
RFC 9560

Federated Authentication for the Registration Data

Access Protocol (RDAP) Using OpenID Connect

Abstract

The Registration Data Access Protocol (RDAP) provides Representational State Transfer (RESTful)

web services to retrieve registration metadata from domain name and regional internet

registries. RDAP allows a server to make access control decisions based on client identity, and as

such, it includes support for client identification features provided by the Hypertext Transfer

Protocol (HTTP). Identification methods that require clients to obtain and manage credentials

from every RDAP server operator present management challenges for both clients and servers,

whereas a federated authentication system would make it easier to operate and use RDAP

without the need to maintain server-specific client credentials. This document describes a

federated authentication system for RDAP based on OpenID Connect.

Stream:

RFC:

Category:

Published:

ISSN:

Author:

Internet Engineering Task Force (IETF)

9560

Standards Track

April 2024

2070-1721

 S. Hollenbeck

Verisign Labs

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9560

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights

reserved.

Hollenbeck Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9560
https://www.rfc-editor.org/info/rfc9560

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Problem Statement

1.2. Approach

2. Conventions Used in This Document

3. Federated Authentication for RDAP

3.1. RDAP and OpenID Connect

3.1.1. Terminology

3.1.2. Client Considerations

3.1.3. Overview

3.1.4. RDAP Authentication and Authorization Steps

3.1.4.1. Provider Discovery

3.1.4.2. Authentication Request

3.1.4.3. End-User Authorization

3.1.4.4. Authorization Response and Validation

3.1.4.5. Token Processing

3.1.4.6. Delivery of User Information

3.1.5. Specialized Claims and Authorization Scope for RDAP

3.1.5.1. Stated Purposes

3.1.5.2. Do Not Track

4. Common Protocol Features

4.1. OpenID Connect Configuration

4.2. RDAP Query Parameters

4.2.1. RDAP Query Purpose

4.2.2. RDAP Do Not Track

4

4

4

5

5

5

6

6

7

10

11

11

12

12

12

12

12

12

13

14

14

15

16

16

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 2

https://trustee.ietf.org/license-info

4.2.3. Parameter Processing

5. Protocol Features for Session-Oriented Clients

5.1. Data Structures

5.1.1. Session

5.1.2. Device Info

5.2. Client Login

5.2.1. End-User Identifier

5.2.2. OP Issuer Identifier

5.2.3. Login Response

5.2.4. Clients with Limited User Interfaces

5.2.4.1. UI-Constrained Client Login

5.2.4.2. UI-Constrained Client Login Polling

5.3. Session Status

5.4. Session Refresh

5.5. Client Logout

5.6. Request Sequencing

6. Protocol Features for Token-Oriented Clients

6.1. Client Login

6.2. Client Queries

6.3. Access Token Validation

6.4. Token Exchange

7. RDAP Query Processing

8. RDAP Conformance

9. IANA Considerations

9.1. RDAP Extensions Registry

9.2. JSON Web Token Claims Registry

9.3. RDAP Query Purpose Registry

10. Security Considerations

10.1. Authentication and Access Control

16

17

17

17

18

19

19

20

20

22

22

23

24

26

28

29

30

30

30

30

31

31

31

31

31

32

32

34

35

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 3

1. Introduction

The Registration Data Access Protocol (RDAP) provides Representational State Transfer (RESTful)

web services to retrieve registration metadata from domain name and regional internet

registries. RDAP allows a server to make access control decisions based on client identity, and as

such, it includes support for client identification features provided by the Hypertext Transfer

Protocol (HTTP) .

RDAP is specified in multiple documents, including "HTTP Usage in the Registration Data Access

Protocol (RDAP)" , "Security Services for the Registration Data Access Protocol (RDAP)"

, "Registration Data Access Protocol (RDAP) Query Format" , and "JSON

Responses for the Registration Data Access Protocol (RDAP)" . describes

client identification and authentication services that can be used with RDAP, but it does not

specify how any of these services can (or should) be used with RDAP.

1.2. Approach

A basic level of RDAP service can be provided to users who possess an identifier issued by a

recognized provider who can authenticate and validate the user. For example, the identifiers

issued by social media services can be used. Users who require higher levels of service (and who

are willing to share more information about themselves to gain access to that service) can secure

identifiers from specialized providers who are or will be able to provide more detailed

information about the user. Server operators can then make access control decisions based on

the identification information provided by the user.

11. References

11.1. Normative References

11.2. Informative References

Acknowledgments

Author's Address

35

35

37

37

38

[RFC9110]

[RFC7480]

[RFC7481] [RFC9082]

[RFC9083] [RFC7481]

1.1. Problem Statement

The conventional "username and password" authentication method does not scale well in the

RDAP ecosystem. Assuming that all domain name and address registries will eventually provide

RDAP service, it is impractical and inefficient for users to secure login credentials from the

hundreds of different server operators. Authentication methods based on usernames and

passwords do not provide information that describes the user in sufficient detail (while

protecting the personal privacy of the user) for server operators to make fine-grained access

control decisions based on the user's identity. The authentication system used for RDAP needs to

address all of these needs.

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 4

A federated authentication system in which an RDAP server outsources identification and

authentication services to a trusted identity provider would make it easier to operate and use

RDAP by reusing existing identifiers to provide a basic level of access. It can also provide the

ability to collect additional user identification information, and that information can be shared

with the RDAP server operator with the consent of the user in order to help the server operator

make access control decisions. This type of system allows an RDAP server to make access control

decisions based on the nature of a query and the identity, authentication, and authorization

information that is received from the identity provider. This document describes a federated

authentication system for RDAP based on OpenID Connect that meets these needs.

2. Conventions Used in This Document

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

All of the HTTP requests described in this document that are sent from an RDAP client to an

RDAP server use the HTTP GET method as specified in .

Long lines in examples are wrapped using "The Single Backslash Strategy" described in

.

[OIDC]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC9110]

[RFC8792]

3. Federated Authentication for RDAP

RDAP itself does not include built-in security services. Instead, RDAP relies on features that are

available in other protocol layers to provide needed security services including access control,

authentication, authorization, availability, data confidentiality, data integrity, and identification.

A description of each of these security services can be found in "Internet Security Glossary,

Version 2" . This document focuses on a federated authentication system for RDAP that

provides services for authentication, authorization, and identification, allowing a server

operator to make access control decisions. describes general

considerations for RDAP access control, authentication, and authorization.

The conventional client-server authentication model requires clients to maintain distinct

credentials for every RDAP server. This situation can become unwieldy as the number of RDAP

servers increases. Federated authentication mechanisms allow clients to use one credential to

access multiple RDAP servers and reduce client credential management complexity.

[RFC4949]

Section 3 of [RFC7481]

3.1. RDAP and OpenID Connect

OpenID Connect 1.0 is a decentralized, Single Sign-On (SSO) federated authentication

system that allows users to access multiple web resources with one identifier instead of having to

create multiple server-specific identifiers. Users acquire identifiers from OpenID Providers (OPs).

[OIDCC]

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc7481#section-3

Relying Parties (RPs) are applications (such as RDAP) that outsource their user authentication

function to an OP. OpenID Connect is built on top of the authorization framework provided by

the OAuth 2.0 protocol .

The OAuth authorization framework describes a method for users to access protected web

resources without having to hand out their credentials. Instead, clients are issued Access Tokens

by OpenID Providers with the permission of the resource owners. Using OpenID Connect and

OAuth, multiple RDAP servers can form a federation, and clients can access any server in the

federation by providing one credential registered with any OP in that federation. The OAuth

authorization framework is designed for use with HTTP and thus can be used with RDAP.

[RFC6749]

3.1.1. Terminology

This document uses the terms "client" and "server" as defined by RDAP .

This document uses the terms "Access Token", "Authorization Code", "Authorization Endpoint",

"Authorization Grant", "Client Authentication", "Client Identifier", "Protected Resource", "Refresh

Token", "Resource Owner", "Resource Server", and "Token Endpoint" defined by OAuth 2.0

; the terms "Claim Name", "Claim Value", and "JSON Web Token (JWT)" defined by JSON

Web Token (JWT) ; the terms "ID Token" and "UserInfo Endpoint" defined by OpenID

Connect Core 1.0 ; and the term "JWT Access Token" defined by . Additional

terms from Section 1.2 of the OpenID Connect Core specification are incorporated by reference.

This document uses the terms "remote" and "default" to describe the relationship between an

RDAP server and the OpenID Providers that it interacts with. A "remote" OpenID Provider is one

that is identified by the RDAP Client by providing either an Issuer Identifier or an End-User

Identifier in a login request. Whether an Issuer Identifier or End-User Identifier can be provided

in the login request for the purposes of selecting an OpenID Provider can be determined by

retrieving the RDAP Server's OIDC configuration details (see Section 4.1). A "default" OpenID

Provider is one that the RDAP Server will use when the RDAP Client does not provide an Issuer

Identifier or an End-User Identifier in the login request.

This document uses the term "session" to describe a set of interactions between an RDAP client

and an RDAP server during a given period of time. For session-oriented clients (see Section 3.1.2),

the RDAP session is a typical HTTP session starting with a farv1_session/login request and ending

with either a farv1_session/logout request (see Section 5 for a description of both path segments)

or a timeout. For token-oriented clients (see Sections 3.1.2 and 6), the RDAP session corresponds

to the lifespan of an authorization obtained from an OP and the corresponding Access Token,

including any refreshed Access Tokens.

[RFC7480]

[RFC6749]

[RFC7519]

[OIDCC] [RFC9068]

3.1.2. Client Considerations

Clients that delegate OIDC Authentication to an RDAP server as part of session-oriented

interactions and can accept and process HTTP cookies to maintain the session are

known as "session-oriented" clients. This type of RDAP client performs the role of a user agent

. An RDAP server performs the role of an OpenID Connect Core Relying Party (RP). A

web browser used to send queries directly to an RDAP server is an example of a session-oriented

client. Specifications for this type of client can be found in Section 5.

[RFC6265]

[RFC9110]

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 6

Clients that perform OIDC Authentication directly, taking the role of an RP in interactions with an

OP and sending Access Tokens to an RDAP server to authorize RDAP queries, are

known as "token-oriented" clients. An RDAP server performs resource server

functions to verify the tokens received from the client and RP functions to retrieve information

from the OP as necessary to make access control decisions. A web browser running JavaScript

received from a web service that sends queries to an RDAP server directly or through its back-

end web service is an example of a token-oriented client. Specifications for this type of client can

be found in Section 6.

Clients operate as either session-oriented or token-oriented clients, but they do so

consistently by not mixing token-oriented and session-oriented requests while interacting with

an OP. Servers support both types of client to maximize interoperability but choose

to support only one type of client as required by local policy or operating conditions. A server

that does not support a particular client type will not support the protocol features (the data

structures, path segments, parameters, and interactions) specified for that client type. Server

signaling of supported client types is described in Section 4.1.

[RFC6749]

[RFC6749]

MAY MUST

SHOULD MAY

3.1.3. Overview

At a high level, RDAP authentication of a session-oriented client using OpenID Connect requires

completion of the following steps:

An RDAP client sends an RDAP "help" query to an RDAP server to determine the type and

capabilities of the OpenID Providers that are used by the RDAP server. This information is

returned in the rdapConformance section of the response. A value of "farv1" indicates

support for the extension described in this specification. If one or more remote OpenID

Providers are supported, the RDAP client evaluate the additional information

described in Section 4.1 in order to discover the capabilities of the RDAP server and

optionally obtain the set of supported OPs unless that information is available from a trusted

out-of-band source and has already been processed.

An RDAP client sends an RDAP "login" request to an RDAP server as described in Section 5.2.

The RDAP server prepares an Authentication Request containing the desired request

parameters.

The RDAP server sends an Authentication Request to an OpenID Provider (OP) Authorization

Endpoint and redirects the RDAP client to the OpenID Provider using an HTTP redirect.

The OpenID Provider authenticates the End-User.

The OpenID Provider obtains End-User consent/authorization.

The OpenID Provider sends the RDAP Client back to the RDAP server with an Authorization

Code using an HTTP redirect.

The RDAP server requests tokens using the Authorization Code at the OpenID Provider's

Token Endpoint.

The RDAP server receives a response that contains an ID Token and Access Token in the

response body.

The RDAP server validates the tokens as described in and retrieves the claims

associated with the End-User's identity from the OpenID Provider's UserInfo Endpoint.

1.

SHOULD

2.

3.

4.

5.

6.

7.

8.

9.

10. [OIDCC]

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 7

The steps above can be described in a sequence diagram:

The RDAP server can then make identification, authorization, and access control decisions based

on End-User identity information and local policies. Note that OpenID Connect describes

different process flows for other types of clients, such as script-based or command-line clients.

Figure 1

End OpenID RDAP RDAP

User Provider Client Server

 | | | |

 | | |-----Help Query---->|

 | | | |

 | | |<---Help Response---|

 | | | |

 |-------Login Request------>| |

 | | | |

 | | |---Login Request--->|

 | | | |

 | |<-----Authentication Request------|

 | | | |

 | Credential--| | |

 |<--Request | | |

 | | | |

 |--Credential | | |

 | Response->| | |

 | | | |

 | |-----Authentication Response----->|

 | | | |

 | |<----------Token Request----------|

 | | | |

 | |-----------Token Response-------->|

 | | | |

 | |<----------Claim Request----------|

 | | | |

 | |-----------Claim Response-------->|

 | | | |

 | | |<--Login Response---|

 | | | |

 |<------Login Response------| |

 | | | |

 |----------RDAP Query------>| |

 | | | |

 | | |-----RDAP Query---->|

 | | | |

 | | |<---RDAP Response---|

 | | | |

 |<------RDAP Response-------| |

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 8

RDAP authentication of a token-oriented client using OpenID Connect requires completion of the

following steps:

An RDAP client sends an RDAP "help" query to an RDAP server to determine the type and

capabilities of the OpenID Providers (OPs) that are used by the RDAP server. This

information is returned in the rdapConformance section of the response. A value of "farv1"

indicates support for the extension described in this specification. If one or more remote

OpenID Providers are supported, the RDAP client evaluate the additional

information described in Section 4.1 in order to discover the capabilities of the RDAP server

and optionally obtain the set of supported OPs. Support for token-oriented clients requires a

default OP.

The RDAP client determines the End-User's OP and confirms that it's supported by the RDAP

server.

The RDAP client sends an Authentication Request to the OP's Authorization Endpoint.

The OP authenticates the End-User.

The OP obtains End-User consent/authorization.

The OP returns an Authorization Code to the RDAP client.

The RDAP client requests tokens using the Authorization Code at the OP's Token Endpoint.

The RDAP client receives a response that contains an ID Token and an Access Token in the

response body.

The RDAP client monitors the token validity period and either refreshes the token or

requests new tokens as necessary.

The RDAP client sends queries that require user identification, authentication, and

authorization to an RDAP server that include an Access Token in an HTTP "Authorization"

header using the "Bearer" authentication scheme described in .

The RDAP server validates the Access Token and retrieves the claims associated with the

End-User's identity from the OP's UserInfo Endpoint.

The RDAP server determines the End-User's authorization level and processes the query in

accordance with server policies.

1.

SHOULD

2.

3.

4.

5.

6.

7.

8.

9.

10.

[RFC6750]

11.

12.

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 9

The steps above can be described in a sequence diagram:

Figure 2

End OpenID RDAP RDAP

User Provider Client Server

 | | | |

 | | |-----Help Query---->|

 | | | |

 | | |<----Help Response--|

 | | | |

 |-------Login Request------>| |

 | | | |

 | |<-Authentication |

 | | Request---| |

 | | | |

 |<-Credential | | |

 | Request---| | |

 | | | |

 |--Credential | | |

 | Response->| | |

 | | | |

 | |--Authentication |

 | | Response--->| |

 | | | |

 | |<-Token | |

 | | Request----| |

 | | | |

 | |--Token | |

 | | Response-->| |

 | | | |

 |<------Login Response------| |

 | | | |

 |-----RDAP Query----------->| |

 | | | |

 | | |----RDAP Query----->|

 | | | |

 | |<------------Claim |

 | | Request---------------|

 | | | |

 | |-------------Claim |

 | | Response------------->|

 | | | |

 | | |<---RDAP Response---|

 | | | |

 |<----RDAP Response---------| |

3.1.4. RDAP Authentication and Authorization Steps

End-Users present an identifier (an OpenID) issued by an OP to use OpenID Connect with

RDAP. If the RDAP server supports a default OpenID Provider or if provider discovery is not

supported, the End-User identifier be omitted. An OP include support for the claims

described in Section 3.1.5 to provide additional information needed for RDAP End-User

authorization; in the absence of these claims, clients and servers make authorization and

MAY

MAY SHOULD

MAY

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 10

access control decisions as appropriate given any other information returned from the OP.

OpenID Connect requires RPs to register with OPs to use OpenID Connect services for an End-

User. The registration process is often completed using out-of-band methods, but it is also

possible to use the automated method described by the OpenID Connect Dynamic Client

Registration protocol . The parties involved can use any method that is mutually

acceptable.

[OIDCR]

3.1.4.1. Provider Discovery

An RDAP server/RP needs to be able to map an End-User's identifier to an OP. This can be

accomplished using the OpenID Connect Discovery protocol , but that protocol

is not widely implemented. Out-of-band methods are also possible and can be more dependable.

For example, an RP can support a limited number of OPs and maintain internal associations of

those identifiers with the OPs that issued them.

Alternatively, if mapping an End-User's identifier is not possible, or not supported by the RDAP

server, the RDAP server support explicit specification of a remote OP by the RDAP client

in the form of a query parameter as described in Section 5.2.2 unless the remote OP has been

identified using an out-of-band mechanism. An RDAP server provide information about its

capabilities and supported OPs in the "help" query response in the "farv1_openidcConfiguration"

data structure described in Section 4.1. An RDAP server/RP support at least one of these

methods of OP discovery.

OPTIONAL [OIDCD]

SHOULD

MUST

MUST

3.1.4.2. Authentication Request

Once the OP is known, an RP form an Authentication Request and send it to the OP as

described in Section 3 of the OpenID Connect Core protocol . The authentication path

followed (authorization, implicit, or hybrid) will depend on the Authentication Request

response_type set by the RP. The remainder of the processing steps described here assume that

the Authorization Code Flow is being used by setting "response_type=code" in the Authentication

Request.

The benefits of using the Authorization Code Flow for authenticating a human user are described

in Section 3.1 of the OpenID Connect Core protocol . The Implicit Flow is more commonly

used by clients implemented in a web browser using a scripting language; it is described in

Section 3.2 of the OpenID Connect Core protocol . At the time of this writing, the Implicit

Flow is considered insecure and efforts are being made to deprecate the flow. The Hybrid Flow

(described in Section 3.3 of the OpenID Connect Core protocol) combines elements of the

Authorization Code and Implicit Flows by returning some tokens from the Authorization

Endpoint and others from the Token Endpoint.

An Authentication Request can contain several parameters. parameters are specified

in Section 3.1.2.1 of the OpenID Connect Core protocol . Apart from these parameters, it is

 that the RP include the optional "login_hint" parameter in the request, with the

value being that of the "farv1_id" query parameter of the End-User's RDAP "login" request, if

provided. Passing the "login_hint" parameter allows a client to pre-fill login form information, so

logging in can be more convenient for users. Other parameters be included.

MUST

[OIDCC]

[OIDCC]

[OIDCC]

[OIDCC]

REQUIRED

[OIDCC]

RECOMMENDED

MAY

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 11

The OP receives the Authentication Request and attempts to validate it as described in Section

3.1.2.2 of the OpenID Connect Core protocol . If the request is valid, the OP attempts to

authenticate the End-User as described in Section 3.1.2.3 of the OpenID Connect Core protocol

. The OP returns an error response if the request is not valid or if any error is

encountered.

[OIDCC]

[OIDCC]

3.1.4.3. End-User Authorization

After the End-User is authenticated, the OP obtain consent from the End-User to release

authorization information to the RDAP Server/RP. This process is described in Section 3.1.2.4 of

the OpenID Connect Core protocol .

MUST

[OIDCC]

3.1.4.4. Authorization Response and Validation

After obtaining an authorization result, the OP will send a response to the RP that provides the

result of the authorization process using an Authorization Code. The RP validate the

response. This process is described in Sections 3.1.2.5 - 3.1.2.7 of the OpenID Connect Core

protocol .

MUST

[OIDCC]

3.1.4.5. Token Processing

The RP sends a Token Request using the Authorization Grant to a Token Endpoint to obtain a

Token Response containing an Access Token, ID Token, and an Refresh Token. The RP

 validate the Token Response. This process is described in Section 3.1.3.5 of the OpenID

Connect Core protocol .

OPTIONAL

MUST

[OIDCC]

3.1.4.6. Delivery of User Information

The set of claims can be retrieved by sending a request to a UserInfo Endpoint using the Access

Token. The claims are returned in the ID Token. The process of retrieving claims from a UserInfo

Endpoint is described in Section 5.3 of the OpenID Connect Core protocol .

OpenID Connect specifies a set of standard claims in Section 5.1 of the OpenID Connect Core

protocol . Additional claims for RDAP are described in Section 3.1.5.

[OIDCC]

[OIDCC]

3.1.5. Specialized Claims and Authorization Scope for RDAP

OpenID Connect claims are pieces of information used to make assertions about an entity.

Section 5 of the OpenID Connect Core protocol describes a set of standard claims. Section

5.1.2 of notes that additional claims be used, and it describes a method to create

them. The set of claims that are specific to RDAP are associated with an OAuth scope request

parameter value (see) of "rdap".

[OIDCC]

[OIDCC] MAY

Section 3.3 of [RFC6749]

3.1.5.1. Stated Purposes

Communities of RDAP users and operators may wish to make and validate claims about a user's

"need to know" when it comes to requesting access to a protected resource. For example, a law

enforcement agent or a trademark attorney may wish to be able to assert that they have a legal

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc6749#section-3.3

right to access a protected resource, and a server operator may need to be able to receive and

validate that claim. These needs can be met by defining and using an additional

"rdap_allowed_purposes" claim.

The "rdap_allowed_purposes" claim identifies the purposes for which access to a protected

resource can be requested by an End-User. Use of the "rdap_allowed_purposes" claim is

; processing of this claim is subject to server acceptance of the purposes, the trust level

assigned to this claim by the server, and successful authentication of the End-User. Unrecognized

purpose values be ignored, and the associated query be processed as if the

unrecognized purpose value was not present at all. See Section 9.3 for a description of the IANA

considerations associated with this claim.

The "rdap_allowed_purposes" claim is represented as an array of case-sensitive StringOrURI

values as specified in Section 2 of the JSON Web Token (JWT) specification . An

example:

"rdap_allowed_purposes": ["domainNameControl","dnsTransparency"]

Purpose values are assigned to an End User's credential by an Identity Provider. Identity

Providers ensure that appropriate purpose values are only assigned to End User identities

that are authorized to use them.

OPTIONAL

MUST MUST

[RFC7519]

MUST

3.1.5.2. Do Not Track

Communities of RDAP users and operators may wish to make and validate claims about a user's

wish to not have their queries logged, tracked, or recorded. For example, a law enforcement

agent may wish to assert that their queries are part of a criminal investigation and should not be

tracked due to a risk of query exposure compromising the investigation, and a server operator

may need to be able to receive and validate that claim. These needs can be met by defining and

using an additional "do not track" claim.

The "do not track" ("rdap_dnt_allowed") claim can be used to identify an End-User that is

authorized to perform queries without the End-User's association with those queries being

logged, tracked, or recorded by the server. Client use of the "rdap_dnt_allowed" claim is

. Server operators log, track, or record any association of the query and the

End-User's identity if the End-User is successfully identified and authorized, if the

"rdap_dnt_allowed" claim is present, if the value of the claim is "true", and if accepting the claim

complies with local regulations regarding logging and tracking.

The "rdap_dnt_allowed" value is represented as a JSON boolean literal. An example:

rdap_dnt_allowed: true

No special query tracking processing is required if this claim is not present or if the value of the

claim is "false". Use of this claim be limited to End-Users who are granted "do not track"

privileges in accordance with service policies and regulations. Specification of these policies and

regulations is beyond the scope of this document.

OPTIONAL MUST NOT

MUST

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc7519#section-2

4. Common Protocol Features

As described in Section 3.1.4.1, an RDAP server provide information about its capabilities

and supported OPs in a "help" query response. This specification describes a new

"farv1_openidcConfiguration" data structure that describes the OpenID Connect configuration

and related extension features supported by the RDAP server. This data structure is returned to

all client types.

MUST

4.1. OpenID Connect Configuration

The "farv1_openidcConfiguration" data structure is an object with the following members:

"sessionClientSupported": () a boolean value that describes RDAP server support

for session-oriented clients (see Section 3.1.2).

"tokenClientSupported": () a boolean value that describes RDAP server support for

token-oriented clients (see Section 3.1.2).

"dntSupported": () a boolean value that describes RDAP server support for the

"farv1_dnt" query parameter (see Section 4.2.2).

"providerDiscoverySupported": () a boolean value that describes RDAP server

support for discovery of providers of End-User identifiers. The default value is "true".

"issuerIdentifierSupported": () a boolean value that describes RDAP server support

for explicit client specification of an Issuer Identifier. The default value is "true".

"implicitTokenRefreshSupported": () a boolean value that describes RDAP server

support for implicit token refresh. The default value is "false".

"openidcProviders": () a list of objects with the following members that describes

the set of OPs that are supported by the RDAP server. This data is if the value

of issuerIdentifierSupported is "true":

"iss": () a URI value that represents the Issuer Identifier of the OP as per the

OpenID Connect Core specification .

"name": () a string value representing the human-friendly name of the OP.

"default": () a boolean value that describes RDAP server support for an

 default OP that will be used when a client omits the "farv1_id" and "farv1_iss"

query parameters from a "farv1_session/login" request. Only one member of this set can be

identified as the default OP by setting a value of "true". The default value is "false".

"additionalAuthorizationQueryParams": () an object where each member

represents an OAuth authorization request parameter name-value pair supported by the

OP. The name represents an OAuth query parameter, and the value is the query parameter

value. A token-oriented RDAP client add these query parameters and their

corresponding values to the Authentication Request URL when requesting authorization

by a specified OP through a proxy OP.

An RDAP server set either the "sessionClientSupported" or the "tokenClientSupported"

value to "true". Both values be set to "true" if an RDAP server supports both types of clients.

1. REQUIRED

2. REQUIRED

3. REQUIRED

4. OPTIONAL

5. OPTIONAL

6. OPTIONAL

7. OPTIONAL

RECOMMENDED

a. REQUIRED

[OIDCC]

b. REQUIRED

c. OPTIONAL

OPTIONAL

d. OPTIONAL

SHOULD

MUST

MAY

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 14

The "providerDiscoverySupported" value has a direct impact on the use of the "farv1_id" query

parameter described in Sections 3.1.4.2 and 5.2.1. The value of "providerDiscoverySupported"

 be "true" for an RDAP server to properly accept and process "farv1_id" query parameters.

Similarly, the "issuerIdentifierSupported" value has a direct impact on the use of the "farv1_iss"

query parameter described in Section 5.2.2. The value of "issuerIdentifierSupported" be

"true" for an RDAP server to properly accept and process "farv1_iss" query parameters.

An example of a "farv1_openidcConfiguration" data structure:

MUST

MUST

Figure 3

"farv1_openidcConfiguration": {

 "sessionClientSupported": true,

 "tokenClientSupported": true,

 "dntSupported": false,

 "providerDiscoverySupported": true,

 "issuerIdentifierSupported": true,

 "openidcProviders":

 [

 {

 "iss": "https://idp.example.com",

 "name": "Example IDP"

 },

 {

 "iss": "https://accounts.example.net",

 "name": "Login with EXAMPLE",

 "additionalAuthorizationQueryParams": {

 "kc_idp_hint": "examplePublicIDP"

 }

 },

 {

 "iss": "https://auth.nic.example/auth/realms/rdap",

 "name": "Default OP for the Example RDAP server",

 "default": true

 }

]

}

"farv1_qp":

"farv1_dnt":

4.2. RDAP Query Parameters

This specification describes two query parameters for use with RDAP queries that

request access to information associated with protected resources:

A query parameter to identify the purpose of the query.

A query parameter to request that the server not log or otherwise record

information about the identity associated with a query.

One or both parameters be added to an RDAP request URI using the syntax described in the

"application/x-www-form-urlencoded" section of the WHATWG URL Standard .

OPTIONAL

MAY

[HTMLURL]

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 15

4.2.1. RDAP Query Purpose

This query is represented as a "key=value" pair using a key value of "farv1_qp" and a value

component that contains a single query purpose string from the set of allowed purposes

associated with the End-User's identity (see Section 3.1.5.1). If present, the server

compare the value of the parameter to the "rdap_allowed_purposes" claim values associated with

the End-User's identity and ensure that the requested purpose is present in the set of allowed

purposes. The RDAP server choose to ignore both the requested purpose and the

"rdap_allowed_purposes" claim values if they are inconsistent with local server policy. The

server return an HTTP 403 (Forbidden) response if the requested purpose is not an allowed

purpose. If the "farv1_qp" parameter is not present, the server process the query and make

an access control decision based on any other information known to the server about the End-

User and the information they are requesting. For example, a server treat the request as one

performed by an unidentified or unauthenticated user and return either an error or an

appropriate subset of the available data. An example domain query using the "farv1_qp" query

parameter:

https://example.com/rdap/domain/example.com?farv1_qp=legalActions

SHOULD

MAY

MUST

MUST

MAY

4.2.2. RDAP Do Not Track

This query is represented as a "key=value" pair using a key value of "farv1_dnt" and a value

component that contains a single boolean value. A value of "true" indicates that the End-User is

requesting that their query is not tracked or logged in accordance with server policy. A value of

"false" indicates that the End-User is accepting that their query can be tracked or logged in

accordance with server policy. The server return an HTTP 403 (Forbidden) response if the

server is unable to perform the action requested by this query parameter. An example domain

query using the "farv1_dnt" query parameter:

https://example.com/rdap/domain/example.com?farv1_dnt=true

MUST

4.2.3. Parameter Processing

Unrecognized query parameters be ignored. An RDAP server that processes an

authenticated query determine if the End-User identification information is associated

with an OP that is recognized and supported by the server. RDAP servers reject queries

that include identification information that is not associated with a supported OP by returning

an HTTP 400 (Bad Request) response. An RDAP server that receives a query containing

identification information associated with a recognized OP perform the steps required to

authenticate the user with the OP, process the query, and return an RDAP response that is

appropriate for the End-User's level of authorization and access.

MUST

MUST

MUST

MUST

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 16

5. Protocol Features for Session-Oriented Clients

This specification adds the following features to RDAP that are commonly used by session-

oriented clients:

Data structures to return information that describes an established session and the

information needed to establish a session for a UI-constrained device.

A query parameter to request authentication for a specific End-User identity.

A query parameter to support authentication for a specific End-User identity on a device

with a constrained user interface.

A query parameter to identify the purpose of the query.

A query parameter to request that the server not log or otherwise record information about

the identity associated with a query.

Path segments to start, stop, refresh, and determine the status of an authenticated session for

a specific End-User identity.

1.

2.

3.

4.

5.

6.

"farv1_session":

"farv1_deviceInfo":

5.1. Data Structures

This specification describes two new data structures that are used to return information to a

session-oriented client:

A data structure that contains information that describes an established

session.

A data structure that contains information that describes an active attempt

to establish a session on a UI-constrained device.

5.1.1. Session

The "farv1_session" data structure is an object that contains the following members:

"userID": an string value that represents the End-User identifier associated with

the session.

"iss": an URI value that represents the issuer of the End-User identifier associated

with the session.

"userClaims": an object that contains the set of claims associated with the End-

User's identity based on the user information provided by the OP as described in Section

3.1.4.6 and processed by the RDAP server in the authentication and authorization process.

The set of possible values is determined by OP policy and RDAP server policy.

"sessionInfo": an object that contains two members:

"tokenExpiration": an integer value that represents the number of seconds that remain in

the lifetime of the Access Token.

"tokenRefresh": a boolean value that indicates if the OP supports refresh tokens. As

described in , support for refresh tokens is .

1. OPTIONAL

2. OPTIONAL

3. OPTIONAL

4. OPTIONAL

a.

b.

[RFC6749] OPTIONAL

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 17

Note that all of the members of the "farv1_session" data structure are . See Section 5.2.3

for instructions describing when to return the minimum set of members.

An example of a "farv1_session" data structure:

OPTIONAL

Figure 4

 "farv1_session": {

 "userID": "user.idp.example",

 "iss": "https://idp.example.com",

 "userClaims": {

 "sub": "103892603076825016132",

 "name": "User Person",

 "given_name": "User",

 "family_name": "Person",

 "picture": "https://lh3.example.com/a-/AOh14=s96-c",

 "email": "user@example.com",

 "email_verified": true,

 "locale": "en",

 "rdap_allowed_purposes": [

 "domainNameControl",

 "personalDataProtection"

],

 "rdap_dnt_allowed": false

 },

 "sessionInfo": {

 "tokenExpiration": 3599,

 "tokenRefresh": true

 }

 }

5.1.2. Device Info

The flow described in Section 3.1.4 requires an End-User to interact with a server using a user

interface that can process HTTP. This will not work well in situations where the client is

automated or an End-User is using a command-line user interface such as curl or wget. This

limitation can be addressed using a web browser on a second device. The information that needs

to be entered using the web browser is contained in the "farv1_deviceInfo" data structure, an

object that contains members as described in .Section 3.2 of [RFC8628]

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 18

https://curl.se/
https://www.gnu.org/software/wget/
https://www.rfc-editor.org/rfc/rfc8628#section-3.2

An example of a "farv1_deviceInfo" data structure:

Figure 5

 "farv1_deviceInfo": {

 "device_code": "AH-1ng2ezu",

 "user_code": "NJJQ-GJFC",

 "verification_uri": "https://www.example.com/device",

 "verification_uri_complete":

 "https://www.example.com/device?user_code=NJJQ-GJFC",

 "expires_in": 1800,

 "interval": 5

 }

5.2. Client Login

Client authentication is requested by sending a "farv1_session/login" request to an RDAP server.

If the RDAP server supports only remote OpenID Providers, the "farv1_session/login" request

 include at least one End-User Identifier or OP Issuer Identifier.

The server sets an HTTP cookie as described in when the "farv1_session/login" request

is received and processed successfully. The client include the session cookie received from

the server in any RDAP request within the scope of that session, including "farv1_session/

refresh", "farv1_session/status", and "farv1_session/logout". A "farv1_session/login" followed by

another "farv1_session/login" that does not include an HTTP cookie start a new session on

the server that includes a new cookie. A server that receives a "farv1_session/login" followed by

another "farv1_session/login" that includes an HTTP cookie return an HTTP 409 (Conflict)

response.

To help reduce the risk of resource starvation, a server reject a "farv1_session/login" request

and refuse to start a new session by returning an HTTP 409 (Conflict) response if a server-side

maximum number of concurrent sessions per user exists and the client exceeds that limit.

Additionally, an active session be removed by the server due to timeout expiration or

because a maximum session lifetime has been exceeded. Clients proactively monitor the

"tokenExpiration" value associated with an active session and refresh the session as appropriate

to provide a positive user experience.

MUST

[RFC6265]

MUST

MUST

MUST

MAY

MAY

SHOULD

5.2.1. End-User Identifier

The End-User identifier is delivered using one of two methods: by adding a query component to

an RDAP request URI using the syntax described in the "application/x-www-form-urlencoded"

section of the WHATWG URL Standard or by including an HTTP "Authorization"

request header for the Basic authentication scheme as described in . Clients can use

either of these methods to deliver the End-User identifier to a server that supports remote

OpenID Providers and provider discovery. Servers that support remote OpenID Providers and

provider discovery accept both methods. If the RDAP server supports a default OpenID

Provider or if provider discovery is not supported, the End-User identifier be omitted.

[HTMLURL]

[RFC7617]

MUST

MAY

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 19

The query parameter used to deliver the End-User identifier is represented as an

"key=value" pair using a key value of "farv1_id" and a value component that contains the client

identifier issued by an OP. An example for client identifier "user.idp.example":

The authorization header for the Basic authentication scheme contains a base64-encoded

representation of the client identifier issued by an OP. No password is provided. An example for

client identifier "user.idp.example":

https://example.com/rdap/farv1_session/login

Authorization: Basic dXNlci5pZHAuZXhhbXBsZQ==

An example for use with a default OpenID Provider:

https://example.com/rdap/farv1_session/login

OPTIONAL

========== NOTE: '\' line wrapping per RFC 8792 ===========

https://example.com/rdap/farv1_session/\

login?farv1_id=user.idp.example

5.2.2. OP Issuer Identifier

The OP's Issuer Identifier is delivered by adding a query component to an RDAP request URI

using the syntax described in the "application/x-www-form-urlencoded" section of the WHATWG

URL Standard . If the RDAP server supports a default OpenID Provider, the Issuer

Identifier be omitted.

The query parameter used to deliver the OP's Issuer Identifier is represented as an

"key=value" pair using a key value of "farv1_iss" and a value component that contains the Issuer

Identifier associated with an OP. An RDAP server accept Issuer Identifiers not specified in

the "farv1_openidcConfiguration" data structure and also decide to accept specific Issuer

Identifiers only from specific clients. An example for Issuer Identifier "https://idp.example.com":

[HTMLURL]

MAY

OPTIONAL

MAY

MAY

========== NOTE: '\' line wrapping per RFC 8792 ===========

https://example.com/rdap/farv1_session/\

login?farv1_iss=https://idp.example.com

5.2.3. Login Response

The response to this request be a valid RDAP response per . It include

any members that relate to a specific RDAP object type (e.g., "events" or "status"). In addition, the

response include an indication of the requested operation's success or failure in the

"notices" data structure. If successful, the response include a "farv1_session" data structure

that includes a "sessionInfo" object and an "userClaims" object. If unsuccessful, the

response include a "farv1_session" data structure that omits the "userClaims" and

"sessionInfo" objects.

MUST [RFC9083] MUST NOT

MAY

MUST

OPTIONAL

MUST

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 20

An example of a successful "farv1_session/login" response:

Figure 6

 {

 "rdapConformance": [

 "farv1"

],

 "lang": "en-US",

 "notices": [

 {

 "title": "Login Result",

 "description": [

 "Login succeeded"

]

 }

],

 "farv1_session": {

 "userID": "user.idp.example",

 "iss": "https://idp.example.com",

 "userClaims": {

 "sub": "103892603076825016132",

 "name": "User Person",

 "given_name": "User",

 "family_name": "Person",

 "picture": "https://lh3.example.com/a-/AOh14=s96-c",

 "email": "user@example.com",

 "email_verified": true,

 "locale": "en",

 "rdap_allowed_purposes": [

 "domainNameControl",

 "personalDataProtection"

],

 "rdap_dnt_allowed": false

 },

 "sessionInfo": {

 "tokenExpiration": 3599,

 "tokenRefresh": true

 }

 }

 }

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 21

An example of a failed "farv1_session/login" response:

Figure 7

 {

 "rdapConformance": [

 "farv1"

],

 "lang": "en-US",

 "notices": [

 {

 "title": "Login Result",

 "description": [

 "Login failed"

]

 }

],

 "farv1_session": {

 "userID": "user.idp.example",

 "iss": "https://idp.example.com"

 }

 }

5.2.4. Clients with Limited User Interfaces

"OAuth 2.0 Device Authorization Grant" provides an method to request user

authorization from devices that have an Internet connection but lack a suitable browser for a

more conventional OAuth flow. This method requires an End-User to use a second device (such as

a smart telephone) that has access to a web browser for entry of a code sequence that is

presented on the UI-constrained device.

[RFC8628] OPTIONAL

5.2.4.1. UI-Constrained Client Login

Client authentication is requested by sending a "farv1_session/device" request to an RDAP server.

If the RDAP server supports only remote OpenID Providers, the "farv1_session/device" request

 include either an End-User identifier as described in Section 5.2.1 or an OP Issuer Identifier

as described in Section 5.2.2.

An example using wget for client identifier "user.idp.example":

The authorization header for the Basic authentication scheme contains a base64-encoded

representation of the client identifier issued by an OP. No password is provided.

MUST

Figure 8

========== NOTE: '\' line wrapping per RFC 8792 ===========

 wget -qO- "https://example.com/rdap/farv1_session/device\

 ?farv1_id=user.idp.example"

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 22

An example using curl and an authorization header:

The response to this request be a valid RDAP response per . It include

any members that relate to a specific RDAP object type (e.g., "events" or "status"). In addition, the

response include an indication of the requested operation's success or failure in the

"notices" data structure and, if successful, a "farv1_deviceInfo" data structure.

An example of a "farv1_session/device" response:

Figure 9

========== NOTE: '\' line wrapping per RFC 8792 ===========

 curl -H "Authorization: Basic dXNlci5pZHAuZXhhbXBsZQ=="\

 "https://example.com/rdap/farv1_session/device"

MUST [RFC9083] MUST NOT

MAY

Figure 10

 {

 "rdapConformance": [

 "farv1"

],

 "lang": "en-US",

 "notices": [

 {

 "title": "Device Login Result",

 "description": [

 "Login succeeded"

]

 }

],

 "farv1_deviceInfo": {

 "device_code": "AH-1ng2ezu",

 "user_code": "NJJQ-GJFC",

 "verification_uri": "https://www.example.com/device",

 "verification_uri_complete":

 "https://www.example.com/device?user_code=NJJQ-GJFC",

 "expires_in": 1800,

 "interval": 5

 }

 }

5.2.4.2. UI-Constrained Client Login Polling

After successful processing of the "farv1_session/device" request, the client send a

"farv1_session/devicepoll" request to the RDAP server to continue the login process. This request

initiates the polling function described in on the RDAP server. The RDAP server polls

the OP as described in , allowing the RDAP server to wait for the End-

User to enter the information returned from the "farv1_session/device" request using the

interface on their second device. After the End-User has completed that process, or if the process

MUST

[RFC8628]

Section 3.4 of [RFC8628]

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 23

https://www.rfc-editor.org/rfc/rfc8628#section-3.4

fails or times out, the OP will respond to the polling requests with an indication of success or

failure. If the RDAP server supports only remote OpenID Providers, the "farv1_session/

devicepoll" request include either an End-User identifier as described in Section 5.2.1 or an

OP Issuer Identifier as described in Section 5.2.2.

The "farv1_session/devicepoll" request also include a "farv1_dc" query parameter. The

query parameter is represented as an "key=value" pair using a key value of "farv1_dc"

and a value component that contains the value of the device_code that was returned in the

response to the "farv1_session/device" request.

An example using wget:

An example using curl:

The response to this request use the response structures described in Section 5.2. RDAP

query processing can continue normally on the UI-constrained device once the device polling

process has been completed successfully.

MUST

MUST

OPTIONAL

Figure 11

========== NOTE: '\' line wrapping per RFC 8792 ===========

 wget -qO- --keep-session-cookies --save-cookies cookie.txt\

 "https://example.com/rdap/farv1_session/devicepoll\

 ?farv1_id=user.idp.example&farv1_dc=AH-1ng2ezu"

Figure 12

========== NOTE: '\' line wrapping per RFC 8792 ===========

 curl -c cookie.txt "https://example.com/rdap/farv1_session/\

 devicepoll?farv1_id=user.idp.example&farv1_dc=AH-1ng2ezu"

MUST

5.3. Session Status

Clients send a query to an RDAP server to determine the status of an existing login session

using a "farv1_session/status" path segment. An example "farv1_session/status" request:

https://example.com/rdap/farv1_session/status

The response to this request be a valid RDAP response per . It include

any members that relate to a specific RDAP object type (e.g., "events" or "status"). In addition, the

response include an indication of the requested operation's success or failure in the

"notices" data structure. If the operation is successful and an active session exists, the response

 include a "farv1_session" data structure that includes a "sessionInfo" object and an

 "userClaims" object. If the operation is unsuccessful or if no active session exists, the

response include a "farv1_session" object.

MAY

MUST [RFC9083] MUST NOT

MAY

MUST

OPTIONAL

MUST NOT

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 24

An example of a "farv1_session/status" response for an active session:

If the operation is successful and an active session does not exist, the response note the lack

of an active session in the "notices" data structure. The "farv1_session" data structure be

omitted.

Figure 13

 {

 "rdapConformance": [

 "farv1"

],

 "lang": "en-US",

 "notices": [

 {

 "title": "Session Status Result",

 "description": [

 "Session status succeeded"

]

 }

],

 "farv1_session": {

 "userID": "user.idp.example",

 "iss": "https://idp.example.com",

 "userClaims": {

 "sub": "103892603076825016132",

 "name": "User Person",

 "given_name": "User",

 "family_name": "Person",

 "picture": "https://lh3.example.com/a-/AOh14=s96-c",

 "email": "user@example.com",

 "email_verified": true,

 "locale": "en",

 "rdap_allowed_purposes": [

 "domainNameControl",

 "personalDataProtection"

],

 "rdap_dnt_allowed": false

 },

 "sessionInfo": {

 "tokenExpiration": 3490,

 "tokenRefresh": true

 }

 }

 }

MAY

MUST

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 25

An example of a "farv1_session/status" response with no active session:

Figure 14

 {

 "rdapConformance": [

 "farv1"

],

 "lang": "en-US",

 "notices": [

 {

 "title": "Session Status Result",

 "description": [

 "Session status succeeded",

 "No active session"

]

 }

]

 }

5.4. Session Refresh

Clients send a request to an RDAP server to refresh or extend an existing login session using

a "farv1_session/refresh" path segment. The RDAP server attempt to refresh the Access

Token associated with the current session as part of extending the session for a period of time

determined by the RDAP server. As described in , OP support for refresh tokens is

. An RDAP server determine if the OP supports token refresh and process the

refresh request by either requesting refresh of the Access Token or returning a response that

indicates that token refresh is not supported by the OP in the "notices" data structure. An

example "farv1_session/refresh" request:

https://example.com/rdap/farv1_session/refresh

The response to this request be a valid RDAP response per . It include

any members that relate to a specific RDAP object type (e.g., "events" or "status"). In addition, the

response include an indication of the requested operation's success or failure in the

"notices" data structure. The response include a "farv1_session" data structure that

includes a "sessionInfo" object and an "userClaims" object. If unsuccessful but an

active session exists, the response include a "farv1_session" data structure that includes a

"sessionInfo" object and an "userClaims" object. If unsuccessful and no active session

exists, the response omit the "farv1_session" data structure.

MAY

MAY

[RFC6749]

OPTIONAL MUST

MUST [RFC9083] MUST NOT

MAY

MUST

OPTIONAL

MUST

OPTIONAL

MUST

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 26

An example of a successful "farv1_session/refresh" response:

Alternatively, an RDAP server attempt to refresh an Access Token upon receipt of a query if

the Access Token associated with an existing session has expired and the corresponding OP

supports token refresh. The default RDAP server behavior is described in the

"implicitTokenRefreshSupported" value that's included in the "farv1_openidcConfiguration" data

structure (see Section 4.1).

If the value of "implicitTokenRefreshSupported" is "true", the client either explicitly attempt

to refresh the session using the "farv1_session/refresh" query or depend on the RDAP server to

attempt to refresh the session as necessary when an RDAP query is received by the server. In this

case, a server attempt to refresh the Access Token upon receipt of a query if the Access

Figure 15

 {

 "rdapConformance": [

 "farv1"

],

 "lang": "en-US",

 "notices": [

 {

 "title": "Session Refresh Result",

 "description": [

 "Session refresh succeeded",

 "Token refresh succeeded."

]

 }

],

 "farv1_session": {

 "userID": "user.idp.example",

 "iss": "https://idp.example.com",

 "userClaims": {

 "sub": "103892603076825016132",

 "name": "User Person",

 "given_name": "User",

 "family_name": "Person",

 "picture": "https://lh3.example.com/a-/AOh14=s96-c",

 "email": "user@example.com",

 "email_verified": true,

 "locale": "en",

 "rdap_allowed_purposes": [

 "domainNameControl",

 "personalDataProtection"

],

 "rdap_dnt_allowed": false

 },

 "sessionInfo": {

 "tokenExpiration": 3599,

 "tokenRefresh": true

 }

 }

 }

MAY

MAY

MUST

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 27

Token associated with an existing session has expired and the corresponding OP supports token

refresh. Servers return an HTTP 401 (Unauthorized) response to a query if an attempt to

implicitly refresh an existing session fails.

If the value of "implicitTokenRefreshSupported" is "false", the client explicitly attempt to

refresh the session using the "farv1_session/refresh" query to extend an existing session. If a

session cannot be extended for any reason, the client establish a new session to continue

authenticated query processing by submitting a "farv1_session/login" query. If the OP does not

support token refresh, the client submit a new "farv1_session/login" request to establish a

new session once an Access Token has expired.

Clients send a "farv1_session/refresh" request in the absence of an active login

session because the request conflicts with the current state of the server. Servers return an

HTTP 409 (Conflict) response if a "farv1_session/refresh" request is received in the absence of a

session cookie.

MUST

MUST

MUST

MUST

SHOULD NOT

MUST

5.5. Client Logout

Clients send a request to an RDAP server to terminate an existing login session. Termination

of a session is requested using a "farv1_session/logout" path segment. Access and refresh tokens

can be revoked during the "farv1_session/logout" process as described in if supported

by the OP (token revocation endpoint support is per). If supported, this

feature be used to ensure that the tokens are not mistakenly associated with a future

RDAP session. Alternatively, an RDAP server attempt to log out from the OP using the

OpenID Connect RP-Initiated Logout protocol if that protocol is supported by the OP. In

any case, to prevent abuse before the cookie times out, an RDAP server invalidate the

HTTP cookie associated with the session as part of terminating the session.

An example "farv1_session/logout" request:

https://example.com/rdap/farv1_session/logout

The response to this request be a valid RDAP response per . It include

any members that relate to a specific RDAP object type (e.g., "events" or "status"). In addition, the

response include an indication of the requested operation's success or failure in the

"notices" data structure. The "notices" data structure include an indication of the success or

failure of any attempt to logout from the OP or to revoke the tokens issued by the OP.

MAY

[RFC7009]

OPTIONAL [RFC8414]

SHOULD

MAY

[OIDCL]

SHOULD

MUST [RFC9083] MUST NOT

MAY

MAY

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 28

An example of a "farv1_session/logout" response:

In the absence of a "logout" request, an RDAP session be terminated by the RDAP server

after a server-defined period of time. The server also take appropriate steps to ensure

that the tokens associated with the terminated session cannot be reused. This include

revoking the tokens or logging out from the OP if either operation is supported by the OP.

Figure 16

 {

 "rdapConformance": [

 "farv1"

],

 "lang": "en-US",

 "notices": [

 {

 "title": "Logout Result",

 "description": [

 "Logout succeeded"

 "Provider logout failed: Not supported by provider.",

 "Token revocation successful."

]

 }

]

 }

MUST

SHOULD

SHOULD

5.6. Request Sequencing

The requests described in this document are typically performed in a specific sequence:

"farv1_session/login" (or the related "farv1_session/device" and "farv1_session/devicepoll"

requests) to start a session, "farv1_session/status" and/or "farv1_session/refresh" to manage a

session, and "farv1_session/logout" to end a session. If a client sends a "farv1_session/status",

"farv1_session/refresh", or "farv1_session/logout" request in the absence of a session cookie, the

server return an HTTP 409 (Conflict) error.

A client can end a session explicitly by sending a "farv1_session/logout" request to the RDAP

server. A session can also be ended implicitly by the server after a server-defined period of time.

The status of a session can be determined at any time by sending a "farv1_session/status" query

to the RDAP server.

An RDAP server maintain session state information for the duration of an active session.

This is commonly done using HTTP cookies as described in . Doing so allows End-Users

to submit queries without having to explicitly identify and authenticate themselves for every

query.

An RDAP server can receive queries that include a session cookie where the associated session

has expired or is otherwise unavailable (e.g., due to the user requesting explicit logout for the

associated session). The server return an HTTP 401 (Unauthorized) error in response to

such queries.

MUST

MUST

[RFC6265]

MUST

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 29

6. Protocol Features for Token-Oriented Clients

This specification adds additional processing steps for token-oriented clients as described in this

section and Section 3.1.3. It does not define additional data structures or RDAP-specific protocol

parameters specifically for token-oriented clients.

6.1. Client Login

Clients identify and authenticate End-Users by exchanging information with an OP that is

recognized by the RDAP server as described in Sections 3.1.4.2, 3.1.4.3, and 3.1.4.4. A client

 append the "additionalAuthorizationQueryParams" values retrieved from the

"openidcProviders" array described in Section 4.1 to the Authorization Endpoint URL when

requesting authorization from the OP. Once these processes are completed successfully, the client

can request tokens from the OP as described in Section 3.1.4.5. The OP include the RDAP

server's client_id in the "aud" claim value of an issued ID Token. The RDAP server choose to

ignore the value of the "aud" claim or exchange the token as described in Section 6.4. With these

steps completed, the Access Token received from the OP can be passed to an RDAP server in an

HTTP "Authorization" request header for RDAP queries that require End-User

identification, authentication, and authorization.

SHOULD

SHOULD

MAY

[RFC6750]

6.2. Client Queries

An RDAP server that receives a bearer token in an HTTP "Authorization" request header as part

of an RDAP object query validate the token in accordance with local policy and confirm

that the token is a legitimate Access Token. Once validated, the Access Token be used to

retrieve the claims associated with the End-User's identity, including claims associated with the

"rdap" scope that are not already included in the Access Token, as described in Section 3.1.4.6.

The RDAP server can then evaluate the End-User's identity information to determine the End-

User's authorization level and process the query in accordance with server policies. A client

 include the "farv1_iss" query parameter and issuer identifier value with an RDAP query if

the token was issued by a remote OP.

MUST

MAY

MUST

6.3. Access Token Validation

An RDAP server validate a received Access Token prior to using that token for access

control purposes. Validation include token introspection using the issuing OP or

analysis of the values included in a JWT Access Token. Once an Access Token is validated, an

RDAP server use that token to request user claims from the issuing OP.

There are performance considerations associated with the process of validating a token and

requesting user claims as part of processing every received RDAP query. An RDAP server

cache validated information and use that cached information to reduce the amount of time

needed to process subsequent RDAP queries associated with the same Access Token as long as the

token has not expired. The client monitor the token expiration time and refresh the

token as needed.

MUST

MAY [RFC7662]

MAY

MAY

SHOULD

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 30

6.4. Token Exchange

Tokens can include an "aud" (audience) claim that contains the OAuth 2.0 client_id of the RP as

an audience value. In some operational scenarios (such as a client that is providing a proxy

service), an RP can receive tokens with an "aud" claim value that does not include the RP's

client_id. These tokens might not be trusted by the RP, and the RP might refuse to accept the

tokens. This situation can be remedied by having the RP exchange the Access Token with the OP

for a set of trusted tokens that reset the "aud" claim. The token exchange protocol is described in

.[RFC8693]

7. RDAP Query Processing

Once an RDAP session is active, an RDAP server determine if the End-User is authorized to

perform any queries that are received during the duration of the session. This include

rejecting queries outright, and it include omitting or otherwise redacting information that

the End-User is not authorized to receive. Specific processing requirements are beyond the scope

of this document.

MUST

MAY

MAY

8. RDAP Conformance

RDAP responses that contain values described in this document indicate conformance with

this specification by including an rdapConformance value of "farv1" (Federated

Authentication for RDAP version 1). The information needed to register this value in the "RDAP

Extensions" registry is described in Section 9.1.

Example rdapConformance structure with extension specified:

MUST

[RFC9083]

Figure 17

 "rdapConformance" :

 [

 "rdap_level_0",

 "farv1"

]

9. IANA Considerations

Extension Identifier:

Registry Operator:

9.1. RDAP Extensions Registry

IANA has registered the following value in the "RDAP Extensions" registry:

farv1

Any

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 31

Specification:

Contact:

Intended Usage:

RFC 9560

IETF <iesg@ietf.org>

This extension describes version 1 of a federated authentication method for

RDAP using OAuth 2.0 and OpenID Connect.

Claim Name:

Claim Description:

Change Controller:

Reference:

Claim Name:

Claim Description:

Change Controller:

Reference:

9.2. JSON Web Token Claims Registry

IANA has registered the following values in the "JSON Web Token Claims" registry:

rdap_allowed_purposes

This claim describes the set of RDAP query purposes that are available to an

identity that is presented for access to a protected RDAP resource.

IETF

Section 3.1.5.1 of RFC 9560.

rdap_dnt_allowed

This claim contains a JSON boolean literal that describes a "do not track"

request for server-side tracking, logging, or recording of an identity that is presented for

access to a protected RDAP resource.

IETF

Section 3.1.5.2 of RFC 9560.

Section at :

Registry Name:

Registration Procedure(s):

Required Information:

Value:

Description:

9.3. RDAP Query Purpose Registry

IANA has created a new protocol registry to manage RDAP query purpose values.

Registration Data Access Protocol (RDAP)

Registration Data Access Protocol (RDAP) Query Purpose Values

This registry is operated under the "Specification Required" policy

defined in . The designated expert must ensure that requests to add values to this

registry meet the syntax, value, and description requirements described in this section.

Registration requests are described in a specification that's consistent

with the "Specification Required" policy defined in . The specification must include

one or more purpose values as described below.

Individual purpose values are registered with IANA. Each entry in the registry contains the

following fields:

The purpose string value being registered. Value strings can contain uppercase ASCII

characters from "A" to "Z", lowercase ASCII characters from "a" to "z", and the underscore ("_")

character. Value strings contain at least one character and no more than 64 characters.

One or two sentences in English describing the meaning of the purpose value, how

it might be used, and/or how it should be interpreted by clients and servers.

https://www.iana.org/protocols

[RFC8126]

[RFC8126]

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 32

https://www.iana.org/protocols

Value:

Description:

Value:

Description:

Value:

Description:

Value:

Description:

Value:

Description:

Value:

Description:

Value:

Description:

Value:

The set of initial values used to populate the registry as described below are taken from the final

report produced by the Expert Working Group on gTLD Directory Services chartered by the

Internet Corporation for Assigned Names and Numbers (ICANN).

domainNameControl

Tasks within the scope of this purpose include creating and managing and

monitoring a registrant's own domain name, including creating the domain name, updating

information about the domain name, transferring the domain name, renewing the domain

name, deleting the domain name, maintaining a domain name portfolio, and detecting

fraudulent use of the registrant's own contact information.

personalDataProtection

Tasks within the scope of this purpose include identifying the accredited privacy/

proxy provider associated with a domain name, reporting abuse, requesting reveal, or

otherwise contacting the provider.

technicalIssueResolution

Tasks within the scope of this purpose include (but are not limited to) working to

resolve technical issues, including email delivery issues, DNS resolution failures, and website

functionality issues.

domainNameCertification

Tasks within the scope of this purpose include a Certification Authority (CA)

issuing an X.509 certificate to a subject identified by a domain name.

individualInternetUse

Tasks within the scope of this purpose include identifying the organization using a

domain name to instill consumer trust or contacting that organization to raise a customer

complaint to them or file a complaint about them.

businessDomainNamePurchaseOrSale

Tasks within the scope of this purpose include making purchase queries about a

domain name, acquiring a domain name from a registrant, and enabling due diligence

research.

academicPublicInterestDNSResearch

Tasks within the scope of this purpose include academic public interest research

studies about domain names published in the registration data service, including public

information about the registrant and designated contacts, the domain name's history and

status, and domain names registered by a given registrant (reverse query).

legalActions

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 33

https://www.icann.org/en/system/files/files/final-report-06jun14-en.pdf
https://www.icann.org/en/system/files/files/final-report-06jun14-en.pdf

Description:

Value:

Description:

Value:

Description:

Value:

Description:

Tasks within the scope of this purpose include investigating possible fraudulent

use of a registrant's name or address by other domain names, investigating possible

trademark infringement, contacting a registrant/licensee's legal representative prior to taking

legal action, and then taking a legal action if the concern is not satisfactorily addressed.

regulatoryAndContractEnforcement

Tasks within the scope of this purpose include tax authority investigation of

businesses with online presences, Uniform Domain-Name Dispute-Resolution Policy (UDRP)

investigation, contractual compliance investigation, and registration data escrow audits.

criminalInvestigationAndDNSAbuseMitigation

Tasks within the scope of this purpose include reporting abuse to someone who

can investigate and address that abuse or contacting entities associated with a domain name

during an offline criminal investigation.

dnsTransparency

Tasks within the scope of this purpose involve querying the registration data made

public by registrants to satisfy a wide variety of use cases around informing the public.

10. Security Considerations

Security considerations for RDAP can be found in . Security considerations for OpenID

Connect Core and OAuth 2.0 can be found in their reference specifications;

best current security practice for OAuth 2.0 can be found in . Additionally, the

practices described in be followed when the Transport Layer Security (TLS)

protocol is used.

As described in Section 3.1.4.2, the OAuth 2.0 Implicit Flow is considered insecure, and

efforts are being made to deprecate the flow. It be used.

Some of the responses described in this specification return information to a client from an

RDAP server that is intended to help the client match responses to queries and manage sessions.

Some of that information, such as the "userClaims" described in Section 5.1.1, can be personally

identifiable and considered sensitive if disclosed to unauthorized parties. An RDAP server

operator must develop policies for information disclosure to ensure that personally identifiable

information is disclosed only to clients that are authorized to process that information.

The "do not track" claim relies on the good will of the RDAP server and associated proxies. As

such, using and processing this claim depends on out-of-band trust relationships that need to be

established before the claim is used in practice. If used and accepted by the RDAP server, there is

a risk of information loss that could seriously impair audit capabilities.

[RFC7481]

[OIDCC] [RFC6749]

[OAUTH-SECURITY]

[RFC9325] MUST

[RFC6749]

MUST NOT

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 34

[HTMLURL]

[OIDCC]

[OIDCD]

[OIDCL]

[OIDCR]

[RFC2119]

[RFC6265]

[RFC6749]

[RFC6750]

11. References

11.1. Normative References

, , March 2024, .

, , , , and ,

, December 2023,

.

, , , and ,

, December 2023,

.

, , , , and ,

, September 2022,

.

, , and ,

, December 2023,

.

, , ,

, , March 1997,

.

, , ,

, April 2011, .

, , ,

, October 2012, .

 and ,

, , , October 2012,

.

10.1. Authentication and Access Control

Having completed the client identification, authorization, and validation process, an RDAP server

can make access control decisions based on a comparison of client-provided information (such as

the set of "userClaims" described in Section 5.1.1) and local policy. For example, a client who

provides an email address (and nothing more) might be entitled to receive a subset of the

information that would be available to a client who provides an email address, a full name, and a

stated purpose. Development of these access control policies is beyond the scope of this

document.

WHATWG "URL (Living Standard)" <https://url.spec.whatwg.org/>

Sakimura, N. Bradley, J. Jones, M. de Medeiros, B. C. Mortimore "OpenID

Connect Core 1.0 incorporating errata set 2" <https://

openid.net/specs/openid-connect-core-1_0.html>

Sakimura, N. Bradley, J. Jones, M. E. Jay "OpenID Connect Discovery 1.0

incorporating errata set 2" <https://openid.net/specs/openid-

connect-discovery-1_0.html>

Jones, M. de Medeiros, B. Agarwal, N. Sakimura, N. J. Bradley "OpenID

Connect RP-Initiated Logout 1.0" <https://openid.net/specs/

openid-connect-rpinitiated-1_0.html>

Sakimura, N. Bradley, J. M. Jones "OpenID Connect Dynamic Client

Registration 1.0 incorporating errata set 2" <https://openid.net/

specs/openid-connect-registration-1_0.html>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Barth, A. "HTTP State Management Mechanism" RFC 6265 DOI 10.17487/

RFC6265 <https://www.rfc-editor.org/info/rfc6265>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI

10.17487/RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Jones, M. D. Hardt "The OAuth 2.0 Authorization Framework: Bearer Token

Usage" RFC 6750 DOI 10.17487/RFC6750 <https://www.rfc-

editor.org/info/rfc6750>

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 35

https://url.spec.whatwg.org/
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-rpinitiated-1_0.html
https://openid.net/specs/openid-connect-rpinitiated-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750

[RFC7009]

[RFC7480]

[RFC7481]

[RFC7519]

[RFC7617]

[RFC7662]

[RFC8126]

[RFC8174]

[RFC8628]

[RFC8693]

[RFC9068]

[RFC9082]

[RFC9083]

, , and , ,

, , August 2013,

.

, , and ,

, , , , March 2015,

.

 and ,

, , , , March 2015,

.

, , and , , ,

, May 2015, .

, , ,

, September 2015, .

, , , ,

October 2015, .

, , and ,

, , , , June

2017, .

, ,

, , , May 2017,

.

, , , and ,

, , , August 2019,

.

, , , , and ,

, , , January 2020,

.

, ,

, , October 2021,

.

 and ,

, , , , June 2021,

.

 and ,

, , , , June 2021,

.

Lodderstedt, T., Ed. Dronia, S. M. Scurtescu "OAuth 2.0 Token Revocation"

RFC 7009 DOI 10.17487/RFC7009 <https://www.rfc-editor.org/info/

rfc7009>

Newton, A. Ellacott, B. N. Kong "HTTP Usage in the Registration Data

Access Protocol (RDAP)" STD 95 RFC 7480 DOI 10.17487/RFC7480

<https://www.rfc-editor.org/info/rfc7480>

Hollenbeck, S. N. Kong "Security Services for the Registration Data Access

Protocol (RDAP)" STD 95 RFC 7481 DOI 10.17487/RFC7481 <https://

www.rfc-editor.org/info/rfc7481>

Jones, M. Bradley, J. N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI

10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

Reschke, J. "The 'Basic' HTTP Authentication Scheme" RFC 7617 DOI 10.17487/

RFC7617 <https://www.rfc-editor.org/info/rfc7617>

Richer, J., Ed. "OAuth 2.0 Token Introspection" RFC 7662 DOI 10.17487/RFC7662

<https://www.rfc-editor.org/info/rfc7662>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Denniss, W. Bradley, J. Jones, M. H. Tschofenig "OAuth 2.0 Device

Authorization Grant" RFC 8628 DOI 10.17487/RFC8628 <https://

www.rfc-editor.org/info/rfc8628>

Jones, M. Nadalin, A. Campbell, B., Ed. Bradley, J. C. Mortimore "OAuth 2.0

Token Exchange" RFC 8693 DOI 10.17487/RFC8693 <https://

www.rfc-editor.org/info/rfc8693>

Bertocci, V. "JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens" RFC

9068 DOI 10.17487/RFC9068 <https://www.rfc-editor.org/info/

rfc9068>

Hollenbeck, S. A. Newton "Registration Data Access Protocol (RDAP) Query

Format" STD 95 RFC 9082 DOI 10.17487/RFC9082 <https://www.rfc-

editor.org/info/rfc9082>

Hollenbeck, S. A. Newton "JSON Responses for the Registration Data Access

Protocol (RDAP)" STD 95 RFC 9083 DOI 10.17487/RFC9083 <https://

www.rfc-editor.org/info/rfc9083>

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 36

https://www.rfc-editor.org/info/rfc7009
https://www.rfc-editor.org/info/rfc7009
https://www.rfc-editor.org/info/rfc7480
https://www.rfc-editor.org/info/rfc7481
https://www.rfc-editor.org/info/rfc7481
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7617
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8628
https://www.rfc-editor.org/info/rfc8628
https://www.rfc-editor.org/info/rfc8693
https://www.rfc-editor.org/info/rfc8693
https://www.rfc-editor.org/info/rfc9068
https://www.rfc-editor.org/info/rfc9068
https://www.rfc-editor.org/info/rfc9082
https://www.rfc-editor.org/info/rfc9082
https://www.rfc-editor.org/info/rfc9083
https://www.rfc-editor.org/info/rfc9083

[RFC9110]

[RFC9325]

[OAUTH-SECURITY]

[OIDC]

[RFC4949]

[RFC8414]

[RFC8792]

, , and , ,

, , , June 2022,

.

, , and ,

,

, , , November 2022,

.

11.2. Informative References

, , , and ,

, ,

, 8 February 2024,

.

, ,

.

, , , ,

, August 2007, .

, , and ,

, , , June 2018,

.

, , , and ,

, , , June

2020, .

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD

97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/

rfc9110>

Sheffer, Y. Saint-Andre, P. T. Fossati "Recommendations for Secure Use of

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"

BCP 195 RFC 9325 DOI 10.17487/RFC9325 <https://www.rfc-

editor.org/info/rfc9325>

Lodderstedt, T. Bradley, J. Labunets, A. D. Fett "OAuth 2.0 Security

Best Current Practice" Work in Progress Internet-Draft, draft-ietf-oauth-

security-topics-25 <https://datatracker.ietf.org/doc/html/draft-

ietf-oauth-security-topics-25>

OpenID "What is OpenID Connect" <https://openid.net/developers/how-connect-

works/>

Shirey, R. "Internet Security Glossary, Version 2" FYI 36 RFC 4949 DOI

10.17487/RFC4949 <https://www.rfc-editor.org/info/rfc4949>

Jones, M. Sakimura, N. J. Bradley "OAuth 2.0 Authorization Server

Metadata" RFC 8414 DOI 10.17487/RFC8414 <https://www.rfc-

editor.org/info/rfc8414>

Watsen, K. Auerswald, E. Farrel, A. Q. Wu "Handling Long Lines in

Content of Internet-Drafts and RFCs" RFC 8792 DOI 10.17487/RFC8792

<https://www.rfc-editor.org/info/rfc8792>

Acknowledgments

The author would like to acknowledge the following individuals for their contributions to the

development of this document: , , , ,

, , , , and . In addition, the

Verisign Registry Services Lab development team of , , ,

, , , and provided critical "proof of concept"

implementation experience that helped demonstrate the validity of the concepts described in this

document.

 and provided significant text contributions that led to welcome

improvements in several sections of this document. Their contributions are greatly appreciated.

Julien Bernard Marc Blanchet Tom Harrison Russ Housley

Jasdip Singh Rhys Smith Jaromir Talir Rick Wilhelm Alessandro Vesely

Joseph Harvey Andrew Kaizer Sai Mogali

Anurag Saxena Swapneel Sheth Nitin Singh Zhao Zhao

Pawel Kowalik Mario Loffredo

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 37

https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc9325
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-25
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-25
https://openid.net/developers/how-connect-works/
https://openid.net/developers/how-connect-works/
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8792

Author's Address

Scott Hollenbeck

Verisign Labs

12061 Bluemont Way

, Reston VA 20190

United States of America

 shollenbeck@verisign.com Email:

 https://www.verisignlabs.com/ URI:

RFC 9560 OIDC for RDAP April 2024

Hollenbeck Standards Track Page 38

mailto:shollenbeck@verisign.com
https://www.verisignlabs.com/

	RFC 9560
	Federated Authentication for the Registration Data Access Protocol (RDAP) Using OpenID Connect
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Problem Statement
	1.2. Approach

	2. Conventions Used in This Document
	3. Federated Authentication for RDAP
	3.1. RDAP and OpenID Connect
	3.1.1. Terminology
	3.1.2. Client Considerations
	3.1.3. Overview
	3.1.4. RDAP Authentication and Authorization Steps
	3.1.4.1. Provider Discovery
	3.1.4.2. Authentication Request
	3.1.4.3. End-User Authorization
	3.1.4.4. Authorization Response and Validation
	3.1.4.5. Token Processing
	3.1.4.6. Delivery of User Information

	3.1.5. Specialized Claims and Authorization Scope for RDAP
	3.1.5.1. Stated Purposes
	3.1.5.2. Do Not Track

	4. Common Protocol Features
	4.1. OpenID Connect Configuration
	4.2. RDAP Query Parameters
	4.2.1. RDAP Query Purpose
	4.2.2. RDAP Do Not Track
	4.2.3. Parameter Processing

	5. Protocol Features for Session-Oriented Clients
	5.1. Data Structures
	5.1.1. Session
	5.1.2. Device Info

	5.2. Client Login
	5.2.1. End-User Identifier
	5.2.2. OP Issuer Identifier
	5.2.3. Login Response
	5.2.4. Clients with Limited User Interfaces
	5.2.4.1. UI-Constrained Client Login
	5.2.4.2. UI-Constrained Client Login Polling

	5.3. Session Status
	5.4. Session Refresh
	5.5. Client Logout
	5.6. Request Sequencing

	6. Protocol Features for Token-Oriented Clients
	6.1. Client Login
	6.2. Client Queries
	6.3. Access Token Validation
	6.4. Token Exchange

	7. RDAP Query Processing
	8. RDAP Conformance
	9. IANA Considerations
	9.1. RDAP Extensions Registry
	9.2. JSON Web Token Claims Registry
	9.3. RDAP Query Purpose Registry

	10. Security Considerations
	10.1. Authentication and Access Control

	11. References
	11.1. Normative References
	11.2. Informative References

	Acknowledgments
	Author's Address

