Stream: Internet Engineering Task Force (IETF)

RFC: 8881

Obsoletes: 5661

Category: Standards Track

Published: August 2020

ISSN: 2070-1721

Authors: D. Noveck, Ed. C. Lever
NetApp ORACLE

RFC 8881
Network File System (NFS) Version 4 Minor Version 1
Protocol

Abstract

This document describes the Network File System (NFS) version 4 minor version 1, including
features retained from the base protocol (NFS version 4 minor version 0, which is specified in
RFC 7530) and protocol extensions made subsequently. The later minor version has no
dependencies on NFS version 4 minor version 0, and is considered a separate protocol.

This document obsoletes RFC 5661. It substantially revises the treatment of features relating to
multi-server namespace, superseding the description of those features appearing in RFC 5661.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc8881.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

Noveck & Lever Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8881
https://www.rfc-editor.org/rfc/rfc5661
https://www.rfc-editor.org/info/rfc8881
https://trustee.ietf.org/license-info

RFC 8881 NFSv4.1 with Namespace Update August 2020

with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or
made publicly available before November 10, 2008. The person(s) controlling the copyright in
some of this material may not have granted the IETF Trust the right to allow modifications of
such material outside the IETF Standards Process. Without obtaining an adequate license from
the person(s) controlling the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may not be created outside the
IETF Standards Process, except to format it for publication as an RFC or to translate it into
languages other than English.

Table of Contents

1. Introduction
1.1. Introduction to This Update
1.2. The NFS Version 4 Minor Version 1 Protocol
1.3. Requirements Language
1.4. Scope of This Document
1.5. NFSv4 Goals
1.6. NFSv4.1 Goals
1.7. General Definitions
1.8. Overview of NFSv4.1 Features

1.9. Differences from NFSv4.0

2. Core Infrastructure
2.1. Introduction
2.2. RPC and XDR
2.3. COMPOUND and CB_COMPOUND
2.4. Client Identifiers and Client Owners
2.5. Server Owners
2.6. Security Service Negotiation
2.7. Minor Versioning
2.8. Non-RPC-Based Security Services

2.9. Transport Layers

Noveck & Lever Standards Track Page 2

RFC 8881

NFSv4.1 with Namespace Update

2.10. Session

3. Protocol Constants and Data Types

3.1.
3.2.
3.3.

Basic Constants
Basic Data Types

Structured Data Types

4. Filehandles

4.1.
4.2.
4.3.
4.4,

Obtaining the First Filehandle
Filehandle Types
One Method of Constructing a Volatile Filehandle

Client Recovery from Filehandle Expiration

5. File Attributes

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

REQUIRED Attributes

RECOMMENDED Attributes

Named Attributes

Classification of Attributes

Set-Only and Get-Only Attributes

REQUIRED Attributes - List and Definition References
RECOMMENDED Attributes - List and Definition References
Attribute Definitions

Interpreting owner and owner_group

5.10. Character Case Attributes

5.11. Directory Notification Attributes

5.12. pNFS Attribute Definitions

5.13. Retention Attributes

6. Access Control Attributes

6.1.
6.2.
6.3.
6.4.

Goals
File Attributes Discussion
Common Methods

Requirements

Noveck & Lever Standards Track

August 2020

Page 3

RFC 8881

NFSv4.1 with Namespace Update

7. Single-Server Namespace

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.17.
7.8.

Server Exports

Browsing Exports

Server Pseudo File System
Multiple Roots

Filehandle Volatility
Exported Root

Mount Point Crossing

Security Policy and Namespace Presentation

8. State Management

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.

Client and Session ID
Stateid Definition

Lease Renewal

Crash Recovery

Server Revocation of Locks

Short and Long Leases

Clocks, Propagation Delay, and Calculating Lease Expiration

Obsolete Locking Infrastructure from NFSv4.0

9. File Locking and Share Reservations

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
9.8.
9.9.

Opens and Byte-Range Locks

Lock Ranges

Upgrading and Downgrading Locks
Stateid Seqid Values and Byte-Range Locks
Issues with Multiple Open-Owners
Blocking Locks

Share Reservations

OPEN/CLOSE Operations

Open Upgrade and Downgrade

9.10. Parallel OPENSs

9.11. Reclaim of Open and Byte-Range Locks

Noveck & Lever Standards Track

August 2020

Page 4

RFC 8881 NFSv4.1 with Namespace Update August 2020

10. Client-Side Caching
10.1. Performance Challenges for Client-Side Caching
10.2. Delegation and Callbacks
10.3. Data Caching
10.4. Open Delegation
10.5. Data Caching and Revocation
10.6. Attribute Caching
10.7. Data and Metadata Caching and Memory Mapped Files
10.8. Name and Directory Caching without Directory Delegations

10.9. Directory Delegations

11. Multi-Server Namespace
11.1. Terminology
11.2. File System Location Attributes
11.3. File System Presence or Absence
11.4. Getting Attributes for an Absent File System
11.5. Uses of File System Location Information
11.6. Trunking without File System Location Information
11.7. Users and Groups in a Multi-Server Namespace
11.8. Additional Client-Side Considerations
11.9. Overview of File Access Transitions
11.10. Effecting Network Endpoint Transitions
11.11. Effecting File System Transitions
11.12. Transferring State upon Migration
11.13. Client Responsibilities When Access Is Transitioned
11.14. Server Responsibilities Upon Migration
11.15. Effecting File System Referrals
11.16. The Attribute fs_locations
11.17. The Attribute fs_locations_info

11.18. The Attribute fs_status

Noveck & Lever Standards Track Page 5

RFC 8881 NFSv4.1 with Namespace Update August 2020

12. Parallel NFS (pNFS)
12.1. Introduction
12.2. pNFS Definitions
12.3. pNFS Operations
12.4. pNFS Attributes
12.5. Layout Semantics
12.6. pNFS Mechanics
12.7. Recovery
12.8. Metadata and Storage Device Roles

12.9. Security Considerations for pNFS

13. NFSv4.1 as a Storage Protocol in pNFS: the File Layout Type
13.1. Client ID and Session Considerations
13.2. File Layout Definitions
13.3. File Layout Data Types
13.4. Interpreting the File Layout
13.5. Data Server Multipathing
13.6. Operations Sent to NFSv4.1 Data Servers
13.7. COMMIT through Metadata Server
13.8. The Layout Iomode
13.9. Metadata and Data Server State Coordination
13.10. Data Server Component File Size
13.11. Layout Revocation and Fencing

13.12. Security Considerations for the File Layout Type

14. Internationalization
14.1. Stringprep Profile for the utf8str_cs Type
14.2. Stringprep Profile for the utf8str_cis Type
14.3. Stringprep Profile for the utf8str_mixed Type
14.4. UTF-8 Capabilities
14.5. UTF-8 Related Errors

Noveck & Lever Standards Track Page 6

RFC 8881

NFSv4.1 with Namespace Update

15. Error Values

15.1.
15.2.
15.3.
15.4.

Error Definitions
Operations and Their Valid Errors
Callback Operations and Their Valid Errors

Errors and the Operations That Use Them

16. NFSv4.1 Procedures

16.1.
16.2.

Procedure 0: NULL - No Operation
Procedure 1: COMPOUND - Compound Operations

17. Operations: REQUIRED, RECOMMENDED, or OPTIONAL

18. NFSv4.1 Operations

18.1.
18.2.
18.3.
18.4.
18.5.
18.6.
18.7.
18.8.
18.9.

18.10.
18.11.
18.12.
18.13.
18.14.
18.15.
18.16.
18.17.
18.18.
18.19.
18.20.

Operation 3: ACCESS - Check Access Rights

Operation 4: CLOSE - Close File

Operation 5: COMMIT - Commit Cached Data

Operation 6: CREATE - Create a Non-Regular File Object
Operation 7: DELEGPURGE - Purge Delegations Awaiting Recovery
Operation 8: DELEGRETURN - Return Delegation

Operation 9: GETATTR - Get Attributes

Operation 10: GETFH - Get Current Filehandle

Operation 11: LINK - Create Link to a File

Operation 12: LOCK - Create Lock

Operation 13: LOCKT - Test for Lock

Operation 14: LOCKU - Unlock File

Operation 15: LOOKUP - Lookup Filename

Operation 16: LOOKUPP - Lookup Parent Directory
Operation 17: NVERIFY - Verify Difference in Attributes
Operation 18: OPEN - Open a Regular File

Operation 19: OPENATTR - Open Named Attribute Directory
Operation 21: OPEN_DOWNGRADE - Reduce Open File Access
Operation 22: PUTFH - Set Current Filehandle

Operation 23: PUTPUBFH - Set Public Filehandle

Noveck & Lever Standards Track

August 2020

Page 7

RFC 8881

18.21. Operation 24:
18.22. Operation 25:
18.23. Operation 26:
18.24. Operation 27:
18.25. Operation 28:
18.26. Operation 29:
18.27. Operation 31:
18.28. Operation 32:
18.29. Operation 33:
18.30. Operation 34:
18.31. Operation 37:
18.32. Operation 38:
18.33. Operation 40:
18.34. Operation 41:
18.35. Operation 42:
18.36. Operation 43:
18.37. Operation 44:
18.38. Operation 45:
18.39. Operation 46:
18.40. Operation 47:
18.41. Operation 48:
18.42. Operation 49:
18.43. Operation 50:
18.44. Operation 51:
18.45. Operation 52:
18.46. Operation 53:
18.47. Operation 54:
18.48. Operation 55:
18.49. Operation 56:
18.50. Operation 57:

Noveck & Lever

NFSv4.1 with Namespace Update August 2020

PUTROOTFH - Set Root Filehandle

READ - Read from File

READDIR - Read Directory

READLINK - Read Symbolic Link

REMOVE - Remove File System Object

RENAME - Rename Directory Entry

RESTOREFH - Restore Saved Filehandle

SAVEFH - Save Current Filehandle

SECINFO - Obtain Available Security

SETATTR - Set Attributes

VERIFY - Verify Same Attributes

WRITE - Write to File

BACKCHANNEL_CTL - Backchannel Control
BIND_CONN_TO_SESSION - Associate Connection with Session
EXCHANGE_ID - Instantiate Client ID

CREATE_SESSION - Create New Session and Confirm Client ID
DESTROY_SESSION - Destroy a Session

FREE_STATEID - Free Stateid with No Locks
GET_DIR_DELEGATION - Get a Directory Delegation
GETDEVICEINFO - Get Device Information

GETDEVICELIST - Get All Device Mappings for a File System
LAYOUTCOMMIT - Commit Writes Made Using a Layout
LAYOUTGET - Get Layout Information

LAYOUTRETURN - Release Layout Information
SECINFO_NO_NAME - Get Security on Unnamed Object
SEQUENCE - Supply Per-Procedure Sequencing and Control
SET_SSV - Update SSV for a Client ID

TEST_STATEID - Test Stateids for Validity
WANT_DELEGATION - Request Delegation
DESTROY_CLIENTID - Destroy a Client ID

Standards Track Page 8

RFC 8881 NFSv4.1 with Namespace Update August 2020

18.51. Operation 58: RECLAIM_COMPLETE - Indicates Reclaims Finished
18.52. Operation 10044: ILLEGAL - Illegal Operation

19. NFSv4.1 Callback Procedures
19.1. Procedure 0: CB_NULL - No Operation
19.2. Procedure 1: CB_COMPOUND - Compound Operations

20. NFSv4.1 Callback Operations
20.1. Operation 3: CB_GETATTR - Get Attributes
20.2. Operation 4: CB_RECALL - Recall a Delegation
20.3. Operation 5: CB_LAYOUTRECALL - Recall Layout from Client
20.4. Operation 6: CB_NOTIFY - Notify Client of Directory Changes
20.5. Operation 7: CB_PUSH_DELEG - Offer Previously Requested Delegation to Client
20.6. Operation 8: CB_RECALL_ANY - Keep Any N Recallable Objects
20.7. Operation 9: CB_RECALLABLE_OB]J_AVAIL - Signal Resources for Recallable Objects
20.8. Operation 10: CB_RECALL_SLOT - Change Flow Control Limits
20.9. Operation 11: CB_SEQUENCE - Supply Backchannel Sequencing and Control
20.10. Operation 12: CB_WANTS_CANCELLED - Cancel Pending Delegation Wants
20.11. Operation 13: CB_NOTIFY_LOCK - Notify Client of Possible Lock Availability
20.12. Operation 14: CB_NOTIFY_DEVICEID - Notify Client of Device ID Changes
20.13. Operation 10044: CB_ILLEGAL - Illegal Callback Operation

21. Security Considerations
22.IANA Considerations
22.1. TANA Actions
22.2. Named Attribute Definitions
22.3. Device ID Notifications
22.4. Object Recall Types
22.5. Layout Types
22.6. Path Variable Definitions

23. References
23.1. Normative References

23.2. Informative References

Noveck & Lever Standards Track Page 9

RFC 8881 NFSv4.1 with Namespace Update August 2020

Appendix A. The Need for This Update
Appendix B. Changes in This Update
B.1. Revisions Made to Section 11 of RFC 5661
B.2. Revisions Made to Operations in RFC 5661
B.3. Revisions Made to Error Definitions in RFC 5661
B.4. Other Revisions Made to RFC 5661

Appendix C. Security Issues That Need to Be Addressed
Acknowledgments

Authors' Addresses

1. Introduction

1.1. Introduction to This Update

Two important features previously defined in minor version 0 but never fully addressed in
minor version 1 are trunking, which is the simultaneous use of multiple connections between a
client and server, potentially to different network addresses, and Transparent State Migration,
which allows a file system to be transferred between servers in a way that provides to the client
the ability to maintain its existing locking state across the transfer.

The revised description of the NFS version 4 minor version 1 (NFSv4.1) protocol presented in this
update is necessary to enable full use of these features together with other multi-server
namespace features. This document is in the form of an updated description of the NFSv4.1
protocol previously defined in RFC 5661 [66]. RFC 5661 is obsoleted by this document. However,
the update has a limited scope and is focused on enabling full use of trunking and Transparent
State Migration. The need for these changes is discussed in Appendix A. Appendix B describes the
specific changes made to arrive at the current text.

This limited-scope update replaces the current NFSv4.1 RFC with the intention of providing an
authoritative and complete specification, the motivation for which is discussed in [36],
addressing the issues within the scope of the update. However, it will not address issues that are
known but outside of this limited scope as could be expected by a full update of the protocol.
Below are some areas that are known to need addressing in a future update of the protocol:

* Work needs to be done with regard to RFC 8178 [67], which establishes NFSv4-wide
versioning rules. As RFC 5661 is currently inconsistent with that document, changes are
needed in order to arrive at a situation in which there would be no need for RFC 8178 to
update the NFSv4.1 specification.

* Work needs to be done with regard to RFC 8434 [70], which establishes the requirements for
parallel NFS (pNFS) layout types, which are not clearly defined in RFC 5661. When that work

Noveck & Lever Standards Track Page 10

RFC 8881 NFSv4.1 with Namespace Update August 2020

is done and the resulting documents approved, the new NFSv4.1 specification document will
provide a clear set of requirements for layout types and a description of the file layout type
that conforms to those requirements. Other layout types will have their own specification
documents that conform to those requirements as well.

Work needs to be done to address many errata reports relevant to RFC 5661, other than
errata report 2006 [64], which is addressed in this document. Addressing that report was not
deferrable because of the interaction of the changes suggested there and the newly described
handling of state and session migration.

The errata reports that have been deferred and that will need to be addressed in a later
document include reports currently assigned a range of statuses in the errata reporting
system, including reports marked Accepted and those marked Hold For Document Update
because the change was too minor to address immediately.

In addition, there is a set of other reports, including at least one in state Rejected, that will
need to be addressed in a later document. This will involve making changes to consensus
decisions reflected in RFC 5661, in situations in which the working group has decided that
the treatment in RFC 5661 is incorrect and needs to be revised to reflect the working group's
new consensus and to ensure compatibility with existing implementations that do not follow
the handling described in RFC 5661.

Note that it is expected that all such errata reports will remain relevant to implementors and
the authors of an eventual rfc5661bis, despite the fact that this document obsoletes RFC 5661
[66].

There is a need for a new approach to the description of internationalization since the
current internationalization section (Section 14) has never been implemented and does not
meet the needs of the NFSv4 protocol. Possible solutions are to create a new
internationalization section modeled on that in [68] or to create a new document describing
internationalization for all NFSv4 minor versions and reference that document in the RFCs
defining both NFSv4.0 and NFSv4.1.

* There is a need for a revised treatment of security in NFSv4.1. The issues with the existing
treatment are discussed in Appendix C.

Until the above work is done, there will not be a consistent set of documents that provides a
description of the NFSv4.1 protocol, and any full description would involve documents updating
other documents within the specification. The updates applied by RFC 8434 [70] and RFC 8178
[67] to RFC 5661 also apply to this specification, and will apply to any subsequent v4.1
specification until that work is done.

1.2. The NFS Version 4 Minor Version 1 Protocol

The NFS version 4 minor version 1 (NFSv4.1) protocol is the second minor version of the NFS
version 4 (NFSv4) protocol. The first minor version, NFSv4.0, is now described in RFC 7530 [68]. It
generally follows the guidelines for minor versioning that are listed in Section 10 of RFC 3530
[37]. However, it diverges from guidelines 11 ("a client and server that support minor version X
must support minor versions 0 through X-1") and 12 ("no new features may be introduced as

Noveck & Lever Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc3530#section-10

RFC 8881 NFSv4.1 with Namespace Update August 2020

mandatory in a minor version"). These divergences are due to the introduction of the sessions
model for managing non-idempotent operations and the RECLAIM_COMPLETE operation. These
two new features are infrastructural in nature and simplify implementation of existing and
other new features. Making them anything but REQUIRED would add undue complexity to
protocol definition and implementation. NFSv4.1 accordingly updates the minor versioning
guidelines (Section 2.7).

As a minor version, NFSv4.1 is consistent with the overall goals for NFSv4, but extends the
protocol so as to better meet those goals, based on experiences with NFSv4.0. In addition,
NFSv4.1 has adopted some additional goals, which motivate some of the major extensions in
NFSv4.1.

1.3. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in RFC 2119 [1].

1.4. Scope of This Document
This document describes the NFSv4.1 protocol. With respect to NFSv4.0, this document does not:
* describe the NFSv4.0 protocol, except where needed to contrast with NFSv4.1.

* modify the specification of the NFSv4.0 protocol.
¢ clarify the NFSv4.0 protocol.

1.5. NFSv4 Goals

The NFSv4 protocol is a further revision of the NFS protocol defined already by NFSv3 [38]. It
retains the essential characteristics of previous versions: easy recovery; independence of
transport protocols, operating systems, and file systems; simplicity; and good performance.
NFSv4 has the following goals:

* Improved access and good performance on the Internet

The protocol is designed to transit firewalls easily, perform well where latency is high and
bandwidth is low, and scale to very large numbers of clients per server.

* Strong security with negotiation built into the protocol

The protocol builds on the work of the ONCRPC working group in supporting the
RPCSEC_GSS protocol. Additionally, the NFSv4.1 protocol provides a mechanism to allow
clients and servers the ability to negotiate security and require clients and servers to support
a minimal set of security schemes.

* Good cross-platform interoperability

Noveck & Lever Standards Track Page 12

RFC 8881 NFSv4.1 with Namespace Update August 2020

The protocol features a file system model that provides a useful, common set of features that
does not unduly favor one file system or operating system over another.

* Designed for protocol extensions

The protocol is designed to accept standard extensions within a framework that enables and
encourages backward compatibility.

1.6. NFSv4.1 Goals
NFSv4.1 has the following goals, within the framework established by the overall NFSv4 goals.

* To correct significant structural weaknesses and oversights discovered in the base protocol.

» To add clarity and specificity to areas left unaddressed or not addressed in sufficient detail in
the base protocol. However, as stated in Section 1.4, it is not a goal to clarify the NFSv4.0
protocol in the NFSv4.1 specification.

* To add specific features based on experience with the existing protocol and recent industry
developments.

* To provide protocol support to take advantage of clustered server deployments including the
ability to provide scalable parallel access to files distributed among multiple servers.

1.7. General Definitions

The following definitions provide an appropriate context for the reader.

Byte: In this document, a byte is an octet, i.e., a datum exactly 8 bits in length.

Client: The client is the entity that accesses the NFS server's resources. The client may be an
application that contains the logic to access the NFS server directly. The client may also be
the traditional operating system client that provides remote file system services for a set of
applications.

A client is uniquely identified by a client owner.

With reference to byte-range locking, the client is also the entity that maintains a set of
locks on behalf of one or more applications. This client is responsible for crash or failure
recovery for those locks it manages.

Note that multiple clients may share the same transport and connection and multiple
clients may exist on the same network node.

Client ID: The client ID is a 64-bit quantity used as a unique, short-hand reference to a client-
supplied verifier and client owner. The server is responsible for supplying the client ID.

Client Owner: The client owner is a unique string, opaque to the server, that identifies a client.
Multiple network connections and source network addresses originating from those
connections may share a client owner. The server is expected to treat requests from
connections with the same client owner as coming from the same client.

Noveck & Lever Standards Track Page 13

RFC 8881 NFSv4.1 with Namespace Update August 2020

File System: The file system is the collection of objects on a server (as identified by the major
identifier of a server owner, which is defined later in this section) that share the same fsid
attribute (see Section 5.8.1.9).

Lease: A leaseis an interval of time defined by the server for which the client is irrevocably
granted locks. At the end of a lease period, locks may be revoked if the lease has not been
extended. A lock must be revoked if a conflicting lock has been granted after the lease
interval.

A server grants a client a single lease for all state.

Lock: The term "lock" is used to refer to byte-range (in UNIX environments, also known as
record) locks, share reservations, delegations, or layouts unless specifically stated
otherwise.

Secret State Verifier (SSV): The SSV is a unique secret key shared between a client and server.
The SSV serves as the secret key for an internal (that is, internal to NFSv4.1) Generic
Security Services (GSS) mechanism (the SSV GSS mechanism; see Section 2.10.9). The SSV
GSS mechanism uses the SSV to compute message integrity code (MIC) and Wrap tokens.
See Section 2.10.8.3 for more details on how NFSv4.1 uses the SSV and the SSV GSS
mechanism.

Server: The Server is the entity responsible for coordinating client access to a set of file systems
and is identified by a server owner. A server can span multiple network addresses.

Server Owner: The server owner identifies the server to the client. The server owner consists of
a major identifier and a minor identifier. When the client has two connections each to a
peer with the same major identifier, the client assumes that both peers are the same server
(the server namespace is the same via each connection) and that lock state is shareable
across both connections. When each peer has both the same major and minor identifiers,
the client assumes that each connection might be associable with the same session.

Stable Storage: Stable storage is storage from which data stored by an NFSv4.1 server can be
recovered without data loss from multiple power failures (including cascading power
failures, that is, several power failures in quick succession), operating system failures, and/
or hardware failure of components other than the storage medium itself (such as disk,
nonvolatile RAM, flash memory, etc.).

Some examples of stable storage that are allowable for an NFS server include:

1. Media commit of data; that is, the modified data has been successfully written to the
disk media, for example, the disk platter.

2. An immediate reply disk drive with battery-backed, on-drive intermediate storage or
uninterruptible power system (UPS).

3. Server commit of data with battery-backed intermediate storage and recovery
software.

4. Cache commit with uninterruptible power system (UPS) and recovery software.

Noveck & Lever Standards Track Page 14

RFC 8881 NFSv4.1 with Namespace Update August 2020

Stateid: A stateid is a 128-bit quantity returned by a server that uniquely defines the open and
locking states provided by the server for a specific open-owner or lock-owner/open-owner
pair for a specific file and type of lock.

Verifier: A verifier is a 64-bit quantity generated by the client that the server can use to
determine if the client has restarted and lost all previous lock state.

1.8. Overview of NFSv4.1 Features

The major features of the NFSv4.1 protocol will be reviewed in brief. This will be done to provide
an appropriate context for both the reader who is familiar with the previous versions of the NFS
protocol and the reader who is new to the NFS protocols. For the reader new to the NFS
protocols, there is still a set of fundamental knowledge that is expected. The reader should be
familiar with the External Data Representation (XDR) and Remote Procedure Call (RPC) protocols
as described in [2] and [3]. A basic knowledge of file systems and distributed file systems is
expected as well.

In general, this specification of NFSv4.1 will not distinguish those features added in minor
version 1 from those present in the base protocol but will treat NFSv4.1 as a unified whole. See
Section 1.9 for a summary of the differences between NFSv4.0 and NFSv4.1.

1.8.1. RPC and Security

As with previous versions of NFS, the External Data Representation (XDR) and Remote Procedure
Call (RPC) mechanisms used for the NFSv4.1 protocol are those defined in [2] and [3]. To meet
end-to-end security requirements, the RPCSEC_GSS framework [4] is used to extend the basic RPC
security. With the use of RPCSEC_GSS, various mechanisms can be provided to offer
authentication, integrity, and privacy to the NFSv4 protocol. Kerberos V5 is used as described in
[5] to provide one security framework. With the use of RPCSEC_GSS, other mechanisms may also
be specified and used for NFSv4.1 security.

To enable in-band security negotiation, the NFSv4.1 protocol has operations that provide the
client a method of querying the server about its policies regarding which security mechanisms
must be used for access to the server's file system resources. With this, the client can securely
match the security mechanism that meets the policies specified at both the client and server.

NFSv4.1 introduces parallel access (see Section 1.8.2.2), which is called pNFS. The security
framework described in this section is significantly modified by the introduction of pNFS (see
Section 12.9), because data access is sometimes not over RPC. The level of significance varies with
the storage protocol (see Section 12.2.5) and can be as low as zero impact (see Section 13.12).

1.8.2. Protocol Structure

1.8.2.1. Core Protocol

Unlike NFSv3, which used a series of ancillary protocols (e.g., NLM, NSM (Network Status
Monitor), MOUNT), within all minor versions of NFSv4 a single RPC protocol is used to make
requests to the server. Facilities that had been separate protocols, such as locking, are now
integrated within a single unified protocol.

Noveck & Lever Standards Track Page 15

RFC 8881 NFSv4.1 with Namespace Update August 2020

1.8.2.2. Parallel Access

Minor version 1 supports high-performance data access to a clustered server implementation by
enabling a separation of metadata access and data access, with the latter done to multiple
servers in parallel.

Such parallel data access is controlled by recallable objects known as "layouts", which are
integrated into the protocol locking model. Clients direct requests for data access to a set of data
servers specified by the layout via a data storage protocol which may be NFSv4.1 or may be
another protocol.

Because the protocols used for parallel data access are not necessarily RPC-based, the RPC-based
security model (Section 1.8.1) is obviously impacted (see Section 12.9). The degree of impact
varies with the storage protocol (see Section 12.2.5) used for data access, and can be as low as
zero (see Section 13.12).

1.8.3. File System Model

The general file system model used for the NFSv4.1 protocol is the same as previous versions. The
server file system is hierarchical with the regular files contained within being treated as opaque
byte streams. In a slight departure, file and directory names are encoded with UTF-8 to deal with
the basics of internationalization.

The NFSv4.1 protocol does not require a separate protocol to provide for the initial mapping
between path name and filehandle. All file systems exported by a server are presented as a tree
so that all file systems are reachable from a special per-server global root filehandle. This allows
LOOKUP operations to be used to perform functions previously provided by the MOUNT
protocol. The server provides any necessary pseudo file systems to bridge any gaps that arise due
to unexported gaps between exported file systems.

1.8.3.1. Filehandles

As in previous versions of the NFS protocol, opaque filehandles are used to identify individual
files and directories. Lookup-type and create operations translate file and directory names to
filehandles, which are then used to identify objects in subsequent operations.

The NFSv4.1 protocol provides support for persistent filehandles, guaranteed to be valid for the
lifetime of the file system object designated. In addition, it provides support to servers to provide
filehandles with more limited validity guarantees, called volatile filehandles.

1.8.3.2. File Attributes

The NFSv4.1 protocol has a rich and extensible file object attribute structure, which is divided
into REQUIRED, RECOMMENDED, and named attributes (see Section 5).

Several (but not all) of the REQUIRED attributes are derived from the attributes of NFSv3 (see the
definition of the fattr3 data type in [38]). An example of a REQUIRED attribute is the file object's
type (Section 5.8.1.2) so that regular files can be distinguished from directories (also known as
folders in some operating environments) and other types of objects. REQUIRED attributes are
discussed in Section 5.1.

Noveck & Lever Standards Track Page 16

RFC 8881 NFSv4.1 with Namespace Update August 2020

An example of three RECOMMENDED attributes are acl, sacl, and dacl. These attributes define an
Access Control List (ACL) on a file object (Section 6). An ACL provides directory and file access
control beyond the model used in NFSv3. The ACL definition allows for specification of specific
sets of permissions for individual users and groups. In addition, ACL inheritance allows
propagation of access permissions and restrictions down a directory tree as file system objects
are created. RECOMMENDED attributes are discussed in Section 5.2.

A named attribute is an opaque byte stream that is associated with a directory or file and
referred to by a string name. Named attributes are meant to be used by client applications as a
method to associate application-specific data with a regular file or directory. NFSv4.1 modifies
named attributes relative to NFSv4.0 by tightening the allowed operations in order to prevent the
development of non-interoperable implementations. Named attributes are discussed in Section
5.3.

1.8.3.3. Multi-Server Namespace

NFSv4.1 contains a number of features to allow implementation of namespaces that cross server
boundaries and that allow and facilitate a nondisruptive transfer of support for individual file
systems between servers. They are all based upon attributes that allow one file system to specify
alternate, additional, and new location information that specifies how the client may access that
file system.

These attributes can be used to provide for individual active file systems:

* Alternate network addresses to access the current file system instance.

 The locations of alternate file system instances or replicas to be used in the event that the
current file system instance becomes unavailable.

These file system location attributes may be used together with the concept of absent file
systems, in which a position in the server namespace is associated with locations on other
servers without there being any corresponding file system instance on the current server. For
example,

* These attributes may be used with absent file systems to implement referrals whereby one
server may direct the client to a file system provided by another server. This allows
extensive multi-server namespaces to be constructed.

* These attributes may be provided when a previously present file system becomes absent.
This allows nondisruptive migration of file systems to alternate servers.

1.8.4. Locking Facilities

As mentioned previously, NFSv4.1 is a single protocol that includes locking facilities. These
locking facilities include support for many types of locks including a number of sorts of
recallable locks. Recallable locks such as delegations allow the client to be assured that certain
events will not occur so long as that lock is held. When circumstances change, the lock is recalled
via a callback request. The assurances provided by delegations allow more extensive caching to
be done safely when circumstances allow it.

Noveck & Lever Standards Track Page 17

RFC 8881 NFSv4.1 with Namespace Update August 2020

The types of locks are:

* Share reservations as established by OPEN operations.
* Byte-range locks.

* File delegations, which are recallable locks that assure the holder that inconsistent opens
and file changes cannot occur so long as the delegation is held.

* Directory delegations, which are recallable locks that assure the holder that inconsistent
directory modifications cannot occur so long as the delegation is held.

* Layouts, which are recallable objects that assure the holder that direct access to the file data
may be performed directly by the client and that no change to the data's location that is
inconsistent with that access may be made so long as the layout is held.

All locks for a given client are tied together under a single client-wide lease. All requests made on
sessions associated with the client renew that lease. When the client's lease is not promptly
renewed, the client's locks are subject to revocation. In the event of server restart, clients have
the opportunity to safely reclaim their locks within a special grace period.

1.9. Differences from NFSv4.0

The following summarizes the major differences between minor version 1 and the base protocol:

* Implementation of the sessions model (Section 2.10).
* Parallel access to data (Section 12).

* Addition of the RECLAIM_COMPLETE operation to better structure the lock reclamation
process (Section 18.51).

* Enhanced delegation support as follows.

> Delegations on directories and other file types in addition to regular files (Section 18.39,
Section 18.49).

o Operations to optimize acquisition of recalled or denied delegations (Section 18.49, Section
20.5, Section 20.7).

o Notifications of changes to files and directories (Section 18.39, Section 20.4).

> A method to allow a server to indicate that it is recalling one or more delegations for
resource management reasons, and thus a method to allow the client to pick which
delegations to return (Section 20.6).

* Attributes can be set atomically during exclusive file create via the OPEN operation (see the
new EXCLUSIVE4_1 creation method in Section 18.16).

* Open files can be preserved if removed and the hard link count ("hard link" is defined in an
Open Group [6] standard) goes to zero, thus obviating the need for clients to rename deleted
files to partially hidden names -- colloquially called "silly rename" (see the new
OPEN4_RESULT_PRESERVE_UNLINKED reply flag in Section 18.16).

» Improved compatibility with Microsoft Windows for Access Control Lists (Section 6.2.3,
Section 6.2.2, Section 6.4.3.2).

* Data retention (Section 5.13).

Noveck & Lever Standards Track Page 18

RFC 8881 NFSv4.1 with Namespace Update August 2020

* Identification of the implementation of the NFS client and server (Section 18.35).

* Support for notification of the availability of byte-range locks (see the new
OPEN4_RESULT_MAY_NOTIFY_LOCK reply flag in Section 18.16 and see Section 20.11).

* In NFSv4.1, LIPKEY and SPKM-3 are not required security mechanisms [39].

2. Core Infrastructure

2.1. Introduction

NFSv4.1 relies on core infrastructure common to nearly every operation. This core infrastructure
is described in the remainder of this section.

2.2. RPC and XDR

The NFSv4.1 protocol is a Remote Procedure Call (RPC) application that uses RPC version 2 and
the corresponding eXternal Data Representation (XDR) as defined in [3] and [2].

2.2.1. RPC-Based Security

Previous NFS versions have been thought of as having a host-based authentication model, where
the NFS server authenticates the NFS client, and trusts the client to authenticate all users.
Actually, NFS has always depended on RPC for authentication. One of the first forms of RPC
authentication, AUTH_SYS, had no strong authentication and required a host-based
authentication approach. NFSv4.1 also depends on RPC for basic security services and mandates
RPC support for a user-based authentication model. The user-based authentication model has
user principals authenticated by a server, and in turn the server authenticated by user
principals. RPC provides some basic security services that are used by NFSv4.1.

2.2.1.1. RPC Security Flavors

As described in "Authentication”, Section 7 of [3], RPC security is encapsulated in the RPC header,
via a security or authentication flavor, and information specific to the specified security flavor.
Every RPC header conveys information used to identify and authenticate a client and server. As
discussed in Section 2.2.1.1.1, some security flavors provide additional security services.

NFSv4.1 clients and servers MUST implement RPCSEC_GSS. (This requirement to implement is not
a requirement to use.) Other flavors, such as AUTH_NONE and AUTH_SYS, MAY be implemented
as well.

2.2.1.1.1. RPCSEC_GSS and Security Services

RPCSEC_GSS [4] uses the functionality of GSS-API [7]. This allows for the use of various security
mechanisms by the RPC layer without the additional implementation overhead of adding RPC
security flavors.

Noveck & Lever Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc5531#section-7

RFC 8881 NFSv4.1 with Namespace Update August 2020

2.2.1.1.1.1. Identification, Authentication, Integrity, Privacy

Via the GSS-API, RPCSEC_GSS can be used to identify and authenticate users on clients to servers,
and servers to users. It can also perform integrity checking on the entire RPC message, including
the RPC header, and on the arguments or results. Finally, privacy, usually via encryption, is a
service available with RPCSEC_GSS. Privacy is performed on the arguments and results. Note that
if privacy is selected, integrity, authentication, and identification are enabled. If privacy is not
selected, but integrity is selected, authentication and identification are enabled. If integrity and
privacy are not selected, but authentication is enabled, identification is enabled. RPCSEC_GSS
does not provide identification as a separate service.

Although GSS-API has an authentication service distinct from its privacy and integrity services,
GSS-API's authentication service is not used for RPCSEC_GSS's authentication service. Instead,
each RPC request and response header is integrity protected with the GSS-API integrity service,
and this allows RPCSEC_GSS to offer per-RPC authentication and identity. See [4] for more
information.

NFSv4.1 client and servers MUST support RPCSEC_GSS's integrity and authentication service.
NFSv4.1 servers MUST support RPCSEC_GSS's privacy service. NFSv4.1 clients SHOULD support
RPCSEC_GSS's privacy service.

2.2.1.1.1.2. Security Mechanisms for NFSv4.1

RPCSEC_GSS, via GSS-API, normalizes access to mechanisms that provide security services.
Therefore, NFSv4.1 clients and servers MUST support the Kerberos V5 security mechanism.

The use of RPCSEC_GSS requires selection of mechanism, quality of protection (QOP), and service
(authentication, integrity, privacy). For the mandated security mechanisms, NFSv4.1 specifies
that a QOP of zero is used, leaving it up to the mechanism or the mechanism's configuration to
map QOP zero to an appropriate level of protection. Each mandated mechanism specifies a
minimum set of cryptographic algorithms for implementing integrity and privacy. NFSv4.1
clients and servers MUST be implemented on operating environments that comply with the
REQUIRED cryptographic algorithms of each REQUIRED mechanism.

Noveck & Lever Standards Track Page 20

RFC 8881 NFSv4.1 with Namespace Update August 2020

2.2.1.1.1.2.1. Kerberos V5

The Kerberos V5 GSS-API mechanism as described in [5] MUST be implemented with the
RPCSEC_GSS services as specified in the following table:

column descriptions:

number of pseudo flavor

name of pseudo flavor
mechanism's 0ID

RPCSEC_GSS service

NFSv4.1 clients MUST support
NFSv4.1 servers MUST support

OO WN =

390003 krb5 1.2.840.113554.1.2.2 rpc_gss_svc_none yes yes
390004 krb5i 1.2.840.113554.1.2.2 rpc_gss_svc_integrity yes yes
390005 krb5p 1.2.840.113554.1.2.2 rpc_gss_svc_privacy no yes

Note that the number and name of the pseudo flavor are presented here as a mapping aid to the
implementor. Because the NFSv4.1 protocol includes a method to negotiate security and it
understands the GSS-API mechanism, the pseudo flavor is not needed. The pseudo flavor is
needed for the NFSv3 since the security negotiation is done via the MOUNT protocol as described
in [40].

At the time NFSv4.1 was specified, the Advanced Encryption Standard (AES) with HMAC-SHA1
was a REQUIRED algorithm set for Kerberos V5. In contrast, when NFSv4.0 was specified, weaker
algorithm sets were REQUIRED for Kerberos V5, and were REQUIRED in the NFSv4.0 specification,
because the Kerberos V5 specification at the time did not specify stronger algorithms. The
NFSv4.1 specification does not specify REQUIRED algorithms for Kerberos V5, and instead, the
implementor is expected to track the evolution of the Kerberos V5 standard if and when stronger
algorithms are specified.

2.2.1.1.1.2.1.1. Security Considerations for Cryptographic Algorithms in Kerberos V5

When deploying NFSv4.1, the strength of the security achieved depends on the existing Kerberos
V5 infrastructure. The algorithms of Kerberos V5 are not directly exposed to or selectable by the
client or server, so there is some due diligence required by the user of NFSv4.1 to ensure that
security is acceptable where needed.

2.2.1.1.1.3. GSS Server Principal

Regardless of what security mechanism under RPCSEC_GSS is being used, the NFS server MUST
identify itself in GSS-API via a GSS_C_NT_HOSTBASED_SERVICE name type.
GSS_C_NT_HOSTBASED_SERVICE names are of the form:

service@hostname

Noveck & Lever Standards Track Page 21

RFC 8881 NFSv4.1 with Namespace Update August 2020

For NFS, the "service" element is

nfs

Implementations of security mechanisms will convert nfs@hostname to various different forms.
For Kerberos V5, the following form is RECOMMENDED:

nfs/hostname

2.3. COMPOUND and CB_COMPOUND

A significant departure from the versions of the NFS protocol before NFSv4 is the introduction of
the COMPOUND procedure. For the NFSv4 protocol, in all minor versions, there are exactly two
RPC procedures, NULL and COMPOUND. The COMPOUND procedure is defined as a series of
individual operations and these operations perform the sorts of functions performed by
traditional NFS procedures.

The operations combined within a COMPOUND request are evaluated in order by the server,
without any atomicity guarantees. A limited set of facilities exist to pass results from one
operation to another. Once an operation returns a failing result, the evaluation ends and the
results of all evaluated operations are returned to the client.

With the use of the COMPOUND procedure, the client is able to build simple or complex requests.
These COMPOUND requests allow for a reduction in the number of RPCs needed for logical file
system operations. For example, multi-component look up requests can be constructed by
combining multiple LOOKUP operations. Those can be further combined with operations such as
GETATTR, READDIR, or OPEN plus READ to do more complicated sets of operation without
incurring additional latency.

NFSv4.1 also contains a considerable set of callback operations in which the server makes an RPC
directed at the client. Callback RPCs have a similar structure to that of the normal server
requests. In all minor versions of the NFSv4 protocol, there are two callback RPC procedures:
CB_NULL and CB_COMPOUND. The CB_COMPOUND procedure is defined in an analogous fashion
to that of COMPOUND with its own set of callback operations.

The addition of new server and callback operations within the COMPOUND and CB_COMPOUND
request framework provides a means of extending the protocol in subsequent minor versions.

Except for a small number of operations needed for session creation, server requests and
callback requests are performed within the context of a session. Sessions provide a client context
for every request and support robust replay protection for non-idempotent requests.

2.4. Client Identifiers and Client Owners

For each operation that obtains or depends on locking state, the specific client needs to be
identifiable by the server.

Noveck & Lever Standards Track Page 22

RFC 8881 NFSv4.1 with Namespace Update August 2020

Each distinct client instance is represented by a client ID. A client ID is a 64-bit identifier
representing a specific client at a given time. The client ID is changed whenever the client re-
initializes, and may change when the server re-initializes. Client IDs are used to support lock
identification and crash recovery.

During steady state operation, the client ID associated with each operation is derived from the
session (see Section 2.10) on which the operation is sent. A session is associated with a client ID
when the session is created.

Unlike NFSv4.0, the only NFSv4.1 operations possible before a client ID is established are those
needed to establish the client ID.

A sequence of an EXCHANGE_ID operation followed by a CREATE_SESSION operation using that
client ID (eir_clientid as returned from EXCHANGE_ID) is required to establish and confirm the
client ID on the server. Establishment of identification by a new incarnation of the client also has
the effect of immediately releasing any locking state that a previous incarnation of that same
client might have had on the server. Such released state would include all byte-range lock, share
reservation, layout state, and -- where the server supports neither the CLAIM_DELEGATE_PREV
nor CLAIM_DELEG_CUR_FH claim types -- all delegation state associated with the same client
with the same identity. For discussion of delegation state recovery, see Section 10.2.1. For
discussion of layout state recovery, see Section 12.7.1.

Releasing such state requires that the server be able to determine that one client instance is the
successor of another. Where this cannot be done, for any of a number of reasons, the locking
state will remain for a time subject to lease expiration (see Section 8.3) and the new client will
need to wait for such state to be removed, if it makes conflicting lock requests.

Client identification is encapsulated in the following client owner data type:

struct client_owner4 {

verifier4 co_verifier;

opaque co_ownerid<NFS4_OPAQUE_LIMIT>;
}

The first field, co_verifier, is a client incarnation verifier, allowing the server to distinguish
successive incarnations (e.g., reboots) of the same client. The server will start the process of
canceling the client's leased state if co_verifier is different than what the server has previously
recorded for the identified client (as specified in the co_ownerid field).

The second field, co_ownerid, is a variable length string that uniquely defines the client so that
subsequent instances of the same client bear the same co_ownerid with a different verifier.

There are several considerations for how the client generates the co_ownerid string:

* The string should be unique so that multiple clients do not present the same string. The
consequences of two clients presenting the same string range from one client getting an
error to one client having its leased state abruptly and unexpectedly cancelled.

Noveck & Lever Standards Track Page 23

RFC 8881 NFSv4.1 with Namespace Update August 2020

* The string should be selected so that subsequent incarnations (e.g., restarts) of the same
client cause the client to present the same string. The implementor is cautioned from an
approach that requires the string to be recorded in a local file because this precludes the use
of the implementation in an environment where there is no local disk and all file access is
from an NFSv4.1 server.

* The string should be the same for each server network address that the client accesses. This
way, if a server has multiple interfaces, the client can trunk traffic over multiple network
paths as described in Section 2.10.5. (Note: the precise opposite was advised in the NFSv4.0
specification [37].)

* The algorithm for generating the string should not assume that the client's network address
will not change, unless the client implementation knows it is using statically assigned
network addresses. This includes changes between client incarnations and even changes
while the client is still running in its current incarnation. Thus, with dynamic address
assignment, if the client includes just the client's network address in the co_ownerid string,
there is a real risk that after the client gives up the network address, another client, using a
similar algorithm for generating the co_ownerid string, would generate a conflicting
co_ownerid string.

Given the above considerations, an example of a well-generated co_ownerid string is one that
includes:

o If applicable, the client's statically assigned network address.
» Additional information that tends to be unique, such as one or more of:

o The client machine's serial number (for privacy reasons, it is best to perform some one-
way function on the serial number).

> A Media Access Control (MAC) address (again, a one-way function should be performed).

o The timestamp of when the NFSv4.1 software was first installed on the client (though this
is subject to the previously mentioned caution about using information that is stored in a
file, because the file might only be accessible over NFSv4.1).

o A true random number. However, since this number ought to be the same between client
incarnations, this shares the same problem as that of using the timestamp of the software
installation.

* For a user-level NFSv4.1 client, it should contain additional information to distinguish the
client from other user-level clients running on the same host, such as a process identifier or
other unique sequence.

The client ID is assigned by the server (the eir_clientid result from EXCHANGE_ID) and should be
chosen so that it will not conflict with a client ID previously assigned by the server. This applies
across server restarts.

In the event of a server restart, a client may find out that its current client ID is no longer valid
when it receives an NFS4ERR_STALE_CLIENTID error. The precise circumstances depend on the
characteristics of the sessions involved, specifically whether the session is persistent (see Section
2.10.6.5), but in each case the client will receive this error when it attempts to establish a new

Noveck & Lever Standards Track Page 24

RFC 8881 NFSv4.1 with Namespace Update August 2020

session with the existing client ID and receives the error NFS4ERR_STALE_CLIENTID, indicating
that a new client ID needs to be obtained via EXCHANGE_ID and the new session established
with that client ID.

When a session is not persistent, the client will find out that it needs to create a new session as a
result of getting an NFS4ERR_BADSESSION, since the session in question was lost as part of a
server restart. When the existing client ID is presented to a server as part of creating a session
and that client ID is not recognized, as would happen after a server restart, the server will reject
the request with the error NFS4ERR_STALE_CLIENTID.

In the case of the session being persistent, the client will re-establish communication using the
existing session after the restart. This session will be associated with the existing client ID but
may only be used to retransmit operations that the client previously transmitted and did not see
replies to. Replies to operations that the server previously performed will come from the reply
cache; otherwise, NFS4ERR_DEADSESSION will be returned. Hence, such a session is referred to
as "dead". In this situation, in order to perform new operations, the client needs to establish a
new session. If an attempt is made to establish this new session with the existing client ID, the
server will reject the request with NFS4ERR_STALE_CLIENTID.

When NFS4ERR_STALE_CLIENTID is received in either of these situations, the client needs to
obtain a new client ID by use of the EXCHANGE_ID operation, then use that client ID as the basis
of a new session, and then proceed to any other necessary recovery for the server restart case
(see Section 8.4.2).

See the descriptions of EXCHANGE_ID (Section 18.35) and CREATE_SESSION (Section 18.36) for a
complete specification of these operations.

2.4.1. Upgrade from NFSv4.0 to NFSv4.1

To facilitate upgrade from NFSv4.0 to NFSv4.1, a server may compare a value of data type
client_owner4 in an EXCHANGE_ID with a value of data type nfs_client_id4 that was established
using the SETCLIENTID operation of NFSv4.0. A server that does so will allow an upgraded client
to avoid waiting until the lease (i.e., the lease established by the NFSv4.0 instance client) expires.
This requires that the value of data type client_owner4 be constructed the same way as the value
of data type nfs_client_id4. If the latter's contents included the server's network address (per the
recommendations of the NFSv4.0 specification [37]), and the NFSv4.1 client does not wish to use a
client ID that prevents trunking, it should send two EXCHANGE_ID operations. The first
EXCHANGE_ID will have a client_owner4 equal to the nfs_client_id4. This will clear the state
created by the NFSv4.0 client. The second EXCHANGE_ID will not have the server's network
address. The state created for the second EXCHANGE_ID will not have to wait for lease
expiration, because there will be no state to expire.

2.4.2. Server Release of Client ID

NFSv4.1 introduces a new operation called DESTROY_CLIENTID (Section 18.50), which the client
SHOULD use to destroy a client ID it no longer needs. This permits graceful, bilateral release of a
client ID. The operation cannot be used if there are sessions associated with the client ID, or state
with an unexpired lease.

Noveck & Lever Standards Track Page 25

RFC 8881 NFSv4.1 with Namespace Update August 2020

If the server determines that the client holds no associated state for its client ID (associated state
includes unrevoked sessions, opens, locks, delegations, layouts, and wants), the server MAY
choose to unilaterally release the client ID in order to conserve resources. If the client contacts
the server after this release, the server MUST ensure that the client receives the appropriate
error so that it will use the EXCHANGE_ID/CREATE_SESSION sequence to establish a new client
ID. The server ought to be very hesitant to release a client ID since the resulting work on the
client to recover from such an event will be the same burden as if the server had failed and
restarted. Typically, a server would not release a client ID unless there had been no activity from
that client for many minutes. As long as there are sessions, opens, locks, delegations, layouts, or
wants, the server MUST NOT release the client ID. See Section 2.10.13.1.4 for discussion on
releasing inactive sessions.

2.4.3. Resolving Client Owner Conflicts

When the server gets an EXCHANGE_ID for a client owner that currently has no state, or that has
state but the lease has expired, the server MUST allow the EXCHANGE_ID and confirm the new
client ID if followed by the appropriate CREATE_SESSION.

When the server gets an EXCHANGE_ID for a new incarnation of a client owner that currently
has an old incarnation with state and an unexpired lease, the server is allowed to dispose of the
state of the previous incarnation of the client owner if one of the following is true:

* The principal that created the client ID for the client owner is the same as the principal that
is sending the EXCHANGE_ID operation. Note that if the client ID was created with
SP4_MACH_CRED state protection (Section 18.35), the principal MUST be based on
RPCSEC_GSS authentication, the RPCSEC_GSS service used MUST be integrity or privacy, and
the same GSS mechanism and principal MUST be used as that used when the client ID was
created.

* The client ID was established with SP4_SSV protection (Section 18.35, Section 2.10.8.3) and
the client sends the EXCHANGE_ID with the security flavor set to RPCSEC_GSS using the GSS
SSV mechanism (Section 2.10.9).

* The client ID was established with SP4_SSV protection, and under the conditions described
herein, the EXCHANGE_ID was sent with SP4_MACH_CRED state protection. Because the SSV
might not persist across client and server restart, and because the first time a client sends
EXCHANGE_ID to a server it does not have an SSV, the client MAY send the subsequent
EXCHANGE_ID without an SSV RPCSEC_GSS handle. Instead, as with SP4_MACH_CRED
protection, the principal MUST be based on RPCSEC_GSS authentication, the RPCSEC_GSS
service used MUST be integrity or privacy, and the same GSS mechanism and principal MUST
be used as that used when the client ID was created.

If none of the above situations apply, the server MUST return NFS4ERR_CLID_INUSE.

If the server accepts the principal and co_ownerid as matching that which created the client ID,
and the co_verifier in the EXCHANGE_ID differs from the co_verifier used when the client ID was
created, then after the server receives a CREATE_SESSION that confirms the client ID, the server

Noveck & Lever Standards Track Page 26

RFC 8881 NFSv4.1 with Namespace Update August 2020

deletes state. If the co_verifier values are the same (e.g., the client either is updating properties of
the client ID (Section 18.35) or is attempting trunking (Section 2.10.5), the server MUST NOT delete
state.

2.5. Server Owners

The server owner is similar to a client owner (Section 2.4), but unlike the client owner, there is
no shorthand server ID. The server owner is defined in the following data type:

struct server_owner4 {
uint64_t so_minor_id;
opaque so_major_id<NFS4_OPAQUE_LIMIT>;

The server owner is returned from EXCHANGE_ID. When the so_major_id fields are the same in
two EXCHANGE_ID results, the connections that each EXCHANGE_ID were sent over can be
assumed to address the same server (as defined in Section 1.7). If the so_minor_id fields are also
the same, then not only do both connections connect to the same server, but the session can be
shared across both connections. The reader is cautioned that multiple servers may deliberately
or accidentally claim to have the same so_major_id or so_major_id/so_minor_id; the reader
should examine Sections 2.10.5 and 18.35 in order to avoid acting on falsely matching server
owner values.

The considerations for generating an so_major_id are similar to that for generating a co_ownerid
string (see Section 2.4). The consequences of two servers generating conflicting so_major_id
values are less dire than they are for co_ownerid conflicts because the client can use RPCSEC_GSS
to compare the authenticity of each server (see Section 2.10.5).

2.6. Security Service Negotiation

With the NFSv4.1 server potentially offering multiple security mechanisms, the client needs a
method to determine or negotiate which mechanism is to be used for its communication with the
server. The NFS server may have multiple points within its file system namespace that are
available for use by NFS clients. These points can be considered security policy boundaries, and,
in some NFS implementations, are tied to NFS export points. In turn, the NFS server may be
configured such that each of these security policy boundaries may have different or multiple
security mechanisms in use.

The security negotiation between client and server SHOULD be done with a secure channel to
eliminate the possibility of a third party intercepting the negotiation sequence and forcing the
client and server to choose a lower level of security than required or desired. See Section 21 for
further discussion.

Noveck & Lever Standards Track Page 27

RFC 8881 NFSv4.1 with Namespace Update August 2020

2.6.1. NFSv4.1 Security Tuples

An NFS server can assign one or more "security tuples" to each security policy boundary in its
namespace. Each security tuple consists of a security flavor (see Section 2.2.1.1) and, if the flavor
is RPCSEC_GSS, a GSS-API mechanism Object Identifier (OID), a GSS-API quality of protection, and
an RPCSEC_GSS service.

2.6.2. SECINFO and SECINFO_NO_NAME

The SECINFO and SECINFO_NO_NAME operations allow the client to determine, on a per-
filehandle basis, what security tuple is to be used for server access. In general, the client will not
have to use either operation except during initial communication with the server or when the
client crosses security policy boundaries at the server. However, the server's policies may also
change at any time and force the client to negotiate a new security tuple.

Where the use of different security tuples would affect the type of access that would be allowed if
a request was sent over the same connection used for the SECINFO or SECINFO_NO_NAME
operation (e.g., read-only vs. read-write) access, security tuples that allow greater access should
be presented first. Where the general level of access is the same and different security flavors
limit the range of principals whose privileges are recognized (e.g., allowing or disallowing root
access), flavors supporting the greatest range of principals should be listed first.

2.6.3. Security Error

Based on the assumption that each NFSv4.1 client and server MUST support a minimum set of
security (i.e., Kerberos V5 under RPCSEC_GSS), the NFS client will initiate file access to the server
with one of the minimal security tuples. During communication with the server, the client may
receive an NFS error of NFS4ERR_WRONGSEC. This error allows the server to notify the client
that the security tuple currently being used contravenes the server's security policy. The client is
then responsible for determining (see Section 2.6.3.1) what security tuples are available at the
server and choosing one that is appropriate for the client.

2.6.3.1. Using NFS4ERR_WRONGSEC, SECINFO, and SECINFO_NO_NAME
This section explains the mechanics of NFSv4.1 security negotiation.

2.6.3.1.1. Put Filehandle Operations

The term "put filehandle operation" refers to PUTROOTFH, PUTPUBFH, PUTFH, and RESTOREFH.
Each of the subsections herein describes how the server handles a subseries of operations that
starts with a put filehandle operation.

2.6.3.1.1.1. Put Filehandle Operation + SAVEFH

The client is saving a filehandle for a future RESTOREFH, LINK, or RENAME. SAVEFH MUST NOT
return NFS4ERR_WRONGSEC. To determine whether or not the put filehandle operation returns
NFS4ERR_WRONGSEC, the server implementation pretends SAVEFH is not in the series of
operations and examines which of the situations described in the other subsections of Section
2.6.3.1.1 apply.

Noveck & Lever Standards Track Page 28

RFC 8881 NFSv4.1 with Namespace Update August 2020

2.6.3.1.1.2. Two or More Put Filehandle Operations

For a series of N put filehandle operations, the server MUST NOT return NFS4ERR_WRONGSEC to
the first N-1 put filehandle operations. The Nth put filehandle operation is handled as if it is the
first in a subseries of operations. For example, if the server received a COMPOUND request with
this series of operations -- PUTFH, PUTROOTFH, LOOKUP -- then the PUTFH operation is ignored
for NFS4ERR_WRONGSEC purposes, and the PUTROOTFH, LOOKUP subseries is processed as
according to Section 2.6.3.1.1.3.

2.6.3.1.1.3. Put Filehandle Operation + LOOKUP (or OPEN of an Existing Name)

This situation also applies to a put filehandle operation followed by a LOOKUP or an OPEN
operation that specifies an existing component name.

In this situation, the client is potentially crossing a security policy boundary, and the set of
security tuples the parent directory supports may differ from those of the child. The server
implementation may decide whether to impose any restrictions on security policy
administration. There are at least three approaches (sec_policy_child is the tuple set of the child
export, sec_policy_parent is that of the parent).

(a) sec_policy_child <= sec_policy_parent (<= for subset). This means that the set of security
tuples specified on the security policy of a child directory is always a subset of its parent
directory.

(b) sec_policy_child ~ sec_policy_parent != {} (* for intersection, {} for the empty set). This
means that the set of security tuples specified on the security policy of a child directory
always has a non-empty intersection with that of the parent.

(c) sec_policy_child ~ sec_policy_parent == {}. This means that the set of security tuples
specified on the security policy of a child directory may not intersect with that of the
parent. In other words, there are no restrictions on how the system administrator may set
up these tuples.

In order for a server to support approaches (b) (for the case when a client chooses a flavor that is
not a member of sec_policy_parent) and (c), the put filehandle operation cannot return
NFS4ERR_WRONGSEC when there is a security tuple mismatch. Instead, it should be returned
from the LOOKUP (or OPEN by existing component name) that follows.

Since the above guideline does not contradict approach (a), it should be followed in general. Even
if approach (a) is implemented, it is possible for the security tuple used to be acceptable for the
target of LOOKUP but not for the filehandles used in the put filehandle operation. The put
filehandle operation could be a PUTROOTFH or PUTPUBFH, where the client cannot know the
security tuples for the root or public filehandle. Or the security policy for the filehandle used by
the put filehandle operation could have changed since the time the filehandle was obtained.

Therefore, an NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC in response to the put
filehandle operation if the operation is immediately followed by a LOOKUP or an OPEN by
component name.

Noveck & Lever Standards Track Page 29

RFC 8881 NFSv4.1 with Namespace Update August 2020

2.6.3.1.1.4. Put Filehandle Operation + LOOKUPP

Since SECINFO only works its way down, there is no way LOOKUPP can return
NFS4ERR_WRONGSEC without SECINFO_NO_NAME. SECINFO_NO_NAME solves this issue via
style SECINFO_STYLE4_PARENT, which works in the opposite direction as SECINFO. As with
Section 2.6.3.1.1.3, a put filehandle operation that is followed by a LOOKUPP MUST NOT return
NFS4ERR_WRONGSEC. If the server does not support SECINFO_NO_NAME, the client's only
recourse is to send the put filehandle operation, LOOKUPP, GETFH sequence of operations with
every security tuple it supports.

Regardless of whether SECINFO_NO_NAME is supported, an NFSv4.1 server MUST NOT return
NFS4ERR_WRONGSEC in response to a put filehandle operation if the operation is immediately
followed by a LOOKUPP.

2.6.3.1.1.5. Put Filehandle Operation + SECINFO/SECINFO_NO_NAME

A security-sensitive client is allowed to choose a strong security tuple when querying a server to
determine a file object's permitted security tuples. The security tuple chosen by the client does
not have to be included in the tuple list of the security policy of either the parent directory
indicated in the put filehandle operation or the child file object indicated in SECINFO (or any
parent directory indicated in SECINFO_NO_NAME). Of course, the server has to be configured for
whatever security tuple the client selects; otherwise, the request will fail at the RPC layer with an
appropriate authentication error.

In theory, there is no connection between the security flavor used by SECINFO or
SECINFO_NO_NAME and those supported by the security policy. But in practice, the client may
start looking for strong flavors from those supported by the security policy, followed by those in
the REQUIRED set.

The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC to a put filehandle operation that is
immediately followed by SECINFO or SECINFO_NO_NAME. The NFSv4.1 server MUST NOT return
NFS4ERR_WRONGSEC from SECINFO or SECINFO_NO_NAME.

2.6.3.1.1.6. Put Filehandle Operation + Nothing
The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC.

2.6.3.1.1.7. Put Filehandle Operation + Anything Else
"Anything Else" includes OPEN by filehandle.

The security policy enforcement applies to the filehandle specified in the put filehandle
operation. Therefore, the put filehandle operation MUST return NFS4ERR_WRONGSEC when
there is a security tuple mismatch. This avoids the complexity of adding NFS4ERR_WRONGSEC as
an allowable error to every other operation.

A COMPOUND containing the series put filehandle operation + SECINFO_NO_NAME (style
SECINFO_STYLE4_CURRENT_FH) is an efficient way for the client to recover from
NFS4ERR_WRONGSEC.

Noveck & Lever Standards Track Page 30

RFC 8881 NFSv4.1 with Namespace Update August 2020

The NFSv4.1 server MUST NOT return NFS4ERR_WRONGSEC to any operation other than a put
filehandle operation, LOOKUP, LOOKUPP, and OPEN (by component name).

2.6.3.1.1.8. Operations after SECINFO and SECINFO_NO_NAME

Suppose a client sends a COMPOUND procedure containing the series SEQUENCE, PUTFH,
SECINFO_NONAME, READ, and suppose the security tuple used does not match that required for
the target file. By rule (see Section 2.6.3.1.1.5), neither PUTFH nor SECINFO_NO_NAME can return
NFS4ERR_WRONGSEC. By rule (see Section 2.6.3.1.1.7), READ cannot return
NFS4ERR_WRONGSEC. The issue is resolved by the fact that SECINFO and SECINFO_NO_NAME
consume the current filehandle (note that this is a change from NFSv4.0). This leaves no current
filehandle for READ to use, and READ returns NFS4ERR_NOFILEHANDLE.

2.6.3.1.2. LINK and RENAME

The LINK and RENAME operations use both the current and saved filehandles. Technically, the
server MAY return NFS4ERR_WRONGSEC from LINK or RENAME if the security policy of the
saved filehandle rejects the security flavor used in the COMPOUND request's credentials. If the
server does so, then if there is no intersection between the security policies of saved and current
filehandles, this means that it will be impossible for the client to perform the intended LINK or
RENAME operation.

For example, suppose the client sends this COMPOUND request: SEQUENCE, PUTFH bFH,
SAVEFH, PUTFH aFH, RENAME "c" "d", where filehandles bFH and aFH refer to different
directories. Suppose no common security tuple exists between the security policies of aFH and
bFH. If the client sends the request using credentials acceptable to bFH's security policy but not
aFH's policy, then the PUTFH aFH operation will fail with NFS4ERR_WRONGSEC. After a
SECINFO_NO_NAME request, the client sends SEQUENCE, PUTFH bFH, SAVEFH, PUTFH aFH,
RENAME "c" "d", using credentials acceptable to aFH's security policy but not bFH's policy. The
server returns NFS4ERR_WRONGSEC on the RENAME operation.

To prevent a client from an endless sequence of a request containing LINK or RENAME, followed
by a request containing SECINFO_NO_NAME or SECINFO, the server MUST detect when the
security policies of the current and saved filehandles have no mutually acceptable security tuple,
and MUST NOT return NFS4ERR_WRONGSEC from LINK or RENAME in that situation. Instead the
server MUST do one of two things:

* The server can return NFS4ERR_XDEV.

* The server can allow the security policy of the current filehandle to override that of the
saved filehandle, and so return NFS4_OK.

2.7. Minor Versioning

To address the requirement of an NFS protocol that can evolve as the need arises, the NFSv4.1
protocol contains the rules and framework to allow for future minor changes or versioning.

Noveck & Lever Standards Track Page 31

RFC 8881 NFSv4.1 with Namespace Update August 2020

The base assumption with respect to minor versioning is that any future accepted minor version
will be documented in one or more Standards Track RFCs. Minor version 0 of the NFSv4 protocol
is represented by [37], and minor version 1 is represented by this RFC. The COMPOUND and
CB_COMPOUND procedures support the encoding of the minor version being requested by the
client.

The following items represent the basic rules for the development of minor versions. Note that a
future minor version may modify or add to the following rules as part of the minor version
definition.

1. Procedures are not added or deleted.

To maintain the general RPC model, NFSv4 minor versions will not add to or delete
procedures from the NFS program.

2. Minor versions may add operations to the COMPOUND and CB_COMPOUND procedures.

The addition of operations to the COMPOUND and CB_COMPOUND procedures does not
affect the RPC model.

> Minor versions may append attributes to the bitmap4 that represents sets of attributes and
to the fattr4 that represents sets of attribute values.

This allows for the expansion of the attribute model to allow for future growth or
adaptation.

> Minor version X must append any new attributes after the last documented attribute.

Since attribute results are specified as an opaque array of per-attribute, XDR-encoded
results, the complexity of adding new attributes in the midst of the current definitions
would be too burdensome.

3. Minor versions must not modify the structure of an existing operation's arguments or
results.

Again, the complexity of handling multiple structure definitions for a single operation is too
burdensome. New operations should be added instead of modifying existing structures for a
minor version.

This rule does not preclude the following adaptations in a minor version:

- adding bits to flag fields, such as new attributes to GETATTR's bitmap4 data type, and
providing corresponding variants of opaque arrays, such as a notify4 used together with
such bitmaps

- adding bits to existing attributes like ACLs that have flag words
o extending enumerated types (including NFS4ERR_*) with new values
o adding cases to a switched union

4. Minor versions must not modify the structure of existing attributes.

Noveck & Lever Standards Track Page 32

RFC 8881 NFSv4.1 with Namespace Update August 2020

5.

Minor versions must not delete operations.

This prevents the potential reuse of a particular operation "slot" in a future minor version.

6. Minor versions must not delete attributes.

. Minor versions must not delete flag bits or enumeration values.

8. Minor versions may declare an operation MUST NOT be implemented.

10.

11.

12.

13.

Specifying that an operation MUST NOT be implemented is equivalent to obsoleting an
operation. For the client, it means that the operation MUST NOT be sent to the server. For the
server, an NFS error can be returned as opposed to "dropping" the request as an XDR decode
error. This approach allows for the obsolescence of an operation while maintaining its
structure so that a future minor version can reintroduce the operation.

1. Minor versions may declare that an attribute MUST NOT be implemented.

2. Minor versions may declare that a flag bit or enumeration value MUST NOT be
implemented.

. Minor versions may downgrade features from REQUIRED to RECOMMENDED, or

RECOMMENDED to OPTIONAL.

Minor versions may upgrade features from OPTIONAL to RECOMMENDED, or RECOMMENDED
to REQUIRED.

A client and server that support minor version X SHOULD support minor versions zero
through X-1 as well.

Except for infrastructural changes, a minor version must not introduce REQUIRED new
features.

This rule allows for the introduction of new functionality and forces the use of
implementation experience before designating a feature as REQUIRED. On the other hand,
some classes of features are infrastructural and have broad effects. Allowing infrastructural
features to be RECOMMENDED or OPTIONAL complicates implementation of the minor
version.

A client MUST NOT attempt to use a stateid, filehandle, or similar returned object from the
COMPOUND procedure with minor version X for another COMPOUND procedure with minor
version Y, where X =Y.

2.8. Non-RPC-Based Security Services

As described in Section 2.2.1.1.1.1, NFSv4.1 relies on RPC for identification, authentication,
integrity, and privacy. NFSv4.1 itself provides or enables additional security services as described
in the next several subsections.

Noveck & Lever Standards Track Page 33

RFC 8881 NFSv4.1 with Namespace Update August 2020

2.8.1. Authorization

Authorization to access a file object via an NFSv4.1 operation is ultimately determined by the
NFSv4.1 server. A client can predetermine its access to a file object via the OPEN (Section 18.16)
and the ACCESS (Section 18.1) operations.

Principals with appropriate access rights can modify the authorization on a file object via the
SETATTR (Section 18.30) operation. Attributes that affect access rights include mode, owner,
owner_group, acl, dacl, and sacl. See Section 5.

2.8.2. Auditing

NFSv4.1 provides auditing on a per-file object basis, via the acl and sacl attributes as described in
Section 6. It is outside the scope of this specification to specify audit log formats or management
policies.

2.8.3. Intrusion Detection

NFSv4.1 provides alarm control on a per-file object basis, via the acl and sacl attributes as
described in Section 6. Alarms may serve as the basis for intrusion detection. It is outside the
scope of this specification to specify heuristics for detecting intrusion via alarmes.

2.9. Transport Layers

2.9.1. REQUIRED and RECOMMENDED Properties of Transports

NFSv4.1 works over Remote Direct Memory Access (RDMA) and non-RDMA-based transports
with the following attributes:

 The transport supports reliable delivery of data, which NFSv4.1 requires but neither NFSv4.1
nor RPC has facilities for ensuring [41].

* The transport delivers data in the order it was sent. Ordered delivery simplifies detection of
transmit errors, and simplifies the sending of arbitrary sized requests and responses via the
record marking protocol [3].

Where an NFSv4.1 implementation supports operation over the IP network protocol, any
transport used between NFS and IP MUST be among the IETF-approved congestion control
transport protocols. At the time this document was written, the only two transports that had the
above attributes were TCP and the Stream Control Transmission Protocol (SCTP). To enhance the
possibilities for interoperability, an NFSv4.1 implementation MUST support operation over the
TCP transport protocol.

Even if NFSv4.1 is used over a non-IP network protocol, it is RECOMMENDED that the transport
support congestion control.

It is permissible for a connectionless transport to be used under NFSv4.1; however, reliable and
in-order delivery of data combined with congestion control by the connectionless transport is
REQUIRED. As a consequence, UDP by itself MUST NOT be used as an NFSv4.1 transport. NFSv4.1

Noveck & Lever Standards Track Page 34

RFC 8881 NFSv4.1 with Namespace Update August 2020

assumes that a client transport address and server transport address used to send data over a
transport together constitute a connection, even if the underlying transport eschews the concept
of a connection.

2.9.2. Client and Server Transport Behavior

If a connection-oriented transport (e.g., TCP) is used, the client and server SHOULD use long-lived
connections for at least three reasons:

1. This will prevent the weakening of the transport's congestion control mechanisms via short-
lived connections.

2. This will improve performance for the WAN environment by eliminating the need for
connection setup handshakes.

3. The NFSv4.1 callback model differs from NFSv4.0, and requires the client and server to
maintain a client-created backchannel (see Section 2.10.3.1) for the server to use.

In order to reduce congestion, if a connection-oriented transport is used, and the request is not
the NULL procedure:

* A requester MUST NOT retry a request unless the connection the request was sent over was
lost before the reply was received.

* A replier MUST NOT silently drop a request, even if the request is a retry. (The silent drop
behavior of RPCSEC_GSS [4] does not apply because this behavior happens at the
RPCSEC_GSS layer, a lower layer in the request processing.) Instead, the replier SHOULD
return an appropriate error (see Section 2.10.6.1), or it MAY disconnect the connection.

When sending a reply, the replier MUST send the reply to the same full network address (e.g., if
using an IP-based transport, the source port of the requester is part of the full network address)
from which the requester sent the request. If using a connection-oriented transport, replies MUST
be sent on the same connection from which the request was received.

If a connection is dropped after the replier receives the request but before the replier sends the
reply, the replier might have a pending reply. If a connection is established with the same source
and destination full network address as the dropped connection, then the replier MUST NOT send
the reply until the requester retries the request. The reason for this prohibition is that the
requester MAY retry a request over a different connection (provided that connection is
associated with the original request's session).

When using RDMA transports, there are other reasons for not tolerating retries over the same
connection:

* RDMA transports use "credits" to enforce flow control, where a credit is a right to a peer to
transmit a message. If one peer were to retransmit a request (or reply), it would consume an
additional credit. If the replier retransmitted a reply, it would certainly result in an RDMA
connection loss, since the requester would typically only post a single receive buffer for each
request. If the requester retransmitted a request, the additional credit consumed on the
server might lead to RDMA connection failure unless the client accounted for it and
decreased its available credit, leading to wasted resources.

Noveck & Lever Standards Track Page 35

RFC 8881 NFSv4.1 with Namespace Update August 2020

* RDMA credits present a new issue to the reply cache in NFSv4.1. The reply cache may be
used when a connection within a session is lost, such as after the client reconnects. Credit
information is a dynamic property of the RDMA connection, and stale values must not be
replayed from the cache. This implies that the reply cache contents must not be blindly used
when replies are sent from it, and credit information appropriate to the channel must be
refreshed by the RPC layer.

In addition, as described in Section 2.10.6.2, while a session is active, the NFSv4.1 requester MUST
NOT stop waiting for a reply.

2.9.3. Ports

Historically, NFSv3 servers have listened over TCP port 2049. The registered port 2049 [42] for the
NFS protocol should be the default configuration. NFSv4.1 clients SHOULD NOT use the RPC
binding protocols as described in [43].

2.10. Session

NFSv4.1 clients and servers MUST support and MUST use the session feature as described in this
section.

2.10.1. Motivation and Overview

Previous versions and minor versions of NFS have suffered from the following:

* Lack of support for Exactly Once Semantics (EOS). This includes lack of support for EOS
through server failure and recovery.

* Limited callback support, including no support for sending callbacks through firewalls, and
races between replies to normal requests and callbacks.

* Limited trunking over multiple network paths.
* Requiring machine credentials for fully secure operation.

Through the introduction of a session, NFSv4.1 addresses the above shortfalls with practical
solutions:

* EOS is enabled by a reply cache with a bounded size, making it feasible to keep the cache in
persistent storage and enable EOS through server failure and recovery. One reason that
previous revisions of NFS did not support EOS was because some EOS approaches often
limited parallelism. As will be explained in Section 2.10.6, NFSv4.1 supports both EOS and
unlimited parallelism.

* The NFSv4.1 client (defined in Section 1.7) creates transport connections and provides them
to the server to use for sending callback requests, thus solving the firewall issue (Section
18.34). Races between responses from client requests and callbacks caused by the requests
are detected via the session's sequencing properties that are a consequence of EOS (Section
2.10.6.3).

» The NFSv4.1 client can associate an arbitrary number of connections with the session, and
thus provide trunking (Section 2.10.5).

Noveck & Lever Standards Track Page 36

RFC 8881 NFSv4.1 with Namespace Update August 2020

» The NFSv4.1 client and server produce a session key independent of client and server
machine credentials which can be used to compute a digest for protecting critical session
management operations (Section 2.10.8.3).

» The NFSv4.1 client can also create secure RPCSEC_GSS contexts for use by the session's
backchannel that do not require the server to authenticate to a client machine principal
(Section 2.10.8.2).

A session is a dynamically created, long-lived server object created by a client and used over time
from one or more transport connections. Its function is to maintain the server's state relative to
the connection(s) belonging to a client instance. This state is entirely independent of the
connection itself, and indeed the state exists whether or not the connection exists. A client may
have one or more sessions associated with it so that client-associated state may be accessed using
any of the sessions associated with that client's client ID, when connections are associated with
those sessions. When no connections are associated with any of a client ID's sessions for an
extended time, such objects as locks, opens, delegations, layouts, etc. are subject to expiration.
The session serves as an object representing a means of access by a client to the associated client
state on the server, independent of the physical means of access to that state.

A single client may create multiple sessions. A single session MUST NOT serve multiple clients.

2.10.2. NFSv4 Integration

Sessions are part of NFSv4.1 and not NFSv4.0. Normally, a major infrastructure change such as
sessions would require a new major version number to an Open Network Computing (ONC) RPC
program like NFS. However, because NFSv4 encapsulates its functionality in a single procedure,
COMPOUND, and because COMPOUND can support an arbitrary number of operations, sessions
have been added to NFSv4.1 with little difficulty. COMPOUND includes a minor version number
field, and for NFSv4.1 this minor version is set to 1. When the NFSv4 server processes a
COMPOUND with the minor version set to 1, it expects a different set of operations than it does
for NFSv4.0. NFSv4.1 defines the SEQUENCE operation, which is required for every COMPOUND
that operates over an established session, with the exception of some session administration
operations, such as DESTROY_SESSION (Section 18.37).

2.10.2.1. SEQUENCE and CB_SEQUENCE

In NFSv4.1, when the SEQUENCE operation is present, it MUST be the first operation in the
COMPOUND procedure. The primary purpose of SEQUENCE is to carry the session identifier. The
session identifier associates all other operations in the COMPOUND procedure with a particular
session. SEQUENCE also contains required information for maintaining EOS (see Section 2.10.6).
Session-enabled NFSv4.1 COMPOUND requests thus have the form:

+

| tag | minorversion | numops | SEQUENCE op | op + args |

| | (== 1) | (limited) | + args | |
+

Noveck & Lever Standards Track Page 37

RFC 8881 NFSv4.1 with Namespace Update August 2020

and the replies have the form:

LT R fom - T T P +--//
| last status | tag | numres |status + SEQUENCE op + results | //
et +----- Fomm— o - +--//

[]==mmm e +----

// status + op + results |

[/ mmmmmmm e +----

A CB_COMPOUND procedure request and reply has a similar form to COMPOUND, but instead of
a SEQUENCE operation, there is a CB_SEQUENCE operation. CB_COMPOUND also has an
additional field called "callback_ident", which is superfluous in NFSv4.1 and MUST be ignored by
the client. CB_SEQUENCE has the same information as SEQUENCE, and also includes other
information needed to resolve callback races (Section 2.10.6.3).

2.10.2.2. Client ID and Session Association

Each client ID (Section 2.4) can have zero or more active sessions. A client ID and associated
session are required to perform file access in NFSv4.1. Each time a session is used (Whether by a
client sending a request to the server or the client replying to a callback request from the server),
the state leased to its associated client ID is automatically renewed.

State (which can consist of share reservations, locks, delegations, and layouts (Section 1.8.4)) is
tied to the client ID. Client state is not tied to any individual session. Successive state changing
operations from a given state owner MAY go over different sessions, provided the session is
associated with the same client ID. A callback MAY arrive over a different session than that of the
request that originally acquired the state pertaining to the callback. For example, if session A is
used to acquire a delegation, a request to recall the delegation MAY arrive over session B if both
sessions are associated with the same client ID. Sections 2.10.8.1 and 2.10.8.2 discuss the security
considerations around callbacks.

2.10.3. Channels
A channel is not a connection. A channel represents the direction ONC RPC requests are sent.
Each session has one or two channels: the fore channel and the backchannel. Because there are

at most two channels per session, and because each channel has a distinct purpose, channels are
not assigned identifiers.

The fore channel is used for ordinary requests from the client to the server, and carries
COMPOUND requests and responses. A session always has a fore channel.

The backchannel is used for callback requests from server to client, and carries CB_COMPOUND
requests and responses. Whether or not there is a backchannel is decided by the client; however,
many features of NFSv4.1 require a backchannel. NFSv4.1 servers MUST support backchannels.

Each session has resources for each channel, including separate reply caches (see Section
2.10.6.1). Note that even the backchannel requires a reply cache (or, at least, a slot table in order
to detect retries) because some callback operations are non-idempotent.

Noveck & Lever Standards Track Page 38

RFC 8881 NFSv4.1 with Namespace Update August 2020

2.10.3.1. Association of Connections, Channels, and Sessions

Each channel is associated with zero or more transport connections (whether of the same
transport protocol or different transport protocols). A connection can be associated with one
channel or both channels of a session; the client and server negotiate whether a connection will
carry traffic for one channel or both channels via the CREATE_SESSION (Section 18.36) and the
BIND_CONN_TO_SESSION (Section 18.34) operations. When a session is created via
CREATE_SESSION, the connection that transported the CREATE_SESSION request is automatically
associated with the fore channel, and optionally the backchannel. If the client specifies no state
protection (Section 18.35) when the session is created, then when SEQUENCE is transmitted on a
different connection, the connection is automatically associated with the fore channel of the
session specified in the SEQUENCE operation.

A connection's association with a session is not exclusive. A connection associated with the
channel(s) of one session may be simultaneously associated with the channel(s) of other sessions
including sessions associated with other client IDs.

It is permissible for connections of multiple transport types to be associated with the same
channel. For example, both TCP and RDMA connections can be associated with the fore channel.
In the event an RDMA and non-RDMA connection are associated with the same channel, the
maximum number of slots SHOULD be at least one more than the total number of RDMA credits
(Section 2.10.6.1). This way, if all RDMA credits are used, the non-RDMA connection can have at
least one outstanding request. If a server supports multiple transport types, it MUST allow a client
to associate connections from each transport to a channel.

It is permissible for a connection of one type of transport to be associated with the fore channel,
and a connection of a different type to be associated with the backchannel.

2.10.4. Server Scope

Servers each specify a server scope value in the form of an opaque string eir_server_scope
returned as part of the results of an EXCHANGE_ID operation. The purpose of the server scope is
to allow a group of servers to indicate to clients that a set of servers sharing the same server
scope value has arranged to use distinct values of opaque identifiers so that the two servers
never assign the same value to two distinct objects. Thus, the identifiers generated by two servers
within that set can be assumed compatible so that, in certain important cases, identifiers
generated by one server in that set may be presented to another server of the same scope.

The use of such compatible values does not imply that a value generated by one server will
always be accepted by another. In most cases, it will not. However, a server will not
inadvertently accept a value generated by another server. When it does accept it, it will be
because it is recognized as valid and carrying the same meaning as on another server of the
same scope.

Noveck & Lever Standards Track Page 39

RFC 8881 NFSv4.1 with Namespace Update August 2020

When servers are of the same server scope, this compatibility of values applies to the following
identifiers:

* Filehandle values. A filehandle value accepted by two servers of the same server scope
denotes the same object. A WRITE operation sent to one server is reflected immediately in a
READ sent to the other.

* Server owner values. When the server scope values are the same, server owner value may
be validly compared. In cases where the server scope values are different, server owner
values are treated as different even if they contain identical strings of bytes.

The coordination among servers required to provide such compatibility can be quite minimal,
and limited to a simple partition of the ID space. The recognition of common values requires
additional implementation, but this can be tailored to the specific situations in which that
recognition is desired.

Clients will have occasion to compare the server scope values of multiple servers under a
number of circumstances, each of which will be discussed under the appropriate functional
section:

* When server owner values received in response to EXCHANGE_ID operations sent to
multiple network addresses are compared for the purpose of determining the validity of
various forms of trunking, as described in Section 11.5.2.

* When network or server reconfiguration causes the same network address to possibly be
directed to different servers, with the necessity for the client to determine when lock reclaim
should be attempted, as described in Section 8.4.2.1.

When two replies from EXCHANGE_ID, each from two different server network addresses, have
the same server scope, there are a number of ways a client can validate that the common server
scope is due to two servers cooperating in a group.

o If both EXCHANGE_ID requests were sent with RPCSEC_GSS ([4], [9], [27]) authentication and
the server principal is the same for both targets, the equality of server scope is validated. It is
RECOMMENDED that two servers intending to share the same server scope and server_owner
major_id also share the same principal name. In some cases, this simplifies the client's task
of validating server scope.

* The client may accept the appearance of the second server in the fs_locations or
fs_locations_info attribute for a relevant file system. For example, if there is a migration
event for a particular file system or there are locks to be reclaimed on a particular file
system, the attributes for that particular file system may be used. The client sends the
GETATTR request to the first server for the fs_locations or fs_locations_info attribute with
RPCSEC_GSS authentication. It may need to do this in advance of the need to verify the
common server scope. If the client successfully authenticates the reply to GETATTR, and the
GETATTR request and reply containing the fs_locations or fs_locations_info attribute refers to
the second server, then the equality of server scope is supported. A client may choose to limit
the use of this form of support to information relevant to the specific file system involved
(e.g. a file system being migrated).

Noveck & Lever Standards Track Page 40

RFC 8881 NFSv4.1 with Namespace Update August 2020

2.10.5. Trunking

Trunking is the use of multiple connections between a client and server in order to increase the
speed of data transfer. NFSv4.1 supports two types of trunking: session trunking and client ID
trunking.

In the context of a single server network address, it can be assumed that all connections are
accessing the same server, and NFSv4.1 servers MUST support both forms of trunking. When
multiple connections use a set of network addresses to access the same server, the server MUST
support both forms of trunking. NFSv4.1 servers in a clustered configuration MAY allow network
addresses for different servers to use client ID trunking.

Clients may use either form of trunking as long as they do not, when trunking between different
server network addresses, violate the servers' mandates as to the kinds of trunking to be allowed
(see below). With regard to callback channels, the client MUST allow the server to choose among
all callback channels valid for a given client ID and MUST support trunking when the connections
supporting the backchannel allow session or client ID trunking to be used for callbacks.

Session trunking is essentially the association of multiple connections, each with potentially
different target and/or source network addresses, to the same session. When the target network
addresses (server addresses) of the two connections are the same, the server MUST support such
session trunking. When the target network addresses are different, the server MAY indicate such
support using the data returned by the EXCHANGE_ID operation (see below).

Client ID trunking is the association of multiple sessions to the same client ID. Servers MUST
support client ID trunking for two target network addresses whenever they allow session
trunking for those same two network addresses. In addition, a server MAY, by presenting the
same major server owner ID (Section 2.5) and server scope (Section 2.10.4), allow an additional
case of client ID trunking. When two servers return the same major server owner and server
scope, it means that the two servers are cooperating on locking state management, which is a
prerequisite for client ID trunking.

Distinguishing when the client is allowed to use session and client ID trunking requires
understanding how the results of the EXCHANGE_ID (Section 18.35) operation identify a server.
Suppose a client sends EXCHANGE_IDs over two different connections, each with a possibly
different target network address, but each EXCHANGE_ID operation has the same value in the
eia_clientowner field. If the same NFSv4.1 server is listening over each connection, then each
EXCHANGE_ID result MUST return the same values of eir_clientid, eir_server_owner.so_major_id,
and eir_server_scope. The client can then treat each connection as referring to the same server
(subject to verification; see Section 2.10.5.1 below), and it can use each connection to trunk
requests and replies. The client's choice is whether session trunking or client ID trunking applies.

Session Trunking. If the eia_clientowner argument is the same in two different EXCHANGE_ID
requests, and the eir_clientid, eir_server_owner.so_major_id,
eir_server_owner.so_minor_id, and eir_server_scope results match in both EXCHANGE_ID
results, then the client is permitted to perform session trunking. If the client has no session

Noveck & Lever Standards Track Page 41

RFC 8881 NFSv4.1 with Namespace Update August 2020

mapping to the tuple of eir_clientid, eir_server_owner.so_major_id, eir_server_scope, and
eir_server_owner.so_minor_id, then it creates the session via a CREATE_SESSION operation
over one of the connections, which associates the connection to the session. If there is a
session for the tuple, the client can send BIND_CONN_TO_SESSION to associate the
connection to the session.

Of course, if the client does not desire to use session trunking, it is not required to do so. It
can invoke CREATE_SESSION on the connection. This will result in client ID trunking as
described below. It can also decide to drop the connection if it does not choose to use
trunking.

Client ID Trunking. If the eia_clientowner argument is the same in two different EXCHANGE_ID
requests, and the eir_clientid, eir_server_owner.so_major_id, and eir_server_scope results
match in both EXCHANGE_ID results, then the client is permitted to perform client ID
trunking (regardless of whether the eir_server_owner.so_minor_id results match). The
client can associate each connection with different sessions, where each session is
associated with the same server.

The client completes the act of client ID trunking by invoking CREATE_SESSION on each
connection, using the same client ID that was returned in eir_clientid. These invocations
create two sessions and also associate each connection with its respective session. The
client is free to decline to use client ID trunking by simply dropping the connection at this
point.

When doing client ID trunking, locking state is shared across sessions associated with that
same client ID. This requires the server to coordinate state across sessions and the client to
be able to associate the same locking state with multiple sessions.

It is always possible that, as a result of various sorts of reconfiguration events, eir_server_scope
and eir_server_owner values may be different on subsequent EXCHANGE_ID requests made to
the same network address.

In most cases, such reconfiguration events will be disruptive and indicate that an IP address
formerly connected to one server is now connected to an entirely different one.

Some guidelines on client handling of such situations follow:

* When eir_server_scope changes, the client has no assurance that any IDs that it obtained
previously (e.g., filehandles) can be validly used on the new server, and, even if the new
server accepts them, there is no assurance that this is not due to accident. Thus, it is best to
treat all such state as lost or stale, although a client may assume that the probability of
inadvertent acceptance is low and treat this situation as within the next case.

* When eir_server_scope remains the same and eir_server_owner.so_major_id changes, the
client can use the filehandles it has, consider its locking state lost, and attempt to reclaim or
otherwise re-obtain its locks. It might find that its filehandle is now stale. However, if
NFS4ERR_STALE is not returned, it can proceed to reclaim or otherwise re-obtain its open
locking state.

Noveck & Lever Standards Track Page 42

RFC 8881 NFSv4.1 with Namespace Update August 2020

* When eir_server_scope and eir_server_owner.so_major_id remain the same, the client has to
use the now-current values of eir_server_owner.so_minor_id in deciding on appropriate
forms of trunking. This may result in connections being dropped or new sessions being
created.

2.10.5.1. Verifying Claims of Matching Server Identity

When the server responds using two different connections that claim matching or partially
matching eir_server_owner, eir_server_scope, and eir_clientid values, the client does not have to
trust the servers' claims. The client may verify these claims before trunking traffic in the
following ways:

* For session trunking, clients SHOULD reliably verify if connections between different
network paths are in fact associated with the same NFSv4.1 server and usable on the same
session, and servers MUST allow clients to perform reliable verification. When a client ID is
created, the client SHOULD specify that BIND_CONN_TO_SESSION is to be verified according
to the SP4_SSV or SPA_MACH_CRED (Section 18.35) state protection options. For SP4_SSV,
reliable verification depends on a shared secret (the SSV) that is established via the SET_SSV
(see Section 18.47) operation.

When a new connection is associated with the session (via the BIND_CONN_TO_SESSION
operation, see Section 18.34), if the client specified SP4_SSV state protection for the
BIND_CONN_TO_SESSION operation, the client MUST send the BIND_CONN_TO_SESSION with
RPCSEC_GSS protection, using integrity or privacy, and an RPCSEC_GSS handle created with
the GSS SSV mechanism (see Section 2.10.9).

If the client mistakenly tries to associate a connection to a session of a wrong server, the
server will either reject the attempt because it is not aware of the session identifier of the
BIND_CONN_TO_SESSION arguments, or it will reject the attempt because the RPCSEC_GSS
authentication fails. Even if the server mistakenly or maliciously accepts the connection
association attempt, the RPCSEC_GSS verifier it computes in the response will not be verified
by the client, so the client will know it cannot use the connection for trunking the specified
session.

If the client specified SP4_MACH_CRED state protection, the BIND_CONN_TO_SESSION
operation will use RPCSEC_GSS integrity or privacy, using the same credential that was used
when the client ID was created. Mutual authentication via RPCSEC_GSS assures the client
that the connection is associated with the correct session of the correct server.

For client ID trunking, the client has at least two options for verifying that the same client ID
obtained from two different EXCHANGE_ID operations came from the same server. The first
option is to use RPCSEC_GSS authentication when sending each EXCHANGE_ID operation.
Each time an EXCHANGE_ID is sent with RPCSEC_GSS authentication, the client notes the
principal name of the GSS target. If the EXCHANGE_ID results indicate that client ID trunking
is possible, and the GSS targets' principal names are the same, the servers are the same and
client ID trunking is allowed.

Noveck & Lever Standards Track Page 43

RFC 8881 NFSv4.1 with Namespace Update August 2020

The second option for verification is to use SP4_SSV protection. When the client sends
EXCHANGE_ID, it specifies SP4_SSV protection. The first EXCHANGE_ID the client sends
always has to be confirmed by a CREATE_SESSION call. The client then sends SET_SSV. Later,
the client sends EXCHANGE_ID to a second destination network address different from the
one the first EXCHANGE_ID was sent to. The client checks that each EXCHANGE_ID reply has
the same eir_clientid, eir_server_owner.so_major_id, and eir_server_scope. If so, the client
verifies the claim by sending a CREATE_SESSION operation to the second destination
address, protected with RPCSEC_GSS integrity using an RPCSEC_GSS handle returned by the
second EXCHANGE_ID. If the server accepts the CREATE_SESSION request, and if the client
verifies the RPCSEC_GSS verifier and integrity codes, then the client has proof the second
server knows the SSV, and thus the two servers are cooperating for the purposes of
specifying server scope and client ID trunking.

2.10.6. Exactly Once Semantics

Via the session, NFSv4.1 offers exactly once semantics (EOS) for requests sent over a channel.
EOS is supported on both the fore channel and backchannel.

Each COMPOUND or CB_COMPOUND request that is sent with a leading SEQUENCE or
CB_SEQUENCE operation MUST be executed by the receiver exactly once. This requirement holds
regardless of whether the request is sent with reply caching specified (see Section 2.10.6.1.3). The
requirement holds even if the requester is sending the request over a session created between a
PNES data client and pNFS data server. To understand the rationale for this requirement, divide
the requests into three classifications:

* Non-idempotent requests.
» Idempotent modifying requests.
* Idempotent non-modifying requests.

An example of a non-idempotent request is RENAME. Obviously, if a replier executes the same
RENAME request twice, and the first execution succeeds, the re-execution will fail. If the replier
returns the result from the re-execution, this result is incorrect. Therefore, EOS is required for
non-idempotent requests.

An example of an idempotent modifying request is a COMPOUND request containing a WRITE
operation. Repeated execution of the same WRITE has the same effect as execution of that WRITE
a single time. Nevertheless, enforcing EOS for WRITEs and other idempotent modifying requests
is necessary to avoid data corruption.

Suppose a client sends WRITE A to a noncompliant server that does not enforce EOS, and
receives no response, perhaps due to a network partition. The client reconnects to the server and
re-sends WRITE A. Now, the server has outstanding two instances of A. The server can be in a
situation in which it executes and replies to the retry of A, while the first A is still waiting in the
server's internal I/O system for some resource. Upon receiving the reply to the second attempt of
WRITE A, the client believes its WRITE is done so it is free to send WRITE B, which overlaps the

Noveck & Lever Standards Track Page 44

RFC 8881 NFSv4.1 with Namespace Update August 2020

byte-range of A. When the original A is dispatched from the server's I/O system and executed
(thus the second time A will have been written), then what has been written by B can be
overwritten and thus corrupted.

An example of an idempotent non-modifying request is a COMPOUND containing SEQUENCE,
PUTFH, READLINK, and nothing else. The re-execution of such a request will not cause data
corruption or produce an incorrect result. Nonetheless, to keep the implementation simple, the
replier MUST enforce EOS for all requests, whether or not idempotent and non-modifying.

Note that true and complete EOS is not possible unless the server persists the reply cache in
stable storage, and unless the server is somehow implemented to never require a restart (indeed,
if such a server exists, the distinction between a reply cache kept in stable storage versus one
that is not is one without meaning). See Section 2.10.6.5 for a discussion of persistence in the
reply cache. Regardless, even if the server does not persist the reply cache, EOS improves
robustness and correctness over previous versions of NFS because the legacy duplicate request/
reply caches were based on the ONC RPC transaction identifier (XID). Section 2.10.6.1 explains the
shortcomings of the XID as a basis for a reply cache and describes how NFSv4.1 sessions improve
upon the XID.

2.10.6.1. Slot Identifiers and Reply Cache

The RPC layer provides a transaction ID (XID), which, while required to be unique, is not
convenient for tracking requests for two reasons. First, the XID is only meaningful to the
requester; it cannot be interpreted by the replier except to test for equality with previously sent
requests. When consulting an RPC-based duplicate request cache, the opaqueness of the XID
requires a computationally expensive look up (often via a hash that includes XID and source
address). NFSv4.1 requests use a non-opaque slot ID, which is an index into a slot table, which is
far more efficient. Second, because RPC requests can be executed by the replier in any order,
there is no bound on the number of requests that may be outstanding at any time. To achieve
perfect EOS, using ONC RPC would require storing all replies in the reply cache. XIDs are 32 bits;

storing over four billion 232 replies in the reply cache is not practical. In practice, previous
versions of NFS have chosen to store a fixed number of replies in the cache, and to use a least
recently used (LRU) approach to replacing cache entries with new entries when the cache is full.
In NFSv4.1, the number of outstanding requests is bounded by the size of the slot table, and a
sequence ID per slot is used to tell the replier when it is safe to delete a cached reply.

In the NFSv4.1 reply cache, when the requester sends a new request, it selects a slot ID in the
range 0..N, where N is the replier's current maximum slot ID granted to the requester on the
session over which the request is to be sent. The value of N starts out as equal to ca_maxrequests
- 1 (Section 18.36), but can be adjusted by the response to SEQUENCE or CB_SEQUENCE as
described later in this section. The slot ID must be unused by any of the requests that the
requester has already active on the session. "Unused" here means the requester has no
outstanding request for that slot ID.

A slot contains a sequence ID and the cached reply corresponding to the request sent with that
sequence ID. The sequence ID is a 32-bit unsigned value, and is therefore in the range

0..0XxFFEFFFFF (232 - 1). The first time a slot is used, the requester MUST specify a sequence ID of

Noveck & Lever Standards Track Page 45

RFC 8881 NFSv4.1 with Namespace Update August 2020

one (Section 18.36). Each time a slot is reused, the request MUST specify a sequence ID that is one
greater than that of the previous request on the slot. If the previous sequence ID was

OXFFFFFFFE, then the next request for the slot MUST have the sequence ID set to zero (i.e., (232 -
1) + 1 mod 232).

The sequence ID accompanies the slot ID in each request. It is for the critical check at the replier:
it used to efficiently determine whether a request using a certain slot ID is a retransmit or a new,
never-before-seen request. It is not feasible for the requester to assert that it is retransmitting to
implement this, because for any given request the requester cannot know whether the replier
has seen it unless the replier actually replies. Of course, if the requester has seen the reply, the
requester would not retransmit.

The replier compares each received request's sequence ID with the last one previously received
for that slot ID, to see if the new request is:

* A new request, in which the sequence ID is one greater than that previously seen in the slot
(accounting for sequence wraparound). The replier proceeds to execute the new request, and
the replier MUST increase the slot's sequence ID by one.

* A retransmitted request, in which the sequence ID is equal to that currently recorded in the
slot. If the original request has executed to completion, the replier returns the cached reply.
See Section 2.10.6.2 for direction on how the replier deals with retries of requests that are
still in progress.

* A misordered retry, in which the sequence ID is less than (accounting for sequence
wraparound) that previously seen in the slot. The replier MUST return
NFS4ERR_SEQ_MISORDERED (as the result from SEQUENCE or CB_SEQUENCE).

* A misordered new request, in which the sequence ID is two or more than (accounting for
sequence wraparound) that previously seen in the slot. Note that because the sequence ID
MUST wrap around to zero once it reaches OXFFFFFFFF, a misordered new request and a
misordered retry cannot be distinguished. Thus, the replier MUST return
NFS4ERR_SEQ_MISORDERED (as the result from SEQUENCE or CB_SEQUENCE).

Unlike the XID, the slot ID is always within a specific range; this has two implications. The first
implication is that for a given session, the replier need only cache the results of a limited number
of COMPOUND requests. The second implication derives from the first, which is that unlike XID-
indexed reply caches (also known as duplicate request caches - DRCs), the slot ID-based reply
cache cannot be overflowed. Through use of the sequence ID to identify retransmitted requests,
the replier does not need to actually cache the request itself, reducing the storage requirements
of the reply cache further. These facilities make it practical to maintain all the required entries
for an effective reply cache.

The slot ID, sequence ID, and session ID therefore take over the traditional role of the XID and
source network address in the replier's reply cache implementation. This approach is
considerably more portable and completely robust -- it is not subject to the reassignment of ports
as clients reconnect over IP networks. In addition, the RPC XID is not used in the reply cache,
enhancing robustness of the cache in the face of any rapid reuse of XIDs by the requester. While
the replier does not care about the XID for the purposes of reply cache management (but the

Noveck & Lever Standards Track Page 46

RFC 8881 NFSv4.1 with Namespace Update August 2020

replier MUST return the same XID that was in the request), nonetheless there are considerations
for the XID in NFSv4.1 that are the same as all other previous versions of NFS. The RPC XID
remains in each message and needs to be formulated in NFSv4.1 requests as in any other ONC
RPC request. The reasons include:

* The RPC layer retains its existing semantics and implementation.

* The requester and replier must be able to interoperate at the RPC layer, prior to the NFSv4.1
decoding of the SEQUENCE or CB_SEQUENCE operation.

o If an operation is being used that does not start with SEQUENCE or CB_SEQUENCE (e.g.,
BIND_CONN_TO_SESSION), then the RPC XID is needed for correct operation to match the
reply to the request.

* The SEQUENCE or CB_SEQUENCE operation may generate an error. If so, the embedded slot
ID, sequence ID, and session ID (if present) in the request will not be in the reply, and the
requester has only the XID to match the reply to the request.

Given that well-formulated XIDs continue to be required, this raises the question: why do
SEQUENCE and CB_SEQUENCE replies have a session ID, slot ID, and sequence ID? Having the
session ID in the reply means that the requester does not have to use the XID to look up the
session ID, which would be necessary if the connection were associated with multiple sessions.
Having the slot ID and sequence ID in the reply means that the requester does not have to use the
XID to look up the slot ID and sequence ID. Furthermore, since the XID is only 32 bits, it is too
small to guarantee the re-association of a reply with its request [44]; having session ID, slot ID,
and sequence ID in the reply allows the client to validate that the reply in fact belongs to the
matched request.

The SEQUENCE (and CB_SEQUENCE) operation also carries a "highest_slotid" value, which carries
additional requester slot usage information. The requester MUST always indicate the slot ID
representing the outstanding request with the highest-numbered slot value. The requester
should in all cases provide the most conservative value possible, although it can be increased
somewhat above the actual instantaneous usage to maintain some minimum or optimal level.
This provides a way for the requester to yield unused request slots back to the replier, which in
turn can use the information to reallocate resources.

The replier responds with both a new target highest_slotid and an enforced highest_slotid,
described as follows:

* The target highest_slotid is an indication to the requester of the highest_slotid the replier
wishes the requester to be using. This permits the replier to withdraw (or add) resources
from a requester that has been found to not be using them, in order to more fairly share
resources among a varying level of demand from other requesters. The requester must
always comply with the replier's value updates, since they indicate newly established hard
limits on the requester's access to session resources. However, because of request pipelining,
the requester may have active requests in flight reflecting prior values; therefore, the replier
must not immediately require the requester to comply.

Noveck & Lever Standards Track Page 47

RFC 8881 NFSv4.1 with Namespace Update August 2020

* The enforced highest_slotid indicates the highest slot ID the requester is permitted to use on
a subsequent SEQUENCE or CB_SEQUENCE operation. The replier's enforced highest_slotid
SHOULD be no less than the highest_slotid the requester indicated in the SEQUENCE or
CB_SEQUENCE arguments.

A requester can be intransigent with respect to lowering its highest_slotid argument to a
Sequence operation, i.e. the requester continues to ignore the target highest_slotid in the
response to a Sequence operation, and continues to set its highest_slotid argument to be
higher than the target highest_slotid. This can be considered particularly egregious behavior
when the replier knows there are no outstanding requests with slot IDs higher than its target
highest_slotid. When faced with such intransigence, the replier is free to take more forceful
action, and MAY reply with a new enforced highest_slotid that is less than its previous
enforced highest_slotid. Thereafter, if the requester continues to send requests with a
highest_slotid that is greater than the replier's new enforced highest_slotid, the server MAY
return NFS4ERR_BAD_HIGH_SLOT, unless the slot ID in the request is greater than the new
enforced highest_slotid and the request is a retry.

The replier SHOULD retain the slots it wants to retire until the requester sends a request with
a highest_slotid less than or equal to the replier's new enforced highest_slotid.

The requester can also be intransigent with respect to sending non-retry requests that have a
slot ID that exceeds the replier's highest_slotid. Once the replier has forcibly lowered the
enforced highest_slotid, the requester is only allowed to send retries on slots that exceed the
replier's highest_slotid. If a request is received with a slot ID that is higher than the new
enforced highest_slotid, and the sequence ID is one higher than what is in the slot's reply
cache, then the server can both retire the slot and return NFS4ERR_BADSLOT (however, the
server MUST NOT do one and not the other). The reason it is safe to retire the slot is because
by using the next sequence ID, the requester is indicating it has received the previous reply
for the slot.

The requester SHOULD use the lowest available slot when sending a new request. This way,
the replier may be able to retire slot entries faster. However, where the replier is actively
adjusting its granted highest_slotid, it will not be able to use only the receipt of the slot ID
and highest_slotid in the request. Neither the slot ID nor the highest_slotid used in a request
may reflect the replier's current idea of the requester's session limit, because the request
may have been sent from the requester before the update was received. Therefore, in the
downward adjustment case, the replier may have to retain a number of reply cache entries
at least as large as the old value of maximum requests outstanding, until it can infer that the
requester has seen a reply containing the new granted highest_slotid. The replier can infer
that the requester has seen such a reply when it receives a new request with the same slot ID
as the request replied to and the next higher sequence ID.

2.10.6.1.1. Caching of SEQUENCE and CB_SEQUENCE Replies

When a SEQUENCE or CB_SEQUENCE operation is successfully executed, its reply MUST always
be cached. Specifically, session ID, sequence ID, and slot ID MUST be cached in the reply cache.
The reply from SEQUENCE also includes the highest slot ID, target highest slot ID, and status flags.

Noveck & Lever Standards Track Page 48

RFC 8881 NFSv4.1 with Namespace Update August 2020

Instead of caching these values, the server MAY re-compute the values from the current state of
the fore channel, session, and/or client ID as appropriate. Similarly, the reply from CB_SEQUENCE
includes a highest slot ID and target highest slot ID. The client MAY re-compute the values from
the current state of the session as appropriate.

Regardless of whether or not a replier is re-computing highest slot ID, target slot ID, and status on
replies to retries, the requester MUST NOT assume that the values are being re-computed
whenever it receives a reply after a retry is sent, since it has no way of knowing whether the
reply it has received was sent by the replier in response to the retry or is a delayed response to
the original request. Therefore, it may be the case that highest slot ID, target slot ID, or status bits
may reflect the state of affairs when the request was first executed. Although acting based on
such delayed information is valid, it may cause the receiver of the reply to do unneeded work.
Requesters MAY choose to send additional requests to get the current state of affairs or use the
state of affairs reported by subsequent requests, in preference to acting immediately on data that
might be out of date.

2.10.6.1.2. Errors from SEQUENCE and CB_SEQUENCE

Any time SEQUENCE or CB_SEQUENCE returns an error, the sequence ID of the slot MUST NOT
change. The replier MUST NOT modify the reply cache entry for the slot whenever an error is
returned from SEQUENCE or CB_SEQUENCE.

2.10.6.1.3. Optional Reply Caching

On a per-request basis, the requester can choose to direct the replier to cache the reply to all
operations after the first operation (SEQUENCE or CB_SEQUENCE) via the sa_cachethis or
csa_cachethis fields of the arguments to SEQUENCE or CB_SEQUENCE. The reason it would not
direct the replier to cache the entire reply is that the request is composed of all idempotent
operations [41]. Caching the reply may offer little benefit. If the reply is too large (see Section
2.10.6.4), it may not be cacheable anyway. Even if the reply to idempotent request is small
enough to cache, unnecessarily caching the reply slows down the server and increases RPC
latency.

Whether or not the requester requests the reply to be cached has no effect on the slot processing.
If the result of SEQUENCE or CB_SEQUENCE is NFS4_OK, then the slot's sequence ID MUST be
incremented by one. If a requester does not direct the replier to cache the reply, the replier MUST
do one of following:

* The replier can cache the entire original reply. Even though sa_cachethis or csa_cachethis is
FALSE, the replier is always free to cache. It may choose this approach in order to simplify
implementation.

* The replier enters into its reply cache a reply consisting of the original results to the
SEQUENCE or CB_SEQUENCE operation, and with the next operation in COMPOUND or
CB_COMPOUND having the error NFS4ERR_RETRY_UNCACHED_REP. Thus, if the requester

Noveck & Lever Standards Track Page 49

RFC 8881 NFSv4.1 with Namespace Update August 2020

later retries the request, it will get NFS4ERR_RETRY_UNCACHED_REDP. If a replier receives a
retried Sequence operation where the reply to the COMPOUND or CB_COMPOUND was not
cached, then the replier,

o MAY return NFS4ERR_RETRY_UNCACHED_REP in reply to a Sequence operation if the
Sequence operation is not the first operation (granted, a requester that does so is in
violation of the NFSv4.1 protocol).

o MUST NOT return NFS4ERR_RETRY_UNCACHED_REP in reply to a Sequence operation if the
Sequence operation is the first operation.

« If the second operation is an illegal operation, or an operation that was legal in a previous
minor version of NFSv4 and MUST NOT be supported in the current minor version (e.g.,
SETCLIENTID), the replier MUST NOT ever return NFS4ERR_RETRY_UNCACHED_REP. Instead
the replier MUST return NFS4ERR_OP_ILLEGAL or NFS4ERR_BADXDR or NFS4ERR_NOTSUPP
as appropriate.

« If the second operation can result in another error status, the replier MAY return a status
other than NFS4ERR_RETRY_UNCACHED_REP, provided the operation is not executed in such
a way that the state of the replier is changed. Examples of such an error status include:
NFS4ERR_NOTSUPP returned for an operation that is legal but not REQUIRED in the current
minor versions, and thus not supported by the replier; NFS4ERR_SEQUENCE_POS; and
NFS4ERR_REQ_TOO_BIG.

The discussion above assumes that the retried request matches the original one. Section
2.10.6.1.3.1 discusses what the replier might do, and MUST do when original and retried requests
do not match. Since the replier may only cache a small amount of the information that would be
required to determine whether this is a case of a false retry, the replier may send to the client
any of the following responses:

* The cached reply to the original request (if the replier has cached it in its entirety and the
users of the original request and retry match).

* A reply that consists only of the Sequence operation with the error
NFS4ERR_SEQ_FALSE_RETRY.

* A reply consisting of the response to Sequence with the status NFS4_OK, together with the
second operation as it appeared in the retried request with an error of
NFS4ERR_RETRY UNCACHED_REP or other error as described above.

* A reply that consists of the response to Sequence with the status NFS4_OK, together with the

second operation as it appeared in the original request with an error of
NFS4ERR_RETRY UNCACHED_REP or other error as described above.

2.10.6.1.3.1. False Retry

If a requester sent a Sequence operation with a slot ID and sequence ID that are in the reply
cache but the replier detected that the retried request is not the same as the original request,
including a retry that has different operations or different arguments in the operations from the
original and a retry that uses a different principal in the RPC request's credential field that

Noveck & Lever Standards Track Page 50

RFC 8881 NFSv4.1 with Namespace Update August 2020

translates to a different user, then this is a false retry. When the replier detects a false retry, it is
permitted (but not always obligated) to return NFS4ERR_SEQ_FALSE_RETRY in response to the
Sequence operation when it detects a false retry.

Translations of particularly privileged user values to other users due to the lack of appropriately
secure credentials, as configured on the replier, should be applied before determining whether
the users are the same or different. If the replier determines the users are different between the
original request and a retry, then the replier MUST return NFS4ERR_SEQ_FALSE_RETRY.

If an operation of the retry is an illegal operation, or an operation that was legal in a previous
minor version of NFSv4 and MUST NOT be supported in the current minor version (e.g.,
SETCLIENTID), the replier MAY return NFS4ERR_SEQ_FALSE_RETRY (and MUST do so if the users
of the original request and retry differ). Otherwise, the replier MAY return
NFS4ERR_OP_ILLEGAL or NFS4ERR_BADXDR or NFS4ERR_NOTSUPP as appropriate. Note that the
handling is in contrast for how the replier deals with retries requests with no cached reply. The
difference is due to NFS4ERR_SEQ_FALSE_RETRY being a valid error for only Sequence
operations, whereas NFS4ERR_RETRY_UNCACHED_REP is a valid error for all operations except
illegal operations and operations that MUST NOT be supported in the current minor version of
NFSv4.

2.10.6.2. Retry and Replay of Reply

A requester MUST NOT retry a request, unless the connection it used to send the request
disconnects. The requester can then reconnect and re-send the request, or it can re-send the
request over a different connection that is associated with the same session.

If the requester is a server wanting to re-send a callback operation over the backchannel of a
session, the requester of course cannot reconnect because only the client can associate
connections with the backchannel. The server can re-send the request over another connection
that is bound to the same session's backchannel. If there is no such connection, the server MUST
indicate that the session has no backchannel by setting the
SEQ4_STATUS_CB_PATH_DOWN_SESSION flag bit in the response to the next SEQUENCE
operation from the client. The client MUST then associate a connection with the session (or
destroy the session).

Note that it is not fatal for a requester to retry without a disconnect between the request and
retry. However, the retry does consume resources, especially with RDMA, where each request,
retry or not, consumes a credit. Retries for no reason, especially retries sent shortly after the
previous attempt, are a poor use of network bandwidth and defeat the purpose of a transport's
inherent congestion control system.

A requester MUST wait for a reply to a request before using the slot for another request. If it does
not wait for a reply, then the requester does not know what sequence ID to use for the slot on its
next request. For example, suppose a requester sends a request with sequence ID 1, and does not
wait for the response. The next time it uses the slot, it sends the new request with sequence ID 2.
If the replier has not seen the request with sequence ID 1, then the replier is not expecting
sequence ID 2, and rejects the requester's new request with NFS4ERR_SEQ_MISORDERED (as the
result from SEQUENCE or CB_SEQUENCE).

Noveck & Lever Standards Track Page 51

RFC 8881 NFSv4.1 with Namespace Update August 2020

RDMA fabrics do not guarantee that the memory handles (Steering Tags) within each RPC/RDMA
"chunk" [32] are valid on a scope outside that of a single connection. Therefore, handles used by
the direct operations become invalid after connection loss. The server must ensure that any
RDMA operations that must be replayed from the reply cache use the newly provided handle(s)
from the most recent request.

A retry might be sent while the original request is still in progress on the replier. The replier
SHOULD deal with the issue by returning NFS4ERR_DELAY as the reply to SEQUENCE or
CB_SEQUENCE operation, but implementations MAY return NFS4ERR_MISORDERED. Since errors
from SEQUENCE and CB_SEQUENCE are never recorded in the reply cache, this approach allows
the results of the execution of the original request to be properly recorded in the reply cache
(assuming that the requester specified the reply to be cached).

2.10.6.3. Resolving Server Callback Races

It is possible for server callbacks to arrive at the client before the reply from related fore channel
operations. For example, a client may have been granted a delegation to a file it has opened, but
the reply to the OPEN (informing the client of the granting of the delegation) may be delayed in
the network. If a conflicting operation arrives at the server, it will recall the delegation using the
backchannel, which may be on a different transport connection, perhaps even a different
network, or even a different session associated with the same client ID.

The presence of a session between the client and server alleviates this issue. When a session is in
place, each client request is uniquely identified by its { session ID, slot ID, sequence ID } triple. By
the rules under which slot entries (reply cache entries) are retired, the server has knowledge
whether the client has "seen" each of the server's replies. The server can therefore provide
sufficient information to the client to allow it to disambiguate between an erroneous or
conflicting callback race condition.

For each client operation that might result in some sort of server callback, the server SHOULD
"remember" the { session ID, slot ID, sequence ID } triple of the client request until the slot ID
retirement rules allow the server to determine that the client has, in fact, seen the server's reply.
Until the time the { session ID, slot ID, sequence ID } request triple can be retired, any recalls of
the associated object MUST carry an array of these referring identifiers (in the CB_SEQUENCE
operation's arguments), for the benefit of the client. After this time, it is not necessary for the
server to provide this information in related callbacks, since it is certain that a race condition
can no longer occur.

The CB_SEQUENCE operation that begins each server callback carries a list of "referring"

{ session ID, slot ID, sequence ID } triples. If the client finds the request corresponding to the
referring session ID, slot ID, and sequence ID to be currently outstanding (i.e., the server's reply
has not been seen by the client), it can determine that the callback has raced the reply, and act
accordingly. If the client does not find the request corresponding to the referring triple to be
outstanding (including the case of a session ID referring to a destroyed session), then there is no
race with respect to this triple. The server SHOULD limit the referring triples to requests that
refer to just those that apply to the objects referred to in the CB_COMPOUND procedure.

Noveck & Lever Standards Track Page 52

RFC 8881 NFSv4.1 with Namespace Update August 2020

The client must not simply wait forever for the expected server reply to arrive before responding
to the CB_COMPOUND that won the race, because it is possible that it will be delayed indefinitely.
The client should assume the likely case that the reply will arrive within the average round-trip
time for COMPOUND requests to the server, and wait that period of time. If that period of time
expires, it can respond to the CB_COMPOUND with NFS4ERR_DELAY. There are other scenarios
under which callbacks may race replies. Among them are pNFS layout recalls as described in
Section 12.5.5.2.

2.10.6.4. COMPOUND and CB_COMPOUND Construction Issues

Very large requests and replies may pose both buffer management issues (especially with RDMA)
and reply cache issues. When the session is created (Section 18.36), for each channel (fore and
back), the client and server negotiate the maximum-sized request they will send or process
(ca_maxrequestsize), the maximum-sized reply they will return or process (ca_maxresponsesize),
and the maximum-sized reply they will store in the reply cache (ca_maxresponsesize_cached).

If a request exceeds ca_maxrequestsize, the reply will have the status NFS4ERR_REQ_TOO_BIG. A
replier MAY return NFS4ERR_REQ_TOO_BIG as the status for the first operation (SEQUENCE or
CB_SEQUENCE) in the request (which means that no operations in the request executed and that
the state of the slot in the reply cache is unchanged), or it MAY opt to return it on a subsequent
operation in the same COMPOUND or CB_COMPOUND request (which means that at least one
operation did execute and that the state of the slot in the reply cache does change). The replier
SHOULD set NFS4ERR_REQ_TOO_BIG on the operation that exceeds ca_maxrequestsize.

If a reply exceeds ca_maxresponsesize, the reply will have the status NFS4ERR_REP_TOO_BIG. A
replier MAY return NFS4ERR_REP_TOO_BIG as the status for the first operation (SEQUENCE or
CB_SEQUENCE) in the request, or it MAY opt to return it on a subsequent operation (in the same
COMPOUND or CB_COMPOUND reply). A replier MAY return NFS4ERR_REP_TOO_BIG in the reply
to SEQUENCE or CB_SEQUENCE, even if the response would still exceed ca_maxresponsesize.

If sa_cachethis or csa_cachethis is TRUE, then the replier MUST cache a reply except if an error is
returned by the SEQUENCE or CB_SEQUENCE operation (see Section 2.10.6.1.2). If the reply
exceeds ca_maxresponsesize_cached (and sa_cachethis or csa_cachethis is TRUE), then the server
MUST return NFS4ERR_REP_TOO_BIG_TO_CACHE. Even if NFS4ERR_REP_TOO_BIG_TO_CACHE (or
any other error for that matter) is returned on an operation other than the first operation
(SEQUENCE or CB_SEQUENCE), then the reply MUST be cached if sa_cachethis or csa_cachethis is
TRUE. For example, if a COMPOUND has eleven operations, including SEQUENCE, the fifth
operation is a RENAME, and the tenth operation is a READ for one million bytes, the server may
return NFS4ERR_REP_TOO_BIG_TO_CACHE on the tenth operation. Since the server executed
several operations, especially the non-idempotent RENAME, the client's request to cache the
reply needs to be honored in order for the correct operation of exactly once semantics. If the
client retries the request, the server will have cached a reply that contains results for ten of the
eleven requested operations, with the tenth operation having a status of
NFS4ERR_REP_TOO_BIG_TO_CACHE.

Noveck & Lever Standards Track Page 53

RFC 8881 NFSv4.1 with Namespace Update August 2020

A client needs to take care that, when sending operations that change the current filehandle
(except for PUTFH, PUTPUBFH, PUTROOTFH, and RESTOREFH), it does not exceed the maximum
reply buffer before the GETFH operation. Otherwise, the client will have to retry the operation
that changed the current filehandle, in order to obtain the desired filehandle. For the OPEN
operation (see Section 18.16), retry is not always available as an option. The following guidelines
for the handling of filehandle-changing operations are advised:

» Within the same COMPOUND procedure, a client SHOULD send GETFH immediately after a
current filehandle-changing operation. A client MUST send GETFH after a current filehandle-
changing operation that is also non-idempotent (e.g., the OPEN operation), unless the
operation is RESTOREFH. RESTOREFH is an exception, because even though it is non-
idempotent, the filehandle RESTOREFH produced originated from an operation that is either
idempotent (e.g., PUTFH, LOOKUP), or non-idempotent (e.g., OPEN, CREATE). If the origin is
non-idempotent, then because the client MUST send GETFH after the origin operation, the
client can recover if RESTOREFH returns an error.

* A server MAY return NFS4ERR_REP_TOO_BIG or NFS4ERR_REP_TOO_BIG_TO_CACHE (if
sa_cachethis is TRUE) on a filehandle-changing operation if the reply would be too large on
the next operation.

* A server SHOULD return NFS4ERR_REP_TOO_BIG or NFS4ERR_REP_TOO_BIG_TO_CACHE (if
sa_cachethis is TRUE) on a filehandle-changing, non-idempotent operation if the reply would
be too large on the next operation, especially if the operation is OPEN.

* A server MAY return NFS4ERR_UNSAFE_COMPOUND to a non-idempotent current filehandle-
changing operation, if it looks at the next operation (in the same COMPOUND procedure) and
finds it is not GETFH. The server SHOULD do this if it is unable to determine in advance
whether the total response size would exceed ca_maxresponsesize_cached or
ca_maxresponsesize.

2.10.6.5. Persistence

Since the reply cache is bounded, it is practical for the reply cache to persist across server
restarts. The replier MUST persist the following information if it agreed to persist the session
(when the session was created; see Section 18.36):

* The session ID.
* The slot table including the sequence ID and cached reply for each slot.

The above are sufficient for a replier to provide EOS semantics for any requests that were sent
and executed before the server restarted. If the replier is a client, then there is no need for it to
persist any more information, unless the client will be persisting all other state across client
restart, in which case, the server will never see any NFSv4.1-level protocol manifestation of a
client restart. If the replier is a server, with just the slot table and session ID persisting, any
requests the client retries after the server restart will return the results that are cached in the
reply cache, and any new requests (i.e., the sequence ID is one greater than the slot's sequence
ID) MUST be rejected with NFS4ERR_DEADSESSION (returned by SEQUENCE). Such a session is

Noveck & Lever Standards Track Page 54

RFC 8881 NFSv4.1 with Namespace Update August 2020

considered dead. A server MAY re-animate a session after a server restart so that the session will
accept new requests as well as retries. To re-animate a session, the server needs to persist
additional information through server restart:

* The client ID. This is a prerequisite to let the client create more sessions associated with the
same client ID as the re-animated session.

* The client ID's sequence ID that is used for creating sessions (see Sections 18.35 and 18.36).
This is a prerequisite to let the client create more sessions.

* The principal that created the client ID. This allows the server to authenticate the client
when it sends EXCHANGE_ID.

» The SSV, if SP4_SSV state protection was specified when the client ID was created (see Section
18.35). This lets the client create new sessions, and associate connections with the new and
existing sessions.

* The properties of the client ID as defined in Section 18.35.

A persistent reply cache places certain demands on the server. The execution of the sequence of
operations (starting with SEQUENCE) and placement of its results in the persistent cache MUST be
atomic. If a client retries a sequence of operations that was previously executed on the server,
the only acceptable outcomes are either the original cached reply or an indication that the client
ID or session has been lost (indicating a catastrophic loss of the reply cache or a session that has
been deleted because the client failed to use the session for an extended period of time).

A server could fail and restart in the middle of a COMPOUND procedure that contains one or
more non-idempotent or idempotent-but-modifying operations. This creates an even higher
challenge for atomic execution and placement of results in the reply cache. One way to view the
problem is as a single transaction consisting of each operation in the COMPOUND followed by
storing the result in persistent storage, then finally a transaction commit. If there is a failure
before the transaction is committed, then the server rolls back the transaction. If the server itself
fails, then when it restarts, its recovery logic could roll back the transaction before starting the
NFSv4.1 server.

While the description of the implementation for atomic execution of the request and caching of
the reply is beyond the scope of this document, an example implementation for NFSv2 [45] is
described in [46].

2.10.7. RDMA Considerations

A complete discussion of the operation of RPC-based protocols over RDMA transports is in [32]. A
discussion of the operation of NFSv4, including NFSv4.1, over RDMA is in [33]. Where RDMA is
considered, this specification assumes the use of such a layering; it addresses only the upper-
layer issues relevant to making best use of RPC/RDMA.

2.10.7.1. RDMA Connection Resources

RDMA requires its consumers to register memory and post buffers of a specific size and number
for receive operations.

Noveck & Lever Standards Track Page 55

RFC 8881 NFSv4.1 with Namespace Update August 2020

Registration of memory can be a relatively high-overhead operation, since it requires pinning of
buffers, assignment of attributes (e.g., readable/writable), and initialization of hardware
translation. Preregistration is desirable to reduce overhead. These registrations are specific to
hardware interfaces and even to RDMA connection endpoints; therefore, negotiation of their
limits is desirable to manage resources effectively.

Following basic registration, these buffers must be posted by the RPC layer to handle receives.
These buffers remain in use by the RPC/NFSv4.1 implementation; the size and number of them
must be known to the remote peer in order to avoid RDMA errors that would cause a fatal error
on the RDMA connection.

NFSv4.1 manages slots as resources on a per-session bhasis (see Section 2.10), while RDMA
connections manage credits on a per-connection basis. This means that in order for a peer to
send data over RDMA to a remote buffer, it has to have both an NFSv4.1 slot and an RDMA credit.
If multiple RDMA connections are associated with a session, then if the total number of credits
across all RDMA connections associated with the session is X, and the number of slots in the
session is Y, then the maximum number of outstanding requests is the lesser of X and Y.

2.10.7.2. Flow Control

Previous versions of NFS do not provide flow control; instead, they rely on the windowing
provided by transports like TCP to throttle requests. This does not work with RDMA, which
provides no operation flow control and will terminate a connection in error when limits are
exceeded. Limits such as maximum number of requests outstanding are therefore negotiated
when a session is created (see the ca_maxrequests field in Section 18.36). These limits then
provide the maxima within which each connection associated with the session's channel(s) must
remain. RDMA connections are managed within these limits as described in Section 3.3 of [32]; if
there are multiple RDMA connections, then the maximum number of requests for a channel will
be divided among the RDMA connections. Put a different way, the onus is on the replier to ensure
that the total number of RDMA credits across all connections associated with the replier's
channel does exceed the channel's maximum number of outstanding requests.

The limits may also be modified dynamically at the replier's choosing by manipulating certain
parameters present in each NFSv4.1 reply. In addition, the CB_RECALL_SLOT callback operation
(see Section 20.8) can be sent by a server to a client to return RDMA credits to the server, thereby
lowering the maximum number of requests a client can have outstanding to the server.

2.10.7.3. Padding

Header padding is requested by each peer at session initiation (see the ca_headerpadsize
argument to CREATE_SESSION in Section 18.36), and subsequently used by the RPC RDMA layer,
as described in [32]. Zero padding is permitted.

Padding leverages the useful property that RDMA preserve alignment of data, even when they
are placed into anonymous (untagged) buffers. If requested, client inline writes will insert
appropriate pad bytes within the request header to align the data payload on the specified
boundary. The client is encouraged to add sufficient padding (up to the negotiated size) so that
the "data" field of the WRITE operation is aligned. Most servers can make good use of such

Noveck & Lever Standards Track Page 56

https://www.rfc-editor.org/rfc/rfc8166#section-3.3

RFC 8881 NFSv4.1 with Namespace Update August 2020

padding, which allows them to chain receive buffers in such a way that any data carried by client
requests will be placed into appropriate buffers at the server, ready for file system processing.
The receiver's RPC layer encounters no overhead from skipping over pad bytes, and the RDMA
layer's high performance makes the insertion and transmission of padding on the sender a
significant optimization. In this way, the need for servers to perform RDMA Read to satisfy all but
the largest client writes is obviated. An added benefit is the reduction of message round trips on
the network -- a potentially good trade, where latency is present.

The value to choose for padding is subject to a number of criteria. A primary source of variable-
length data in the RPC header is the authentication information, the form of which is client-
determined, possibly in response to server specification. The contents of COMPOUNDs, sizes of
strings such as those passed to RENAME, etc. all go into the determination of a maximal NFSv4.1
request size and therefore minimal buffer size. The client must select its offered value carefully,
so as to avoid overburdening the server, and vice versa. The benefit of an appropriate padding
value is higher performance.

Sender gather:
|[RPC Request|Pad bytes|Length| -> |User data...|
\==soos Pocoooooooooooooooonoos / \
\ \
\ Receiver scatter: NEEEEEL LI EE +-
ffo===e Poccooooooooooooo \ \ \
|[RPC Request|Pad|Length| -> |FS buffer|->|FS buffer|->...

In the above case, the server may recycle unused buffers to the next posted receive if unused by
the actual received request, or may pass the now-complete buffers by reference for normal write
processing. For a server that can make use of it, this removes any need for data copies of
incoming data, without resorting to complicated end-to-end buffer advertisement and
management. This includes most kernel-based and integrated server designs, among many
others. The client may perform similar optimizations, if desired.

2.10.7.4. Dual RDMA and Non-RDMA Transports

Some RDMA transports (e.g., RFC 5040 [8]) permit a "streaming" (non-RDMA) phase, where
ordinary traffic might flow before "stepping up" to RDMA mode, commencing RDMA traffic. Some
RDMA transports start connections always in RDMA mode. NFSv4.1 allows, but does not assume,
a streaming phase before RDMA mode. When a connection is associated with a session, the client
and server negotiate whether the connection is used in RDMA or non-RDMA mode (see Sections
18.36 and 18.34).

2.10.8. Session Security

2.10.8.1. Session Callback Security

Via session/connection association, NFSv4.1 improves security over that provided by NFSv4.0 for
the backchannel. The connection is client-initiated (see Section 18.34) and subject to the same
firewall and routing checks as the fore channel. At the client's option (see Section 18.35),

Noveck & Lever Standards Track Page 57

RFC 8881 NFSv4.1 with Namespace Update August 2020

connection association is fully authenticated before being activated (see Section 18.34). Traffic
from the server over the backchannel is authenticated exactly as the client specifies (see Section
2.10.8.2).

2.10.8.2. Backchannel RPC Security

When the NFSv4.1 client establishes the backchannel, it informs the server of the security flavors
and principals to use when sending requests. If the security flavor is RPCSEC_GSS, the client
expresses the principal in the form of an established RPCSEC_GSS context. The server is free to
use any of the flavor/principal combinations the client offers, but it MUST NOT use unoffered
combinations. This way, the client need not provide a target GSS principal for the backchannel as
it did with NFSv4.0, nor does the server have to implement an RPCSEC_GSS initiator as it did with
NFSv4.0 [37].

The CREATE_SESSION (Section 18.36) and BACKCHANNEL_CTL (Section 18.33) operations allow
the client to specify flavor/principal combinations.

Also note that the SP4_SSV state protection mode (see Sections 18.35 and 2.10.8.3) has the side
benefit of providing SSV-derived RPCSEC_GSS contexts (Section 2.10.9).

2.10.8.3. Protection from Unauthorized State Changes

As described to this point in the specification, the state model of NFSv4.1 is vulnerable to an
attacker that sends a SEQUENCE operation with a forged session ID and with a slot ID that it
expects the legitimate client to use next. When the legitimate client uses the slot ID with the same
sequence number, the server returns the attacker's result from the reply cache, which disrupts
the legitimate client and thus denies service to it. Similarly, an attacker could send a
CREATE_SESSION with a forged client ID to create a new session associated with the client ID.
The attacker could send requests using the new session that change locking state, such as LOCKU
operations to release locks the legitimate client has acquired. Setting a security policy on the file
that requires RPCSEC_GSS credentials when manipulating the file's state is one potential work
around, but has the disadvantage of preventing a legitimate client from releasing state when
RPCSEC_GSS is required to do so, but a GSS context cannot be obtained (possibly because the user
has logged off the client).

NFSv4.1 provides three options to a client for state protection, which are specified when a client
creates a client ID via EXCHANGE _ID (Section 18.35).

The first (SP4_NONE) is to simply waive state protection.
The other two options (SP4_MACH_CRED and SP4_SSV) share several traits:

* An RPCSEC_GSS-based credential is used to authenticate client ID and session maintenance
operations, including creating and destroying a session, associating a connection with the
session, and destroying the client ID.

* Because RPCSEC_GSS is used to authenticate client ID and session maintenance, the attacker
cannot associate a rogue connection with a legitimate session, or associate a rogue session

Noveck & Lever Standards Track Page 58

RFC 8881 NFSv4.1 with Namespace Update August 2020

with a legitimate client ID in order to maliciously alter the client ID's lock state via CLOSE,
LOCKU, DELEGRETURN, LAYOUTRETURN, etc.

* In cases where the server's security policies on a portion of its namespace require
RPCSEC_GSS authentication, a client may have to use an RPCSEC_GSS credential to remove
per-file state (e.g., LOCKU, CLOSE, etc.). The server may require that the principal that
removes the state match certain criteria (e.g., the principal might have to be the same as the
one that acquired the state). However, the client might not have an RPCSEC_GSS context for
such a principal, and might not be able to create such a context (perhaps because the user
has logged off). When the client establishes SP4_MACH_CRED or SP4_SSV protection, it can
specify a list of operations that the server MUST allow using the machine credential (if
SP4_MACH_CRED is used) or the SSV credential (if SP4_SSV is used).

The SP4_MACH_CRED state protection option uses a machine credential where the principal that
creates the client ID MUST also be the principal that performs client ID and session maintenance
operations. The security of the machine credential state protection approach depends entirely on
safeguarding the per-machine credential. Assuming a proper safeguard using the per-machine
credential for operations like CREATE_SESSION, BIND_CONN_TO_SESSION, DESTROY_SESSION,
and DESTROY_CLIENTID will prevent an attacker from associating a rogue connection with a
session, or associating a rogue session with a client ID.

There are at least three scenarios for the SP4_MACH_CRED option:

1. The system administrator configures a unique, permanent per-machine credential for one of
the mandated GSS mechanisms (e.g., if Kerberos V5 is used, a "keytab" containing a principal
derived from a client host name could be used).

2. The client is used by a single user, and so the client ID and its sessions are used by just that
user. If the user's credential expires, then session and client ID maintenance cannot occur,
but since the client has a single user, only that user is inconvenienced.

3. The physical client has multiple users, but the client implementation has a unique client ID
for each user. This is effectively the same as the second scenario, but a disadvantage is that
each user needs to be allocated at least one session each, so the approach suffers from lack of
economy.

The SP4_SSV protection option uses the SSV (Section 1.7), via RPCSEC_GSS and the SSV GSS
mechanism (Section 2.10.9), to protect state from attack. The SP4_SSV protection option is
intended for the situation comprised of a client that has multiple active users and a system
administrator who wants to avoid the burden of installing a permanent machine credential on
each client. The SSV is established and updated on the server via SET_SSV (see Section 18.47). To
prevent eavesdropping, a client SHOULD send SET_SSV via RPCSEC_GSS with the privacy service.
Several aspects of the SSV make it intractable for an attacker to guess the SSV, and thus associate
rogue connections with a session, and rogue sessions with a client ID:

» The arguments to and results of SET_SSV include digests of the old and new SSV, respectively.

* Because the initial value of the SSV is zero, therefore known, the client that opts for SP4_SSV
protection and opts to apply SP4_SSV protection to BIND_CONN_TO_SESSION and
CREATE_SESSION MUST send at least one SET_SSV operation before the first

Noveck & Lever Standards Track Page 59

RFC 8881 NFSv4.1 with Namespace Update August 2020

BIND_CONN_TO_SESSION operation or before the second CREATE_SESSION operation on a
client ID. If it does not, the SSV mechanism will not generate tokens (Section 2.10.9). A client
SHOULD send SET_SSV as soon as a session is created.

* A SET_SSV request does not replace the SSV with the argument to SET_SSV. Instead, the
current SSV on the server is logically exclusive ORed (XORed) with the argument to SET_SSV.
Each time a new principal uses a client ID for the first time, the client SHOULD send a
SET_SSV with that principal's RPCSEC_GSS credentials, with RPCSEC_GSS service set to
RPC_GSS_SVC_PRIVACY.

Here are the types of attacks that can be attempted by an attacker named Eve on a victim named
Bob, and how SP4_SSV protection foils each attack:

* Suppose Eve is the first user to log into a legitimate client. Eve's use of an NFSv4.1 file system
will cause the legitimate client to create a client ID with SP4_SSV protection, specifying that
the BIND_CONN_TO_SESSION operation MUST use the SSV credential. Eve's use of the file
system also causes an SSV to be created. The SET_SSV operation that creates the SSV will be
protected by the RPCSEC_GSS context created by the legitimate client, which uses Eve's GSS
principal and credentials. Eve can eavesdrop on the network while her RPCSEC_GSS context
is created and the SET_SSV using her context is sent. Even if the legitimate client sends the
SET_SSV with RPC_GSS_SVC_PRIVACY, because Eve knows her own credentials, she can
decrypt the SSV. Eve can compute an RPCSEC_GSS credential that BIND_CONN_TO_SESSION
will accept, and so associate a new connection with the legitimate session. Eve can change
the slot ID and sequence state of a legitimate session, and/or the SSV state, in such a way that
when Bob accesses the server via the same legitimate client, the legitimate client will be
unable to use the session.

The client's only recourse is to create a new client ID for Bob to use, and establish a new SSV
for the client ID. The client will be unable to delete the old client ID, and will let the lease on
the old client ID expire.

Once the legitimate client establishes an SSV over the new session using Bob's RPCSEC_GSS
context, Eve can use the new session via the legitimate client, but she cannot disrupt Bob.
Moreover, because the client SHOULD have modified the SSV due to Eve using the new
session, Bob cannot get revenge on Eve by associating a rogue connection with the session.

The question is how did the legitimate client detect that Eve has hijacked the old session?
When the client detects that a new principal, Bob, wants to use the session, it SHOULD have
sent a SET_SSV, which leads to the following sub-scenarios:

> Let us suppose that from the rogue connection, Eve sent a SET_SSV with the same slot ID
and sequence ID that the legitimate client later uses. The server will assume the SET_SSV
sent with Bob's credentials is a retry, and return to the legitimate client the reply it sent
Eve. However, unless Eve can correctly guess the SSV the legitimate client will use, the
digest verification checks in the SET_SSV response will fail. That is an indication to the
client that the session has apparently been hijacked.

Noveck & Lever Standards Track Page 60

RFC 8881 NFSv4.1 with Namespace Update August 2020

o Alternatively, Eve sent a SET_SSV with a different slot ID than the legitimate client uses for
its SET_SSV. Then the digest verification of the SET_SSV sent with Bob's credentials fails on
the server, and the error returned to the client makes it apparent that the session has been
hijacked.

o Alternatively, Eve sent an operation other than SET_SSV, but with the same slot ID and
sequence that the legitimate client uses for its SET_SSV. The server returns to the legitimate
client the response it sent Eve. The client sees that the response is not at all what it expects.
The client assumes either session hijacking or a server bug, and either way destroys the
old session.

* Eve associates a rogue connection with the session as above, and then destroys the session.
Again, Bob goes to use the server from the legitimate client, which sends a SET_SSV using
Bob's credentials. The client receives an error that indicates that the session does not exist.
When the client tries to create a new session, this will fail because the SSV it has does not
match that which the server has, and now the client knows the session was hijacked. The
legitimate client establishes a new client ID.

* If Eve creates a connection before the legitimate client establishes an SSV, because the initial
value of the SSV is zero and therefore known, Eve can send a SET_SSV that will pass the
digest verification check. However, because the new connection has not been associated with
the session, the SET_SSV is rejected for that reason.

In summary, an attacker's disruption of state when SP4_SSV protection is in use is limited to the
formative period of a client ID, its first session, and the establishment of the SSV. Once a non-
malicious user uses the client ID, the client quickly detects any hijack and rectifies the situation.
Once a non-malicious user successfully modifies the SSV, the attacker cannot use NFSv4.1
operations to disrupt the non-malicious user.

Note that neither the SP4_MACH_CRED nor SP4_SSV protection approaches prevent hijacking of a
transport connection that has previously been associated with a session. If the goal of a counter-
threat strategy is to prevent connection hijacking, the use of IPsec is RECOMMENDED.

If a connection hijack occurs, the hijacker could in theory change locking state and negatively
impact the service to legitimate clients. However, if the server is configured to require the use of
RPCSEC_GSS with integrity or privacy on the affected file objects, and if
EXCHGID4_FLAG_BIND_PRINC_STATEID capability (Section 18.35) is in force, this will thwart
unauthorized attempts to change locking state.

2.10.9. The Secret State Verifier (SSV) GSS Mechanism

The SSV provides the secret key for a GSS mechanism internal to NFSv4.1 that NFSv4.1 uses for
state protection. Contexts for this mechanism are not established via the RPCSEC_GSS protocol.
Instead, the contexts are automatically created when EXCHANGE_ID specifies SP4_SSV
protection. The only tokens defined are the PerMsgToken (emitted by GSS_GetMIC) and the
SealedMessage token (emitted by GSS_Wrap).

Noveck & Lever Standards Track Page 61

RFC 8881 NFSv4.1 with Namespace Update August 2020

The mechanism OID for the SSV mechanism is iso.org.dod.internet.private.enterprise.Michael
Eisler.nfs.ssv_mech (1.3.6.1.4.1.28882.1.1). While the SSV mechanism does not define any initial
context tokens, the OID can be used to let servers indicate that the SSV mechanism is acceptable
whenever the client sends a SECINFO or SECINFO_NO_NAME operation (see Section 2.6).

The SSV mechanism defines four subkeys derived from the SSV value. Each time SET_SSV is
invoked, the subkeys are recalculated by the client and server. The calculation of each of the four
subkeys depends on each of the four respective ssv_subkey4 enumerated values. The calculation
uses the HMAC [52] algorithm, using the current SSV as the key, the one-way hash algorithm as
negotiated by EXCHANGE_ID, and the input text as represented by the XDR encoded enumeration
value for that subkey of data type ssv_subkey4. If the length of the output of the HMAC algorithm
exceeds the length of key of the encryption algorithm (which is also negotiated by
EXCHANGE_ID), then the subkey MUST be truncated from the HMAC output, i.e., if the subkey is
of N bytes long, then the first N bytes of the HMAC output MUST be used for the subkey. The
specification of EXCHANGE_ID states that the length of the output of the HMAC algorithm MUST
NOT be less than the length of subkey needed for the encryption algorithm (see Section 18.35).

/* Input for computing subkeys =*x/

enum ssv_subkey4 {
SSV4_SUBKEY_MIC_I2T
SSV4_SUBKEY_MIC_T2I
SSV4_SUBKEY_SEAL_I2T
SSV4_SUBKEY_SEAL_T2I

i m mn
A OWON =

s

The subkey derived from SSV4_SUBKEY_MIC_I2T is used for calculating message integrity codes
(MICs) that originate from the NFSv4.1 client, whether as part of a request over the fore channel
or a response over the backchannel. The subkey derived from SSV4_SUBKEY_MIC_T2I is used for
MICs originating from the NFSv4.1 server. The subkey derived from SSV4_SUBKEY_SEAL _I2T is
used for encryption text originating from the NFSv4.1 client, and the subkey derived from
SSV4_SUBKEY_SEAL_T2I is used for encryption text originating from the NFSv4.1 server.

The PerMsgToken description is based on an XDR definition:

/* Input for computing smt_hmac =*/
struct ssv_mic_plain_tkn4 {
uint32_t smpt_ssv_seq;
opaque smpt_orig_plain<>;

/* SSV GSS PerMsgToken token =*/
struct ssv_mic_tkn4 {
uint32_t smt_ssv_seq;
opaque smt_hmac<>;

Noveck & Lever Standards Track Page 62

RFC 8881 NFSv4.1 with Namespace Update August 2020

The field smt_hmac is an HMAC calculated by using the subkey derived from
SSV4_SUBKEY_MIC_I2T or SSV4_SUBKEY_MIC_T2I as the key, the one-way hash algorithm as
negotiated by EXCHANGE_ID, and the input text as represented by data of type
ssv_mic_plain_tkn4. The field smpt_ssv_seq is the same as smt_ssv_seq. The field smpt_orig_plain
is the "message" input passed to GSS_GetMIC() (see Section 2.3.1 of [7]). The caller of GSS_GetMIC
0 provides a pointer to a buffer containing the plain text. The SSV mechanism's entry point for
GSS_GetMIC() encodes this into an opaque array, and the encoding will include an initial four-
byte length, plus any necessary padding. Prepended to this will be the XDR encoded value of
smpt_ssv_seq, thus making up an XDR encoding of a value of data type ssv_mic_plain_tkn4,
which in turn is the input into the HMAC.

The token emitted by GSS_GetMIC() is XDR encoded and of XDR data type ssv_mic_tkn4. The field
smt_ssv_seq comes from the SSV sequence number, which is equal to one after SET_SSV (Section
18.47) is called the first time on a client ID. Thereafter, the SSV sequence number is incremented
on each SET_SSV. Thus, smt_ssv_seq represents the version of the SSV at the time GSS_GetMIC()
was called. As noted in Section 18.35, the client and server can maintain multiple concurrent
versions of the SSV. This allows the SSV to be changed without serializing all RPC calls that use
the SSV mechanism with SET_SSV operations. Once the HMAC is calculated, it is XDR encoded
into smt_hmac, which will include an initial four-byte length, and any necessary padding.
Prepended to this will be the XDR encoded value of smt_ssv_seq.

The SealedMessage description is based on an XDR definition:

/* Input for computing ssct_encr_data and ssct_hmac */
struct ssv_seal_plain_tkn4 {

opaque sspt_confounder<>;
uint32_t sspt_ssv_seq;
opaque sspt_orig_plain<>;
opaque sspt_pad<>;

/* SSV GSS SealedMessage token =*x/
struct ssv_seal_cipher_tkn4 {

uint32_t ssct_ssv_seq;
opaque ssct_iv<>;

opaque ssct_encr_data<>;
opaque ssct_hmac<>;

The token emitted by GSS_Wrap() is XDR encoded and of XDR data type ssv_seal_cipher_tkn4.
The ssct_ssv_seq field has the same meaning as smt_ssv_seq.

The ssct_encr_data field is the result of encrypting a value of the XDR encoded data type
ssv_seal_plain_tkn4. The encryption key is the subkey derived from SSV4_SUBKEY_SEAL_I2T or
SSV4_SUBKEY_SEAL_T2I, and the encryption algorithm is that negotiated by EXCHANGE_ID.

Noveck & Lever Standards Track Page 63

https://www.rfc-editor.org/rfc/rfc2743#section-2.3.1

RFC 8881 NFSv4.1 with Namespace Update August 2020

The ssct_iv field is the initialization vector (IV) for the encryption algorithm (if applicable) and is
sent in clear text. The content and size of the IV MUST comply with the specification of the
encryption algorithm. For example, the id-aes256-CBC algorithm MUST use a 16-byte initialization
vector (IV), which MUST be unpredictable for each instance of a value of data type
ssv_seal_plain_tkn4 that is encrypted with a particular SSV key.

The ssct_hmac field is the result of computing an HMAC using the value of the XDR encoded data
type ssv_seal_plain_tkn4 as the input text. The key is the subkey derived from
SSV4_SUBKEY_MIC_I2T or SSV4_SUBKEY_MIC_T2I, and the one-way hash algorithm is that
negotiated by EXCHANGE_ID.

The sspt_confounder field is a random value.
The sspt_ssv_seq field is the same as ssvt_ssv_seq.

The field sspt_orig_plain field is the original plaintext and is the "input_message" input passed to
GSS_Wrap() (see Section 2.3.3 of [7]). As with the handling of the plaintext by the SSV
mechanism's GSS_GetMIC() entry point, the entry point for GSS_Wrap() expects a pointer to the
plaintext, and will XDR encode an opaque array into sspt_orig_plain representing the plain text,
along with the other fields of an instance of data type ssv_seal_plain_tkn4.

The sspt_pad field is present to support encryption algorithms that require inputs to be in fixed-
sized blocks. The content of sspt_pad is zero filled except for the length. Beware that the XDR
encoding of ssv_seal_plain_tkn4 contains three variable-length arrays, and so each array
consumes four bytes for an array length, and each array that follows the length is always padded
to a multiple of four bytes per the XDR standard.

For example, suppose the encryption algorithm uses 16-byte blocks, and the sspt_confounder is
three bytes long, and the sspt_orig_plain field is 15 bytes long. The XDR encoding of
sspt_confounder uses eight bytes (4 + 3 + 1-byte pad), the XDR encoding of sspt_ssv_seq uses four
bytes, the XDR encoding of sspt_orig_plain uses 20 bytes (4 + 15 + 1-byte pad), and the smallest
XDR encoding of the sspt_pad field is four bytes. This totals 36 bytes. The next multiple of 16 is 48;
thus, the length field of sspt_pad needs to be set to 12 bytes, or a total encoding of 16 bytes. The
total number of XDR encoded bytes is thus 8 + 4 + 20 + 16 = 48.

GSS_Wrap() emits a token that is an XDR encoding of a value of data type ssv_seal_cipher_tkn4.
Note that regardless of whether or not the caller of GSS_Wrap() requests confidentiality, the
token always has confidentiality. This is because the SSV mechanism is for RPCSEC_GSS, and
RPCSEC_GSS never produces GSS_wrap() tokens without confidentiality.

There is one SSV per client ID. There is a single GSS context for a client ID / SSV pair. All SSV
mechanism RPCSEC_GSS handles of a client ID / SSV pair share the same GSS context. SSV GSS
contexts do not expire except when the SSV is destroyed (causes would include the client ID
being destroyed or a server restart). Since one purpose of context expiration is to replace keys
that have been in use for "too long", hence vulnerable to compromise by brute force or accident,
the client can replace the SSV key by sending periodic SET_SSV operations, which is done by
cycling through different users' RPCSEC_GSS credentials. This way, the SSV is replaced without
destroying the SSV's GSS contexts.

Noveck & Lever Standards Track Page 64

https://www.rfc-editor.org/rfc/rfc2743#section-2.3.3

RFC 8881 NFSv4.1 with Namespace Update August 2020

SSV RPCSEC_GSS handles can be expired or deleted by the server at any time, and the
EXCHANGE_ID operation can be used to create more SSV RPCSEC_GSS handles. Expiration of SSV
RPCSEC_GSS handles does not imply that the SSV or its GSS context has expired.

The client MUST establish an SSV via SET_SSV before the SSV GSS context can be used to emit
tokens from GSS_Wrap() and GSS_GetMIC(). If SET_SSV has not been successfully called, attempts
to emit tokens MUST fail.

The SSV mechanism does not support replay detection and sequencing in its tokens because
RPCSEC_GSS does not use those features (see "Context Creation Requests", Section 5.2.2 of [4]).
However, Section 2.10.10 discusses special considerations for the SSV mechanism when used
with RPCSEC_GSS.

2.10.10. Security Considerations for RPCSEC_GSS When Using the SSV Mechanism

When a client ID is created with SP4_SSV state protection (see Section 18.35), the client is
permitted to associate multiple RPCSEC_GSS handles with the single SSV GSS context (see Section
2.10.9). Because of the way RPCSEC_GSS (both version 1 and version 2, see [4] and [9]) calculate
the verifier of the reply, special care must be taken by the implementation of the NFSv4.1 client
to prevent attacks by a man-in-the-middle. The verifier of an RPCSEC_GSS reply is the output of
GSS_GetMIC() applied to the input value of the seq_num field of the RPCSEC_GSS credential (data
type rpc_gss_cred_ver_1_t) (see Section 5.3.3.2 of [4]). If multiple RPCSEC_GSS handles share the
same GSS context, then if one handle is used to send a request with the same seq_num value as
another handle, an attacker could block the reply, and replace it with the verifier used for the
other handle.

There are multiple ways to prevent the attack on the SSV RPCSEC_GSS verifier in the reply. The
simplest is believed to be as follows.

* Each time one or more new SSV RPCSEC_GSS handles are created via EXCHANGE_ID, the
client SHOULD send a SET_SSV operation to modify the SSV. By changing the SSV, the new
handles will not result in the re-use of an SSV RPCSEC_GSS verifier in a reply.

* When a requester decides to use N SSV RPCSEC_GSS handles, it SHOULD assign a unique and
non-overlapping range of seq_nums to each SSV RPCSEC_GSS handle. The size of each range
SHOULD be equal to MAXSEQ / N (see Section 5 of [4] for the definition of MAXSEQ). When an
SSV RPCSEC_GSS handle reaches its maximum, it SHOULD force the replier to destroy the
handle by sending a NULL RPC request with seq_num set to MAXSEQ + 1 (see Section 5.3.3.3
of [4]).

* When the requester wants to increase or decrease N, it SHOULD force the replier to destroy
all N handles by sending a NULL RPC request on each handle with seq_num set to MAXSEQ +
1. If the requester is the client, it SHOULD send a SET_SSV operation before using new
handles. If the requester is the server, then the client SHOULD send a SET_SSV operation
when it detects that the server has forced it to destroy a backchannel's SSV RPCSEC_GSS
handle. By sending a SET_SSV operation, the SSV will change, and so the attacker will be
unavailable to successfully replay a previous verifier in a reply to the requester.

Noveck & Lever Standards Track Page 65

https://www.rfc-editor.org/rfc/rfc2203#section-5.2.2
https://www.rfc-editor.org/rfc/rfc2203#section-5.3.3.2
https://www.rfc-editor.org/rfc/rfc2203#section-5
https://www.rfc-editor.org/rfc/rfc2203#section-5.3.3.3

RFC 8881 NFSv4.1 with Namespace Update August 2020

Note that if the replier carefully creates the SSV RPCSEC_GSS handles, the related risk of a man-
in-the-middle splicing a forged SSV RPCSEC_GSS credential with a verifier for another handle
does not exist. This is because the verifier in an RPCSEC_GSS request is computed from input that
includes both the RPCSEC_GSS handle and seq_num (see Section 5.3.1 of [4]). Provided the replier
takes care to avoid re-using the value of an RPCSEC_GSS handle that it creates, such as by
including a generation number in the handle, the man-in-the-middle will not be able to
successfully replay a previous verifier in the request to a replier.

2.10.11. Session Mechanics - Steady State

2.10.11.1. Obligations of the Server

The server has the primary obligation to monitor the state of backchannel resources that the
client has created for the server (RPCSEC_GSS contexts and backchannel connections). If these
resources vanish, the server takes action as specified in Section 2.10.13.2.

2.10.11.2. Obligations of the Client
The client SHOULD honor the following obligations in order to utilize the session:

* Keep a necessary session from going idle on the server. A client that requires a session but
nonetheless is not sending operations risks having the session be destroyed by the server.
This is because sessions consume resources, and resource limitations may force the server to
cull an inactive session. A server MAY consider a session to be inactive if the client has not
used the session before the session inactivity timer (Section 2.10.12) has expired.

* Destroy the session when not needed. If a client has multiple sessions, one of which has no
requests waiting for replies, and has been idle for some period of time, it SHOULD destroy
the session.

* Maintain GSS contexts and RPCSEC_GSS handles for the backchannel. If the client requires
the server to use the RPCSEC_GSS security flavor for callbacks, then it needs to be sure the
RPCSEC_GSS handles and/or their GSS contexts that are handed to the server via
BACKCHANNEL_CTL or CREATE_SESSION are unexpired.

* Preserve a connection for a backchannel. The server requires a backchannel in order to
gracefully recall recallable state or notify the client of certain events. Note that if the
connection is not being used for the fore channel, there is no way for the client to tell if the
connection is still alive (e.g., the server restarted without sending a disconnect). The onus is
on the server, not the client, to determine if the backchannel's connection is alive, and to
indicate in the response to a SEQUENCE operation when the last connection associated with
a session's backchannel has disconnected.

2.10.11.3. Steps the Client Takes to Establish a Session

If the client does not have a client ID, the client sends EXCHANGE_ID to establish a client ID. If it
opts for SP4_MACH_CRED or SP4_SSV protection, in the spo_must_enforce list of operations, it
SHOULD at minimum specify CREATE_SESSION, DESTROY_SESSION, BIND_CONN_TO_SESSION,
BACKCHANNEL_CTL, and DESTROY_CLIENTID. If it opts for SP4_SSV protection, the client needs
to ask for SSV-based RPCSEC_GSS handles.

Noveck & Lever Standards Track Page 66

https://www.rfc-editor.org/rfc/rfc2203#section-5.3.1

RFC 8881 NFSv4.1 with Namespace Update August 2020

The client uses the client ID to send a CREATE_SESSION on a connection to the server. The results
of CREATE_SESSION indicate whether or not the server will persist the session reply cache
through a server that has restarted, and the client notes this for future reference.

If the client specified SP4_SSV state protection when the client ID was created, then it SHOULD
send SET_SSV in the first COMPOUND after the session is created. Each time a new principal goes
to use the client ID, it SHOULD send a SET_SSV again.

If the client wants to use delegations, layouts, directory notifications, or any other state that
requires a backchannel, then it needs to add a connection to the backchannel if CREATE_SESSION
did not already do so. The client creates a connection, and calls BIND_CONN_TO_SESSION to
associate the connection with the session and the session's backchannel. If CREATE_SESSION did
not already do so, the client MUST tell the server what security is required in order for the client
to accept callbacks. The client does this via BACKCHANNEL_CTL. If the client selected
SP4_MACH_CRED or SP4_SSV protection when it called EXCHANGE_ID, then the client SHOULD
specify that the backchannel use RPCSEC_GSS contexts for security.

If the client wants to use additional connections for the backchannel, then it needs to call
BIND_CONN_TO_SESSION on each connection it wants to use with the session. If the client wants
to use additional connections for the fore channel, then it needs to call BIND_CONN_TO_SESSION
if it specified SP4_SSV or SP4_MACH_CRED state protection when the client ID was created.

At this point, the session has reached steady state.

2.10.12. Session Inactivity Timer

The server MAY maintain a session inactivity timer for each session. If the session inactivity
timer expires, then the server MAY destroy the session. To avoid losing a session due to inactivity,
the client MUST renew the session inactivity timer. The length of session inactivity timer MUST
NOT be less than the lease_time attribute (Section 5.8.1.11). As with lease renewal (Section 8.3),
when the server receives a SEQUENCE operation, it resets the session inactivity timer, and MUST
NOT allow the timer to expire while the rest of the operations in the COMPOUND procedure's
request are still executing. Once the last operation has finished, the server MUST set the session
inactivity timer to expire no sooner than the sum of the current time and the value of the
lease_time attribute.

2.10.13. Session Mechanics - Recovery

2.10.13.1. Events Requiring Client Action
The following events require client action to recover.

2.10.13.1.1. RPCSEC_GSS Context Loss by Callback Path

If all RPCSEC_GSS handles granted by the client to the server for callback use have expired, the
client MUST establish a new handle via BACKCHANNEL_CTL. The sr_status_flags field of the
SEQUENCE results indicates when callback handles are nearly expired, or fully expired (see
Section 18.46.3).

Noveck & Lever Standards Track Page 67

RFC 8881 NFSv4.1 with Namespace Update August 2020

2.10.13.1.2. Connection Loss

If the client loses the last connection of the session and wants to retain the session, then it needs
to create a new connection, and if, when the client ID was created, BIND_CONN_TO_SESSION was
specified in the spo_must_enforce list, the client MUST use BIND_CONN_TO_SESSION to associate
the connection with the session.

If there was a request outstanding at the time of connection loss, then if the client wants to
continue to use the session, it MUST retry the request, as described in Section 2.10.6.2. Note that it
is not necessary to retry requests over a connection with the same source network address or the
same destination network address as the lost connection. As long as the session ID, slot ID, and
sequence ID in the retry match that of the original request, the server will recognize the request
as a retry if it executed the request prior to disconnect.

If the connection that was lost was the last one associated with the backchannel, and the client
wants to retain the backchannel and/or prevent revocation of recallable state, the client needs to
reconnect, and if it does, it MUST associate the connection to the session and backchannel via
BIND_CONN_TO_SESSION. The server SHOULD indicate when it has no callback connection via
the sr_status_flags result from SEQUENCE.

2.10.13.1.3. Backchannel GSS Context Loss

Via the sr_status_flags result of the SEQUENCE operation or other means, the client will learn if
some or all of the RPCSEC_GSS contexts it assigned to the backchannel have been lost. If the client
wants to retain the backchannel and/or not put recallable state subject to revocation, the client
needs to use BACKCHANNEL_CTL to assign new contexts.

2.10.13.1.4. Loss of Session
The replier might lose a record of the session. Causes include:

* Replier failure and restart.

* A catastrophe that causes the reply cache to be corrupted or lost on the media on which it
was stored. This applies even if the replier indicated in the CREATE_SESSION results that it
would persist the cache.

» The server purges the session of a client that has been inactive for a very extended period of
time.

* As a result of configuration changes among a set of clustered servers, a network address
previously connected to one server becomes connected to a different server that has no
knowledge of the session in question. Such a configuration change will generally only
happen when the original server ceases to function for a time.

Loss of reply cache is equivalent to loss of session. The replier indicates loss of session to the
requester by returning NFS4ERR_BADSESSION on the next operation that uses the session ID that
refers to the lost session.

Noveck & Lever Standards Track Page 68

RFC 8881 NFSv4.1 with Namespace Update August 2020

After an event like a server restart, the client may have lost its connections. The client assumes
for the moment that the session has not been lost. It reconnects, and if it specified connection
association enforcement when the session was created, it invokes BIND_CONN_TO_SESSION
using the session ID. Otherwise, it invokes SEQUENCE. If BIND_CONN_TO_SESSION or SEQUENCE
returns NFS4ERR_BADSESSION, the client knows the session is not available to it when
communicating with that network address. If the connection survives session loss, then the next
SEQUENCE operation the client sends over the connection will get back NFS4ERR_BADSESSION.
The client again knows the session was lost.

Here is one suggested algorithm for the client when it gets NFS4ERR_BADSESSION. It is not
obligatory in that, if a client does not want to take advantage of such features as trunking, it may
omit parts of it. However, it is a useful example that draws attention to various possible recovery
issues:

1. If the client has other connections to other server network addresses associated with the
same session, attempt a COMPOUND with a single operation, SEQUENCE, on each of the other
connections.

2. If the attempts succeed, the session is still alive, and this is a strong indicator that the server's
network address has moved. The client might send an EXCHANGE_ID on the connection that
returned NFS4ERR_BADSESSION to see if there are opportunities for client ID trunking (i.e.,
the same client ID and so_major_id value are returned). The client might use DNS to see if the
moved network address was replaced with another, so that the performance and availability
benefits of session trunking can continue.

3. If the SEQUENCE requests fail with NFS4ERR_BADSESSION, then the session no longer exists
on any of the server network addresses for which the client has connections associated with
that session ID. It is possible the session is still alive and available on other network
addresses. The client sends an EXCHANGE_ID on all the connections to see if the server
owner is still listening on those network addresses. If the same server owner is returned but
a new client ID is returned, this is a strong indicator of a server restart. If both the same
server owner and same client ID are returned, then this is a strong indication that the server
did delete the session, and the client will need to send a CREATE_SESSION if it has no other
sessions for that client ID. If a different server owner is returned, the client can use DNS to
find other network addresses. If it does not, or if DNS does not find any other addresses for
the server, then the client will be unable to provide NFSv4.1 service, and fatal errors should
be returned to processes that were using the server. If the client is using a "mount"
paradigm, unmounting the server is advised.

4. If the client knows of no other connections associated with the session ID and server
network addresses that are, or have been, associated with the session ID, then the client can
use DNS to find other network addresses. If it does not, or if DNS does not find any other
addresses for the server, then the client will be unable to provide NFSv4.1 service, and fatal
errors should be returned to processes that were using the server. If the client is using a
"mount" paradigm, unmounting the server is advised.

If there is a reconfiguration event that results in the same network address being assigned to
servers where the eir_server_scope value is different, it cannot be guaranteed that a session ID
generated by the first will be recognized as invalid by the first. Therefore, in managing server

Noveck & Lever Standards Track Page 69

RFC 8881 NFSv4.1 with Namespace Update August 2020

reconfigurations among servers with different server scope values, it is necessary to make sure
that all clients have disconnected from the first server before effecting the reconfiguration.
Nonetheless, clients should not assume that servers will always adhere to this requirement;
clients MUST be prepared to deal with unexpected effects of server reconfigurations. Even where
a session ID is inappropriately recognized as valid, it is likely either that the connection will not
be recognized as valid or that a sequence value for a slot will not be correct. Therefore, when a
client receives results indicating such unexpected errors, the use of EXCHANGE_ID to determine
the current server configuration is RECOMMENDED.

A variation on the above is that after a server's network address moves, there is no NFSv4.1
server listening, e.g., no listener on port 2049. In this example, one of the following occur: the
NFSv4 server returns NFS4ERR_MINOR_VERS MISMATCH, the NFS server returns a
PROG_MISMATCH error, the RPC listener on 2049 returns PROG_UNVAIL, or attempts to
reconnect to the network address timeout. These SHOULD be treated as equivalent to SEQUENCE
returning NFS4ERR_BADSESSION for these purposes.

When the client detects session loss, it needs to call CREATE_SESSION to recover. Any non-
idempotent operations that were in progress might have been performed on the server at the
time of session loss. The client has no general way to recover from this.

Note that loss of session does not imply loss of byte-range lock, open, delegation, or layout state
because locks, opens, delegations, and layouts are tied to the client ID and depend on the client
ID, not the session. Nor does loss of byte-range lock, open, delegation, or layout state imply loss of
session state, because the session depends on the client ID; loss of client ID however does imply
loss of session, byte-range lock, open, delegation, and layout state. See Section 8.4.2. A session can
survive a server restart, but lock recovery may still be needed.

It is possible that CREATE_SESSION will fail with NFS4ERR_STALE_CLIENTID (e.g., the server
restarts and does not preserve client ID state). If so, the client needs to call EXCHANGE_ID,
followed by CREATE_SESSION.

2.10.13.2. Events Requiring Server Action
The following events require server action to recover.

2.10.13.2.1. Client Crash and Restart

As described in Section 18.35, a restarted client sends EXCHANGE_ID in such a way that it causes
the server to delete any sessions it had.

2.10.13.2.2. Client Crash with No Restart

If a client crashes and never comes back, it will never send EXCHANGE_ID with its old client
owner. Thus, the server has session state that will never be used again. After an extended period
of time, and if the server has resource constraints, it MAY destroy the old session as well as
locking state.

Noveck & Lever Standards Track Page 70

RFC 8881 NFSv4.1 with Namespace Update August 2020

2.10.13.2.3. Extended Network Partition

To the server, the extended network partition may be no different from a client crash with no
restart (see Section 2.10.13.2.2). Unless the server can discern that there is a network partition, it
is free to treat the situation as if the client has crashed permanently.

2.10.13.2.4. Backchannel Connection Loss

If there were callback requests outstanding at the time of a connection loss, then the server MUST
retry the requests, as described in Section 2.10.6.2. Note that it is not necessary to retry requests
over a connection with the same source network address or the same destination network
address as the lost connection. As long as the session ID, slot ID, and sequence ID in the retry
match that of the original request, the callback target will recognize the request as a retry even if
it did see the request prior to disconnect.

If the connection lost is the last one associated with the backchannel, then the server MUST
indicate that in the sr_status_flags field of every SEQUENCE reply until the backchannel is re-
established. There are two situations, each of which uses different status flags: no connectivity
for the session's backchannel and no connectivity for any session backchannel of the client. See
Section 18.46 for a description of the appropriate flags in sr_status_flags.

2.10.13.2.5. GSS Context Loss

The server SHOULD monitor when the number of RPCSEC_GSS handles assigned to the
backchannel reaches one, and when that one handle is near expiry (i.e., between one and two
periods of lease time), and indicate so in the sr_status_flags field of all SEQUENCE replies. The
server MUST indicate when all of the backchannel's assigned RPCSEC_GSS handles have expired
via the sr_status_flags field of all SEQUENCE replies.

2.10.14. Parallel NFS and Sessions

A client and server can potentially be a non-pNFS implementation, a metadata server
implementation, a data server implementation, or two or three types of implementations. The
EXCHGID4_FLAG_USE_NON_PNFS, EXCHGID4_FLAG_USE_PNFS_MDS, and
EXCHGID4_FLAG_USE_PNFS_DS flags (not mutually exclusive) are passed in the EXCHANGE_ID
arguments and results to allow the client to indicate how it wants to use sessions created under
the client ID, and to allow the server to indicate how it will allow the sessions to be used. See
Section 13.1 for pNFS sessions considerations.

3. Protocol Constants and Data Types

The syntax and semantics to describe the data types of the NFSv4.1 protocol are defined in the
XDR (RFC 4506 [2]) and RPC (RFC 5531 [3]) documents. The next sections build upon the XDR data
types to define constants, types, and structures specific to this protocol. The full list of XDR data
types is in [10].

Noveck & Lever Standards Track Page 71

RFC 8881 NFSv4.1 with Namespace Update

3.1. Basic Constants

const NFS4_FHSIZE = 128;

const NFS4_VERIFIER_SIZE = 8;

const NFS4_OPAQUE_LIMIT = 1024;

const NFS4_SESSIONID_SIZE = 16;

const NFS4_INT64_MAX = Ox7fffffffffffffff;
const NFS4_UINT64_MAX = Oxffffffffffffffff;
const NFS4_INT32_MAX = Ox7fffffff;

const NFS4_UINT32_MAX = Oxffffffff;

const NFS4_MAXFILELEN = Oxffffffffffffffff;
const NFS4_MAXFILEOFF = Oxfffffffffffffffe;

Except where noted, all these constants are defined in bytes.

* NFS4 FHSIZE is the maximum size of a filehandle.

* NFS4 VERIFIER SIZE is the fixed size of a verifier.

* NFS4_OPAQUE_LIMIT is the maximum size of certain opaque information.
* NFS4_SESSIONID SIZE is the fixed size of a session identifier.

* NFS4_INT64_MAX is the maximum value of a signed 64-bit integer.

* NFS4_UINT64_MAX is the maximum value of an unsigned 64-bit integer.

* NFS4_INT32_MAX is the maximum value of a signed 32-bit integer.

* NFS4_UINT32_MAX is the maximum value of an unsigned 32-bit integer.

* NFS4_MAXFILELEN is the maximum length of a regular file.

* NFS4_MAXFILEOFF is the maximum offset into a regular file.

3.2. Basic Data Types
These are the base NFSv4.1 data types.

Data Type Definition

int32_t typedef int int32_t;

uint32_t typedef unsigned int uint32_t;
int64_t typedef hyper int64_t;

uint64_t typedef unsigned hyper uint64_t;
attrlist4 typedef opaque attrlist4<>;

Used for file/directory attributes.

Noveck & Lever Standards Track

August 2020

Page 72

RFC 8881 NFSv4.1 with Namespace Update August 2020

Data Type Definition

bitmap4 typedef uint32_t bitmap4<>;
Used in attribute array encoding.

changeid4 typedef uint64_t changeid4;
Used in the definition of change_info4.

clientid4 typedef uint64_t clientid4;
Shorthand reference to client identification.

count4 typedef uint32_t count4;
Various count parameters (READ, WRITE, COMMIT).

length4 typedef uint64_t length4;
The length of a byte-range within a file.

mode4 typedef uint32_t mode4;
Mode attribute data type.

nfs_cookied typedef uint64_t nfs_cookie4;
Opaque cookie value for READDIR.

nfs_fh4 typedef opaque nfs_fh4<NFS4_FHSIZE>;
Filehandle definition.

nfs_ftype4 enum nfs_ftype4;
Various defined file types.

nfsstat4 enum nfsstat4;
Return value for operations.

offset4 typedef uint64_t offset4;
Various offset designations (READ, WRITE, LOCK, COMMIT).

qop4 typedef uint32_t qop4;
Quality of protection designation in SECINFO.

sec_oid4 typedef opaque sec_oid4<>;
Security Object Identifier. The sec_oid4 data type is not really opaque.
Instead, it contains an ASN.1 OBJECT IDENTIFIER as used by GSS-API in the
mech_type argument to GSS_Init_sec_context. See [7] for details.

sequenceid4 typedef uint32_t sequenceid4;
Sequence number used for various session operations (EXCHANGE_ID,
CREATE_SESSION, SEQUENCE, CB_SEQUENCE).

Noveck & Lever Standards Track Page 73

RFC 8881

Data Type

seqid4

sessionid4

slotid4

utf8string

utf8str_cis

utf8str_cs

utf8str_mixed

NFSv4.1 with Namespace Update August 2020

Definition

typedef uint32_t seqid4;
Sequence identifier used for locking.

typedef opaque sessionid4[NFS4_SESSIONID_SIZE];
Session identifier.

typedef uint32_t slotid4;
Sequencing artifact for various session operations (SEQUENCE,
CB_SEQUENCE).

typedef opaque utf8string<>;
UTF-8 encoding for strings.

typedef utf8string utf8str_cis;
Case-insensitive UTF-8 string.

typedef utf8string utf8str_cs;
Case-sensitive UTF-8 string.

typedef utf8string utf8str_mixed;
UTF-8 strings with a case-sensitive prefix and a case-insensitive suffix.

component4 typedef utf8str_cs component4;
Represents pathname components.
linktext4 typedef utf8str_cs linktext4;
Symbolic link contents ("symbolic link" is defined in an Open Group [11]
standard).
pathname4 typedef component4 pathname4<>;
Represents pathname for fs_locations.
verifierd typedef opaque verifier4[NFS4_VERIFIER_SIZE];
Verifier used for various operations (COMMIT, CREATE, EXCHANGE_ID,
OPEN, READDIR, WRITE) NFS4_VERIFIER_SIZE is defined as 8.
Table 1
End of Base Data Types

Noveck & Lever

Standards Track Page 74

RFC 8881 NFSv4.1 with Namespace Update August 2020

3.3. Structured Data Types

3.3.1. nfstime4

struct nfstime4 {
int64_t seconds;
uint32_t nseconds;

s

The nfstime4 data type gives the number of seconds and nanoseconds since midnight or zero
hour January 1, 1970 Coordinated Universal Time (UTC). Values greater than zero for the seconds
field denote dates after the zero hour January 1, 1970. Values less than zero for the seconds field
denote dates before the zero hour January 1, 1970. In both cases, the nseconds field is to be
added to the seconds field for the final time representation. For example, if the time to be
represented is one-half second before zero hour January 1, 1970, the seconds field would have a
value of negative one (-1) and the nseconds field would have a value of one-half second
(500000000). Values greater than 999,999,999 for nseconds are invalid.

This data type is used to pass time and date information. A server converts to and from its local
representation of time when processing time values, preserving as much accuracy as possible. If
the precision of timestamps stored for a file system object is less than defined, loss of precision
can occur. An adjunct time maintenance protocol is RECOMMENDED to reduce client and server
time skew.

3.3.2. time_how4

enum time_how4 {
SET_TO_SERVER_TIME4
SET_TO_CLIENT_TIME4

-

s

3.3.3. settime4

union settime4 switch (time_how4 set_it) {
case SET_TO_CLIENT_TIMEA4:
nfstime4 time;
default:
void;
b §

The time_how4 and settime4 data types are used for setting timestamps in file object attributes. If
set_it is SET_TO_SERVER_TIME4, then the server uses its local representation of time for the time
value.

Noveck & Lever Standards Track Page 75

RFC 8881 NFSv4.1 with Namespace Update August 2020

3.3.4. specdata4d

struct specdatad {
uint32_t specdatal; /* major device number */
uint32_t specdata2; /* minor device number =*/

}i

This data type represents the device numbers for the device file types NFACHR and NF4BLK.

3.3.5. fsid4

struct fsid4 {
uinté4_t major;
uinté4_t minor;

s

3.3.6. change_policy4

struct change_policy4 {
uinté4_t cp_major;
uinté4_t cp_minor;

s

The change_policy4 data type is used for the change_policy RECOMMENDED attribute. It provides
change sequencing indication analogous to the change attribute. To enable the server to present
a value valid across server re-initialization without requiring persistent storage, two 64-bit
quantities are used, allowing one to be a server instance ID and the second to be incremented
non-persistently, within a given server instance.

3.3.7. fattr4

struct fattr4 {
bitmap4 attrmask;
attrlist4 attr_vals;

s

The fattr4 data type is used to represent file and directory attributes.

The bitmap is a counted array of 32-bit integers used to contain bit values. The position of the
integer in the array that contains bit n can be computed from the expression (n / 32), and its bit
within that integer is (n mod 32).

Noveck & Lever Standards Track Page 76

RFC 8881 NFSv4.1 with Namespace Update August 2020

3.3.8. change_info4

struct change_info4 {

bool atomic;
changeid4 before;
changeid4 after;

s

This data type is used with the CREATE, LINK, OPEN, REMOVE, and RENAME operations to let the
client know the value of the change attribute for the directory in which the target file system
object resides.

3.3.9. netaddr4

struct netaddr4 {
/* see struct rpcb in RFC 1833 =*/
string na_r_netid<>; /* network id */
string na_r_addr<>; /% universal address */

s

The netaddr4 data type is used to identify network transport endpoints. The na_r_netid and
na_r_addr fields respectively contain a netid and uaddr. The netid and uaddr concepts are
defined in [12]. The netid and uaddr formats for TCP over IPv4 and TCP over IPv6 are defined in
[12], specifically Tables 2 and 3 and in Sections 5.2.3.3 and 5.2.3.4.

3.3.10. state_owner4

struct state_owner4 {

clientid4 clientid;

opaque owner<NFS4_OPAQUE_LIMIT>;
}

typedef state_owner4 open_owner4;
typedef state_owner4 lock_owner4;

The state_owner4 data type is the base type for the open_owner4 (Section 3.3.10.1) and
lock_owner4 (Section 3.3.10.2).

3.3.10.1. open_owner4
This data type is used to identify the owner of OPEN state.

3.3.10.2. lock owner4
This structure is used to identify the owner of byte-range locking state.

Noveck & Lever Standards Track Page 77

https://www.rfc-editor.org/rfc/rfc5665#section-5.2.3.3
https://www.rfc-editor.org/rfc/rfc5665#section-5.2.3.4

RFC 8881 NFSv4.1 with Namespace Update August 2020

3.3.11. open_to_lock_owner4

struct open_to_lock_owner4 {

seqid4 open_seqid;
stateid4 open_stateid;
seqid4 lock_seqid;
lock_owner4 lock_owner;

s

This data type is used for the first LOCK operation done for an open_owner4. It provides both the
open_stateid and lock_owner, such that the transition is made from a valid open_stateid
sequence to that of the new lock_stateid sequence. Using this mechanism avoids the confirmation
of the lock_owner/lock_seqid pair since it is tied to established state in the form of the
open_stateid/open_seqid.

3.3.12. stateid4

struct stateid4 {
uint32_t seqid;
opaque other[12];
i

This data type is used for the various state sharing mechanisms between the client and server.
The client never modifies a value of data type stateid. The starting value of the "seqid" field is
undefined. The server is required to increment the "seqid" field by one at each transition of the
stateid. This is important since the client will inspect the seqid in OPEN stateids to determine the
order of OPEN processing done by the server.

3.3.13. layouttyped

enum layouttype4 {

LAYOUT4_NFSV4A_1_FILES = Ox1,
LAYOUT4_0SD2_OBJECTS = 0x2,
LAYOUT4_BLOCK_VOLUME = 0x3

s

This data type indicates what type of layout is being used. The file server advertises the layout
types it supports through the fs_layout_type file system attribute (Section 5.12.1). A client asks for
layouts of a particular type in LAYOUTGET, and processes those layouts in its layout-type-specific
logic.

The layouttype4 data type is 32 bits in length. The range represented by the layout type is split
into three parts. Type 0x0 is reserved. Types within the range 0x00000001-0x7FFFFFFF are
globally unique and are assigned according to the description in Section 22.5; they are
maintained by IANA. Types within the range 0x80000000-0XFFFFFFFF are site specific and for
private use only.

Noveck & Lever Standards Track Page 78

RFC 8881 NFSv4.1 with Namespace Update August 2020

The LAYOUT4_NFSV4_1_FILES enumeration specifies that the NFSv4.1 file layout type, as defined
in Section 13, is to be used. The LAYOUT4_0OSD2_OBJECTS enumeration specifies that the object
layout, as defined in [47], is to be used. Similarly, the LAYOUT4_BLOCK_VOLUME enumeration
specifies that the block/volume layout, as defined in [48], is to be used.

3.3.14. deviceid4

const NFS4_DEVICEID4_SIZE = 16;

typedef opaque deviceid4[NFS4_DEVICEID4_SIZE];

Layout information includes device IDs that specify a storage device through a compact handle.
Addressing and type information is obtained with the GETDEVICEINFO operation. Device IDs are
not guaranteed to be valid across metadata server restarts. A device ID is unique per client ID
and layout type. See Section 12.2.10 for more details.

3.3.15. device _addr4

struct device_addr4 {
layouttyped da_layout_type;
opaque da_addr_body<>;
i

The device address is used to set up a communication channel with the storage device. Different
layout types will require different data types to define how they communicate with storage
devices. The opaque da_addr_body field is interpreted based on the specified da_layout_type
field.

This document defines the device address for the NFSv4.1 file layout (see Section 13.3), which
identifies a storage device by network IP address and port number. This is sufficient for the
clients to communicate with the NFSv4.1 storage devices, and may be sufficient for other layout
types as well. Device types for object-based storage devices and block storage devices (e.g., Small
Computer System Interface (SCSI) volume labels) are defined by their respective layout
specifications.

3.3.16. layout_content4

struct layout_content4 {
layouttype4 loc_type;
opaque loc_body<>;

s

The loc_body field is interpreted based on the layout type (loc_type). This document defines the
loc_body for the NFSv4.1 file layout type; see Section 13.3 for its definition.

Noveck & Lever Standards Track Page 79

RFC 8881 NFSv4.1 with Namespace Update August 2020

3.3.17. layout4

struct layout4d {

offset4 lo_offset;
length4 lo_length;
layoutiomode4 lo_iomode;
layout_content4 lo_content;

s

The layout4 data type defines a layout for a file. The layout type specific data is opaque within
lo_content. Since layouts are sub-dividable, the offset and length together with the file's
filehandle, the client ID, iomode, and layout type identify the layout.

3.3.18. layoutupdate4

struct layoutupdate4 {
layouttyped lou_type;
opaque lou_body<>;

s

The layoutupdate4 data type is used by the client to return updated layout information to the
metadata server via the LAYOUTCOMMIT (Section 18.42) operation. This data type provides a
channel to pass layout type specific information (in field lou_body) back to the metadata server.
For example, for the block/volume layout type, this could include the list of reserved blocks that
were written. The contents of the opaque lou_body argument are determined by the layout type.
The NFSv4.1 file-based layout does not use this data type; if lou_type is LAYOUT4_NFSV4_1_FILES,
the lou_body field MUST have a zero length.

3.3.19. layouthint4

struct layouthint4
layouttyped loh_type;
opaque loh_body<>;
I 5

The layouthint4 data type is used by the client to pass in a hint about the type of layout it would
like created for a particular file. It is the data type specified by the layout_hint attribute described
in Section 5.12.4. The metadata server may ignore the hint or may selectively ignore fields within
the hint. This hint should be provided at create time as part of the initial attributes within OPEN.
The loh_body field is specific to the type of layout (loh_type). The NFSv4.1 file-based layout uses
the nfsv4_1_file_layouthint4 data type as defined in Section 13.3.

Noveck & Lever Standards Track Page 80

RFC 8881 NFSv4.1 with Namespace Update August 2020

3.3.20. layoutiomode4

enum layoutiomode4 {
LAYOUTIOMODE4_READ
LAYOUTIOMODE4 _RW
LAYOUTIOMODE4_ANY

im nn
WN =

s

The iomode specifies whether the client intends to just read or both read and write the data
represented by the layout. While the LAYOUTIOMODE4_ANY iomode MUST NOT be used in the
arguments to the LAYOUTGET operation, it MAY be used in the arguments to the LAYOUTRETURN
and CB_LAYOUTRECALL operations. The LAYOUTIOMODE4_ANY iomode specifies that layouts
pertaining to both LAYOUTIOMODE4_READ and LAYOUTIOMODE4_RW iomodes are being
returned or recalled, respectively. The metadata server's use of the iomode may depend on the
layout type being used. The storage devices MAY validate I/O accesses against the iomode and
reject invalid accesses.

3.3.21. nfs_impl_id4

struct nfs_impl_id4 {
utf8str_cis nii_domain;
utf8str_cs nii_name;
nfstime4 nii_date;

s

This data type is used to identify client and server implementation details. The nii_domain field
is the DNS domain name with which the implementor is associated. The nii_name field is the
product name of the implementation and is completely free form. It is RECOMMENDED that the
nii_name be used to distinguish machine architecture, machine platforms, revisions, versions,
and patch levels. The nii_date field is the timestamp of when the software instance was
published or built.

3.3.22. threshold _item4

struct threshold_item4 ({

layouttyped thi_layout_type;
bitmap4 thi_hintset;
opaque thi_hintlist<>;

s

This data type contains a list of hints specific to a layout type for helping the client determine
when it should send I/O directly through the metadata server versus the storage devices. The
data type consists of the layout type (thi_layout_type), a bitmap (thi_hintset) describing the set of
hints supported by the server (they may differ based on the layout type), and a list of hints
(thi_hintlist) whose content is determined by the hintset bitmap. See the mdsthreshold attribute
for more details.

Noveck & Lever Standards Track Page 81

RFC 8881 NFSv4.1 with Namespace Update August 2020

The thi_hintset field is a bitmap of the following values:

name # Data Description
Type
threshold4 read_size 0 length4 If a file's length is less than the value of

threshold4 _read_size, then it is RECOMMENDED
that the client read from the file via the MDS and
not a storage device.

threshold4_write_size 1 length4 Ifafile's length is less than the value of
threshold4 write_size, then it is RECOMMENDED
that the client write to the file via the MDS and not
a storage device.

threshold4 read_iosize 2 length4 For read I/O sizes below this threshold, it is
RECOMMENDED to read data through the MDS.

threshold4_write_iosize 3 length4 For write I/O sizes below this threshold, it is
RECOMMENDED to write data through the MDS.
Table 2

3.3.23. mdsthreshold4

struct mdsthreshold4 {
threshold_item4 mth_hints<>;
s

This data type holds an array of elements of data type threshold_item4, each of which is valid for
a particular layout type. An array is necessary because a server can support multiple layout types
for a single file.

4. Filehandles

The filehandle in the NFS protocol is a per-server unique identifier for a file system object. The
contents of the filehandle are opaque to the client. Therefore, the server is responsible for
translating the filehandle to an internal representation of the file system object.

4.1. Obtaining the First Filehandle

The operations of the NFS protocol are defined in terms of one or more filehandles. Therefore,
the client needs a filehandle to initiate communication with the server. With the NFSv3 protocol
(RFC 1813 [38]), there exists an ancillary protocol to obtain this first filehandle. The MOUNT
protocol, RPC program number 100005, provides the mechanism of translating a string-based file
system pathname to a filehandle, which can then be used by the NFS protocols.

Noveck & Lever Standards Track Page 82

RFC 8881 NFSv4.1 with Namespace Update August 2020

The MOUNT protocol has deficiencies in the area of security and use via firewalls. This is one
reason that the use of the public filehandle was introduced in RFC 2054 [49] and RFC 2055 [50].
With the use of the public filehandle in combination with the LOOKUP operation in the NFSv3
protocol, it has been demonstrated that the MOUNT protocol is unnecessary for viable
interaction between NFS client and server.

Therefore, the NFSv4.1 protocol will not use an ancillary protocol for translation from string-
based pathnames to a filehandle. Two special filehandles will be used as starting points for the
NFS client.

4.1.1. Root Filehandle

The first of the special filehandles is the ROOT filehandle. The ROOT filehandle is the "conceptual”
root of the file system namespace at the NFS server. The client uses or starts with the ROOT
filehandle by employing the PUTROOTFH operation. The PUTROOTFH operation instructs the
server to set the "current” filehandle to the ROOT of the server's file tree. Once this PUTROOTFH
operation is used, the client can then traverse the entirety of the server's file tree with the
LOOKUP operation. A complete discussion of the server namespace is in Section 7.

4.1.2. Public Filehandle

The second special filehandle is the PUBLIC filehandle. Unlike the ROOT filehandle, the PUBLIC
filehandle may be bound or represent an arbitrary file system object at the server. The server is
responsible for this binding. It may be that the PUBLIC filehandle and the ROOT filehandle refer
to the same file system object. However, it is up to the administrative software at the server and
the policies of the server administrator to define the binding of the PUBLIC filehandle and server
file system object. The client may not make any assumptions about this binding. The client uses
the PUBLIC filehandle via the PUTPUBFH operation.

4.2. Filehandle Types

In the NFSv3 protocol, there was one type of filehandle with a single set of semantics. This type of
filehandle is termed "persistent” in NFSv4.1. The semantics of a persistent filehandle remain the
same as before. A new type of filehandle introduced in NFSv4.1 is the "volatile" filehandle, which
attempts to accommodate certain server environments.

The volatile filehandle type was introduced to address server functionality or implementation
issues that make correct implementation of a persistent filehandle infeasible. Some server
environments do not provide a file-system-level invariant that can be used to construct a
persistent filehandle. The underlying server file system may not provide the invariant or the
server's file system programming interfaces may not provide access to the needed invariant.
Volatile filehandles may ease the implementation of server functionality such as hierarchical
storage management or file system reorganization or migration. However, the volatile filehandle
increases the implementation burden for the client.

Since the client will need to handle persistent and volatile filehandles differently, a file attribute
is defined that may be used by the client to determine the filehandle types being returned by the
server.

Noveck & Lever Standards Track Page 83

RFC 8881 NFSv4.1 with Namespace Update August 2020

4.2.1. General Properties of a Filehandle

The filehandle contains all the information the server needs to distinguish an individual file. To
the client, the filehandle is opaque. The client stores filehandles for use in a later request and can
compare two filehandles from the same server for equality by doing a byte-by-byte comparison.
However, the client MUST NOT otherwise interpret the contents of filehandles. If two filehandles
from the same server are equal, they MUST refer to the same file. Servers SHOULD try to maintain
a one-to-one correspondence between filehandles and files, but this is not required. Clients MUST
use filehandle comparisons only to improve performance, not for correct behavior. All clients
need to be prepared for situations in which it cannot be determined whether two filehandles
denote the same object and in such cases, avoid making invalid assumptions that might cause
incorrect behavior. Further discussion of filehandle and attribute comparison in the context of
data caching is presented in Section 10.3.4.

As an example, in the case that two different pathnames when traversed at the server terminate
at the same file system object, the server SHOULD return the same filehandle for each path. This
can occur if a hard link (see [6]) is used to create two file names that refer to the same underlying
file object and associated data. For example, if paths /a/b/c and /a/d/c refer to the same file, the
server SHOULD return the same filehandle for both pathnames' traversals.

4.2.2. Persistent Filehandle

A persistent filehandle is defined as having a fixed value for the lifetime of the file system object
to which it refers. Once the server creates the filehandle for a file system object, the server MUST
accept the same filehandle for the object for the lifetime of the object. If the server restarts, the
NFS server MUST honor the same filehandle value as it did in the server's previous instantiation.
Similarly, if the file system is migrated, the new NFS server MUST honor the same filehandle as
the old NFS server.

The persistent filehandle will be become stale or invalid when the file system object is removed.
When the server is presented with a persistent filehandle that refers to a deleted object, it MUST
return an error of NFS4ERR_STALE. A filehandle may become stale when the file system
containing the object is no longer available. The file system may become unavailable if it exists
on removable media and the media is no longer available at the server or the file system in
whole has been destroyed or the file system has simply been removed from the server's
namespace (i.e., unmounted in a UNIX environment).

4.2.3. Volatile Filehandle

A volatile filehandle does not share the same longevity characteristics of a persistent filehandle.
The server may determine that a volatile filehandle is no longer valid at many different points in
time. If the server can definitively determine that a volatile filehandle refers to an object that has
been removed, the server should return NFS4ERR_STALE to the client (as is the case for
persistent filehandles). In all other cases where the server determines that a volatile filehandle
can no longer be used, it should return an error of NFS4ERR_FHEXPIRED.

Noveck & Lever Standards Track Page 84

RFC 8881 NFSv4.1 with Namespace Update August 2020

The REQUIRED attribute "fh_expire_type" is used by the client to determine what type of
filehandle the server is providing for a particular file system. This attribute is a bitmask with the
following values:

FH4_PERSISTENT The value of FH4_PERSISTENT is used to indicate a persistent filehandle,
which is valid until the object is removed from the file system. The server will not return
NFS4ERR_FHEXPIRED for this filehandle. FH4 PERSISTENT is defined as a value in which
none of the bits specified below are set.

FH4_VOLATILE_ANY The filehandle may expire at any time, except as specifically excluded (i.e.,
FH4 NO_EXPIRE_WITH_OPEN).

FH4 NOEXPIRE WITH_OPEN May only be set when FH4_VOLATILE_ANY is set. If this bit is set,
then the meaning of FH4_VOLATILE_ANY is qualified to exclude any expiration of the
filehandle when it is open.

FH4_VOL_MIGRATION The filehandle will expire as a result of a file system transition
(migration or replication), in those cases in which the continuity of filehandle use is not
specified by handle class information within the fs_locations_info attribute. When this bit
is set, clients without access to fs_locations_info information should assume that
filehandles will expire on file system transitions.

FH4_VOL_RENAME The filehandle will expire during rename. This includes a rename by the
requesting client or a rename by any other client. If FH4_VOL_ANY is set,
FH4 VOL_RENAME is redundant.

Servers that provide volatile filehandles that can expire while open require special care as
regards handling of RENAMEs and REMOVEs. This situation can arise if FH4_VOL_MIGRATION or
FH4 VOL_RENAME is set, if FH4_VOLATILE_ANY is set and FH4_NOEXPIRE_WITH_OPEN is not
set, or if a non-read-only file system has a transition target in a different handle class. In these
cases, the server should deny a RENAME or REMOVE that would affect an OPEN file of any of the
components leading to the OPEN file. In addition, the server should deny all RENAME or
REMOVE requests during the grace period, in order to make sure that reclaims of files where
filehandles may have expired do not do a reclaim for the wrong file.

Volatile filehandles are especially suitable for implementation of the pseudo file systems used to
bridge exports. See Section 7.5 for a discussion of this.

4.3. One Method of Constructing a Volatile Filehandle

A volatile filehandle, while opaque to the client, could contain:
[volatile bit = 1 | server boot time | slot | generation number]

¢ slot is an index in the server volatile filehandle table
* generation number is the generation number for the table entry/slot

Noveck & Lever Standards Track Page 85

RFC 8881 NFSv4.1 with Namespace Update August 2020

When the client presents a volatile filehandle, the server makes the following checks, which
assume that the check for the volatile bit has passed. If the server boot time is less than the
current server boot time, return NFS4ERR_FHEXPIRED. If slot is out of range, return
NFS4ERR_BADHANDLE. If the generation number does not match, return NFS4ERR_FHEXPIRED.

When the server restarts, the table is gone (it is volatile).

If the volatile bit is 0, then it is a persistent filehandle with a different structure following it.

4.4. Client Recovery from Filehandle Expiration

If possible, the client SHOULD recover from the receipt of an NFS4ERR_FHEXPIRED error. The
client must take on additional responsibility so that it may prepare itself to recover from the
expiration of a volatile filehandle. If the server returns persistent filehandles, the client does not
need these additional steps.

For volatile filehandles, most commonly the client will need to store the component names
leading up to and including the file system object in question. With these names, the client
should be able to recover by finding a filehandle in the namespace that is still available or by
starting at the root of the server's file system namespace.

If the expired filehandle refers to an object that has been removed from the file system,
obviously the client will not be able to recover from the expired filehandle.

It is also possible that the expired filehandle refers to a file that has been renamed. If the file was
renamed by another client, again it is possible that the original client will not be able to recover.
However, in the case that the client itself is renaming the file and the file is open, it is possible
that the client may be able to recover. The client can determine the new pathname based on the
processing of the rename request. The client can then regenerate the new filehandle based on
the new pathname. The client could also use the COMPOUND procedure to construct a series of
operations like:

RENAME A B
LOOKUP B
GETFH

Note that the COMPOUND procedure does not provide atomicity. This example only reduces the
overhead of recovering from an expired filehandle.

5. File Attributes

To meet the requirements of extensibility and increased interoperability with non-UNIX
platforms, attributes need to be handled in a flexible manner. The NFSv3 fattr3 structure
contains a fixed list of attributes that not all clients and servers are able to support or care about.
The fattr3 structure cannot be extended as new needs arise and it provides no way to indicate
non-support. With the NFSv4.1 protocol, the client is able to query what attributes the server
supports and construct requests with only those supported attributes (or a subset thereof).

Noveck & Lever Standards Track Page 86

RFC 8881 NFSv4.1 with Namespace Update August 2020

To this end, attributes are divided into three groups: REQUIRED, RECOMMENDED, and named.
Both REQUIRED and RECOMMENDED attributes are supported in the NFSv4.1 protocol by a
specific and well-defined encoding and are identified by number. They are requested by setting a
bit in the bit vector sent in the GETATTR request; the server response includes a bit vector to list
what attributes were returned in the response. New REQUIRED or RECOMMENDED attributes may
be added to the NFSv4 protocol as part of a new minor version by publishing a Standards Track
RFC that allocates a new attribute number value and defines the encoding for the attribute. See
Section 2.7 for further discussion.

Named attributes are accessed by the new OPENATTR operation, which accesses a hidden
directory of attributes associated with a file system object. OPENATTR takes a filehandle for the
object and returns the filehandle for the attribute hierarchy. The filehandle for the named
attributes is a directory object accessible by LOOKUP or READDIR and contains files whose
names represent the named attributes and whose data bytes are the value of the attribute. For
example:

LOOKUP "foo" ; look up file

GETATTR attrbits

OPENATTR ; access foo's named attributes
LOOKUP "x11licon" ;look up specific attribute
READ 0,4096 ; read stream of bytes

Table 3

Named attributes are intended for data needed by applications rather than by an NFS client
implementation. NFS implementors are strongly encouraged to define their new attributes as
RECOMMENDED attributes by bringing them to the IETF Standards Track process.

The set of attributes that are classified as REQUIRED is deliberately small since servers need to do
whatever it takes to support them. A server should support as many of the RECOMMENDED
attributes as possible but, by their definition, the server is not required to support all of them.
Attributes are deemed REQUIRED if the data is both needed by a large number of clients and is
not otherwise reasonably computable by the client when support is not provided on the server.

Note that the hidden directory returned by OPENATTR is a convenience for protocol processing.
The client should not make any assumptions about the server's implementation of named
attributes and whether or not the underlying file system at the server has a named attribute
directory. Therefore, operations such as SETATTR and GETATTR on the named attribute directory
are undefined.

Noveck & Lever Standards Track Page 87

RFC 8881 NFSv4.1 with Namespace Update August 2020

5.1. REQUIRED Attributes

These MUST be supported by every NFSv4.1 client and server in order to ensure a minimum level
of interoperability. The server MUST store and return these attributes, and the client MUST be
able to function with an attribute set limited to these attributes. With just the REQUIRED
attributes some client functionality may be impaired or limited in some ways. A client may ask
for any of these attributes to be returned by setting a bit in the GETATTR request, and the server
MUST return their value.

5.2. RECOMMENDED Attributes

These attributes are understood well enough to warrant support in the NFSv4.1 protocol.
However, they may not be supported on all clients and servers. A client may ask for any of these
attributes to be returned by setting a bit in the GETATTR request but must handle the case where
the server does not return them. A client MAY ask for the set of attributes the server supports and
SHOULD NOT request attributes the server does not support. A server should be tolerant of
requests for unsupported attributes and simply not return them rather than considering the
request an error. It is expected that servers will support all attributes they comfortably can and
only fail to support attributes that are difficult to support in their operating environments. A
server should provide attributes whenever they don't have to "tell lies" to the client. For example,
a file modification time should be either an accurate time or should not be supported by the
server. At times this will be difficult for clients, but a client is better positioned to decide whether
and how to fabricate or construct an attribute or whether to do without the attribute.

5.3. Named Attributes

These attributes are not supported by direct encoding in the NFSv4 protocol but are accessed by
string names rather than numbers and correspond to an uninterpreted stream of bytes that are
stored with the file system object. The namespace for these attributes may be accessed by using
the OPENATTR operation. The OPENATTR operation returns a filehandle for a virtual "named
attribute directory”, and further perusal and modification of the namespace may be done using
operations that work on more typical directories. In particular, READDIR may be used to get a list
of such named attributes, and LOOKUP and OPEN may select a particular attribute. Creation of a
new named attribute may be the result of an OPEN specifying file creation.

Once an OPEN is done, named attributes may be examined and changed by normal READ and
WRITE operations using the filehandles and stateids returned by OPEN.

Named attributes and the named attribute directory may have their own (non-named) attributes.
Each of these objects MUST have all of the REQUIRED attributes and may have additional
RECOMMENDED attributes. However, the set of attributes for named attributes and the named
attribute directory need not be, and typically will not be, as large as that for other objects in that
file system.

Noveck & Lever Standards Track Page 88

RFC 8881 NFSv4.1 with Namespace Update August 2020

Named attributes and the named attribute directory might be the target of delegations (in the
case of the named attribute directory, these will be directory delegations). However, since
granting of delegations is at the server's discretion, a server need not support delegations on
named attributes or the named attribute directory.

It is RECOMMENDED that servers support arbitrary named attributes. A client should not depend
on the ability to store any named attributes in the server's file system. If a server does support
named attributes, a client that is also able to handle them should be able to copy a file's data and
metadata with complete transparency from one location to another; this would imply that names
allowed for regular directory entries are valid for named attribute names as well.

In NFSv4.1, the structure of named attribute directories is restricted in a number of ways, in
order to prevent the development of non-interoperable implementations in which some servers
support a fully general hierarchical directory structure for named attributes while others
support a limited but adequate structure for named attributes. In such an environment, clients
or applications might come to depend on non-portable extensions. The restrictions are:

* CREATE is not allowed in a named attribute directory. Thus, such objects as symbolic links
and special files are not allowed to be named attributes. Further, directories may not be
created in a named attribute directory, so no hierarchical structure of named attributes for a
single object is allowed.

* If OPENATTR is done on a named attribute directory or on a named attribute, the server
MUST return NFS4ERR_ WRONG_TYPE.

* Doing a RENAME of a named attribute to a different named attribute directory or to an
ordinary (i.e., non-named-attribute) directory is not allowed.

* Creating hard links between named attribute directories or between named attribute
directories and ordinary directories is not allowed.

Names of attributes will not be controlled by this document or other IETF Standards Track
documents. See Section 22.2 for further discussion.

5.4. Classification of Attributes

Each of the REQUIRED and RECOMMENDED attributes can be classified in one of three categories:
per server (i.e., the value of the attribute will be the same for all file objects that share the same
server owner; see Section 2.5 for a definition of server owner), per file system (i.e., the value of
the attribute will be the same for some or all file objects that share the same fsid attribute
(Section 5.8.1.9) and server owner), or per file system object. Note that it is possible that some per
file system attributes may vary within the file system, depending on the value of the
"homogeneous" (Section 5.8.2.16) attribute. Note that the attributes time_access_set and
time_modify_set are not listed in this section because they are write-only attributes
corresponding to time_access and time_modify, and are used in a special instance of SETATTR.

* The per-server attribute is:

lease_time

Noveck & Lever Standards Track Page 89

RFC 8881 NFSv4.1 with Namespace Update August 2020

* The per-file system attributes are:

supported_attrs, suppattr_exclcreat, fh_expire_type, link_support, symlink_support,
unique_handles, aclsupport, cansettime, case_insensitive, case_preserving,
chown_restricted, files_avalil, files_free, files_total, fs_locations, homogeneous, maxfilesize,
maxname, maxread, maxwrite, no_trunc, space_avail, space_free, space_total, time_delta,
change_policy, fs_status, fs_layout_type, fs_locations_info, fs_charset_cap

* The per-file system object attributes are:

type, change, size, named_attr, fsid, rdattr_error, filehandle, acl, archive, fileid, hidden,
maxlink, mimetype, mode, numlinks, owner, owner_group, rawdev, space_used, system,
time_access, time_backup, time_create, time_metadata, time_modify, mounted_on_fileid,
dir_notif_delay, dirent_notif_delay, dacl, sacl, layout_type, layout_hint, layout_blksize,
layout_alignment, mdsthreshold, retention_get, retention_set, retentevt_get, retentevt_set,
retention_hold, mode_set_masked

For quota_avail_hard, quota_avail_soft, and quota_used, see their definitions below for the
appropriate classification.

5.5. Set-Only and Get-Only Attributes

Some REQUIRED and RECOMMENDED attributes are set-only; i.e., they can be set via SETATTR but
not retrieved via GETATTR. Similarly, some REQUIRED and RECOMMENDED attributes are get-
only; i.e, they can be retrieved via GETATTR but not set via SETATTR. If a client attempts to set a
get-only attribute or get a set-only attributes, the server MUST return NFS4ERR_INVAL.

5.6. REQUIRED Attributes - List and Definition References

The list of REQUIRED attributes appears in Table 4. The meaning of the columns of the table are:

Name: The name of the attribute.

Id: The number assigned to the attribute. In the event of conflicts between the assigned
number and [10], the latter is likely authoritative, but should be resolved with Errata to
this document and/or [10]. See [51] for the Errata process.

Data Type: The XDR data type of the attribute.

Acc: Access allowed to the attribute. R means read-only (GETATTR may retrieve, SETATTR may
not set). W means write-only (SETATTR may set, GETATTR may not retrieve). R W means
read/write (GETATTR may retrieve, SETATTR may set).

Defined in: The section of this specification that describes the attribute.

Name Id DataType Acc Definedin:

supported_attrs 0 bitmap4 R Section 5.8.1.1

Noveck & Lever Standards Track Page 90

RFC 8881

Name

type

th_expire_type

change
size

link_support

symlink_support

named_attr

fsid

unique_handles

lease_time
rdattr_error

filehandle

NFSv4.1 with Namespace Update

suppattr_exclcreat

Table 4

Id Data Type
1 nfs_ftype4
2 uint32_t

3 uint64 t

4 uint64_t

5 bool

6 bool

7 bool

8 fsid4

9 bool

10 nfs lease4
11 enum

19 nfs fh4

75 bitmap4

Acc

Defined in:

Section 5.8.1.2

Section 5.8.1.3

Section 5.8.1.4

Section 5.8.1.5

Section 5.8.1.6

Section 5.8.1.7

Section 5.8.1.8

Section 5.8.1.9

Section 5.8.1.10

Section 5.8.1.11

Section 5.8.1.12

Section 5.8.1.13

Section 5.8.1.14

5.7. RECOMMENDED Attributes - List and Definition References

The RECOMMENDED attributes are defined in Table 5. The meanings of the column headers are
the same as Table 4; see Section 5.6 for the meanings.

Noveck & Lever

Name

acl

aclsupport
archive
cansettime
case_insensitive
case_preserving

change_policy

Id

12

13

14

15

16

17

60

Data Type

nfsace4<>
uint32_t
bool

bool

bool

bool

chg_policy4

Standards Track

Acc Defined in:

RW Section 6.2.1

R Section 6.2.1.2
RW Section 5.8.2.1
R Section 5.8.2.2
R Section 5.8.2.3
R Section 5.8.2.4
R Section 5.8.2.5

August 2020

Page 91

RFC 8881

Noveck & Lever

Name
chown_restricted
dacl
dir_notif_delay
dirent_notif_delay
fileid

files_avail
files_free
files_total
fs_charset_cap
fs_layout_type
fs_locations
fs_locations_info
fs_status

hidden
homogeneous
layout_alignment
layout_blksize
layout_hint
layout_type
maxfilesize
maxlink
maxname
maxread

maxwrite

Id

57

20

21

22

23

76

62

24

67

61

25

26

66

65

63

64

27

28

29

30

31

Data Type

bool

nfsacl4l
nfstime4
nfstime4
uint64_t
uint64 t
uint64_t
uint64 t
uint32_t
layouttype4<>
fs_locations
fs_locations_info4
fs4_status
bool

bool

uint32_t
uint32_t
layouthint4
layouttype4<>
uint64_t
uint32_t
uint32_t
uint64 t

uint64 t

Standards Track

NFSv4.1 with Namespace Update

Acc

RW

Defined in:

Section 5.8.2.6

Section 6.2.2

Section 5.11.1

Section 5.11.2

Section 5.8.2.7

Section 5.8.2.8

Section 5.8.2.9

Section 5.8.2.10

Section 5.8.2.11

Section 5.12.1

Section 5.8.2.12

Section 5.8.2.13

Section 5.8.2.14

Section 5.8.2.15

Section 5.8.2.16

Section 5.12.2

Section 5.12.3

Section 5.12.4

Section 5.12.5

Section 5.8.2.17

Section 5.8.2.18

Section 5.8.2.19

Section 5.8.2.20

Section 5.8.2.21

August 2020

Page 92

RFC 8881

Noveck & Lever

Name
mdsthreshold
mimetype

mode
mode_set_masked
mounted_on_fileid
no_trunc
numlinks

owner
owner_group
quota_avail_hard
quota_avail_soft
quota_used
rawdev
retentevt_get
retentevt_set
retention_get
retention_hold
retention_set

sacl

space_avail
space_free
space_total
space_used

system

Id

68

32

33

74

55

34

35

36

37

38

39

40

41

71

72

69

73

70

59

42

43

44

45

46

Data Type

mdsthreshold4
utf8str_cs
mode4
mode_masked4
uint64_t

bool

uint32_t
utf8str_mixed
utf8str_mixed
uint64 _t
uint64_t
uint64 t
specdata4
retention_get4
retention_set4
retention_get4
uint64 _t
retention_set4
nfsacl4l
uint64_t
uint64 _t
uint64_t
uint64 _t

bool

Standards Track

NFSv4.1 with Namespace Update

Acc

RW

RW

RW

RW

RW

RW

RW

Defined in:

Section 5.12.6

Section 5.8.2.22

Section 6.2.4

Section 6.2.5

Section 5.8.2.23

Section 5.8.2.24

Section 5.8.2.25

Section 5.8.2.26

Section 5.8.2.27

Section 5.8.2.28

Section 5.8.2.29

Section 5.8.2.30

Section 5.8.2.31

Section 5.13.3

Section 5.13.4

Section 5.13.1

Section 5.13.5

Section 5.13.2

Section 6.2.3

Section 5.8.2.32

Section 5.8.2.33

Section 5.8.2.34

Section 5.8.2.35

Section 5.8.2.36

August 2020

Page 93

RFC 8881 NFSv4.1 with Namespace Update August 2020

Name Id Data Type Acc Defined in:

time_access 47 nfstime4 R Section 5.8.2.37
time_access_set 48 settime4 W Section 5.8.2.38
time_backup 49 nfstime4 RW Section 5.8.2.39
time_create 50 nfstime4 RW Section 5.8.2.40
time_delta 51 nfstime4 R Section 5.8.2.41
time_metadata 52 nfstime4 R Section 5.8.2.42
time_modify 53 nfstime4 R Section 5.8.2.43
time_modify_set 54 settime4 \ Section 5.8.2.44

Table 5

5.8. Attribute Definitions

5.8.1. Definitions of REQUIRED Attributes

5.8.1.1. Attribute 0: supported_attrs

The bit vector that would retrieve all REQUIRED and RECOMMENDED attributes that are
supported for this object. The scope of this attribute applies to all objects with a matching fsid.

5.8.1.2. Attribute 1: type
Designates the type of an object in terms of one of a number of special constants:

* NFAREG designates a regular file.

* NF4DIR designates a directory.

* NF4BLK designates a block device special file.

* NFACHR designates a character device special file.

* NFALNK designates a symbolic link.

* NFASOCK designates a named socket special file.

* NFAFIFO designates a fifo special file.

* NFAATTRDIR designates a named attribute directory.
* NFANAMEDATTR designates a named attribute.

Within the explanatory text and operation descriptions, the following phrases will be used with
the meanings given below:

» The phrase "is a directory" means that the object's type attribute is NF4DIR or NFAATTRDIR.

» The phrase "is a special file" means that the object's type attribute is NFABLK, NFACHR,
NF4SOCK, or NF4FIFO.

Noveck & Lever Standards Track Page 94

RFC 8881 NFSv4.1 with Namespace Update August 2020

* The phrases "is an ordinary file" and "is a regular file" mean that the object's type attribute is
NF4REG or NFANAMEDATTR.

5.8.1.3. Attribute 2: fh_expire_type

Server uses this to specify filehandle expiration behavior to the client. See Section 4 for
additional description.

5.8.1.4. Attribute 3: change

A value created by the server that the client can use to determine if file data, directory contents,
or attributes of the object have been modified. The server may return the object's time_metadata
attribute for this attribute's value, but only if the file system object cannot be updated more
frequently than the resolution of time_metadata.

5.8.1.5. Attribute 4: size
The size of the object in bytes.

5.8.1.6. Attribute 5: link_support
TRUE, if the object's file system supports hard links.

5.8.1.7. Attribute 6: symlink_support
TRUE, if the object's file system supports symbolic links.

5.8.1.8. Attribute 7: named_attr

TRUE, if this object has named attributes. In other words, object has a non-empty named
attribute directory.

5.8.1.9. Attribute 8: fsid

Unique file system identifier for the file system holding this object. The fsid attribute has major
and minor components, each of which are of data type uint64._t.

5.8.1.10. Attribute 9: unique_handles
TRUE, if two distinct filehandles are guaranteed to refer to two different file system objects.

5.8.1.11. Attribute 10: lease_time
Duration of the lease at server in seconds.

5.8.1.12. Attribute 11: rdattr_error
Error returned from an attempt to retrieve attributes during a READDIR operation.

5.8.1.13. Attribute 19: filehandle
The filehandle of this object (primarily for READDIR requests).

Noveck & Lever Standards Track Page 95

RFC 8881 NFSv4.1 with Namespace Update August 2020

5.8.1.14. Attribute 75: suppattr_exclcreat

The bit vector that would set all REQUIRED and RECOMMENDED attributes that are supported by
the EXCLUSIVE4_1 method of file creation via the OPEN operation. The scope of this attribute
applies to all objects with a matching fsid.

5.8.2. Definitions of Uncategorized RECOMMENDED Attributes

The definitions of most of the RECOMMENDED attributes follow. Collections that share a common
category are defined in other sections.

5.8.2.1. Attribute 14: archive

TRUE, if this file has been archived since the time of last modification (deprecated in favor of
time_backup).

5.8.2.2. Attribute 15: cansettime

TRUE, if the server is able to change the times for a file system object as specified in a SETATTR
operation.

5.8.2.3. Attribute 16: case_insensitive
TRUE, if file name comparisons on this file system are case insensitive.

5.8.2.4. Attribute 17: case_preserving
TRUE, if file name case on this file system is preserved.

5.8.2.5. Attribute 60: change_policy

A value created by the server that the client can use to determine if some server policy related to
the current file system has been subject to change. If the value remains the same, then the client
can be sure that the values of the attributes related to fs location and the fss_type field of the
fs_status attribute have not changed. On the other hand, a change in this value does necessarily
imply a change in policy. It is up to the client to interrogate the server to determine if some policy
relevant to it has changed. See Section 3.3.6 for details.

This attribute MUST change when the value returned by the fs_locations or fs_locations_info
attribute changes, when a file system goes from read-only to writable or vice versa, or when the
allowable set of security flavors for the file system or any part thereof is changed.

5.8.2.6. Attribute 18: chown_restricted

If TRUE, the server will reject any request to change either the owner or the group associated
with a file if the caller is not a privileged user (for example, "root" in UNIX operating
environments or, in Windows 2000, the "Take Ownership" privilege).

5.8.2.7. Attribute 20: fileid
A number uniquely identifying the file within the file system.

Noveck & Lever Standards Track Page 96

RFC 8881 NFSv4.1 with Namespace Update August 2020

5.8.2.8. Attribute 21: files_avail

File slots available to this user on the file system containing this object -- this should be the
smallest relevant limit.

5.8.2.9. Attribute 22: files_free
Free file slots on the file system containing this object -- this should be the smallest relevant limit.

5.8.2.10. Attribute 23: files_total
Total file slots on the file system containing this object.

5.8.2.11. Attribute 76: fs_charset_cap
Character set capabilities for this file system. See Section 14.4.

5.8.2.12. Attribute 24: fs_locations

Locations where this file system may be found. If the server returns NFS4ERR_MOVED as an
error, this attribute MUST be supported. See Section 11.16 for more details.

5.8.2.13. Attribute 67: fs_locations_info
Full function file system location. See Section 11.17.2 for more details.

5.8.2.14. Attribute 61: fs_status
Generic file system type information. See Section 11.18 for more details.

5.8.2.15. Attribute 25: hidden
TRUE, if the file is considered hidden with respect to the Windows API.

5.8.2.16. Attribute 26: homogeneous

TRUE, if this object’s file system is homogeneous; i.e., all objects in the file system (all objects on
the server with the same fsid) have common values for all per-file-system attributes.

5.8.2.17. Attribute 27: maxfilesize
Maximum supported file size for the file system of this object.

5.8.2.18. Attribute 28: maxlink
Maximum number of links for this object.

5.8.2.19. Attribute 29: maxname
Maximum file name size supported for this object.

5.8.2.20. Attribute 30: maxread
Maximum amount of data the READ operation will return for this object.

Noveck & Lever Standards Track Page 97

RFC 8881 NFSv4.1 with Namespace Update August 2020

5.8.2.21. Attribute 31: maxwrite

Maximum amount of data the WRITE operation will accept for this object. This attribute SHOULD
be supported if the file is writable. Lack of this attribute can lead to the client either wasting
bandwidth or not receiving the best performance.

5.8.2.22. Attribute 32: mimetype
MIME body type/subtype of this object.

5.8.2.23. Attribute 55: mounted_on_fileid

Like fileid, but if the target filehandle is the root of a file system, this attribute represents the
fileid of the underlying directory.

UNIX-based operating environments connect a file system into the namespace by connecting
(mounting) the file system onto the existing file object (the mount point, usually a directory) of an
existing file system. When the mount point's parent directory is read via an API like readdir(), the
return results are directory entries, each with a component name and a fileid. The fileid of the
mount point's directory entry will be different from the fileid that the stat() system call returns.
The stat() system call is returning the fileid of the root of the mounted file system, whereas
readdir() is returning the fileid that stat() would have returned before any file systems were
mounted on the mount point.

Unlike NFSv3, NFSv4.1 allows a client's LOOKUP request to cross other file systems. The client
detects the file system crossing whenever the filehandle argument of LOOKUP has an fsid
attribute different from that of the filehandle returned by LOOKUP. A UNIX-based client will
consider this a "mount point crossing". UNIX has a legacy scheme for allowing a process to
determine its current working directory. This relies on readdir() of a mount point's parent and
stat() of the mount point returning fileids as previously described. The mounted_on_fileid
attribute corresponds to the fileid that readdir() would have returned as described previously.

While the NFSv4.1 client could simply fabricate a fileid corresponding to what mounted_on_fileid
provides (and if the server does not support mounted_on_fileid, the client has no choice), there is
a risk that the client will generate a fileid that conflicts with one that is already assigned to
another object in the file system. Instead, if the server can provide the mounted_on_fileid, the
potential for client operational problems in this area is eliminated.

If the server detects that there is no mounted point at the target file object, then the value for
mounted_on_fileid that it returns is the same as that of the fileid attribute.

The mounted_on_fileid attribute is RECOMMENDED, so the server SHOULD provide it if possible,
and for a UNIX-based server, this is straightforward. Usually, mounted_on_fileid will be
requested during a READDIR operation, in which case it is trivial (at least for UNIX-based
servers) to return mounted_on_fileid since it is equal to the fileid of a directory entry returned by
readdir(). If mounted_on_fileid is requested in a GETATTR operation, the server should obey an
invariant that has it returning a value that is equal to the file object's entry in the object's parent
directory, i.e., what readdir() would have returned. Some operating environments allow a series

Noveck & Lever Standards Track Page 98

RFC 8881 NFSv4.1 with Namespace Update August 2020

of two or more file systems to be mounted onto a single mount point. In this case, for the server
to obey the aforementioned invariant, it will need to find the base mount point, and not the
intermediate mount points.

5.8.2.24. Attribute 34: no_trunc

If this attribute is TRUE, then if the client uses a file name longer than name_mazx, an error will
be returned instead of the name being truncated.

5.8.2.25. Attribute 35: numlinks
Number of hard links to this object.

5.8.2.26. Attribute 36: owner
The string name of the owner of this object.

5.8.2.27. Attribute 37: owner_group
The string name of the group ownership of this object.

5.8.2.28. Attribute 38: quota_avail_hard

The value in bytes that represents the amount of additional disk space beyond the current
allocation that can be allocated to this file or directory before further allocations will be refused.
It is understood that this space may be consumed by allocations to other files or directories.

5.8.2.29. Attribute 39: quota_avail_soft

The value in bytes that represents the amount of additional disk space that can be allocated to
this file or directory before the user may reasonably be warned. It is understood that this space
may be consumed by allocations to other files or directories though there is a rule as to which
other files or directories.

5.8.2.30. Attribute 40: quota_used

The value in bytes that represents the amount of disk space used by this file or directory and
possibly a number of other similar files or directories, where the set of "similar" meets at least
the criterion that allocating space to any file or directory in the set will reduce the
"quota_avail_hard" of every other file or directory in the set.

Note that there may be a number of distinct but overlapping sets of files or directories for which
a quota_used value is maintained, e.g., "all files with a given owner", "all files with a given group
owner", etc. The server is at liberty to choose any of those sets when providing the content of the
quota_used attribute, but should do so in a repeatable way. The rule may be configured per file

system or may be "choose the set with the smallest quota".

Noveck & Lever Standards Track Page 99

RFC 8881 NFSv4.1 with Namespace Update August 2020

5.8.2.31. Attribute 41: rawdev

Raw device number of file of type NF4BLK or NF4ACHR. The device number is split into major and
minor numbers. If the file's type attribute is not NFABLK or NFACHR, the value returned SHOULD
NOT be considered useful.

5.8.2.32. Attribute 42: space_avail

Disk space in bytes available to this user on the file system containing this object -- this should be
the smallest relevant limit.

5.8.2.33. Attribute 43: space_free

Free disk space in bytes on the file system containing this object -- this should be the smallest
relevant limit.

5.8.2.34. Attribute 44: space_total
Total disk space in bytes on the file system containing this object.

5.8.2.35. Attribute 45: space_used
Number of file system bytes allocated to this object.

5.8.2.36. Attribute 46: system

This attribute is TRUE if this file is a "system" file with respect to the Windows operating
environment.

5.8.2.37. Attribute 47: time_access

The time_access attribute represents the time of last access to the object by a READ operation
sent to the server. The notion of what is an "access" depends on the server's operating
environment and/or the server's file system semantics. For example, for servers obeying Portable
Operating System Interface (POSIX) semantics, time_access would be updated only by the READ
and READDIR operations and not any of the operations that modify the content of the object [13],
[14], [15]. Of course, setting the corresponding time_access_set attribute is another way to modify
the time_access attribute.

Whenever the file object resides on a writable file system, the server should make its best efforts
to record time_access into stable storage. However, to mitigate the performance effects of doing
so, and most especially whenever the server is satisfying the read of the object's content from its
cache, the server MAY cache access time updates and lazily write them to stable storage. It is also
acceptable to give administrators of the server the option to disable time_access updates.

5.8.2.38. Attribute 48: time_access_set
Sets the time of last access to the object. SETATTR use only.

5.8.2.39. Attribute 49: time_backup
The time of last backup of the object.

Noveck & Lever Standards Track Page 100

RFC 8881 NFSv4.1 with Namespace Update August 2020

5.8.2.40. Attribute 50: time_create

The time of creation of the object. This attribute does not have any relation to the traditional
UNIX file attribute "ctime" or "change time".

5.8.2.41. Attribute 51: time_delta
Smallest useful server time granularity.

5.8.2.42. Attribute 52: time_metadata
The time of last metadata modification of the object.

5.8.2.43. Attribute 53: time_modify
The time of last modification to the object.

5.8.2.44. Attribute 54: time_modify_set
Sets the time of last modification to the object. SETATTR use only.

5.9. Interpreting owner and owner_group

The RECOMMENDED attributes "owner" and "owner_group" (and also users and groups within the
"acl" attribute) are represented in terms of a UTF-8 string. To avoid a representation that is tied
to a particular underlying implementation at the client or server, the use of the UTF-8 string has
been chosen. Note that Section 6.1 of RFC 2624 [53] provides additional rationale. It is expected
that the client and server will have their own local representation of owner and owner_group
that is used for local storage or presentation to the end user. Therefore, it is expected that when
these attributes are transferred between the client and server, the local representation is
translated to a syntax of the form "user@dns_domain". This will allow for a client and server that
do not use the same local representation the ability to translate to a common syntax that can be
interpreted by both.

Similarly, security principals may be represented in different ways by different security
mechanisms. Servers normally translate these representations into a common format, generally
that used by local storage, to serve as a means of identifying the users corresponding to these
security principals. When these local identifiers are translated to the form of the owner attribute,
associated with files created by such principals, they identify, in a common format, the users
associated with each corresponding set of security principals.

The translation used to interpret owner and group strings is not specified as part of the protocol.
This allows various solutions to be employed. For example, a local translation table may be
consulted that maps a numeric identifier to the user@dns_domain syntax. A name service may
also be used to accomplish the translation. A server may provide a more general service, not
limited by any particular translation (which would only translate a limited set of possible strings)
by storing the owner and owner_group attributes in local storage without any translation or it
may augment a translation method by storing the entire string for attributes for which no
translation is available while using the local representation for those cases in which a translation
is available.

Noveck & Lever Standards Track Page 101

https://www.rfc-editor.org/rfc/rfc2624#section-6.1

RFC 8881 NFSv4.1 with Namespace Update August 2020

Servers that do not provide support for all possible values of the owner and owner_group
attributes SHOULD return an error (NFS4ERR_BADOWNER) when a string is presented that has
no translation, as the value to be set for a SETATTR of the owner, owner_group, or acl attributes.
When a server does accept an owner or owner_group value as valid on a SETATTR (and similarly
for the owner and group strings in an acl), it is promising to return that same string when a
corresponding GETATTR is done. Configuration changes (including changes from the mapping of
the string to the local representation) and ill-constructed name translations (those that contain
aliasing) may make that promise impossible to honor. Servers should make appropriate efforts to
avoid a situation in which these attributes have their values changed when no real change to
ownership has occurred.

The "dns_domain" portion of the owner string is meant to be a DNS domain name, for example,
user@example.org. Servers should accept as valid a set of users for at least one domain. A server
may treat other domains as having no valid translations. A more general service is provided
when a server is capable of accepting users for multiple domains, or for all domains, subject to
security constraints.

In the case where there is no translation available to the client or server, the attribute value will
be constructed without the "@". Therefore, the absence of the @ from the owner or owner_group
attribute signifies that no translation was available at the sender and that the receiver of the
attribute should not use that string as a basis for translation into its own internal format. Even
though the attribute value cannot be translated, it may still be useful. In the case of a client, the
attribute string may be used for local display of ownership.

To provide a greater degree of compatibility with NFSv3, which identified users and groups by
32-bit unsigned user identifiers and group identifiers, owner and group strings that consist of
decimal numeric values with no leading zeros can be given a special interpretation by clients
and servers that choose to provide such support. The receiver may treat such a user or group
string as representing the same user as would be represented by an NFSv3 uid or gid having the
corresponding numeric value. A server is not obligated to accept such a string, but may return an
NFS4ERR_BADOWNER instead. To avoid this mechanism being used to subvert user and group
translation, so that a client might pass all of the owners and groups in numeric form, a server
SHOULD return an NFS4ERR_ BADOWNER error when there is a valid translation for the user or
owner designated in this way. In that case, the client must use the appropriate name@domain
string and not the special form for compatibility.

The owner string "nobody" may be used to designate an anonymous user, which will be
associated with a file created by a security principal that cannot be mapped through normal
means to the owner attribute. Users and implementations of NFSv4.1 SHOULD NOT use "nobody"
to designate a real user whose access is not anonymous.

5.10. Character Case Attributes

With respect to the case_insensitive and case_preserving attributes, each UCS-4 character (which
UTF-8 encodes) can be mapped according to Appendix B.2 of RFC 3454 [16]. For general character
handling and internationalization issues, see Section 14.

Noveck & Lever Standards Track Page 102

https://www.rfc-editor.org/rfc/rfc3454#appendix-B.2

RFC 8881 NFSv4.1 with Namespace Update August 2020

5.11. Directory Notification Attributes

As described in Section 18.39, the client can request a minimum delay for notifications of
changes to attributes, but the server is free to ignore what the client requests. The client can
determine in advance what notification delays the server will accept by sending a GETATTR
operation for either or both of two directory notification attributes. When the client calls the
GET_DIR_DELEGATION operation and asks for attribute change notifications, it should request
notification delays that are no less than the values in the server-provided attributes.

5.11.1. Attribute 56: dir_notif delay

The dir_notif_delay attribute is the minimum number of seconds the server will delay before
notifying the client of a change to the directory's attributes.

5.11.2. Attribute 57: dirent_notif_delay

The dirent_notif delay attribute is the minimum number of seconds the server will delay before
notifying the client of a change to a file object that has an entry in the directory.

5.12. pNFS Attribute Definitions

5.12.1. Attribute 62: fs_layout_type

The fs_layout_type attribute (see Section 3.3.13) applies to a file system and indicates what layout
types are supported by the file system. When the client encounters a new fsid, the client SHOULD
obtain the value for the fs_layout_type attribute associated with the new file system. This
attribute is used by the client to determine if the layout types supported by the server match any
of the client's supported layout types.

5.12.2. Attribute 66: layout_alignment

When a client holds layouts on files of a file system, the layout_alignment attribute indicates the
preferred alignment for I/O to files on that file system. Where possible, the client should send
READ and WRITE operations with offsets that are whole multiples of the layout_alignment
attribute.

5.12.3. Attribute 65: layout_blksize

When a client holds layouts on files of a file system, the layout_blksize attribute indicates the
preferred block size for I/O to files on that file system. Where possible, the client should send
READ operations with a count argument that is a whole multiple of layout_blksize, and WRITE
operations with a data argument of size that is a whole multiple of layout_blksize.

5.12.4. Attribute 63: layout_hint

The layout_hint attribute (see Section 3.3.19) may be set on newly created files to influence the
metadata server's choice for the file's layout. If possible, this attribute is one of those set in the
initial attributes within the OPEN operation. The metadata server may choose to ignore this

attribute. The layout_hint attribute is a subset of the layout structure returned by LAYOUTGET.

Noveck & Lever Standards Track Page 103

RFC 8881 NFSv4.1 with Namespace Update August 2020

For example, instead of specifying particular devices, this would be used to suggest the stripe
width of a file. The server implementation determines which fields within the layout will be
used.

5.12.5. Attribute 64: layout_type

This attribute lists the layout type(s) available for a file. The value returned by the server is for
informational purposes only. The client will use the LAYOUTGET operation to obtain the
information needed in order to perform I/O, for example, the specific device information for the
file and its layout.

5.12.6. Attribute 68: mdsthreshold

This attribute is a server-provided hint used to communicate to the client when it is more
efficient to send READ and WRITE operations to the metadata server or the data server. The two
types of thresholds described are file size thresholds and I/O size thresholds. If a file's size is
smaller than the file size threshold, data accesses SHOULD be sent to the metadata server. If an I/
O request has a length that is below the I/O size threshold, the I/O SHOULD be sent to the
metadata server. Each threshold type is specified separately for read and write.

The server MAY provide both types of thresholds for a file. If both file size and I/O size are
provided, the client SHOULD reach or exceed both thresholds before sending its read or write
requests to the data server. Alternatively, if only one of the specified thresholds is reached or
exceeded, the I/O requests are sent to the metadata server.

For each threshold type, a value of zero indicates no READ or WRITE should be sent to the
metadata server, while a value of all ones indicates that all READs or WRITEs should be sent to
the metadata server.

The attribute is available on a per-filehandle basis. If the current filehandle refers to a non-pNFS
file or directory, the metadata server should return an attribute that is representative of the
filehandle's file system. It is suggested that this attribute is queried as part of the OPEN operation.
Due to dynamic system changes, the client should not assume that the attribute will remain
constant for any specific time period; thus, it should be periodically refreshed.

5.13. Retention Attributes

Retention is a concept whereby a file object can be placed in an immutable, undeletable,
unrenamable state for a fixed or infinite duration of time. Once in this "retained" state, the file
cannot be moved out of the state until the duration of retention has been reached.

When retention is enabled, retention MUST extend to the data of the file, and the name of file.
The server MAY extend retention to any other property of the file, including any subset of
REQUIRED, RECOMMENDED, and named attributes, with the exceptions noted in this section.

Servers MAY support or not support retention on any file object type.

The five retention attributes are explained in the next subsections.

Noveck & Lever Standards Track Page 104

RFC 8881 NFSv4.1 with Namespace Update August 2020

5.13.1. Attribute 69: retention_get

If retention is enabled for the associated file, this attribute's value represents the retention begin
time of the file object. This attribute's value is only readable with the GETATTR operation and
MUST NOT be modified by the SETATTR operation (Section 5.5). The value of the attribute consists
of:

const RET4_DURATION_INFINITE = Oxffffffffffffffff;
struct retention_get4 {

uinté64_t rg_duration;

nfstime4 rg_begin_time<1>;
i

The field rg_duration is the duration in seconds indicating how long the file will be retained once
retention is enabled. The field rg_begin_time is an array of up to one absolute time value. If the
array is zero length, no beginning retention time has been established, and retention is not
enabled. If rg_duration is equal to RET4_DURATION_INFINITE, the file, once retention is enabled,
will be retained for an infinite duration.

If (as soon as) rg_duration is zero, then rg_begin_time will be of zero length, and again, retention
is not (no longer) enabled.

5.13.2. Attribute 70: retention_set

This attribute is used to set the retention duration and optionally enable retention for the
associated file object. This attribute is only modifiable via the SETATTR operation and MUST NOT
be retrieved by the GETATTR operation (Section 5.5). This attribute corresponds to retention_get.
The value of the attribute consists of:

struct retention_set4 {
bool rs_enable;
uint64_t rs_duration<i>;

s

If the client sets rs_enable to TRUE, then it is enabling retention on the file object with the begin
time of retention starting from the server's current time and date. The duration of the retention
can also be provided if the rs_duration array is of length one. The duration is the time in seconds
from the begin time of retention, and if set to RET4_DURATION_INFINITE, the file is to be
retained forever. If retention is enabled, with no duration specified in either this SETATTR or a
previous SETATTR, the duration defaults to zero seconds. The server MAY restrict the enabling of
retention or the duration of retention on the basis of the ACE4 WRITE_RETENTION ACL
permission. The enabling of retention MUST NOT prevent the enabling of event-based retention
or the modification of the retention_hold attribute.

The following rules apply to both the retention_set and retentevt_set attributes.

* As long as retention is not enabled, the client is permitted to decrease the duration.

Noveck & Lever Standards Track Page 105

RFC 8881 NFSv4.1 with Namespace Update August 2020

» The duration can always be set to an equal or higher value, even if retention is enabled. Note
that once retention is enabled, the actual duration (as returned by the retention_get or
retentevt_get attributes; see Section 5.13.1 or Section 5.13.3) is constantly counting down to
zero (one unit per second), unless the duration was set to RET4_DURATION_INFINITE. Thus,
it will not be possible for the client to precisely extend the duration on a file that has
retention enabled.

* While retention is enabled, attempts to disable retention or decrease the retention's duration
MUST fail with the error NFS4ERR_INVAL.

o If the principal attempting to change retention_set or retentevt_set does not have
ACE4_WRITE_RETENTION permissions, the attempt MUST fail with NFS4ERR_ACCESS.

5.13.3. Attribute 71: retentevt_get

Gets the event-based retention duration, and if enabled, the event-based retention begin time of
the file object. This attribute is like retention_get, but refers to event-based retention. The event
that triggers event-based retention is not defined by the NFSv4.1 specification.

5.13.4. Attribute 72: retentevt_set

Sets the event-based retention duration, and optionally enables event-based retention on the file
object. This attribute corresponds to retentevt_get and is like retention_set, but refers to event-
based retention. When event-based retention is set, the file MUST be retained even if non-event-
based retention has been set, and the duration of non-event-based retention has been reached.
Conversely, when non-event-based retention has been set, the file MUST be retained even if
event-based retention has been set, and the duration of event-based retention has been reached.
The server MAY restrict the enabling of event-based retention or the duration of event-based
retention on the basis of the ACE4_WRITE_RETENTION ACL permission. The enabling of event-
based retention MUST NOT prevent the enabling of non-event-based retention or the modification
of the retention_hold attribute.

5.13.5. Attribute 73: retention_hold

Gets or sets administrative retention holds, one hold per bit position.

This attribute allows one to 64 administrative holds, one hold per bit on the attribute. If
retention_hold is not zero, then the file MUST NOT be deleted, renamed, or modified, even if the
duration on enabled event or non-event-based retention has been reached. The server MAY
restrict the modification of retention_hold on the basis of the ACE4_WRITE_RETENTION_HOLD
ACL permission. The enabling of administration retention holds does not prevent the enabling of
event-based or non-event-based retention.

If the principal attempting to change retention_hold does not have
ACE4_WRITE_RETENTION_HOLD permissions, the attempt MUST fail with NFS4ERR_ACCESS.

Noveck & Lever Standards Track Page 106

RFC 8881 NFSv4.1 with Namespace Update August 2020

6. Access Control Attributes

Access Control Lists (ACLs) are file attributes that specify fine-grained access control. This section
covers the "acl", "dacl", "sacl", "aclsupport”, "mode", and "mode_set_masked" file attributes and
their interactions. Note that file attributes may apply to any file system object.

6.1. Goals

ACLs and modes represent two well-established models for specifying permissions. This section
specifies requirements that attempt to meet the following goals:

o If a server supports the mode attribute, it should provide reasonable semantics to clients that
only set and retrieve the mode attribute.

o If a server supports ACL attributes, it should provide reasonable semantics to clients that
only set and retrieve those attributes.

* On servers that support the mode attribute, if ACL attributes have never been set on an
object, via inheritance or explicitly, the behavior should be traditional UNIX-like behavior.

* On servers that support the mode attribute, if the ACL attributes have been previously set on
an object, either explicitly or via inheritance:

o Setting only the mode attribute should effectively control the traditional UNIX-like
permissions of read, write, and execute on owner, owner_group, and other.

o Setting only the mode attribute should provide reasonable security. For example, setting a
mode of 000 should be enough to ensure that future OPEN operations for
OPEN4_SHARE_ACCESS_READ or OPEN4_SHARE_ACCESS_WRITE by any principal fail,
regardless of a previously existing or inherited ACL.

* NFSv4.1 may introduce different semantics relating to the mode and ACL attributes, but it
does not render invalid any previously existing implementations. Additionally, this section
provides clarifications based on previous implementations and discussions around them.

* On servers that support both the mode and the acl or dacl attributes, the server must keep
the two consistent with each other. The value of the mode attribute (with the exception of
the three high-order bits described in Section 6.2.4) must be determined entirely by the value
of the ACL, so that use of the mode is never required for anything other than setting the
three high-order bits. See Section 6.4.1 for exact requirements.

* When a mode attribute is set on an object, the ACL attributes may need to be modified in
order to not conflict with the new mode. In such cases, it is desirable that the ACL keep as
much information as possible. This includes information about inheritance, AUDIT and
ALARM ACEs, and permissions granted and denied that do not conflict with the new mode.

Noveck & Lever Standards Track Page 107

RFC 8881 NFSv4.1 with Namespace Update August 2020

6.2. File Attributes Discussion
6.2.1. Attribute 12: acl

The NFSv4.1 ACL attribute contains an array of Access Control Entries (ACEs) that are associated
with the file system object. Although the client can set and get the acl attribute, the server is
responsible for using the ACL to perform access control. The client can use the OPEN or ACCESS
operations to check access without modifying or reading data or metadata.

The NFS ACE structure is defined as follows:

typedef uint32_t acetype4;

typedef uint32_t aceflag4;

typedef uint32_t acemask4;
struct nfsace4 {
acetype4 type;
aceflag4 flag;
acemask4 access_mask;

utf8str_mixed who ;

s

To determine if a request succeeds, the server processes each nfsace4 entry in order. Only ACEs
that have a "who" that matches the requester are considered. Each ACE is processed until all of
the bits of the requester's access have heen ALLOWED. Once a bit (see below) has been
ALLOWED by an ACCESS_ALLOWED_ACE, it is no longer considered in the processing of later
ACEs. If an ACCESS_DENIED_ACE is encountered where the requester's access still has
unALLOWED bits in common with the "access_mask" of the ACE, the request is denied. When the
ACL is fully processed, if there are bits in the requester's mask that have not been ALLOWED or
DENIED, access is denied.

Unlike the ALLOW and DENY ACE types, the ALARM and AUDIT ACE types do not affect a
requester's access, and instead are for triggering events as a result of a requester's access
attempt. Therefore, AUDIT and ALARM ACEs are processed only after processing ALLOW and
DENY ACEs.

The NFSv4.1 ACL model is quite rich. Some server platforms may provide access-control
functionality that goes beyond the UNIX-style mode attribute, but that is not as rich as the NFS
ACL model. So that users can take advantage of this more limited functionality, the server may
support the acl attributes by mapping between its ACL model and the NFSv4.1 ACL model.
Servers must ensure that the ACL they actually store or enforce is at least as strict as the NFSv4
ACL that was set. It is tempting to accomplish this by rejecting any ACL that falls outside the
small set that can be represented accurately. However, such an approach can render ACLs
unusable without special client-side knowledge of the server's mapping, which defeats the
purpose of having a common NFSv4 ACL protocol. Therefore, servers should accept every ACL
that they can without compromising security. To help accomplish this, servers may make a

Noveck & Lever Standards Track Page 108

RFC 8881 NFSv4.1 with Namespace Update August 2020

special exception, in the case of unsupported permission bits, to the rule that bits not ALLOWED
or DENIED by an ACL must be denied. For example, a UNIX-style server might choose to silently
allow read attribute permissions even though an ACL does not explicitly allow those permissions.
(An ACL that explicitly denies permission to read attributes should still be rejected.)

The situation is complicated by the fact that a server may have multiple modules that enforce
ACLs. For example, the enforcement for NFSv4.1 access may be different from, but not weaker
than, the enforcement for local access, and both may be different from the enforcement for
access through other protocols such as SMB (Server Message Block). So it may be useful for a
server to accept an ACL even if not all of its modules are able to support it.

The guiding principle with regard to NFSv4 access is that the server must not accept ACLs that
appear to make access to the file more restrictive than it really is.

6.2.1.1. ACE Type
The constants used for the type field (acetype4) are as follows:

const ACE4_ACCESS_ALLOWED_ACE_TYPE = 0x00000000;
const ACE4_ACCESS_DENIED_ACE_TYPE = 0x00000001;
const ACE4_SYSTEM_AUDIT_ACE_TYPE = 0x00000002;
const ACE4_SYSTEM_ALARM_ACE_TYPE = 0x00000003;

Only the ALLOWED and DENIED bhits may be used in the dacl attribute, and only the AUDIT and
ALARM bits may be used in the sacl attribute. All four are permitted in the acl attribute.

Value Abbreviation Description

ACE4_ACCESS_ALLOWED_ACE_TYPE ALLOW Explicitly grants the access defined
in acemask4 to the file or directory.

ACE4_ACCESS_DENIED_ACE_TYPE DENY Explicitly denies the access defined
in acemask4 to the file or directory.

ACE4_SYSTEM_AUDIT_ACE_TYPE AUDIT Log (in a system-dependent way)
any access attempt to a file or
directory that uses any of the access
methods specified in acemask4.

ACE4 _SYSTEM_ALARM_ACE_TYPE ALARM Generate an alarm (in a system-
dependent way) when any access
attempt is made to a file or directory
for the access methods specified in
acemask4.

Table 6

Noveck & Lever Standards Track Page 109

RFC 8881 NFSv4.1 with Namespace Update August 2020

The "Abbreviation" column denotes how the types will be referred to throughout the rest of this
section.

6.2.1.2. Attribute 13: aclsupport

A server need not support all of the above ACE types. This attribute indicates which ACE types
are supported for the current file system. The bitmask constants used to represent the above
definitions within the aclsupport attribute are as follows:

const ACL4_SUPPORT_ALLOW_ACL = 0x00000001;
const ACL4_SUPPORT_DENY_ACL = 0x00000002;
const ACL4_SUPPORT_AUDIT_ACL = 0x00000004;
const ACL4_SUPPORT_ALARM_ACL = 0x00000008;

Servers that support either the ALLOW or DENY ACE type SHOULD support both ALLOW and
DENY ACE types.

Clients should not attempt to set an ACE unless the server claims support for that ACE type. If the
server receives a request to set an ACE that it cannot store, it MUST reject the request with
NFS4ERR_ATTRNOTSUPP. If the server receives a request to set an ACE that it can store but
cannot enforce, the server SHOULD reject the request with NFS4ERR_ATTRNOTSUPP.

Support for any of the ACL attributes is optional (albeit RECOMMENDED). However, a server that
supports either of the new ACL attributes (dacl or sacl) MUST allow use of the new ACL attributes
to access all of the ACE types that it supports. In other words, if such a server supports ALLOW or
DENY ACEs, then it MUST support the dacl attribute, and if it supports AUDIT or ALARM ACEs,
then it MUST support the sacl attribute.

Noveck & Lever Standards Track Page 110

RFC 8881 NFSv4.1 with Namespace Update August 2020

6.2.1.3. ACE Access Mask
The bitmask constants used for the access mask field are as follows:

const ACE4_READ_DATA = 0x00000001 ;
const ACE4_LIST_DIRECTORY = 0x00000001 ;
const ACE4_WRITE_DATA = 0x00000002 ;
const ACE4_ADD_FILE = 0x00000002 ;
const ACE4_APPEND_DATA = 0x00000004 ;
const ACE4_ADD_SUBDIRECTORY = 0x00000004 ;
const ACE4_READ_NAMED_ATTRS = 0x00000008;
const ACE4_WRITE_NAMED_ATTRS = 0x00000010;
const ACE4_EXECUTE = 0x00000020;
const ACE4_DELETE_CHILD = 0x00000040 ;
const ACE4_READ_ATTRIBUTES = 0x00000080;
const ACE4_WRITE_ATTRIBUTES = 0x00000100;
const ACE4_WRITE_RETENTION = 0x00000200;
const ACE4_WRITE_RETENTION_HOLD = 0x00000400 ;
const ACE4_DELETE = 0x00010000;
const ACE4_READ_ACL = 0x00020000;
const ACE4_WRITE_ACL = 0x00040000;
const ACE4_WRITE_OWNER = 0x00080000;
const ACE4_SYNCHRONIZE = 0x00100000;

Note that some masks have coincident values, for example, ACE4_READ_DATA and
ACE4_LIST_DIRECTORY. The mask entries ACE4_LIST_DIRECTORY, ACE4_ADD_FILE, and
ACE4_ADD_SUBDIRECTORY are intended to be used with directory objects, while
ACE4_READ_DATA, ACE4_WRITE_DATA, and ACE4_APPEND_DATA are intended to be used with
non-directory objects.

6.2.1.3.1. Discussion of Mask Attributes
ACE4 READ DATA

Operation(s) affected:
READ

OPEN

Discussion:
Permission to read the data of the file.

Servers SHOULD allow a user the ability to read the data of the file when only the
ACE4_EXECUTE access mask bit is allowed.

ACE4_LIST_DIRECTORY

Operation(s) affected:
READDIR

Noveck & Lever Standards Track Page 111

RFC 8881 NFSv4.1 with Namespace Update August 2020

Discussion:
Permission to list the contents of a directory.

ACE4_WRITE_DATA

Operation(s) affected:
WRITE

OPEN
SETATTR of size

Discussion:
Permission to modify a file's data.

ACE4_ADD_FILE

Operation(s) affected:
CREATE

LINK
OPEN
RENAME

Discussion:
Permission to add a new file in a directory. The CREATE operation is affected when
nfs_ftype4 is NFALNK, NF4BLK, NFACHR, NFASOCK, or NF4AFIFO. (NF4DIR is not listed
because it is covered by ACE4_ADD_SUBDIRECTORY.) OPEN is affected when used to
create a regular file. LINK and RENAME are always affected.

ACE4_APPEND_DATA

Operation(s) affected:
WRITE

OPEN
SETATTR of size

Discussion:
The ability to modify a file's data, but only starting at EOF. This allows for the notion of
append-only files, by allowing ACE4_APPEND_DATA and denying ACE4_WRITE_DATA
to the same user or group. If a file has an ACL such as the one described above and a
WRITE request is made for somewhere other than EOF, the server SHOULD return
NFS4ERR_ACCESS.

ACE4_ADD_SUBDIRECTORY

Noveck & Lever Standards Track Page 112

RFC 8881 NFSv4.1 with Namespace Update August 2020

Operation(s) affected:
CREATE

RENAME

Discussion:
Permission to create a subdirectory in a directory. The CREATE operation is affected
when nfs_ftype4 is NF4DIR. The RENAME operation is always affected.

ACE4_READ_NAMED_ATTRS

Operation(s) affected:
OPENATTR

Discussion:
Permission to read the named attributes of a file or to look up the named attribute
directory. OPENATTR is affected when it is not used to create a named attribute
directory. This is when 1) createdir is TRUE, but a named attribute directory already
exists, or 2) createdir is FALSE.

ACE4_WRITE_NAMED_ATTRS

Operation(s) affected:
OPENATTR

Discussion:
Permission to write the named attributes of a file or to create a named attribute
directory. OPENATTR is affected when it is used to create a named attribute directory.
This is when createdir is TRUE and no named attribute directory exists. The ability to
check whether or not a named attribute directory exists depends on the ability to look
it up; therefore, users also need the ACE4_READ_NAMED_ATTRS permission in order
to create a named attribute directory.

ACE4_EXECUTE

Operation(s) affected:
READ

OPEN
REMOVE
RENAME
LINK
CREATE

Discussion:
Permission to execute a file.

Noveck & Lever Standards Track Page 113

RFC 8881 NFSv4.1 with Namespace Update August 2020

Servers SHOULD allow a user the ability to read the data of the file when only the
ACE4_EXECUTE access mask bit is allowed. This is because there is no way to execute a
file without reading the contents. Though a server may treat ACE4_EXECUTE and
ACE4_READ_DATA bits identically when deciding to permit a READ operation, it
SHOULD still allow the two bits to be set independently in ACLs, and MUST distinguish
between them when replying to ACCESS operations. In particular, servers SHOULD
NOT silently turn on one of the two bits when the other is set, as that would make it
impossible for the client to correctly enforce the distinction between read and execute
permissions.

As an example, following a SETATTR of the following ACL:
nfsuser:ACE4_EXECUTE:ALLOW
A subsequent GETATTR of ACL for that file SHOULD return:
nfsuser:ACE4 EXECUTE:ALLOW
Rather than:
nfsuser:ACE4_EXECUTE/ACE4_READ_DATA:ALLOW
ACE4_EXECUTE

Operation(s) affected:
LOOKUP

Discussion:
Permission to traverse/search a directory.

ACE4_DELETE_CHILD

Operation(s) affected:
REMOVE

RENAME

Discussion:
Permission to delete a file or directory within a directory. See Section 6.2.1.3.2 for
information on ACE4 DELETE and ACE4 DELETE_CHILD interact.

ACE4_READ_ATTRIBUTES

Operation(s) affected:
GETATTR of file system object attributes

VERIFY

NVERIFY

Noveck & Lever Standards Track Page 114

RFC 8881 NFSv4.1 with Namespace Update August 2020

READDIR

Discussion:
The ability to read basic attributes (non-ACLs) of a file. On a UNIX system, basic
attributes can be thought of as the stat-level attributes. Allowing this access mask bit
would mean that the entity can execute "Is -1" and stat. If a READDIR operation
requests attributes, this mask must be allowed for the READDIR to succeed.

ACE4_WRITE_ATTRIBUTES

Operation(s) affected:
SETATTR of time_access_set, time_backup,

time_create, time_modify_set, mimetype, hidden, system

Discussion:
Permission to change the times associated with a file or directory to an arbitrary
value. Also permission to change the mimetype, hidden, and system attributes. A user
having ACE4_WRITE_DATA or ACE4_WRITE_ATTRIBUTES will be allowed to set the
times associated with a file to the current server time.

ACE4_WRITE_RETENTION

Operation(s) affected:
SETATTR of retention_set, retentevt_set.

Discussion:
Permission to modify the durations of event and non-event-based retention. Also
permission to enable event and non-event-based retention. A server MAY behave such
that setting ACE4_WRITE_ATTRIBUTES allows ACE4_WRITE_RETENTION.

ACE4_WRITE_RETENTION_HOLD

Operation(s) affected:
SETATTR of retention_hold.

Discussion:
Permission to modify the administration retention holds. A server MAY map
ACE4 WRITE_ATTRIBUTES to ACE_WRITE_RETENTION_HOLD.

ACE4_DELETE

Operation(s) affected:
REMOVE

Discussion:
Permission to delete the file or directory. See Section 6.2.1.3.2 for information on
ACE4 DELETE and ACE4_DELETE_CHILD interact.

Noveck & Lever Standards Track Page 115

RFC 8881 NFSv4.1 with Namespace Update

ACE4_READ_ACL

Operation(s) affected:
GETATTR of ac], dacl, or sacl

NVERIFY
VERIFY

Discussion:
Permission to read the ACL.

ACE4_WRITE_ACL

Operation(s) affected:
SETATTR of acl and mode

Discussion:
Permission to write the acl and mode attributes.

ACE4_WRITE_OWNER

Operation(s) affected:
SETATTR of owner and owner_group

Discussion:

August 2020

Permission to write the owner and owner_group attributes. On UNIX systemts, this is

the ability to execute chown() and chgrp0.
ACE4_SYNCHRONIZE

Operation(s) affected:
NONE

Discussion:

Permission to use the file object as a synchronization primitive for interprocess
communication. This permission is not enforced or interpreted by the NFSv4.1 server

on behalf of the client.

Typically, the ACE4_SYNCHRONIZE permission is only meaningful on local file systems,
i.e,, file systems not accessed via NFSv4.1. The reason that the permission bit exists is
that some operating environments, such as Windows, use ACE4_SYNCHRONIZE.

For example, if a client copies a file that has ACE4_SYNCHRONIZE set from a local file

system to an NFSv4.1 server, and then later copies the file from the NFSv4.1 server to a
local file system, it is likely that if ACE4_SYNCHRONIZE was set in the original file, the
client will want it set in the second copy. The first copy will not have the permission set
unless the NFSv4.1 server has the means to set the ACE4_SYNCHRONIZE bit. The
second copy will not have the permission set unless the NFSv4.1 server has the means
to retrieve the ACE4_ SYNCHRONIZE bit.

Noveck & Lever Standards Track Page 116

RFC 8881 NFSv4.1 with Namespace Update August 2020

Server implementations need not provide the granularity of control that is implied by this list of
masks. For example, POSIX-based systems might not distinguish ACE4_APPEND_DATA (the ability
to append to a file) from ACE4_WRITE_DATA (the ability to modify existing contents); both masks
would be tied to a single "write" permission [17]. When such a server returns attributes to the
client, it would show both ACE4_APPEND_DATA and ACE4_WRITE_DATA if and only if the write
permission is enabled.

If a server receives a SETATTR request that it cannot accurately implement, it should err in the
direction of more restricted access, except in the previously discussed cases of execute and read.
For example, suppose a server cannot distinguish overwriting data from appending new data, as
described in the previous paragraph. If a client submits an ALLOW ACE where

ACE4 _APPEND DATA is set but ACE4 WRITE_DATA is not (or vice versa), the server should either
turn off ACE4_APPEND_DATA or reject the request with NFS4ERR_ATTRNOTSUPP.

6.2.1.3.2. ACE4 DELETE vs. ACE4 DELETE CHILD

Two access mask bits govern the ability to delete a directory entry: ACE4_DELETE on the object
itself (the "target") and ACE4_DELETE_CHILD on the containing directory (the "parent").

Many systems also take the "sticky bit" (MODE4_SVTX) on a directory to allow unlink only to a
user that owns either the target or the parent; on some such systems the decision also depends
on whether the target is writable.

Servers SHOULD allow unlink if either ACE4_DELETE is permitted on the target, or
ACE4_DELETE_CHILD is permitted on the parent. (Note that this is true even if the parent or
target explicitly denies one of these permissions.)

If the ACLs in question neither explicitly ALLOW nor DENY either of the above, and if
MODE4_SVTX is not set on the parent, then the server SHOULD allow the removal if and only if
ACE4_ADD_FILE is permitted. In the case where MODE4_SVTX is set, the server may also require
the remover to own either the parent or the target, or may require the target to be writable.

This allows servers to support something close to traditional UNIX-like semantics, with
ACE4_ADD_FILE taking the place of the write bit.

6.2.1.4. ACE flag
The bitmask constants used for the flag field are as follows:

const ACE4_FILE_INHERIT_ACE = 0x00000001;
const ACE4_DIRECTORY_INHERIT_ACE = 0x00000002;
const ACE4_NO_PROPAGATE_INHERIT_ACE = 0x00000004;
const ACE4_INHERIT_ONLY_ACE = 0x00000008;
const ACE4_SUCCESSFUL_ACCESS_ACE_FLAG = 0x00000010;
const ACE4_FAILED_ACCESS_ACE_FLAG = 0x00000020;
const ACE4_IDENTIFIER_GROUP = 0x00000040;
const ACE4_INHERITED_ACE = 0x00000080;

Noveck & Lever Standards Track Page 117

RFC 8881 NFSv4.1 with Namespace Update August 2020

A server need not support any of these flags. If the server supports flags that are similar to, but
not exactly the same as, these flags, the implementation may define a mapping between the
protocol-defined flags and the implementation-defined flags.

For example, suppose a client tries to set an ACE with ACE4_FILE_INHERIT_ACE set but not
ACE4_DIRECTORY_INHERIT_ACE. If the server does not support any form of ACL inheritance, the
server should reject the request with NFS4ERR_ATTRNOTSUPP. If the server supports a single
"inherit ACE" flag that applies to both files and directories, the server may reject the request (i.e.,
requiring the client to set both the file and directory inheritance flags). The server may also
accept the request and silently turn on the ACE4_DIRECTORY_INHERIT_ACE flag.

6.2.1.4.1. Discussion of Flag Bits

ACE4_FILE_INHERIT_ACE
Any non-directory file in any sub-directory will get this ACE inherited.

ACE4_DIRECTORY_INHERIT_ACE
Can be placed on a directory and indicates that this ACE should be added to each new
directory created.

If this flag is set in an ACE in an ACL attribute to be set on a non-directory file system
object, the operation attempting to set the ACL SHOULD fail with NFS4ERR_ATTRNOTSUPP.

ACE4_NO_PROPAGATE_INHERIT_ACE
Can be placed on a directory. This flag tells the server that inheritance of this ACE should
stop at newly created child directories.

ACE4_INHERIT _ONLY_ACE
Can be placed on a directory but does not apply to the directory; ALLOW and DENY ACEs
with this bit set do not affect access to the directory, and AUDIT and ALARM ACEs with this
bit set do not trigger log or alarm events. Such ACEs only take effect once they are applied
(with this bit cleared) to newly created files and directories as specified by the
ACE4_FILE_INHERIT_ACE and ACE4_DIRECTORY_INHERIT_ACE flags.

If this flag is present on an ACE, but neither ACE4_DIRECTORY_INHERIT_ACE nor
ACE4_FILE_INHERIT ACE is present, then an operation attempting to set such an attribute
SHOULD fail with NFS4ERR_ATTRNOTSUPP.

ACE4_SUCCESSFUL_ACCESS_ACE_FLAG and ACE4_FAILED_ACCESS_ACE_FLAG
The ACE4_SUCCESSFUL_ACCESS_ACE_FLAG (SUCCESS) and
ACE4_FAILED_ACCESS_ACE_FLAG (FAILED) flag bits may be set only on
ACE4_SYSTEM_AUDIT_ACE_TYPE (AUDIT) and ACE4_SYSTEM_ALARM_ACE_TYPE (ALARM)
ACE types. If during the processing of the file's ACL, the server encounters an AUDIT or
ALARM ACE that matches the principal attempting the OPEN, the server notes that fact,
and the presence, if any, of the SUCCESS and FAILED flags encountered in the AUDIT or
ALARM ACE. Once the server completes the ACL processing, it then notes if the operation
succeeded or failed. If the operation succeeded, and if the SUCCESS flag was set for a
matching AUDIT or ALARM ACE, then the appropriate AUDIT or ALARM event occurs. If

Noveck & Lever Standards Track Page 118

RFC 8881 NFSv4.1 with Namespace Update August 2020

the operation failed, and if the FAILED flag was set for the matching AUDIT or ALARM ACE,
then the appropriate AUDIT or ALARM event occurs. Either or both of the SUCCESS or
FAILED can be set, but if neither is set, the AUDIT or ALARM ACE is not useful.

The previously described processing applies to ACCESS operations even when they return
NFS4_OK. For the purposes of AUDIT and ALARM, we consider an ACCESS operation to be a
"failure" if it fails to return a bit that was requested and supported.

ACE4_IDENTIFIER_GROUP
Indicates that the "who" refers to a GROUP as defined under UNIX or a GROUP ACCOUNT
as defined under Windows. Clients and servers MUST ignore the ACE4_IDENTIFIER_GROUP
flag on ACEs with a who value equal to one of the special identifiers outlined in Section
6.2.1.5.

ACE4_INHERITED_ACE
Indicates that this ACE is inherited from a parent directory. A server that supports
automatic inheritance will place this flag on any ACEs inherited from the parent directory
when creating a new object. Client applications will use this to perform automatic
inheritance. Clients and servers MUST clear this bit in the acl attribute; it may only be used
in the dacl and sacl attributes.

6.2.1.5. ACE Who

The "who" field of an ACE is an identifier that specifies the principal or principals to whom the
ACE applies. It may refer to a user or a group, with the flag bit ACE4_IDENTIFIER_GROUP
specifying which.

There are several special identifiers that need to be understood universally, rather than in the
context of a particular DNS domain. Some of these identifiers cannot be understood when an NFS
client accesses the server, but have meaning when a local process accesses the file. The ability to
display and modify these permissions is permitted over NFS, even if none of the access methods
on the server understands the identifiers.

Who Description

OWNER The owner of the file.

GROUP The group associated with the file.

EVERYONE The world, including the owner and owning group.
INTERACTIVE Accessed from an interactive terminal.

NETWORK Accessed via the network.

DIALUP Accessed as a dialup user to the server.

BATCH Accessed from a batch job.

Noveck & Lever Standards Track Page 119

RFC 8881 NFSv4.1 with Namespace Update August 2020

Who Description
ANONYMOUS Accessed without any authentication.
AUTHENTICATED Any authenticated user (opposite of ANONYMOUS).

SERVICE Access from a system service.

Table 7

To avoid conflict, these special identifiers are distinguished by an appended "@" and should
appear in the form "xxxx@" (with no domain name after the "@"), for example, ANONYMOUS@.

The ACE4_IDENTIFIER_GROUP flag MUST be ignored on entries with these special identifiers.
When encoding entries with these special identifiers, the ACE4_IDENTIFIER_GROUP flag SHOULD
be set to zero.

6.2.1.5.1. Discussion of EVERYONE@

It is important to note that "EVERYONE@" is not equivalent to the UNIX "other" entity. This is
because, by definition, UNIX "other" does not include the owner or owning group of a file.
"EVERYONE@" means literally everyone, including the owner or owning group.

6.2.2. Attribute 58: dacl

The dacl attribute is like the acl attribute, but dacl allows just ALLOW and DENY ACEs. The dacl
attribute supports automatic inheritance (see Section 6.4.3.2).

6.2.3. Attribute 59: sacl

The sacl attribute is like the acl attribute, but sacl allows just AUDIT and ALARM ACEs. The sacl
attribute supports automatic inheritance (see Section 6.4.3.2).

6.2.4. Attribute 33: mode
The NFSv4.1 mode attribute is based on the UNIX mode bits. The following bits are defined:

const MODE4_SUID
const MODE4_SGID
const MODE4_SVTX
const MODE4_RUSR
const MODE4_WUSR
const MODE4_XUSR
const MODE4_RGRP
const MODE4_WGRP
const MODE4_XGRP
const MODE4_ROTH
const MODE4_WOTH
const MODE4_XOTH

Ox800; /x set user id on execution */
0x400; /* set group id on execution */
0x200; /* save text even after use */
0x100; /* read permission: owner */
0x080; /* write permission: owner */
0x040; /* execute permission: owner =*/
0x020; /* read permission: group */
0x010; /* write permission: group */
0x008; /* execute permission: group */
0x004; /* read permission: other */
0x002; /* write permission: other */
0x001; /* execute permission: other =*/

Noveck & Lever Standards Track Page 120

RFC 8881 NFSv4.1 with Namespace Update August 2020

Bits MODE4_RUSR, MODE4_WTUSR, and MODE4_XUSR apply to the principal identified in the
owner attribute. Bits MODE4_RGRP, MODE4_WGRP, and MODE4_XGRP apply to principals
identified in the owner_group attribute but who are not identified in the owner attribute. Bits
MODE4_ROTH, MODE4_WOTH, and MODE4_XOTH apply to any principal that does not match
that in the owner attribute and does not have a group matching that of the owner_group
attribute.

Bits within a mode other than those specified above are not defined by this protocol. A server
MUST NOT return bits other than those defined above in a GETATTR or READDIR operation, and it
MUST return NFS4ERR_INVAL if bits other than those defined above are set in a SETATTR,
CREATE, OPEN, VERIFY, or NVERIFY operation.

6.2.5. Attribute 74: mode_set_masked

The mode_set_masked attribute is a write-only attribute that allows individual bits in the mode
attribute to be set or reset, without changing others. It allows, for example, the bits MODE4_SUID,
MODE4_SGID, and MODE4_SVTX to be modified while leaving unmodified any of the nine low-
order mode bits devoted to permissions.

In such instances that the nine low-order bits are left unmodified, then neither the acl nor the
dacl attribute should be automatically modified as discussed in Section 6.4.1.

The mode_set_masked attribute consists of two words, each in the form of a mode4. The first
consists of the value to be applied to the current mode value and the second is a mask. Only bits
set to one in the mask word are changed (set or reset) in the file's mode. All other bits in the
mode remain unchanged. Bits in the first word that correspond to bits that are zero in the mask
are ignored, except that undefined bits are checked for validity and can result in
NFS4ERR_INVAL as described below.

The mode_set_masked attribute is only valid in a SETATTR operation. If it is used in a CREATE or
OPEN operation, the server MUST return NFS4ERR_INVAL.

Bits not defined as valid in the mode attribute are not valid in either word of the
mode_set_masked attribute. The server MUST return NFS4ERR_INVAL if any such bits are set to
one in a SETATTR. If the mode and mode_set_masked attributes are both specified in the same
SETATTR, the server MUST also return NFS4ERR_INVAL.

6.3. Common Methods

The requirements in this section will be referred to in future sections, especially Section 6.4.

6.3.1. Interpreting an ACL

6.3.1.1. Server Considerations

The server uses the algorithm described in Section 6.2.1 to determine whether an ACL allows
access to an object. However, the ACL might not be the sole determiner of access. For example:

¢ In the case of a file system exported as read-only, the server may deny write access even
though an object's ACL grants it.

Noveck & Lever Standards Track Page 121

RFC 8881 NFSv4.1 with Namespace Update August 2020

* Server implementations MAY grant ACE4_WRITE_ACL and ACE4_READ_ACL permissions to
prevent a situation from arising in which there is no valid way to ever modify the ACL.

o All servers will allow a user the ability to read the data of the file when only the execute
permission is granted (i.e., if the ACL denies the user the ACE4_READ_DATA access and
allows the user ACE4_EXECUTE, the server will allow the user to read the data of the file).

* Many servers have the notion of owner-override in which the owner of the object is allowed
to override accesses that are denied by the ACL. This may be helpful, for example, to allow
users continued access to open files on which the permissions have changed.

* Many servers have the notion of a "superuser" that has privileges beyond an ordinary user.

The superuser may be able to read or write data or metadata in ways that would not be
permitted by the ACL.

* A retention attribute might also block access otherwise allowed by ACLs (see Section 5.13).

6.3.1.2. Client Considerations

Clients SHOULD NOT do their own access checks based on their interpretation of the ACL, but
rather use the OPEN and ACCESS operations to do access checks. This allows the client to act on
the results of having the server determine whether or not access should be granted based on its
interpretation of the ACL.

Clients must be aware of situations in which an object's ACL will define a certain access even
though the server will not enforce it. In general, but especially in these situations, the client
needs to do its part in the enforcement of access as defined by the ACL. To do this, the client MAY
send the appropriate ACCESS operation prior to servicing the request of the user or application
in order to determine whether the user or application should be granted the access requested.
For examples in which the ACL may define accesses that the server doesn't enforce, see Section
6.3.1.1.

6.3.2. Computing a Mode Attribute from an ACL

The following method can be used to calculate the MODE4_R* MODE4_W* and MODE4_X* bits of
a mode attribute, based upon an ACL.

First, for each of the special identifiers OWNER@, GROUP@, and EVERYONE@, evaluate the ACL
in order, considering only ALLOW and DENY ACEs for the identifier EVERYONE@ and for the
identifier under consideration. The result of the evaluation will be an NFSv4 ACL mask showing
exactly which bits are permitted to that identifier.

Then translate the calculated mask for OWNER@, GROUP@, and EVERYONE@ into mode bits for,
respectively, the user, group, and other, as follows:

1. Set the read bit (MODE4_RUSR, MODE4_RGRP, or MODE4_ROTH) if and only if
ACE4_READ_DATA is set in the corresponding mask.

2. Set the write bit (MODE4_WUSR, MODE4_WGRP, or MODE4_WOTH) if and only if
ACE4_WRITE_DATA and ACE4_APPEND_DATA are both set in the corresponding mask.

3. Set the execute bit (MODE4_XUSR, MODE4_XGRP, or MODE4_XOTH), if and only if
ACE4_EXECUTE is set in the corresponding mask.

Noveck & Lever Standards Track Page 122

RFC 8881 NFSv4.1 with Namespace Update August 2020

6.3.2.1. Discussion

Some server implementations also add bits permitted to named users and groups to the group
bits (MODE4_RGRP, MODE4_WGRP, and MODE4_XGRP).

Implementations are discouraged from doing this, because it has been found to cause confusion
for users who see members of a file's group denied access that the mode bits appear to allow.
(The presence of DENY ACEs may also lead to such behavior, but DENY ACEs are expected to be
more rarely used.)

The same user confusion seen when fetching the mode also results if setting the mode does not
effectively control permissions for the owner, group, and other users; this motivates some of the
requirements that follow.

6.4. Requirements

The server that supports both mode and ACL must take care to synchronize the MODE4_*USR,
MODE4_*GRP, and MODE4_*OTH bits with the ACEs that have respective who fields of
"OWNER@", "GROUP@", and "EVERYONE@". This way, the client can see if semantically
equivalent access permissions exist whether the client asks for the owner, owner_group, and
mode attributes or for just the ACL.

In this section, much is made of the methods in Section 6.3.2. Many requirements refer to this
section. But note that the methods have behaviors specified with "SHOULD". This is intentional, to
avoid invalidating existing implementations that compute the mode according to the withdrawn
POSIX ACL draft (1003.1e draft 17), rather than by actual permissions on owner, group, and
other.

6.4.1. Setting the Mode and/or ACL Attributes

In the case where a server supports the sacl or dacl attribute, in addition to the acl attribute, the
server MUST fail a request to set the acl attribute simultaneously with a dacl or sacl attribute. The
error to be given is NFS4ERR_ATTRNOTSUPP.

6.4.1.1. Setting Mode and not ACL

When any of the nine low-order mode bits are subject to change, either because the mode
attribute was set or because the mode_set_masked attribute was set and the mask included one
or more bits from the nine low-order mode bits, and no ACL attribute is explicitly set, the acl and
dacl attributes must be modified in accordance with the updated value of those bits. This must
happen even if the value of the low-order bits is the same after the mode is set as before.

Note that any AUDIT or ALARM ACEs (hence any ACEs in the sacl attribute) are unaffected by
changes to the mode.

Noveck & Lever Standards Track Page 123

RFC 8881 NFSv4.1 with Namespace Update August 2020

In cases in which the permissions bits are subject to change, the acl and dacl attributes MUST be
modified such that the mode computed via the method in Section 6.3.2 yields the low-order nine
bits (MODE4_R* MODE4_W* MODE4_X*) of the mode attribute as modified by the attribute
change. The ACL attributes SHOULD also be modified such that:

1. If MODE4_RGRP is not set, entities explicitly listed in the ACL other than OWNER@ and
EVERYONE@ SHOULD NOT be granted ACE4_READ_DATA.

2. If MODE4_WGRP is not set, entities explicitly listed in the ACL other than OWNER@ and
EVERYONE@ SHOULD NOT be granted ACE4_WRITE_DATA or ACE4_APPEND_DATA.

3. If MODE4_XGRP is not set, entities explicitly listed in the ACL other than OWNER@ and
EVERYONE@ SHOULD NOT be granted ACE4_EXECUTE.

Access mask bits other than those listed above, appearing in ALLOW ACEs, MAY also be disabled.

Note that ACEs with the flag ACE4_INHERIT_ONLY_ACE set do not affect the permissions of the
ACL itself, nor do ACEs of the type AUDIT and ALARM. As such, it is desirable to leave these ACEs
unmodified when modifying the ACL attributes.

Also note that the requirement may be met by discarding the acl and dacl, in favor of an ACL that
represents the mode and only the mode. This is permitted, but it is preferable for a server to
preserve as much of the ACL as possible without violating the above requirements. Discarding
the ACL makes it effectively impossible for a file created with a mode attribute to inherit an ACL
(see Section 6.4.3).

6.4.1.2. Setting ACL and Not Mode

When setting the acl or dacl and not setting the mode or mode_set_masked attributes, the
permission bits of the mode need to be derived from the ACL. In this case, the ACL attribute
SHOULD be set as given. The nine low-order bits of the mode attribute (MODE4_R* MODE4_W*
MODE4_X*) MUST be modified to match the result of the method in Section 6.3.2. The three high-
order bits of the mode (MODE4_SUID, MODE4_SGID, MODE4_SVTX) SHOULD remain unchanged.

6.4.1.3. Setting Both ACL and Mode

When setting both the mode (includes use of either the mode attribute or the mode_set_masked
attribute) and the acl or dacl attributes in the same operation, the attributes MUST be applied in
this order: mode (or mode_set_masked), then ACL. The mode-related attribute is set as given,
then the ACL attribute is set as given, possibly changing the final mode, as described above in
Section 6.4.1.2.

6.4.2. Retrieving the Mode and/or ACL Attributes

This section applies only to servers that support both the mode and ACL attributes.

Some server implementations may have a concept of "objects without ACLs", meaning that all
permissions are granted and denied according to the mode attribute and that no ACL attribute is
stored for that object. If an ACL attribute is requested of such a server, the server SHOULD return

Noveck & Lever Standards Track Page 124

RFC 8881 NFSv4.1 with Namespace Update August 2020

an ACL that does not conflict with the mode; that is to say, the ACL returned SHOULD represent
the nine low-order bits of the mode attribute (MODE4_R* MODE4 W* MODE4 X*) as described
in Section 6.3.2.

For other server implementations, the ACL attribute is always present for every object. Such
servers SHOULD store at least the three high-order bits of the mode attribute (MODE4_SUID,
MODE4_SGID, MODE4_SVTX). The server SHOULD return a mode attribute if one is requested,
and the low-order nine bits of the mode (MODE4 R* MODE4_W* MODE4_X*) MUST match the
result of applying the method in Section 6.3.2 to the ACL attribute.

6.4.3. Creating New Objects

If a server supports any ACL attributes, it may use the ACL attributes on the parent directory to
compute an initial ACL attribute for a newly created object. This will be referred to as the
inherited ACL within this section. The act of adding one or more ACEs to the inherited ACL that
are based upon ACEs in the parent directory's ACL will be referred to as inheriting an ACE within
this section.

Implementors should standardize what the behavior of CREATE and OPEN must be depending on
the presence or absence of the mode and ACL attributes.

1. If just the mode is given in the call:

In this case, inheritance SHOULD take place, but the mode MUST be applied to the inherited
ACL as described in Section 6.4.1.1, thereby modifying the ACL.

2. If just the ACL is given in the call:

In this case, inheritance SHOULD NOT take place, and the ACL as defined in the CREATE or
OPEN will be set without modification, and the mode modified as in Section 6.4.1.2.

3. If both mode and ACL are given in the call:

In this case, inheritance SHOULD NOT take place, and both attributes will be set as described
in Section 6.4.1.3.

4. If neither mode nor ACL is given in the call:

In the case where an object is being created without any initial attributes at all, e.g., an OPEN
operation with an opentype4 of OPEN4_CREATE and a createmode4 of EXCLUSIVE4,
inheritance SHOULD NOT take place (note that EXCLUSIVE4._1 is a better choice of
createmode4, since it does permit initial attributes). Instead, the server SHOULD set
permissions to deny all access to the newly created object. It is expected that the appropriate
client will set the desired attributes in a subsequent SETATTR operation, and the server
SHOULD allow that operation to succeed, regardless of what permissions the object is created
with. For example, an empty ACL denies all permissions, but the server should allow the
owner's SETATTR to succeed even though WRITE_ACL is implicitly denied.

Noveck & Lever Standards Track Page 125

RFC 8881 NFSv4.1 with Namespace Update August 2020

In other cases, inheritance SHOULD take place, and no modifications to the ACL will happen.
The mode attribute, if supported, MUST be as computed in Section 6.3.2, with the

MODE4 _SUID, MODE4_SGID, and MODE4 SVTX bits clear. If no inheritable ACEs exist on the
parent directory, the rules for creating acl, dacl, or sacl attributes are implementation
defined. If either the dacl or sacl attribute is supported, then the ACL4_DEFAULTED flag
SHOULD be set on the newly created attributes.

6.4.3.1. The Inherited ACL

If the object being created is not a directory, the inherited ACL SHOULD NOT inherit ACEs from
the parent directory ACL unless the ACE4_FILE_INHERIT_FLAG is set.

If the object being created is a directory, the inherited ACL should inherit all inheritable ACEs
from the parent directory, that is, those that have the ACE4_FILE_INHERIT _ACE or
ACE4_DIRECTORY_INHERIT_ACE flag set. If the inheritable ACE has ACE4_FILE_INHERIT_ACE set
but ACE4_DIRECTORY_INHERIT_ACE is clear, the inherited ACE on the newly created directory
MUST have the ACE4_INHERIT_ONLY_ACE flag set to prevent the directory from being affected by
ACEs meant for non-directories.

When a new directory is created, the server MAY split any inherited ACE that is both inheritable
and effective (in other words, that has neither ACE4 INHERIT ONLY_ACE nor
ACE4_NO_PROPAGATE_INHERIT_ACE set), into two ACEs, one with no inheritance flags and one
with ACE4_INHERIT ONLY_ACE set. (In the case of a dacl or sacl attribute, both of those ACEs
SHOULD also have the ACE4_INHERITED_ACE flag set.) This makes it simpler to modify the
effective permissions on the directory without modifying the ACE that is to be inherited to the
new directory's children.

6.4.3.2. Automatic Inheritance

The acl attribute consists only of an array of ACEs, but the sacl (Section 6.2.3) and dacl (Section
6.2.2) attributes also include an additional flag field.

struct nfsacl41l {
aclflag4 na41_flag;
nfsace4 na4l1_aces<>;

s

The flag field applies to the entire sacl or dacl; three flag values are defined:

const ACL4_AUTO_INHERIT = 0x00000001;
const ACL4_PROTECTED = 0x00000002;
const ACL4_DEFAULTED = 0x00000004;

and all other bits must be cleared. The ACE4_INHERITED_ACE flag may be set in the ACEs of the
sacl or dacl (whereas it must always be cleared in the acl).

Noveck & Lever Standards Track Page 126

RFC 8881 NFSv4.1 with Namespace Update August 2020

Together these features allow a server to support automatic inheritance, which we now explain
in more detail.

Inheritable ACEs are normally inherited by child objects only at the time that the child objects
are created; later modifications to inheritable ACEs do not result in modifications to inherited
ACEs on descendants.

However, the dacl and sacl provide an OPTIONAL mechanism that allows a client application to
propagate changes to inheritable ACEs to an entire directory hierarchy.

A server that supports this performs inheritance at object creation time in the normal way, and
SHOULD set the ACE4_INHERITED_ACE flag on any inherited ACEs as they are added to the new
object.

A client application such as an ACL editor may then propagate changes to inheritable ACEs on a
directory by recursively traversing that directory's descendants and modifying each ACL
encountered to remove any ACEs with the ACE4_INHERITED_ACE flag and to replace them by the
new inheritable ACEs (also with the ACE4_INHERITED_ACE flag set). It uses the existing ACE
inheritance flags in the obvious way to decide which ACEs to propagate. (Note that it may
encounter further inheritable ACEs when descending the directory hierarchy and that those will
also need to be taken into account when propagating inheritable ACEs to further descendants.)

The reach of this propagation may be limited in two ways: first, automatic inheritance is not
performed from any directory ACL that has the ACL4_AUTO_INHERIT flag cleared; and second,
automatic inheritance stops wherever an ACL with the ACL4_PROTECTED f{lag is set, preventing
modification of that ACL and also (if the ACL is set on a directory) of the ACL on any of the
object's descendants.

This propagation is performed independently for the sacl and the dacl attributes; thus, the
ACL4_AUTO_INHERIT and ACL4_PROTECTED flags may be independently set for the sacl and the
dacl, and propagation of one type of acl may continue down a hierarchy even where propagation
of the other acl has stopped.

New objects should be created with a dacl and a sacl that both have the ACL4_PROTECTED flag
cleared and the ACL4_AUTO_INHERIT flag set to the same value as that on, respectively, the sacl
or dacl of the parent object.

Both the dacl and sacl attributes are RECOMMENDED, and a server may support one without
supporting the other.

A server that supports both the old acl attribute and one or both of the new dacl or sacl attributes
must do so in such a way as to keep all three attributes consistent with each other. Thus, the ACEs
reported in the acl attribute should be the union of the ACEs reported in the dacl and sacl
attributes, except that the ACE4_INHERITED_ACE flag must be cleared from the ACEs in the acl.
And of course a client that queries only the acl will be unable to determine the values of the sacl
or dacl flag fields.

Noveck & Lever Standards Track Page 127

RFC 8881 NFSv4.1 with Namespace Update August 2020

When a client performs a SETATTR for the acl attribute, the server SHOULD set the
ACL4_PROTECTED flag to true on both the sacl and the dacl. By using the acl attribute, as opposed
to the dacl or sacl attributes, the client signals that it may not understand automatic inheritance,
and thus cannot be trusted to set an ACL for which automatic inheritance would make sense.

When a client application queries an ACL, modifies it, and sets it again, it should leave any ACEs
marked with ACE4_INHERITED_ACE unchanged, in their original order, at the end of the ACL. If
the application is unable to do this, it should set the ACL4_PROTECTED flag. This behavior is not
enforced by servers, but violations of this rule may lead to unexpected results when applications
perform automatic inheritance.

If a server also supports the mode attribute, it SHOULD set the mode in such a way that leaves
inherited ACEs unchanged, in their original order, at the end of the ACL. If it is unable to do so, it
SHOULD set the ACL4_PROTECTED flag on the file's dacl.

Finally, in the case where the request that creates a new file or directory does not also set
permissions for that file or directory, and there are also no ACEs to inherit from the parent's
directory, then the server's choice of ACL for the new object is implementation-dependent. In this
case, the server SHOULD set the ACL4 DEFAULTED flag on the ACL it chooses for the new object.
An application performing automatic inheritance takes the ACL4_DEFAULTED flag as a sign that
the ACL should be completely replaced by one generated using the automatic inheritance rules.

7. Single-Server Namespace

This section describes the NFSv4 single-server namespace. Single-server namespaces may be
presented directly to clients, or they may be used as a basis to form larger multi-server
namespaces (e.g., site-wide or organization-wide) to be presented to clients, as described in
Section 11.

7.1. Server Exports

On a UNIX server, the namespace describes all the files reachable by pathnames under the root
directory or "/". On a Windows server, the namespace constitutes all the files on disks named by
mapped disk letters. NFS server administrators rarely make the entire server's file system
namespace available to NFS clients. More often, portions of the namespace are made available
via an "export" feature. In previous versions of the NFS protocol, the root filehandle for each
export is obtained through the MOUNT protocol; the client sent a string that identified the export
name within the namespace and the server returned the root filehandle for that export. The
MOUNT protocol also provided an EXPORTS procedure that enumerated the server's exports.

7.2. Browsing Exports

The NFSv4.1 protocol provides a root filehandle that clients can use to obtain filehandles for the
exports of a particular server, via a series of LOOKUP operations within a COMPOUND, to
traverse a path. A common user experience is to use a graphical user interface (perhaps a file

Noveck & Lever Standards Track Page 128

RFC 8881 NFSv4.1 with Namespace Update August 2020

"Open" dialog window) to find a file via progressive browsing through a directory tree. The client
must be able to move from one export to another export via single-component, progressive
LOOKUP operations.

This style of browsing is not well supported by the NFSv3 protocol. In NFSv3, the client expects
all LOOKUP operations to remain within a single server file system. For example, the device
attribute will not change. This prevents a client from taking namespace paths that span exports.

In the case of NFSv3, an automounter on the client can obtain a snapshot of the server's
namespace using the EXPORTS procedure of the MOUNT protocol. If it understands the server's
pathname syntax, it can create an image of the server's namespace on the client. The parts of the
namespace that are not exported by the server are filled in with directories that might be
constructed similarly to an NFSv4.1 "pseudo file system" (see Section 7.3) that allows the user to
browse from one mounted file system to another. There is a drawback to this representation of
the server's namespace on the client: it is static. If the server administrator adds a new export,
the client will be unaware of it.

7.3. Server Pseudo File System

NFSv4.1 servers avoid this namespace inconsistency by presenting all the exports for a given
server within the framework of a single namespace for that server. An NFSv4.1 client uses
LOOKUP and READDIR operations to browse seamlessly from one export to another.

Where there are portions of the server namespace that are not exported, clients require some
way of traversing those portions to reach actual exported file systems. A technique that servers
may use to provide for this is to bridge the unexported portion of the namespace via a "pseudo
file system" that provides a view of exported directories only. A pseudo file system has a unique
fsid and behaves like a normal, read-only file system.

Based on the construction of the server's namespace, it is possible that multiple pseudo file
systems may exist. For example,

/a pseudo file system
/a/b real file system
/a/b/c pseudo file system
/a/b/c/d real file system

Each of the pseudo file systems is considered a separate entity and therefore MUST have its own
fsid, unique among all the fsids for that server.

7.4. Multiple Roots

Certain operating environments are sometimes described as having "multiple roots". In such
environments, individual file systems are commonly represented by disk or volume names.
NFSv4 servers for these platforms can construct a pseudo file system above these root names so
that disk letters or volume names are simply directory names in the pseudo root.

Noveck & Lever Standards Track Page 129

RFC 8881 NFSv4.1 with Namespace Update August 2020

7.5. Filehandle Volatility

The nature of the server's pseudo file system is that it is a logical representation of file system(s)
available from the server. Therefore, the pseudo file system is most likely constructed
dynamically when the server is first instantiated. It is expected that the pseudo file system may
not have an on-disk counterpart from which persistent filehandles could be constructed. Even
though it is preferable that the server provide persistent filehandles for the pseudo file system,
the NFS client should expect that pseudo file system filehandles are volatile. This can be
confirmed by checking the associated "fh_expire_type" attribute for those filehandles in question.
If the filehandles are volatile, the NFS client must be prepared to recover a filehandle value (e.g.,
with a series of LOOKUP operations) when receiving an error of NFS4ERR_FHEXPIRED.

Because it is quite likely that servers will implement pseudo file systems using volatile
filehandles, clients need to be prepared for them, rather than assuming that all filehandles will
be persistent.

7.6. Exported Root

If the server's root file system is exported, one might conclude that a pseudo file system is
unneeded. This is not necessarily so. Assume the following file systems on a server:

/ fs1 (exported)
/a fs2 (not exported)
/a/b fs3 (exported)

Because fs2 is not exported, fs3 cannot be reached with simple LOOKUPs. The server must bridge

the gap with a pseudo file system.

7.7. Mount Point Crossing

The server file system environment may be constructed in such a way that one file system
contains a directory that is 'covered' or mounted upon by a second file system. For example:

/alb (file system 1)
/a/b/c/d (file system 2)

The pseudo file system for this server may be constructed to look like:

/ (place holder/not exported)
/a/b (file system 1)
/a/b/c/d (file system 2)

It is the server's responsibility to present the pseudo file system that is complete to the client. If
the client sends a LOOKUP request for the path /a/b/c/d, the server's re