5.2. Canonical Form.......... 120
9.5.3. ResStricCtions e 120

9.6. The enumeration Built-In Type 120
9.6.1. Lexical Representation 120
9.6.2. Canonical Form....... 120
9.6.3. RestricCtions 120
9.6.4. The enum Statement 120
9.6.5. Usage Exanpl e 121

9.7. The bits Built-In Type e 122
9.7.1. Restrictions i, 122
9.7.2. Lexical Representation 122
9.7.3. Canonical Form....... 122
9.7.4. The bit Statement 122
9.7.5. Usage Exanpl e 123

9.8. The binary Built-In Type i 123
9.8.1. Restrictions i, 124
9.8.2. Lexical Representation 124
9.8.3. Canonical Form....... 124

9.9. The leafref Built-In Type 124
9.9.1. ReStricCtions e 124
9.9.2. The path Statement 124
9.9.3. Lexical Representation 125
9.9.4. Canonical Form........ 125
9.9.5. Usage Exanple 126
9.10. The identityref Built-In Type 129
9.10.1. ReStricCtions 129
9.10.2. The identityref’'s base Statenment 129
9.10.3. Lexical Representation 130
9.10.4. Canonical Form 130
9.10.5. Usage Exanple 130
9.11. The enpty Built-In Type i, 131
9.11.1. ReStricCtions 131
9.11. 2. Lexical Representation 131
9.11.3. Canonical Form 131
9.11.4. Usage Exanple 131
9.12. The union Built-In Type i, 132
9.12.1. ReStricCtions 132

Bj or kl und St andards Track [Page 6]

RFC 6020 YANG Cct ober 2010

10.
11.

12.
13.

14.

15.
16.
17.
18.

9.12.2. Lexical Representation 132
9.12.3. Canonical Form 133
9.13. The instance-identifier Built-In Type 133
9.13.1. ReStricCtions, 134
9.13.2. The require-instance Statenment 134
9.13.3. Lexical Representation 134
9.13.4. Canonical Form 134
9.13.5. Usage Exanple 134
Updating a Modul e 135
YN 137
11.1. Formal YINDefinitiony 137
11.1.1. Usage Exanple e 141
YANG ABNF GralmmmBr . ..o e 143
Error Responses for YANG Related Errors 165
13.1. Error Message for Data That Violates a unique

Stat emBNt ... e 165

13.2. Error Message for Data That Violates a
max-el ements Statement 165

13.3. Error Message for Data That Violates a
mn-elenents Statement 165

13.4. Error Message for Data That Violates a nust Statenent ...166
13.5. Error Message for Data That Violates a

require-instance Statement 166
13.6. Error Message for Data That Does Not Match a
leafref Type ... 166
13.7. Error Message for Data That Violates a mandatory
choice Statenment 166
13.8. Error Message for the "insert" Qperation 167
I ANA Considerati ONS e 167
14.1. Media type application/yang 168
14.2. Media type application/yin+txm 169
Security Considerati ons 170
Contribut ors e 171
ACknow edgenmBnt S 171
Ref erences 171
18.1. Normative References 171
18.2. Informative References 172

Bj or kl und St andards Track [Page 7]

RFC 6020 YANG Cct ober 2010

1

I ntroduction

YANG i s a data nodel i ng | anguage used to nodel configuration and
state data mani pul ated by the Network Configuration Protoco
(NETCONF), NETCONF renmpte procedure calls, and NETCONF notifications.
YANG i s used to nodel the operations and content |ayers of NETCONF
(see the NETCONF Configuration Protocol [RFC4741], Section 1.1).

Thi s docunent describes the syntax and semantics of the YANG

| anguage, how the data nodel defined in a YANG nodul e is represented
in the Extensible Markup Language (XM.), and how NETCONF operati ons
are used to nani pul ate the data.

Keywor ds

The keywords "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMMENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in BCP
14, [RFC2119].

Ter i nol ogy
o anyxnm: A data node that can contain an unknown chunk of XM. dat a.

0 augnent: Adds new schena nodes to a previously defined schena
node.

0 base type: The type fromwhich a derived type was derived, which
may be either a built-in type or another derived type.

0 built-in type: A YANG data type defined in the YANG | anguage, such
as uint32 or string.

o choice: A schenma node where only one of a nunber of identified
alternatives is valid.

o configuration data: The set of witable data that is required to
transforma systemfromits initial default state into its current
state [RFC4741].

o conformance: A nmeasure of how accurately a device follows a data
nodel

0o container: An interior data node that exists in at npbst one
instance in the data tree. A container has no value, but rather a
set of child nodes.

Bj or kl und St andards Track [Page 8]

RFC 6020 YANG Cct ober 2010

0o data definition statenent: A statenent that defines new data
nodes. One of container, leaf, leaf-list, |list, choice, case,
augnent, uses, and anyxm .

0 data nodel: A data nodel describes how data is represented and
accessed.

0o data node: A node in the schena tree that can be instantiated in a
data tree. One of container, leaf, leaf-list, list, and anyxmni .

0 data tree: The instantiated tree of configuration and state data
on a device

0 derived type: Atype that is derived froma built-in type (such as
ui nt 32), or another derived type.

0 device deviation: A failure of the device to inplenent the nodul e
faithfully.

0 extension: An extension attaches non- YANG senantics to statenents.
The extension statenent defines new statenments to express these
semanti cs.

o feature: A nechanismfor marking a portion of the nodel as
optional. Definitions can be tagged with a feature nanme and are
only valid on devices that support that feature.

0 grouping: A reusable set of schenma nodes, which may be used
locally in the nodule, in nodules that include it, and by other
nodul es that inport fromit. The grouping statement is not a data
definition statement and, as such, does not define any nodes in
the schema tree

o identifier: Used to identify different kinds of YANG itens by
name.

0 instance identifier: A nechanismfor identifying a particular node
in a data tree.

o interior node: Nodes within a hierarchy that are not |eaf nodes.

o leaf: A data node that exists in at nost one instance in the data
tree. A leaf has a value but no child nodes.

o leaf-list: Like the | eaf node but defines a set of uniquely

identifiable nodes rather than a single node. Each node has a
val ue but no child nodes.

Bj or kl und St andards Track [Page 9]

RFC 6020 YANG Cct ober 2010

list: An interior data node that nay exist in nultiple instances
in the data tree. A list has no value, but rather a set of child
nodes.

nmodul e: A YANG nodul e defines a hierarchy of nodes that can be
used for NETCONF-based operations. Wth its definitions and the
definitions it inmports or includes fromelsewhere, a nodule is
sel f-cont ai ned and "conpil abl e".

RPC. A Renote Procedure Call, as used within the NETCONF protocol

RPC operation: A specific Renote Procedure Call, as used within
the NETCONF protocol. It is also called a protocol operation

schema node: A node in the schema tree. One of container, |eaf,
leaf-list, list, choice, case, rpc, input, output, notification
and anyxm .

schena node identifier: A nmechanismfor identifying a particular
node in the schema tree.

schema tree: The definition hierarchy specified within a nodul e.

state data: The additional data on a systemthat is not
configuration data such as read-only status infornmation and
collected statistics [RFC4741].

subrmodul e: A partial nodule definition that contributes derived
types, groupings, data nodes, RPCs, and notifications to a nodul e.
A YANG nodul e can be constructed from a nunmber of subnodul es.

top-1 evel data node: A data node where there is no other data node
between it and a nodul e or subnodul e statenent.

uses: The "uses" statement is used to instantiate the set of
schena nodes defined in a grouping statenent. The instantiated
nodes nmay be refined and augnented to tailor themto any specific
needs.

Mandat ory Nodes

A nmandatory node is one of:

(o]

A leaf, choice, or anyxml node with a "mandatory" statement with
the val ue "true"

Alist or leaf-list node with a "nmn-elenents" statenent with a
val ue greater than zero

Bj or kl und St andards Track [Page 10]

RFC 6020 YANG Cct ober 2010

0 A container node wi thout a "presence" statenent, which has at
| east one nandatory node as a child.

4. YANG Overvi ew
4.1. Functional Overview

YANG i s a | anguage used to nodel data for the NETCONF protocol. A
YANG nodul e defines a hierarchy of data that can be used for NETCONF-
based operations, including configuration, state data, Renote
Procedure Calls (RPCs), and notifications. This allows a conplete
description of all data sent between a NETCONF client and server

YANG nodel s the hierarchical organization of data as a tree in which
each node has a nanme, and either a value or a set of child nodes.
YANG provi des cl ear and conci se descriptions of the nodes, as well as
the interaction between those nodes.

YANG structures data nodels into nodul es and subnodul es. A nodul e
can inport data fromother external nodules, and include data from
subrmodul es. The hi erarchy can be augnmented, allow ng one nodule to
add data nodes to the hierarchy defined in another nodule. This
augnment ati on can be conditional, wth new nodes appearing only if
certain conditions are net.

YANG nodel s can describe constraints to be enforced on the data,
restricting the appearance or val ue of nodes based on the presence or
val ue of other nodes in the hierarchy. These constraints are
enforceable by either the client or the server, and valid content
MUST abi de by them

YANG defines a set of built-in types, and has a type mechani sm

t hrough whi ch additional types may be defined. Derived types can
restrict their base type's set of valid values using mechanisnms |ike
range or pattern restrictions that can be enforced by clients or
servers. They can al so define usage conventions for use of the
derived type, such as a string-based type that contains a host nane.

YANG pernmits the definition of reusable groupings of nodes. The
instanti ation of these groupings can refine or augnment the nodes,
allowing it to tailor the nodes to its particular needs. Derived
types and groupi ngs can be defined in one nodul e or subnodul e and
used in either that location or in another nodul e or subnodul e that
i mports or includes it.

Bj or kl und St andards Track [Page 11]

RFC 6020 YANG Cct ober 2010

YANG dat a hi erarchy constructs include defining lists where |ist
entries are identified by keys that distinguish themfrom each other
Such lists may be defined as either sorted by user or automatically
sorted by the system For user-sorted lists, operations are defined
for mani pulating the order of the list entries.

YANG nodul es can be translated into an equival ent XM. syntax call ed
YANG | ndependent Notation (YIN) (Section 11), allow ng applications
usi ng XM. parsers and Extensible Styl esheet Language Transformations
(XSLT) scripts to operate on the nodels. The conversion from YANG to
YIN is lossless, so content in YIN can be round-tripped back into
YANG

YANG strikes a bal ance between high-1evel data nodeling and | ow 1 eve
bits-on-the-wire encoding. The reader of a YANG nodul e can see the
hi gh-1 evel view of the data nodel while understandi ng how the data
wi || be encoded in NETCONF operations.

YANG i s an extensibl e | anguage, allow ng extension statenents to be
defined by standards bodi es, vendors, and individuals. The statenent
syntax allows these extensions to coexist with standard YANG
statements in a natural way, while extensions in a YANG nodul e stand
out sufficiently for the reader to notice them

YANG resists the tendency to solve all possible problens, linting

t he probl em space to all ow expression of NETCONF data nodels, not
arbitrary XML docunents or arbitrary data nodels. The data nodels
descri bed by YANG are designed to be easily operated upon by NETCONF
operati ons.

To the extent possible, YANG naintains conpatibility with Sinple

Net wor k Management Protocol’s (SNW's) SMv2 (Structure of Managenent
I nformation version 2 [RFC2578], [RFC2579]). SMv2-based M B nodul es
can be automatically translated into YANG nodul es for read-only
access. However, YANG is not concerned with reverse translation from
YANG to SM v2.

Li ke NETCONF, YANG targets snooth integration with the device's
nati ve managenment infrastructure. This allows inplenentations to
| everage their existing access control nechanisnms to protect or
expose el ements of the data nodel

Bj or kl und St andards Track [Page 12]

RFC 6020 YANG Cct ober 2010

4.2. Language Overvi ew

This section introduces some inportant constructs used in YANG t hat
will aid in the understanding of the | anguage specifics in later
sections. This progressive approach handles the inter-related nature
of YANG concepts and statenents. A detailed description of YANG
statenents and syntax begins in Section 7.

4.2.1. Mdul es and Subnodul es

A nodul e contains three types of statements: nodul e- header
statenments, revision statenents, and definition statements. The
nodul e header statenents describe the nodul e and give information
about the nodule itself, the revision statenents give information
about the history of the nodule, and the definition statements are
the body of the nodul e where the data nodel is defined.

A NETCONF server may inplement a nunber of nodules, allowing nultiple
views of the sane data, or nultiple views of disjoint subsections of

the device’'s data. Alternatively, the server may inplement only one

nodul e that defines all avail abl e data.

A nodul e may be divided into subnodul es, based on the needs of the
nodul e owner. The external view renmins that of a single nodule,
regardl ess of the presence or size of its subnodul es.

The "include" statenment allows a nodule or subnodule to reference
material in subnbdules, and the "inport" statenent allows references
to material defined in other nodul es.

4.2.2. Data Mdeling Basics
YANG defines four types of nodes for data nodeling. In each of the
foll owi ng subsections, the exanple shows the YANG syntax as well as a
correspondi ng NETCONF XM representation

4.2.2.1. Leaf Nodes

A | eaf node contains sinple data |like an integer or a string. It has
exactly one value of a particular type and no child nodes.

YANG Exanpl e:
| eaf host-nane {

type string;
description "Hostname for this systeni;

Bj or kl und St andards Track [Page 13]

RFC 6020 YANG Cct ober 2010

NETCONF XM. Exanpl e:
<host - name>ny. exanpl e. conx/ host - nane>
The "leaf" statenent is covered in Section 7.6.

4,2.2.2. Leaf-List Nodes

Aleaf-list is a sequence of |eaf nodes with exactly one value of a
particul ar type per |eaf.

YANG Exanpl e:

| eaf-1ist domai n-search {
type string;
description "List of domain nanes to search”;

}
NETCONF XM. Exanpl e:

<domai n- sear ch>hi gh. exanpl e. conx/ domai n- sear ch>
<domai n- sear ch>l ow. exanpl e. conx/ domnai n- sear ch>
<domai n- sear ch>ever ywher e. exanpl e. conk/ domai n- sear ch>

The "leaf-list" statenent is covered in Section 7.7.

4.2.2.3. Container Nodes

A container node is used to group related nodes in a subtree. A
contai ner has only child nodes and no value. A container may contain
any nunber of child nodes of any type (including |eafs, |ists,
containers, and leaf-lists).

YANG Exanpl e:

cont ai ner system {
container login {
| eaf nessage {
type string;
description
"Message given at start of |ogin session”

Bj or kl und St andards Track [Page 14]

RFC 6020 YANG Cct ober 2010

NETCONF XM. Exanpl e:

<systenr
<l ogi n>
<nessage>Good nor ni ng</ message>
</l ogi n>
</ systenp

The "container" statenent is covered in Section 7.5.

4.2. 2. 4. Li st Nodes

A list defines a sequence of list entries. Each entry is like a
structure or a record instance, and is uniquely identified by the
values of its key leafs. A list can define multiple key leafs and
may contain any nunber of child nodes of any type (including |eafs,
lists, containers etc.).

YANG Exanpl e:
list user {
key "nane";
| eaf nane {
type string;

| eaf full-nane {
type string;

| eaf class {
type string;

Bj or kl und St andards Track [Page 15]

RFC 6020 YANG Cct ober

NETCONF XM. Exanpl e:

<user >
<name>gl ocks</ name>
<full -name>Col di e Locks</full-nane>
<cl ass>i ntruder </ cl ass>

</ user >

<user >
<nanme>snowey</ name>
<full - name>Snow Wi t e</ful | - nane>
<cl ass>free-| oader </ cl ass>

</ user >

<user >
<nane>r zel | </ nane>
<ful | - name>Rapun Zel | </ full - nane>
<cl ass>t ower </ cl ass>

</ user>

The "list" statenment is covered in Section 7.8.
4.2.2.5. Exanple Mdule

These statenents are conbined to define the npdul e:

2010

Bj or kl und St andards Track [Page 16]

RFC 6020 YANG Cct ober 2010

/1 Contents of "acne-system yang"

nmodul e acre- system {
nanespace "http://acne. exanpl e. com systent;
prefix "acne";

organi zation "ACME Inc."
contact "joe@cne. exanpl e. conf';
description
"The nodule for entities inplenenting the ACME system";

revi sion 2007-06-09 {
description "lInitial revision."
}

cont ai ner system {
| eaf host-nane {
type string;
description "Hostnane for this systeni;

}
| eaf -1ist domai n-search {

type string;

description "List of domain nanes to search”;
}

contai ner login {
| eaf nessage {
type string;
description
"Message given at start of |ogin session”;

}

list user {
key "nane";
| eaf nane {
type string;

| eaf full-nane {
type string;

| eaf class {
type string;
}

Bj or kl und St andards Track [Page 17]

RFC 6020 YANG Cct ober 2010

4.2.3. State Data

YANG can nodel state data, as well as configuration data, based on
the "config" statement. Wen a node is tagged with "config fal se"
its subhierarchy is flagged as state data, to be reported using
NETCONF' s <get > operation, not the <get-config> operation. Parent
containers, lists, and key |leafs are reported al so, giving the
context for the state data.

In this exanple, two |eafs are defined for each interface, a
configured speed and an observed speed. The observed speed is not
configuration, so it can be returned with NETCONF <get> operations,
but not with <get-config> operations. The observed speed is not
configuration data, and it cannot be mani pul ated usi ng <edit-config>.

list interface {

key "nane";
| eaf nane {
type string;

| eaf speed {
type enuneration {
enum 10m
enum 100m
enum aut o;

}

| eaf observed-speed {
type uint32;
config fal se

}
4.2.4. Built-In Types

YANG has a set of built-in types, simlar to those of nany
programi ng | anguages, but with sonme differences due to specia
requi renents fromthe managenent donmain. The follow ng table
summari zes the built-in types discussed in Section 9:

Bj or kl und St andards Track [Page 18]

RFC 6020 YANG Cct ober 2010

O O +
| Nane | Description

T T e +
| binary | Any binary data |
| bits | A set of bits or flags |
| bool ean | "true" or "fal se"

| decinal 64 | 64-bit signed decimal nunber |
| enpty | A leaf that does not have any val ue

| enuneration | Enunerated strings |
| identityref | Areference to an abstract identity

| instance-identifier | References a data tree node

| int8 | 8-bit signed integer

| intl6 | 16-bit signed integer

| int32 | 32-bit signed integer

| int64 | 64-bit signed integer

| leafref | Areference to a |l eaf instance

| string | Human-readabl e string |
| uint8 | 8-bit unsigned integer

| uintl6 | 16-bit unsigned integer

| uint32 | 32-bit unsigned integer

| uint64d | 64-bit unsigned integer

| union | Choice of nmember types

e e e e e e e e o o e m o +

The "type" statenent is covered in Section 7.4.
4.2.5. Derived Types (typedef)
YANG can define derived types from base types using the "typedef”
statenent. A base type can be either a built-in type or a derived
type, allowing a hierarchy of derived types
A derived type can be used as the argunent for the "type" statenent.
YANG Exanpl e:
typedef percent {
type uint8 {
range "0 .. 100";
}

description "Percentage"

}

| eaf conpleted {
type percent;
}

Bj or kl und St andards Track [Page 19]

RFC 6020 YANG Cct ober 2010

NETCONF XM. Exanpl e:
<conpl et ed>20</ conpl et ed>
The "typedef" statenent is covered in Section 7.3.
4.2.6. Reusable Node Groups (grouping)

G oups of nodes can be assenbled into reusable collections using the
"groupi ng" statement. A grouping defines a set of nodes that are
instantiated with the "uses" statenent:

groupi ng target {
| eaf address {
type inet:ip-address;
description "Target |P address”;

| eaf port {
type inet: port-nunber;
description "Target port nunmber";

}

cont ai ner peer {
cont ai ner destination {
uses target;
}

}
NETCONF XML Exanpl e:

<peer >
<desti nati on>
<addr ess>192. 0. 2. 1</ addr ess>
<port >830</ port >
</ destinati on>
</ peer >

The grouping can be refined as it is used, allow ng certain

statements to be overridden. |In this exanple, the description is
refined:

Bj or kl und St andards Track [Page 20]

RFC 6020 YANG Cct ober 2010

cont ai ner connection {
cont ai ner source {
uses target {
refine "address" {
description "Source |P address”
}

refine "port" {
description "Source port number";
}

}
}
cont ai ner destination {
uses target {
refine "address" {
description "Destination |IP address"
}

refine "port" {
description "Destination port number”;
}

}

The "grouping" statenent is covered in Section 7.11
4.2.7. Choices

YANG al ows the data nodel to segregate inconpatible nodes into

di stinct choices using the "choice" and "case" statenments. The
"choi ce" statenent contains a set of "case" statenents that define
sets of schena nodes that cannot appear together. Each "case" nmay
contain multiple nodes, but each node nay appear in only one "case"
under a "choice".

When an el enent fromone case is created, all elenents fromall other
cases are inplicitly deleted. The device handl es the enforcenent of
the constraint, preventing inconpatibilities fromexisting in the
configuration.

The choi ce and case nodes appear only in the schenma tree, not in the

data tree or NETCONF nessages. The additional |evels of hierarchy
are not needed beyond the conceptual schena.

Bj or kl und St andards Track [Page 21]

RFC 6020 YANG Cct ober 2010

YANG Exanpl e:

cont ai ner food {
choi ce snack {
case sports-arena {
| eaf pretzel {

type enpty;

| eaf beer {
type enpty;

}

case late-night {
| eaf chocol ate {
type enuneration {

enum dar k;
enum m | k;
enum first-avail abl e;
}
}
}
}
}
NETCONF XM. Exanpl e:
<f ood>
<pretzel/>
<beer/ >
</ f ood>

The "choi ce" statenent is covered in Section 7.9.
4.2.8. Extending Data Mdel s (augnent)

YANG al l ows a nodule to insert additional nodes into data nodels,

i ncluding both the current nodule (and its subnodul es) or an externa
module. This is useful for exanple for vendors to add vendor -
specific paranmeters to standard data nodels in an interoperable way.

The "augnent" statenent defines the location in the data nodel

hi erarchy where new nodes are inserted, and the "when" statenent
defines the conditions when the new nodes are valid.

Bj or kl und St andards Track [Page 22]

RFC 6020 YANG Cct ober 2010

YANG Exanpl e:
augrment /system | ogi n/user {
when "class != "wheel'";
leaf uid {

type uintl1l6 {
range "1000 .. 30000"
}

}

This exanple defines a "uid" node that only is valid when the user’s
"class" is not "wheel".

I f a nodul e augnments another nodule, the XM representation of the
data will reflect the prefix of the augnmenting nodule. For exanple,
if the above augnmentation were in a nodule with prefix "other", the
XML woul d | ook Ii ke:

NETCONF XML Exanpl e:

<user >
<nane>al i cew</ nane>
<full-nane>Alice N. Wnder!| and</ful | - name>
<cl ass>dr op- out </ cl ass>
<ot her: ui d>1024</ ot her: ui d>
</ user >

The "augnent" statenent is covered in Section 7.15.
4.2.9. RPC Definitions
YANG al ows the definition of NETCONF RPCs. The operations’ nanes,

i nput paraneters, and output paraneters are nodel ed usi ng YANG dat a
definition statenents.

Bj or kl und St andards Track [Page 23]

RFC 6020 YANG Cct ober 2010

YANG Exanpl e:

rpc activate-software-i nage {
i nput {
| eaf image-nanme {
type string;
}

out put {
| eaf status {
type string;

}
NETCONF XM Exanpl e:

<rpc nessage-i d="101"
xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0">
<activate-software-image xnml ns="http://acme. exanpl e. com syst en'>
<i mage- nane>acnef w 2. 3</ i nage- name>
</ activat e-sof t war e-i mage>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0">
<status xm ns="http://acnme. exanpl e. com systent >
The i mage acnmefw 2.3 is being installed.
</ st at us>
</rpc-reply>

The "rpc" statenment is covered in Section 7.13.
4.2.10. Notification Definitions
YANG al l ows the definition of notifications suitable for NETCONF.

YANG data definition statenents are used to nodel the content of the
notification.

Bj or kl und St andards Track [Page 24]

RFC 6020 YANG Cct ober 2010

YANG Exanpl e:

notification link-failure {
description "Alink failure has been detected"
| eaf if-nane {
type leafref {
path "/interfacel/ nane";
}
}

| eaf if-adm n-status {
type adm n- st at us

| eaf if-oper-status {
type oper-stat us;

}
NETCONF XML Exanpl e:

<notification
xm ns="urn:ietf:paranms: netconf:capability:notification:1.0">
<event Ti me>2007- 09- 01T10: 00: 00Z</ event Ti me>
<link-failure xm ns="http://acne. exanpl e. conl systen' >
<i f-nanme>so-1/2/3.0</if-name>
<i f-adm n-status>up</if-adm n-status>
<i f - oper - st at us>down</i f - oper - st at us>
</link-failure>
</notification>

The "notification" statenent is covered in Section 7.14.
5. Language Concepts
5. 1. Modul es and Subnodul es

The nmodule is the base unit of definition in YANG A nodul e defines
a single data nodel. A nodule can define a conpl ete, cohesive nodel
or augnent an existing data nodel with additional nodes.

Subrodul es are partial nmodul es that contribute definitions to a
nmodul e. A nodul e may include any nunber of subnodul es, but each
subnodul e may bel ong to only one nodul e.

The nanes of all standard nodul es and subnodul es MJUST be uni que.
Devel opers of enterprise nodul es are RECOMMENDED to choose names for
their nodules that will have a |l ow probability of colliding with
standard or other enterprise nodules, e.g., by using the enterprise
or organi zation nanme as a prefix for the nodul e nane.

Bj or kl und St andards Track [Page 25]

RFC 6020 YANG Cct ober 2010

A nodul e uses the "include" statenment to include its subnpdul es, and
the "inport" statement to reference external nodules. Sinmlarly, a
subrmodul e uses the "inport" statenent to reference other nodul es, and
uses the "include" statenent to reference other subnbdules withinits
nmodul e. A nodul e or subnpdul e MUST NOT i ncl ude subnpdul es from ot her
nodul es, and a subnodul e MJUST NOT inport its own nodul e.

The inmport and include statenents are used to nake definitions
avail abl e to other nodul es and subnodul es:

o For a nmobdule or subnobdule to reference definitions in an externa
nodul e, the external nodule MJUST be inported

o For a nodule to reference definitions in one of its subnodul es,
t he nmodul e MUST i ncl ude the subnodul e.

o For a subnodule to reference definitions in a second subnodul e of
t he sane nodule, the first subnodule MJST include the second
subnodul e.

There MUST NOT be any circular chains of inports or includes. For
exanple, if subnmodule "a" includes subnodule "b", "b" cannot include

a .

When a definition in an external nodule is referenced, a locally
defined prefix MJST be used, followed by ":", and then the externa
identifier. References to definitions in the |ocal nodule MAY use
the prefix notation. Since built-in data types do not belong to any
nmodul e and have no prefix, references to built-in data types (e.g.

i nt32) cannot use the prefix notation

5.1.1. Inport and Include by Revision

Publ i shed nodul es evol ve i ndependently over time. |In order to allow
for this evolution, nodules need to be inported using specific
revisions. Wen a nodule is witten, it uses the current revisions
of other nodul es, based on what is available at the tine. As future
revi sions of the inported nodul es are published, the inporting nodul e
is unaffected and its contents are unchanged. Wen the author of the
modul e is prepared to nove to the nost recently published revision of
an inported nodule, the nodule is republished with an updated
"inport" statenent. By republishing with the new revision, the
authors explicitly indicate their acceptance of any changes in the

i mported nodul e.

Bj or kl und St andards Track [Page 26]

RFC 6020 YANG Cct ober 2010

For subnodul es, the issue is related but sinpler. A nodule or
subnodul e that includes subnodul es needs to specify the revision of
the included subnodules. |f a subnodul e changes, any nodul e or
subrmodul e that includes it needs to be updated.

For exanple, nodule "b" inports nodule "a".
nmodul e a {
revision 2008-01-01 { ... }
grouping a {
leaf eh { }
}
}
nmodul e b {
i mport a {
prefix p;
revi si on-date 2008-01-01
}
cont ai ner bee {
uses p: a;
}
}
Wien the author of "a" publishes a new revision, the changes nmay not
be acceptable to the author of "b". |If the newrevision is

acceptabl e, the author of "b" can republish with an updated revision
in the "inport" statement.

5.1.2. Modul e Hierarchies

YANG al | ows nodeling of data in nultiple hierarchies, where data may
have nore than one top-level node. Mdels that have multiple top-
| evel nodes are sonetinmes convenient, and are supported by YANG

NETCONF i s capable of carrying any XM. content as the payload in the
<config> and <data> el enments. The top-1level nodes of YANG nodul es
are encoded as child elenents, in any order, within these el enents.
Thi s encapsul ati on guarantees that the correspondi ng NETCONF nessages
are always well-formed XML documents.

Bj or kl und St andards Track [Page 27]

RFC 6020 YANG Cct ober 2010

For exanpl e:

nmodul e ny-config {
nanespace "http://exanpl e. com schema/ confi g"
prefix "co";

contai ner system{ ... }
container routing { ... }

}
coul d be encoded in NETCONF as:

<rpc nessage-i d="101"
xm ns="urn:ietf:params: xm :ns:netconf: base: 1. 0"
xm ns: nc="urn:ietf:paranms: xm : ns: net conf: base: 1. 0" >
<edit-config>
<t arget >
<runni ng/ >
</target>
<confi g>
<system xm ns="http://exanpl e. com schena/ confi g">
<l-- systemdata here -->
</ syst enp
<routing xm ns="http://exanpl e.conf schena/ config">
<l-- routing data here -->
</routing>
</ config>
</edit-config>
</rpc>

5.2. File Layout

YANG nodul es and subnodul es are typically stored in files, one nodul e
or subnodul e per file. The nane of the file SHOULD be of the form

nodul e- or - subnodul e-nane [' @ revision-date] (".yang’ / '.yin)
YANG conpi l ers can find inmported nmodul es and i ncl uded subnmodul es via
this convention. While the YANG | anguage defines nodul es, tools may
conpi | e subnmodul es i ndependently for perfornmance and manageability
reasons. FErrors and warnings that cannot be detected during
subnodul e conpil ati on nay be del ayed until the subnodul es are |inked
into a cohesive nodul e.

Bj or kl und St andards Track [Page 28]

RFC 6020 YANG Cct ober 2010

5.3. XM Nanespaces

Al YANG definitions are specified within a nodule that is bound to a
particul ar XM. namespace [XM.- NAMES], which is a gl obally unique UR

[RFC3986]. A NETCONF client or server uses the nanmespace during XM
encodi ng of data.

Namespaces for nmodul es published in RFC streams [RFC4844] MJST be
assigned by | ANA, see Section 14.

Nanmespaces for private nodul es are assigned by the organi zati on
owni ng the nodul e without a central registry. Nanespace URIs MJST be
chosen so they cannot collide with standard or other enterprise
nanespaces, for exanple by using the enterprise or organizati on name
i n the namespace

The "namespace" statenment is covered in Section 7.1.3.
5.3.1. YANG XM. Nanespace

YANG defines an XM. nanespace for NETCONF <edit-config> operations
and <error-info> content. The nane of this nanespace is
"urn:ietf:parans: xm :ns:yang: 1".

5.4. Resolving Gouping, Type, and ldentity Nanes

Grouping, type, and identity names are resolved in the context in

whi ch they are defined, rather than the context in which they are
used. Users of groupings, typedefs, and identities are not required
to inmport nodules or include subnbdules to satisfy all references
made by the original definition. This behaves Iike static scoping in
a conventional programi ng | anguage.

For exanple, if a nodule defines a grouping in which a type is

ref erenced, when the grouping is used in a second nodule, the type is
resolved in the context of the original nodule, not the second
nmodul e. There is no worry over conflicts if both nodul es define the
type, since there is no anbiguity.

5.5. Nested Typedefs and G oupi ngs

Typedefs and groupi ngs nay appear nested under many YANG statenents,
all owi ng these to be lexically scoped by the hierarchy under which
they appear. This allows types and groupings to be defined near
where they are used, rather than placing themat the top level of the
hi erarchy. The close proximity increases readability.

Bj or kl und St andards Track [Page 29]

RFC 6020 YANG Cct ober 2010

Scoping also allows types to be defined without concern for naning
conflicts between types in different subnodul es. Type nanmes can be
specified w thout adding | eading strings designed to prevent name
collisions within | arge nodul es.

Finally, scoping allow the nodul e author to keep types and groupings
private to their nodul e or subnodul e, preventing their reuse. Since
only top-level types and groupings (i.e., those appearing as
substatenents to a nodul e or subnodul e statenment) can be used outside
t he nmodul e or subnmodul e, the devel oper has nore control over what

pi eces of their nmodule are presented to the outside world, supporting
the need to hide internal information and maintai ning a boundary

bet ween what is shared with the outside world and what is kept
private.

Scoped definitions MIST NOT shadow definitions at a higher scope. A
type or grouping cannot be defined if a higher level in the schem
hierarchy has a definition with a matching identifier
A reference to an unprefixed type or grouping, or one which uses the
prefix of the current nmodule, is resolved by locating the cl osest
mat chi ng "typedef" or "grouping" statenent anong the inmediate
subst atenents of each ancestor statemnent.

5.6. Conformance
Conformance is a neasure of how accurately a device follows the
nmodel . General |y speaking, devices are responsible for inplenmenting
the nodel faithfully, allow ng applications to treat devices which
i npl enent the nodel identically. Deviations fromthe nodel can
reduce the utility of the nodel and increase fragility of
applications that use it.
YANG nodel ers have three nechani sns for confornance:
0o the basic behavior of the nodel
0o optional features that are part of the nodel
0 deviations fromthe node

We will consider each of these in sequence.

Bj or kl und St andards Track [Page 30]

RFC 6020 YANG Cct ober 2010

5.6.1. Basic Behavior

The nodel defines a contract between the NETCONF client and server
which allows both parties to have faith the other knows the syntax
and semantics behind the nodel ed data. The strength of YANG lies in
the strength of this contract.

5.6.2. Optional Features

In many nodels, the nodeler will allow sections of the nodel to be
conditional. The device controls whether these conditional portions
of the nodel are supported or valid for that particul ar device.

For exanple, a syslog data nodel may choose to include the ability to
save logs locally, but the nodeler will realize that this is only
possible if the device has local storage. |If there is no |oca
storage, an application should not tell the device to save | ogs.

YANG supports this conditional nmechani smusing a construct called
"feature". Features give the nodeler a nechanismfor naking portions
of the nodule conditional in a manner that is controlled by the
device. The nodel can express constructs that are not universally
present in all devices. These features are included in the nodel
definition, allowing a consistent view and allow ng applications to

| earn which features are supported and tailor their behavior to the
devi ce.

A nodul e may decl are any nunber of features, identified by sinple
strings, and may nake portions of the nodule optional based on those
features. |If the device supports a feature, then the corresponding
portions of the nodule are valid for that device. |If the device
doesn’'t support the feature, those parts of the nodule are not valid,
and applications should behave accordingly.

Features are defined using the "feature"” statenent. Definitions in
the nodule that are conditional to the feature are noted by the
"if-feature" statenment with the nane of the feature as its argunent.
Further details are available in Section 7.18.1.

5.6.3. Deviations
In an ideal world, all devices would be required to inplenent the
nodel exactly as defined, and deviations fromthe nodel would not be

allowed. But in the real world, devices are often not able or
designed to inplenent the nodel as witten. For YANG based

Bj or kl und St andards Track [Page 31]

RFC 6020 YANG Cct ober 2010

autonmation to deal with these device deviations, a nechani sm nust
exi st for devices to informapplications of the specifics of such
devi ati ons.

For exanple, a BGP nodul e nmay all ow any nunber of BGP peers, but a
particul ar device nay only support 16 BGP peers. Any application
configuring the 17th peer will receive an error. \While an error nay
suffice to let the application know it cannot add anot her peer, it
woul d be far better if the application had prior know edge of this
limtation and could prevent the user fromstarting down the path
that could not succeed.

Devi ce devi ations are declared using the "deviation" statenent, which
takes as its argument a string that identifies a node in the schema
tree. The contents of the statement details the manner in which the
device inplenentation deviates fromthe contract as defined in the
nmodul e.

Further details are available in Section 7.18. 3.

5.6.4. Announci ng Conformance Information in the <hell o> Message

The nanespace URI MJST be advertised as a capability in the NETCONF
<hel | 0> nessage to indicate support for the YANG nodul e by a NETCONF
server. The capability URI advertised MJST be of the form

capability-string
paraneter-|ist
par anet er

nanespace-uri [paraneter-list]
"?" paraneter *("&' paraneter)
revisi on-paraneter /
nodul e- paraneter /
feature-paranmeter /

devi ati on- par anet er
"revision=" revision-date
"nmodul e=" nodul e- nane
"features=" feature *(",
"devi ati ons="

revi si on- paranet er
nmodul e- par anet er
f eat ure- paraneter
devi ati on- par anet er

" feature)

deviation *("," deviation)

Where "revision-date" is the revision of the nodule (see

Section 7.1.9) that the NETCONF server inplenments, "nodul e-name" is
the nane of nmodule as it appears in the "nodul e" statement (see
Section 7.1), "nanespace-uri™ is the nanmespace URI for the nodule as
it appears in the "namespace" statenent (see Section 7.1.3),
"feature" is the nane of an optional feature inplenented by the
device (see Section 7.18.1), and "deviation" is the nane of a nodul e
defining device deviations (see Section 7.18.3).

In the paraneter |ist, each named paraneter MJST occur at nost once.

Bj or kl und St andards Track [Page 32]

RFC 6020 YANG Cct ober 2010

5.6.4.1. Modul es

Servers indicate the nanmes of supported nodul es via the <hell o>
message. Mddul e nanespaces are encoded as the base URI in the
capability string, and the nodul e name is encoded as the "nodul e"
paraneter to the base URI.

A server MJST advertise all revisions of all nodules it inplenents.
For exanple, this <hell o> nessage adverti ses one nodul e "sysl og"

<hell o xm ns="urn:ietf:parans: xnm : ns: netconf: base: 1. 0" >
<capability>
http://exanpl e. com sysl og?nodul e=sysl og&anp; r evi si on=2008- 04- 01
</ capability>
</ hel | o>

5.6.4. 2. Feat ures

Servers indicate the names of supported features via the <hell o>
message. I n <hello> nmessages, the features are encoded in the
"features" parameter within the URI. The value of this paraneter is
a conma-separated list of feature names that the device supports for
t he specific nodul e.

For exanple, this <hell o> nessage adverti ses one nodul e, informng
the client that it supports the "local -storage" feature of nodul e
"sysl og".
<hell o xm ns="urn:ietf:parans: xm : ns: net conf: base: 1. 0" >
<capability>
htt p:// exanpl e. com sysl og?nodul e=sysl og&anp; f eat ur es=I ocal - st or age
</ capability>
</ hel | o>

5.6.4.3. Deviations
Devi ce devi ations are announced via the "deviations" paraneter. The
val ue of the "deviations" parameter is a comm-separated |ist of
nodul es containing deviations fromthe capability’ s nodul e.
For exanple, this <hell o> nessage advertises two nodul es, informnng

the client that it deviates from nodul e "syslog" according to the
deviations listed in the nodule "my-devs"

Bj or kl und St andards Track [Page 33]

RFC 6020 YANG Cct ober 2010

<hell o xm ns="urn:ietf:parans: xm : ns: netconf: base: 1. 0" >
<capability>
http://exanpl e. com sysl og?nodul e=sysl og&anp; devi ati ons=ny- devs
</ capability>
<capability>
htt p://exanpl e. com ny- devi ati ons?nodul e=ny- devs
</ capability>
</ hel | o>

5.7. Data Store Modification

Data nodels may allow the server to alter the configuration data
store in ways not explicitly directed via NETCONF protocol nessages.
For exanple, a data nodel nmay define leafs that are assigned system
gener ated val ues when the client does not provide one. A forma
mechani sm for specifying the circunstances where these changes are
all owed is out of scope for this specification

6. YANG Synt ax

The YANG syntax is simlar to that of SMng [RFC3780] and progranmmi ng
| anguages like C and C++. This Clike syntax was chosen specifically
for its readability, since YANG values the tine and effort of the
readers of nodels above those of nbdules witers and YANG tool -chain
devel opers. This section introduces the YANG synt ax.

YANG nodul es use the UTF-8 [RFC3629] character encodi ng.
6.1. Lexical Tokenization

YANG nodul es are parsed as a series of tokens. This section details
the rules for recognizing tokens froman input stream YANG

tokeni zation rules are both sinple and powerful. The sinplicity is
driven by a need to keep the parsers easy to inplenment, while the
power is driven by the fact that nodelers need to express their
nodel s in readabl e fornmats.

6.1.1. Comments
Comrents are C++ style. A single line coment starts with "//" and
ends at the end of the Iine. A block comment is enclosed within "/*"
and "*/".

6.1.2. Tokens
A token in YANGis either a keyword, a string, a semcolon (";"), or

braces ("{" or "}"). A string can be quoted or unquoted. A keyword
is either one of the YANG keywords defined in this docunent, or a

Bj or kl und St andards Track [Page 34]

RFC 6020 YANG Cct ober 2010

prefix identifier, followed by ":", followed by a | anguage extension
keyword. Keywords are case sensitive. See Section 6.2 for a fornal
definition of identifiers.

6.1.3. Quoting

If a string contains any space or tab characters, a semicolon (";"),
braces ("{" or "}"), or comment sequences ("//", "/*", or "*/"), then
it MJUST be enclosed within double or single quotes.

If the doubl e-quoted string contains a |ine break foll owed by space
or tab characters that are used to indent the text according to the
layout in the YANG file, this | eading whitespace is stripped fromthe
string, up to and including the colum of the double quote character
or to the first non-whitespace character, whichever occurs first. In
this process, a tab character is treated as 8 space characters.

I f the doubl e-quoted string contains space or tab characters before a
line break, this trailing whitespace is stripped fromthe string.

A single-quoted string (enclosed within ' ') preserves each character
within the quotes. A single quote character cannot occur in a
singl e-quoted string, even when preceded by a backsl ash

Wthin a doubl e-quoted string (enclosed within " "), a backsl ash
character introduces a special character, which depends on the
character that i mediately foll ows the backsl ash:

\n new | i ne

\ t a tab character

\ " a doubl e quote

\\ a single backsl ash

If a quoted string is followed by a plus character ("+"), followed by

anot her quoted string, the two strings are concatenated into one
string, allowing nultiple concatenations to build one string.

Whi t espace trinming and substitution of backsl ash-escaped characters
i n doubl e-quoted strings is done before concatenation

6.1.3.1. Quoting Exanples

The followi ng strings are equival ent:

hel |l o
"hel | 0"
"hel |l o

n hel "4 ||| Ou
) hel) + ||| Ou

Bj or kl und St andards Track [Page 35]

RFC 6020 YANG Cct ober 2010

The foll owi ng exanpl es show sonme special strings:

"\"" - string containing a double quote
e - string containing a double quote
"\n" - string containing a new |line character
"\n’ - string containing a backslash foll owed

by the character n
The foll owi ng exanpl es show sone illegal strings:

'’’’ - a single-quoted string cannot contain single quotes
e - a doubl e quote nust be escaped in a doubl e-quoted string

The following strings are equival ent:

"first line
second |i ne"

"first line\n" + " second |ine"
6. 2. Identifiers

Identifiers are used to identify different kinds of YANG itens by
nane. Each identifier starts with an uppercase or | owercase ASCl

| etter or an underscore character, followed by zero or nore ASCI
letters, digits, underscore characters, hyphens, and dots.

| mpl enent ati ons MUST support identifiers up to 64 characters in
length. Ildentifiers are case sensitive. The identifier syntax is
formally defined by the rule "identifier" in Section 12. Identifiers
can be specified as quoted or unquoted strings.

6.2.1. ldentifiers and Their Nanespaces
Each identifier is valid in a nanmespace that depends on the type of
the YANG item being defined. Al identifiers defined in a nanespace
MUST be uni que.

o Al nodul e and subnodul e nanes share the sanme gl obal nodul e
i dentifier namespace.

o Al extension nanes defined in a nodule and its subnbdul es share
the sane extension identifier nanespace.

o Al feature nanes defined in a nodule and its subnpdul es share the
sane feature identifier nanespace

o Al identity names defined in a nodule and its subnodul es share
the sane identity identifier nanespace.

Bj or kl und St andards Track [Page 36]

RFC 6020 YANG Cct ober 2010

o0 Al derived type nanes defined within a parent node or at the top
| evel of the nodule or its subnodul es share the sane type
identifier namespace. This nanespace is scoped to all descendant
nodes of the parent node or nodule. This nmeans that any
descendent node may use that typedef, and it MJST NOT define a
typedef with the sane nane.

o Al grouping nanes defined within a parent node or at the top
| evel of the nodule or its subnodul es share the sane grouping
identifier namespace. This nanespace is scoped to all descendant
nodes of the parent node or nodule. This nmeans that any
descendent node may use that grouping, and it MJUST NOT define a
grouping with the sanme nane.

o Al leafs, leaf-lists, lists, containers, choices, rpcs,
notifications, and anyxms defined (directly or through a uses
statement) within a parent node or at the top |evel of the nodule
or its subnodul es share the sane identifier namespace. This
nanespace is scoped to the parent node or nodule, unless the
parent node is a case node. |n that case, the nanespace is scoped
to the closest ancestor node that is not a case or choice node.

0 Al cases within a choice share the sane case identifier
nanespace. This nanespace is scoped to the parent choice node

Forward references are allowed in YANG
6. 3. St at enent s

A YANG nodul e contains a sequence of statenents. Each statenent

starts with a keyword, followed by zero or one argunent, followed
either by a semicolon (";") or a block of substatenments encl osed

within braces ("{ }"):

statement = keyword [argunent] (";" / "{" *statenent "}")
The argunent is a string, as defined in Section 6.1.2.
6.3.1. Language Extensions

A nodul e can introduce YANG extensions by using the "extension"
keyword (see Section 7.17). The extensions can be inported by other
nodul es with the "inport" statenent (see Section 7.1.5). Wen an

i mported extension is used, the extension’s keyword MJUST be qualified
using the prefix with which the extension’s nodule was inported. |If
an extension is used in the nodule where it is defined, the
extension’s keyword MJUST be qualified with the nodule’ s prefix.

Bj or kl und St andards Track [Page 37]

RFC 6020 YANG Cct ober 2010

Si nce subnobdul es cannot include the parent nobdule, any extensions in
the nmodul e that need to be exposed to subnodul es MJST be defined in a
subrmodul e. Subnodul es can then include this subnodule to find the
definition of the extension.

If a YANG conpil er does not support a particul ar extension, which
appears in a YANG nodul e as an unknown-statenment (see Section 12),
the entire unknown-statenment MAY be ignored by the conpiler

6.4. XPath Eval uations

YANG relies on XML Path Language (XPath) 1.0 [XPATH] as a notation
for specifying nmany inter-node references and dependenci es. NETCONF
clients and servers are not required to inplement an XPath
interpreter, but MJST ensure that the requirements encoded in the
data nodel are enforced. The nmanner of enforcenent is an

i npl ement ati on deci sion. The XPath expressions MJST be syntactically
correct, and all prefixes used MIST be present in the XPath context
(see Section 6.4.1). An inplenentation nmay choose to inplenent them
by hand, rather than using the XPath expression directly.

The data nodel used in the XPath expressions is the sane as that used
in XPath 1.0 [XPATH], with the sane extension for root node children
as used by XSLT 1.0 [XSLT] (Section 3.1). Specifically, it neans
that the root node nay have any nunber of el enent nodes as its
chi | dren.

6.4.1. XPath Context

Al'l YANG XPat h expressions share the foll owi ng XPath cont ext
definition:

0 The set of namespace declarations is the set of all "inport"
statements’ prefix and nanespace pairs in the nodul e where the
XPat h expression is specified, and the "prefix" statenent’s prefix
for the "nanespace" statenent’s URI

o Nanmes without a nanespace prefix belong to the sanme nanespace as
the identifier of the current node. |Inside a grouping, that
nanespace is affected by where the grouping is used (see
Section 7.12).

o The function library is the core function library defined in
[XPATH], and a function "current()" that returns a node set with
the initial context node.

o0 The set of variable bindings is enpty.

Bj or kl und St andards Track [Page 38]

RFC 6020 YANG Cct ober 2010

The mechani sm for handling unprefixed nanes is adopted from XPath 2.0
[XPATH2. 0], and hel ps sinplify XPath expressions in YANG No

anmbi guity may ever arise because YANG node identifiers are always
qualified nanes with a non-null nanmespace URI

The context node varies with the YANG XPath expression, and is
specified where the YANG statenent with the XPath expression is
defi ned.

6.5. Schena Node ldentifier

A schena node identifier is a string that identifies a node in the

schema tree. It has two fornms, "absolute" and "descendant", defined
by the rul es "absol ut e-schema- nodei d* and "descendant - schena- nodei d"
in Section 12, respectively. A schema node identifier consists of a

path of identifiers, separated by slashes ("/"). 1In an absolute
schema node identifier, the first identifier after the |eading slash
is any top-level schema node in the local nodule or in all inported
nodul es.

References to identifiers defined in external nodul es MJUST be
qualified with appropriate prefixes, and references to identifiers
defined in the current nodule and its subnodul es MAY use a prefix.

For exanple, to identify the child node "b" of top-level node "a"
the string "/a/b" can be used.

7. YANG St atenents
The follow ng sections describe all of the YANG statenents.

Note that even a statenent that does not have any substatenents
defined in YANG can have vendor-specific extensions as substatenents.
For exanple, the "description" statenent does not have any
substatenents defined in YANG but the following is |egal

description "some text" {
acne: docunent ation-flag 5;
}

7.1. The nodul e Statenent

The "nodul e" statenment defines the nodul e’ s nane, and groups al
statenments that belong to the nodul e together. The "nodul e"
statement’s argunment is the nane of the nodule, followed by a block
of substatenents that hold detail ed nodule information. The nodul e
nane follows the rules for identifiers in Section 6. 2.

Bj or kl und St andards Track [Page 39]

RFC 6020 YANG Cct ober 2010

Nanmes of nodul es published in RFC streans [RFC4844] MUST be assi gned
by | ANA, see Section 14.

Private nodul e nanmes are assigned by the organi zati on owni ng the
nmodul e without a central registry. It is RECOWENDED to choose
nodul e nanmes that will have a | ow probability of colliding with
standard or other enterprise nodul es and subnodul es, e.g., by using
the enterprise or organi zation nane as a prefix for the nodul e nane.

A nodul e typically has the foll owi ng | ayout:
nodul e <nodul e- nane> {

/'l header information
<yang-versi on st at enent >
<nanespace st atenent >
<prefix statenent>

/'l linkage statenents
<i nport statenents>
<i ncl ude st atenents>

// meta information

<or gani zati on st at enent >
<cont act statenent>
<descri ption statenent>
<ref erence statenent>

/1 revision history
<revi si on statenents>

/!l nodul e definitions
<ot her statenments>

Bj or kl und St andards Track [Page 40]

RFC 6020 YANG Cct ober 2010

7.1.1. The nodul e’ s Substatenents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
anyxm	7.10	0..n
augnent	7.15	0..n
choice	7.9	0..n
contact	7.1.8	0..1
container	7.5	0..n
description	7.19.3	0..1
deviation	7.18.3	0..n
extension	7.17	0..n
feature	7.18.12	0O0..n
grouping	7.11	0..n
identity	7.16	0..n
inport	7.1.5	0..n
include	7.1.6	0..n
Ieaf	7.6	0..n
leaf-list	7.7	0..n
Iist	7.8	0..n
namespace	7.1.3	1
notification	7.14	0..n
organization	7.1.7	0..1
prefix	7.1.4	1
reference	7.19.4	0..1
revision	7.1.9	0..n
rpc	7.13	0..n
typedef	7.3	0..n
uses	7.12	0..n
yang-version	7.1.2	0..1
e N T N . +

7.1.2. The yang-version Statenent

The optional "yang-version" statenent specifies which version of the
YANG | anguage was used in devel oping the nodule. The statenent’s
argunent is a string. |If present, it MJST contain the value "1"
which is the current YANG version and the default val ue.

Handl i ng of the "yang-version" statenent for versions other than "1"
(the version defined here) is out of scope for this specification
Any docunent that defines a higher version will need to define the
backward conpatibility of such a higher version

Bj or kl und St andards Track [Page 41]

RFC 6020 YANG Cct ober 2010

7.1.3. The nanespace Statenent

The "nanmespace" statenent defines the XML nanmespace that all
identifiers defined by the nodule are qualified by, with the
exception of data node identifiers defined inside a grouping (see
Section 7.12 for details). The argunent to the "nanespace" statenent
is the URI of the nanespace.

See al so Section 5. 3.
7.1.4. The prefix Statenent

The "prefix" statement is used to define the prefix associated with
the nodul e and its nanespace. The "prefix" statement’s argunent is
the prefix string that is used as a prefix to access a nodule. The
prefix string MAY be used to refer to definitions contained in the
modul e, e.g., "if:ifName". A prefix follows the sanme rules as an
identifier (see Section 6.2).

When used inside the "nodul e" statenent, the "prefix" statenent
defines the prefix to be used when this nodule is inported. To

i nprove readability of the NETCONF XM., a NETCONF client or server
that generates XM. or XPath that use prefixes SHOULD use the prefix
defined by the nodule, unless there is a conflict.

Wien used inside the "inport" statenment, the "prefix" statenent
defines the prefix to be used when accessing definitions inside the

i mported nmodule. When a reference to an identifier fromthe inported
modul e is used, the prefix string for the inported nodule is used in
conbination with a colon (":") and the identifier, e.g., "if:

i flndex". To inprove readability of YANG nodul es, the prefix defined
by a nodul e SHOULD be used when the nodule is inported, unless there
is aconflict. |If thereis a conflict, i.e., two different nodul es
that both have defined the sane prefix are inported, at |east one of
them MUST be inported with a different prefix.

Al'l prefixes, including the prefix for the nodule itself MJST be
uni que within the nmodul e or subnodul e.

7.1.5. The inport Statenent

The "inport" statement nakes definitions fromone nodul e avail abl e

i nsi de anot her nodul e or subnobdule. The argunent is the nane of the
nodul e to inport, and the statenent is followed by a bl ock of
substatenents that holds detailed inport information. Wen a nodule
is inported, the inporting nodul e may:

Bj or kl und St andards Track [Page 42]

RFC 6020 YANG Cct ober 2010

0 use any grouping and typedef defined at the top level in the
i mported nodul e or its subnodul es.

0 use any extension, feature, and identity defined in the inported
nodul e or its subnodul es

0 use any node in the inported nodule’'s schema tree in "nust",
"path", and "when" statenents, or as the target node in "augnent"
and "devi ation" statenents.

The mandatory "prefix" substatenment assigns a prefix for the inported
nodul e that is scoped to the inporting nodule or subnodule. Miltiple
"inmport" statenents nmay be specified to inport fromdifferent

nodul es.

When the optional "revision-date" substatenent is present, any
typedef, grouping, extension, feature, and identity referenced by
definitions in the local nodule are taken fromthe specified revision
of the inported nodule. 1t is an error if the specified revision of
the inported nodul e does not exist. |If no "revision-date"
substatenent is present, it is undefined from which revision of the
nmodul e they are taken

Multiple revisions of the sane nodul e MUST NOT be i nported.

The inport’s Substatenents

T [S B TS +
| substatenent | section | cardinality

S [SR —-— S +
| prefix | 7.1.4 | 1 |
| revision-date | 7.1.5.1] 0..1 |
- Fommmm e oo - - +

7.1.5.1. The inport’s revision-date Statenent

The inmport’s "revision-date" statenment is used to specify the exact
version of the nodule to inport. The "revision-date" statenent MJST
mat ch the nost recent "revision" statement in the inported nodul e.

7.1.6. The include Statenent
The "include" statenment is used to nmake content from a subnodul e
avail able to that subnodul e’ s parent nodule, or to another subnodul e

of that parent nodule. The argunent is an identifier that is the
nane of the subnobdule to include. Mbdules are only allowed to

Bj or kl und St andards Track [Page 43]

RFC 6020 YANG Cct ober 2010

i ncl ude subnodul es that belong to that nodule, as defined by the
"bel ongs-to" statenment (see Section 7.2.2). Subnodules are only
all owed to include other subnodul es belonging to the sanme nodul e.

When a nodul e includes a subnodule, it incorporates the contents of
the subnodul e into the node hierarchy of the nodule. Wen a
subnodul e i ncl udes anot her subnobdul e, the target subnodule’s
definitions are made available to the current subnodul e.

When the optional "revision-date" substatenent is present, the
specified revision of the subnodule is included in the nodule. It is
an error if the specified revision of the subnodul e does not exist.

If no "revision-date" substatenent is present, it is undefined which
revision of the subnodule is included.

Multiple revisions of the same subnodul e MUST NOT be i ncl uded.

The includes’s Substatenents

R [TS S +
| substatenent | section | cardinality

Fom e e e e e oo oo f S Fom e e e e e o oo +
| revision-date | 7.1.5.1 | 0..1 |
S Fomm e e o S +

7.1.7. The organization Statenent

The "organi zati on" statenent defines the party responsible for this
nmodul e. The argunent is a string that is used to specify a textua
description of the organization(s) under whose auspices this nodul e
was devel oped.

7.1.8. The contact Statenent

The "contact" statenent provides contact information for the nodule.
The argunent is a string that is used to specify contact information
for the person or persons to whomtechnical queries concerning this

nodul e shoul d be sent, such as their nane, postal address, telephone
nurmber, and el ectronic nail address.

7.1.9. The revision Statenent

The "revision" statenent specifies the editorial revision history of
the nmodule, including the initial revision. A series of revision
statenments detail the changes in the nodule’'s definition. The
argunent is a date string in the format "YYYY-MVWDD', followed by a
bl ock of substatenments that holds detailed revision information. A
nodul e SHOULD have at |east one initial "revision" statenent. For

Bj or kl und St andards Track [Page 44]

RFC 6020 YANG Cct ober 2010

every published editorial change, a new one SHOULD be added in front
of the revisions sequence, so that all revisions are in reverse
chr onol ogi cal order.

7.1.9.1. The revision s Substatenent

ook [TS T +
| substatenent | section | cardinality |
o e e [TS B +
| description | 7.19.3 | 0..1 |
| reference | 7.19.4 | 0..1 |
RS Fomm e e o S +

7.1.10. Usage Exanple
nmodul e acme- system {
nanespace "http://acne. exanpl e. com systent;
prefix "acne";
i mport ietf-yang-types {
prefix "yang";
}
i ncl ude acne-types;

organi zation "ACME Inc.";

cont act
"Joe L. User
ACME, | nc.

42 Anywhere Drive
Nowhere, CA 95134
USA

Phone: +1 800 555 0100
EMai | : j oe@cne. exanpl e. cont';

description
"The nmodul e for entities inplenenting the ACME protocol .";

revi sion "2007-06-09" {
description "lnitial revision.";
}

[/ definitions follow...

Bj or kl und St andards Track [Page 45]

RFC 6020 YANG Cct ober 2010

7.2. The subnodul e Statenent

Wiile the primary unit in YANGis a nodule, a YANG nodul e can itself
be constructed out of several subnodules. Subnodul es allow a nodul e
designer to split a conplex nodel into several pieces where all the
subnodul es contribute to a single nanmespace, which is defined by the
nodul e that includes the subnodul es.

The "subnodul e" statenent defines the subnodul e’ s nane, and groups
all statenents that belong to the subnodul e together. The
"subnodul e" statenent’s argunent is the nanme of the subnodul e

foll owed by a bl ock of substatenents that hold detail ed subnodul e
information. The subnodul e name follows the rules for identifiers in
Section 6. 2.

Names of subnodul es published in RFC streans [RFC4844] MUST be
assigned by | ANA, see Section 14.

Private subnodul e names are assigned by the organi zati on owning the
subrmodul e without a central registry. It is RECOMENDED to choose
subnodul e nanmes that will have a | ow probability of colliding with
standard or other enterprise nodul es and subnodul es, e.g., by using
the enterprise or organization name as a prefix for the subnodul e
name.

Bj or kl und St andards Track [Page 46]

RFC 6020 YANG Cct ober 2010

A subnodul e typically has the foll owi ng | ayout:
subrodul e <nmodul e- nanme> {
<yang-ver si on statenent >

/1 nmodul e identification
<bel ongs-to st at enent >

/'l linkage statenents
<i mport statenents>
<i ncl ude statenents>

/1 meta information
<organi zati on statenent>
<contact statenent>
<descri pti on statenent >
<reference statenment>

/'l revision history
<revi si on statenments>

/1 nodul e definitions
<ot her st atenents>

Bj or kl und St andards Track [Page 47]

RFC 6020 YANG Cct ober 2010

7.2.1. The subnodul e’ s Substat enents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
anyxm	7.10	0..n
augnent	7.15	0..n
belongs-to	7.2.2	1
choice	7.9	0..n
contact	7.1.8	0..1
container	7.5	0..n
description	7.19.3	0..1
deviation	7.18.3	0..n
extension	7.17	0..n
feature	7.18.12	0O0..n
grouping	7.11	0..n
identity	7.16	0..n
inport	7.1.5	0..n
include	7.1.6	0..n
Ieaf	7.6	0..n
leaf-list	7.7	0..n

Iist	7.8	0..n
notification	7.14	0..n
organization	7.1.7	0..1
reference	7.19.4	0..1
revision	7.1.9	0..n
rpc	7.13	0..n
typedef	7.3	0..n
uses	7.12	0..n
yang-version	7.1.2	0..1
e N N +

7.2.2. The belongs-to Statenent

The "bel ongs-to" statenent specifies the nodule to which the
subnodul e bel ongs. The argunent is an identifier that is the nane of
t he nmodul e.

A subrodul e MJUST only be included by the nodule to which it bel ongs,
or by another subnobdul e that bel ongs to that nodul e.

The mandatory "prefix" substatenment assigns a prefix for the nodule
to which the subnodul e belongs. Al definitions in the |oca
subrmodul e and any i ncluded subnbdul es can be accessed by using the
prefix.

Bj or kl und St andards Track [Page 48]

RFC 6020 YANG Cct ober 2010

The bel ongs-to’'s Substatenents

. I . +
| substatenent | section | cardinality |
B TS Fomm e e o B S +
| prefix | 7.1.4 | 1 |
e N N +

7.2.3. Usage Exanple
subnodul e acne-types {

bel ongs-to "acne-systent {
prefix "acne";

}
i mport ietf-yang-types {
prefix "yang";
}
organi zation "ACME Inc.";
cont act
"Joe L. User
ACME, Inc.

42 Anywhere Drive
Nowhere, CA 95134
USA

Phone: +1 800 555 0100
EMai | : j oe@cne. exanpl e. cont';

description
"Thi s subnodul e defines common ACME types.";

revision "2007-06-09" {
description "lInitial revision.";
}

[/ definitions follows...

7.3. The typedef Statenent
The "typedef" statenent defines a new type that nay be used locally

in the nodule, in nodules or subnodul es which include it, and by
ot her nodul es that inport fromit, according to the rules in

Bj or kl und St andards Track [Page 49]

RFC 6020 YANG Cct ober 2010

Section 5.5. The new type is called the "derived type", and the type
fromwhich it was derived is called the "base type". Al derived
types can be traced back to a YANG built-in type.

The "typedef" statenent’s argunent is an identifier that is the nane
of the type to be defined, and MJUST be followed by a bl ock of
substatenents that holds detailed typedef information.

The name of the type MJUST NOT be one of the YANG built-in types. |If
the typedef is defined at the top |l evel of a YANG nodul e or
subnodul e, the nane of the type to be defined MJUST be unique within
t he nodul e.

7.3.1. The typedef’s Substatenents

| default | 7
| description | 7
| reference | 7
| status | 7.
| type | 7
| units | 7

7.3.2. The typedef’s type Statenent

The "type" statenent, which MIST be present, defines the base type
fromwhich this type is derived. See Section 7.4 for details.

7.3.3. The units Statenent
The "units" statement, which is optional, takes as an argunent a
string that contains a textual definition of the units associ ated
with the type.

7.3.4. The typedef’s default Statenent

The "default" statenent takes as an argunent a string that contains a
default value for the new type.

The val ue of the "default" statenent MJUST be valid according to the
type specified in the "type" statenent.

If the base type has a default value, and the new derived type does

not specify a new default value, the base type’s default value is
al so the default value of the new derived type

Bj or kl und St andards Track [Page 50]

RFC 6020 YANG Cct ober 2010

7.

7

7.

7.

If the type's default value is not valid according to the new
restrictions specified in a derived type or |leaf definition, the
derived type or leaf definition MIUST specify a new default val ue
conmpatible with the restrictions.

3.5. Usage Exanpl e
typedef |isten-ipv4-address {

type inet:ipv4-address;
default "0.0.0.0";

.4. The type Statenent

The "type" statenment takes as an argunent a string that is the nane
of a YANG built-in type (see Section 9) or a derived type (see
Section 7.3), followed by an optional block of substatenments that are
used to put further restrictions on the type.

The restrictions that can be applied depend on the type being
restricted. The restriction statements for all built-in types are
described in the subsections of Section 9.

4.1. The type’'s Substatenents

|
enum
| ength |
pat h |
pattern |
range |
require-instance

type |

I n I
I n I
I 1 I
| 0..1 I
| 0..n I
I 1 I
I 1 I
| n |

5. The contai ner Statenent

The "container" statenent is used to define an interior data node in
the schema tree. |t takes one argunent, which is an identifier

foll owed by a bl ock of substatenments that holds detailed container

i nformati on.

A cont ai ner node does not have a value, but it has a list of child
nodes in the data tree. The child nodes are defined in the
cont ai ner’ s subst at enents.

Bj or kl und St andards Track [Page 51]

RFC 6020 YANG Cct ober 2010

7.5.1. Containers with Presence

YANG supports two styles of containers, those that exist only for
organi zi ng the hierarchy of data nodes, and those whose presence in
the configuration has an explicit neaning.

In the first style, the container has no nmeaning of its own, existing
only to contain child nodes. This is the default style.

For exanple, the set of scranbling options for Synchronous Optical
Net work (SONET) interfaces may be placed inside a "scranbling”

contai ner to enhance the organi zation of the configuration hierarchy,
and to keep these nodes together. The "scranbling" node itself has
no neani ng, so renoving the node when it becones enpty relieves the
user fromperfornmng this task

In the second style, the presence of the container itself is
configuration data, representing a single bit of configuration data.
The container acts as both a configuration knob and a neans of
organi zing rel ated configuration. These containers are explicitly
created and del et ed.

YANG calls this style a "presence container” and it is indicated
using the "presence" statenent, which takes as its argunent a text
string indicating what the presence of the node neans.

For exanple, an "ssh" container may turn on the ability to log into
t he devi ce using ssh, but can also contain any ssh-rel ated
configuration knobs, such as connection rates or retry limts.

The "presence" statenent (see Section 7.5.5) is used to give
semantics to the existence of the container in the data tree.

Bj or kl und St andards Track [Page 52]

RFC 6020 YANG Cct ober 2010

7.

7.

5.2. The container’s Substatenents

. I . +
| substatenent | section | cardinality

B TS Fomm e e o B S +
anyxm	7.10	0..n
choice	7.9	0..n
config	7.19.1	0..1
container	7.5	0..n
description	7.19.3	0..1
grouping	7.11	0..n

if-feature	7.18.2	0..n
Ieaf	7.6	0..n
leaf-list	7.7	0..n
Iist	7.8	0..n
must	7.5.3	0..n
presence	7.5.5	0..1

reference	7.19.4	0..1
status	7.19.2	0..1
typedef	7.3	0..n
uses	7.12	0..n
when	7.19.5	0..1
B TS Fomm e e o B S +

5.3. The nust Statenent

The "rmust" statenent, which is optional, takes as an argunent a
string that contains an XPath expression (see Section 6.4). It is
used to formally declare a constraint on valid data. The constraint
is enforced according to the rules in Section 8.

Wien a datastore is validated, all "nmust" constraints are
conceptual | y eval uated once for each data node in the data tree, and
for all leafs with default values in use (see Section 7.6.1). |If a

data node does not exist in the data tree, and it does not have a
default value, its "nust" statenents are not eval uated

Al such constraints MJST evaluate to true for the data to be valid.

The XPath expression is conceptually evaluated in the foll ow ng
context, in addition to the definition in Section 6.4.1

o0 The context node is the node in the data tree for which the "nust"
statenent is defined

0 The accessible tree is made up of all nodes in the data tree, and
all leafs with default values in use (see Section 7.6.1).

Bj or kl und St andards Track [Page 53]

RFC 6020 YANG Cct ober 2010

The accessi bl e tree depends on the context node:

o |If the context node represents configuration, the tree is the data
in the NETCONF dat astore where the context node exists. The XPath
root node has all top-level configuration data nodes in all
nodul es as chil dren

o |If the context node represents state data, the tree is all state
data on the device, and the <running/> datastore. The XPath root
node has all top-level data nodes in all nodules as children

o |If the context node represents notification content, the tree is
the notification XM. instance docunment. The XPath root node has
the el ement representing the notification being defined as the
only child.

o If the context node represents RPC i nput paraneters, the tree is
the RPC XM instance docunent. The XPath root node has the
el ement representing the RPC operation being defined as the only
child.

o |If the context node represents RPC output paranmeters, the tree is
the RPC reply instance docunent. The XPath root node has the
el ements representing the RPC output paraneters as children

The result of the XPath expression is converted to a bool ean val ue
usi ng the standard XPath rul es.

Note that since all leaf values in the data tree are conceptually
stored in their canonical form (see Sections 7.6 and 7.7), any XPath
conpari sons are done on the canonical val ue.

Al so note that the XPath expression is conceptually evaluated. This
means that an inplenentati on does not have to use an XPath eval uat or
on the device. How the evaluation is done in practice is an

i mpl enent ati on deci si on.

Bj or kl und St andards Track [Page 54]

RFC 6020 YANG Cct ober 2010

7.5.4. The nust’s Substatenents

I I . +
| substatenent | section | cardinality |
S Fomm e e o B S +
description	7.19.3	0..1
error-app-tag	7.5.4.2	0..1
error-nessage	7.5.4.1] 0..1	
reference	7.19.4	0..1
Fom e e e e e oo oo f S Fom e e e e e o oo +

7.5.4.1. The error-nessage Statenent

The "error-nessage" statenment, which is optional, takes a string as
an argunent. |If the constraint evaluates to false, the string is
passed as <error-nessage> in the <rpc-error>.

7.5.4.2. The error-app-tag Statenent

The "error-app-tag" statenent, which is optional, takes a string as
an argunent. |If the constraint evaluates to false, the string is
passed as <error-app-tag> in the <rpc-error>.

7.5.4.3. Usage Exanple of nust and error-nessage

contai ner interface {
I eaf ifType {
type enuneration {
enum et her net ;
enum at m

}
| eaf ifMIU {
type uint32;

nmust "ifType != "ethernet’ or " +
"(ifType = "ethernet’ and i f MU = 1500)" {
error-nessage "An ethernet MIU nmust be 1500";

must "ifType !'="atm or " +

"(ifType = "atm and i fMIU <= 17966 and i f MIU >= 64)" {
error-nessage "An atm MIU nust be 64 .. 17966";

Bj or kl und St andards Track [Page 55]

RFC 6020 YANG Cct ober 2010

7.5.5. The presence Statenent

The "presence" statement assigns a neaning to the presence of a
container in the data tree. It takes as an argunent a string that
contains a textual description of what the node’ s presence neans.

If a container has the "presence" statenent, the container’s

exi stence in the data tree carries sonme neaning. O herw se, the
container is used to give sonme structure to the data, and it carries
no meaning by itself.

See Section 7.5.1 for additional infornmation
7.5.6. The container’s Child Node Statenents

Wthin a container, the "container", "leaf", "list", "leaf-list",
"uses", "choice", and "anyxm " statements can be used to define child
nodes to the contai ner

7.5.7. XM Mapping Rul es

A contai ner node is encoded as an XM. elenment. The elenment’s |oca
nane is the container’s identifier, and its nanespace is the nodule’s
XM. nanespace (see Section 7.1.3).

The container’s child nodes are encoded as subel enents to the
contai ner element. |If the container defines RPC input or output
paraneters, these subelenents are encoded in the sane order as they
are defined within the "container" statement. Oherw se, the

subel enents are encoded in any order

A NETCONF server that replies to a <get> or <get-config> request MAY
choose not to send a container elenent if the contai ner node does not
have the "presence" statenent and no child nodes exist. Thus, a
client that receives an <rpc-reply> for a <get> or <get-config>
request, nmust be prepared to handl e the case that a contai ner node

wi thout a "presence" statenent is not present in the XM.

7.5.8. NETCONF <edit-config> Operations
Cont ai ners can be created, deleted, replaced, and nodified through
<edit-config> by using the "operation" attribute (see [RFC4741],
Section 7.2) in the container’s XM el enent.

If a container does not have a "presence" statenent and the | ast
child node is deleted, the NETCONF server MAY del ete the container

Bj or kl und St andards Track [Page 56]

RFC 6020 YANG Cct ober 2010

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for the container node are:

If the operation is "nerge" or "replace", the node is created if
it does not exist.

If the operation is "create", the node is created if it does not
exist. |If the node already exists, a "data-exists" error is
returned.

If the operation is "delete", the node is deleted if it exists.
If the node does not exist, a "data-mi ssing" error is returned.

7.5.9. Usage Exanple
G ven the follow ng container definition

cont ai ner system {
description "Contains various system paraneters"
cont ai ner services {
description "Configure externally avail abl e services"
cont ai ner "ssh" {
presence "Enabl es SSH'
description "SSH service specific configuration";
/1 more |eafs, containers and stuff here..

}

A correspondi ng XM. i nstance exanpl e:
<systenp
<servi ces>
<ssh/ >
</ servi ces>
</ systenp
Since the <ssh> elenent is present, ssh is enabl ed.

To delete a container with an <edit-config>:

Bj or kl und St andards Track [Page 57]

RFC 6020 YANG Cct ober 2010

<rpc nessage-i d="101"
xm ns="urn:ietf:params: xm :ns:netconf:base: 1. 0"
xm ns: nc="urn:ietf:paranms: xm : ns: net conf: base: 1. 0" >
<edit-config>
<t arget >
<runni ng/ >
</target>
<confi g>
<system xm ns="http://exanpl e. com schena/ confi g">
<servi ces>
<ssh nc:operation="del ete"/>
</ services>
</ systenp
</ config>
</ edit-config>
</rpc>

.6. The | eaf Statenent

The "leaf" statenent is used to define a | eaf node in the schemn
tree. It takes one argument, which is an identifier, followed by a
bl ock of substatenents that holds detailed | eaf infornation

A | eaf node has a value, but no child nodes in the data tree.
Conceptually, the value in the data tree is always in the canonica
form (see Section 9.1).

A leaf node exists in zero or one instances in the data tree.

The "leaf" statenent is used to define a scalar variable of a
particular built-in or derived type.

.6.1. The leaf’'s default val ue

The default value of a leaf is the value that the server uses if the
| eaf does not exist in the data tree. The usage of the default val ue
depends on the leaf’s cl osest ancestor node in the schema tree that
is not a non-presence container

o If no such ancestor exists in the schema tree, the default val ue
MUST be used.

0 Oherwise, if this ancestor is a case node, the default value MJST
be used if any node fromthe case exists in the data tree, or if
the case node is the choice’ s default case, and no nodes from any
ot her case exist in the data tree.

Bj or kl und St andards Track [Page 58]

RFC 6020 YANG Cct ober 2010

7.

7.

7.

0 Oherwi se, the default value MJUST be used if the ancestor node
exists in the data tree.

In these cases, the default value is said to be in use.

When the default value is in use, the server MJST operationally
behave as if the |leaf was present in the data tree with the default
val ue as its val ue.

If a leaf has a "default" statenent, the leaf's default value is the
val ue of the "default” statement. Oherwise, if the leaf’s type has
a default value, and the leaf is not mandatory, then the leaf’s
default value is the type's default value. 1In all other cases, the
| eaf does not have a default val ue.

6.2. The leaf’s Substatenents

RS Fomm e e o S +
| substatenent | section | cardinality

oo [TS S +
config	7.19.1	0..1
default	7.6.4	0..1
description	7.19.3	0..1
if-feature	7.18.2	0..n
mandatory	7.6.5	0..1
rust	7.5.3	0..n
reference	7.19.4	0..1
status	7.19.2	0..1
type	7.6.3	1
units	7.3.3	0..1
when	7.19.5	0..1
oo [TS S +

6.3. The leaf’s type Statenent

The "type" statenent, which MJST be present, takes as an argunent the
nane of an existing built-in or derived type. The optiona
substatements specify restrictions on this type. See Section 7.4 for
details.

6.4. The leaf’'s default Statenent

The "default" statenent, which is optional, takes as an argunent a
string that contains a default value for the |eaf.

The value of the "default" statenent MJST be valid according to the
type specified in the leaf’s "type" statement.

Bj or kl und St andards Track [Page 59]

RFC 6020 YANG Cct ober 2010

The "default" statenent MJUST NOT be present on nodes where
"mandat ory" is true

7.6.5. The leaf’s mandatory Statenent

The "mandatory" statenent, which is optional, takes as an argunent
the string "true" or "false", and puts a constraint on valid data.
If not specified, the default is "fal se"

If "mandatory" is "true", the behavior of the constraint depends on
the type of the |leaf’'s closest ancestor node in the schema tree that
is not a non-presence container (see Section 7.5.1):

o |f no such ancestor exists in the schena tree, the |eaf MJST
exi st.

0 Oherwise, if this ancestor is a case node, the |leaf MJST exist if
any node fromthe case exists in the data tree.

0 Oherwise, the leaf MJUST exist if the ancestor node exists in the
data tree.

This constraint is enforced according to the rules in Section 8.
7.6.6. XM Mapping Rul es

A | eaf node is encoded as an XM. elenent. The elenent’s |ocal nane

is the leaf’'s identifier, and its nanespace is the nodule’'s XM

nanespace (see Section 7.1.3).

The val ue of the | eaf node is encoded to XM. according to the type,
and sent as character data in the el ement.

A NETCONF server that replies to a <get> or <get-config> request MAY
choose not to send the leaf element if its value is the default
value. Thus, a client that receives an <rpc-reply> for a <get> or
<get-config> request, MJST be prepared to handle the case that a | eaf
node with a default value is not present in the XM.. In this case,
the val ue used by the server is known to be the default val ue.

See Section 7.6.8 for an exanpl e.
7.6.7. NETCONF <edit-config> Operations

When a NETCONF server processes an <edit-config> request, the
el ements of procedure for the | eaf node are

Bj or kl und St andards Track [Page 60]

RFC 6020 YANG Cct ober 2010

If the operation is "nerge" or "replace", the node is created if
it does not exist, and its value is set to the value found in the

XML RPC data

If the operation is "create", the node is created if it does not
exist. |If the node already exists, a "data-exists" error is
returned.

If the operation is "delete", the node is deleted if it exists.
If the node does not exist, a "data-m ssing" error is returned.

7.6.8. Usage Exanple

Gven the following "leaf" statenent, placed in the previously
defined "ssh" container (see Section 7.5.9):

| eaf port {
type inet: port-nunber;
defaul t 22;
description "The port to which the SSH server |istens"

}

A correspondi ng XM i nstance exanpl e:
<port >2022</ port >
To set the value of a leaf with an <edit-config>

<rpc nessage-id="101"
xm ns="urn:ietf:parans: xm : ns: net conf: base: 1. 0"
xm ns: nc="urn:ietf:parans: xn : ns: net conf: base: 1. 0" >
<edi t-config>
<t ar get >
<runni ng/ >
</target>
<confi g>
<system xm ns="http://exanpl e. com schena/ confi g">
<servi ces>
<ssh>
<port >2022</ port >
</ ssh>
</ services>
</ systenp
</ config>
</ edit-config>
</rpc>

Bj or kl und St andards Track [Page 61]

RFC 6020 YANG Cct ober 2010

7.7. The leaf-list Statenent

Where the "leaf" statenent is used to define a sinple scalar variable
of a particular type, the "leaf-list" statenent is used to define an
array of a particular type. The "leaf-list" statenment takes one
argunent, which is an identifier, followed by a bl ock of
substatenments that holds detailed leaf-list information.

The values in a leaf-1ist MJST be uni que.

Conceptual ly, the values in the data tree are always in the canonica
form (see Section 9.1).

If the type referenced by the leaf-list has a default value, it has
no effect in the leaf-1list.

7.7.1. Odering

YANG supports two styles for ordering the entries within lists and
leaf-lists. In many lists, the order of list entries does not inpact
the inplenentation of the Iist’s configuration, and the device is
free to sort the list entries in any reasonable order. The
"description" string for the list may suggest an order to the device
i mpl ementor. YANG calls this style of list "systemordered" and they
are indicated with the statenent "ordered-by systent.

For exanple, a list of valid users would typically be sorted
al phabetically, since the order in which the users appeared in the
configuration would not inpact the creation of those users’ accounts.

In the other style of lists, the order of list entries matters for
the inplenentation of the list’s configuration and the user is
responsi ble for ordering the entries, while the device naintains that
order. YANG calls this style of list "user ordered" and they are
indicated with the statement "ordered-by user”

For exanple, the order in which firewall filters entries are applied
to inconming traffic may affect how that traffic is filtered. The
user would need to decide if the filter entry that discards all TCP
traffic should be applied before or after the filter entry that
allows all traffic fromtrusted interfaces. The choice of order
woul d be crucial.

YANG provides a rich set of facilities within NETCONF' s <edit-config>
operation that allows the order of list entries in user-ordered lists
to be controlled. List entries may be inserted or rearranged,
positioned as the first or last entry in the list, or positioned
before or after another specific entry.

Bj or kl und St andards Track [Page 62]

RFC 6020 YANG Cct ober 2010

7.

7.

7

7.

The "ordered-by" statement is covered in Section 7.7.5.

.2. The leaf-list’s Substatenents

config
description
if-feature
max- el enent s
m n- el enent s
nust

or der ed- by
reference
st at us

type

units

when

3. The min-el enents Statenent

The "min-el enents" statenent, which is optional, takes as an argunent
a non-negative integer that puts a constraint on valid list entries.
Avalid leaf-list or list MJST have at |least mn-elenments entries.

If no "mn-elements" statenent is present, it defaults to zero

The behavi or of the constraint depends on the type of the leaf-list’s
or list’s closest ancestor node in the schema tree that is not a non-
presence contai ner (see Section 7.5.1):

o If this ancestor is a case node, the constraint is enforced if any
ot her node fromthe case exists.

0 Oherwise, it is enforced if the ancestor node exists.

The constraint is further enforced according to the rules in
Section 8.

7.7.4. The max-el enents Statenment

The "max-el ements" statenent, which is optional, takes as an argunent
a positive integer or the string "unbounded", which puts a constraint
on valid list entries. Awvalid leaf-list or list always has at nost
max- el enents entries.

Bj or kl und St andards Track [Page 63]

RFC 6020 YANG Cct ober 2010

If no "max-el enments" statenent is present, it defaults to
"unbounded".

The "max-el ements" constraint is enforced according to the rules in
Section 8.

7.7.5. The ordered-by Statenent

The "ordered-by" statenment defines whether the order of entries
within a list are determ ned by the user or the system The argunent
is one of the strings "systeni or "user". [If not present, order
defaults to "systent.

This statenment is ignored if the list represents state data, RPC
out put paranmeters, or notification content.

See Section 7.7.1 for additional infornmation
7.7.5.1. ordered-by system

The entries in the list are sorted according to an unspecified order
Thus, an inplenentation is free to sort the entries in the nost
appropriate order. An inplenmentation SHOULD use the sane order for
the sane data, regardless of how the data were created. Using a
deterministic order will nake conpari sons possible using sinple tools
like "diff".

This is the default order.

7.7.5.2. ordered-by user
The entries in the list are sorted according to an order defined by
the user. This order is controlled by using special XM attributes
in the <edit-config> request. See Section 7.7.7 for details.

7.7.6. XM Mappi ng Rul es
A leaf-list node is encoded as a series of XM elenents. Each
element’s local nane is the leaf-list’s identifier, and its namespace

is the nodul e’s XM. nanespace (see Section 7.1.3).

The val ue of each leaf-list entry is encoded to XML according to the
type, and sent as character data in the el enent.

The XML el enments representing leaf-list entries MJST appear in the

order specified by the user if the leaf-list is "ordered-by user"
otherwi se, the order is inplenentation-dependent. The XM el enents

Bj or kl und St andards Track [Page