Internet Engineering Task Force (IETF) G. Selander

Request for Comments: 8613 J. Mattsson
Updates: 7252 F. Palombini
Category: Standards Track Ericsson AB
ISSN: 2070-1721 L. Seitz
RISE

July 2019

Object Security for Constrained RESTful Environments (OSCORE)
Abstract

This document defines Object Security for Constrained RESTful
Environments (OSCORE), a method for application-layer protection of
the Constrained Application Protocol (CoAP), using CBOR Object
Signing and Encryption (COSE). OSCORE provides end-to-end protection
between endpoints communicating using CoAP or CoAP-mappable HTTP.
OSCORE is designed for constrained nodes and networks supporting a
range of proxy operations, including translation between different
transport protocols.

Although an optional functionality of CoAP, OSCORE alters CoAP
options processing and IANA registration. Therefore, this document
updates RFC 7252.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force

(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on

Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8613.

Selander, et al. Standards Track [Page 1]

RFC 8613 OSCORE July 2019

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Selander, et al. Standards Track [Page 2]

RFC 861

3

OSCORE

Table of Contents

July 2019

1. Introduction
1.1. Terminology
2. The OSCORE Option
3. The Security Context
3.1. Security Context Deflnltlon .
3.2. Establishment of Security Context Parameters
3.3. Requirements on the Security Context Parameters
4., Protected Message Fields
4.1. CoAP Options
4.2. CoAP Header Fields and Payload
4.3. Signaling Messages
5. The COSE Object .. .
5.1. 1ID Context and ’kid context’
5.2. AEAD Nonce
5.3. Plaintext
5.4. Additional Authentlcated Data
6. OSCORE Header Compression .
6.1. Encoding of the OSCORE Optlon Value
6.2. Encoding of the OSCORE Payload
6.3. Examples of Compressed COSE Obijects e e e e
7. Message Binding, Sequence Numbers, Freshness, and Replay
Protection
7.1. Message Blndlng
7.2. Sequence Numbers
7.3. Freshness
7.4. Replay Protectlon
7.5. Losing Part of the Context State
8. Processing .
8.1. Protecting the Request
8.2. Verifying the Request
8.3. Protecting the Response
8.4. Verifying the Response
9. Web Linking
10. CoAP-to-CoAP Forwardlng Proxy
11. HTTP Operations .
11.1. The HTTP OSCORE Header Fleld
11.2. CoAP-to-HTTP Mapping
11.3. HTTP-to-CoAP Mapping
11.4. HTTP Endpoints
11.5. Example: HTTP Client and CoAP Server
11.6. Example: CoAP Client and HTTP Server
12. Security Considerations
12.1. End-to-end Protection
12.2. Security Context Establlshment
12.3. Master Secret
12.4. Replay Protection
Selander, et al. Standards Track

[Page

0 00 Ju

]

14
15
16
24
25
26
27
28
29
30
31
32
33
33

36
36
36
36
37
38
39
39
40
41
43
44
45
46
46
47
48
48
48
50
51
51
52
52
53

12.5. Client Aliveness
12.6. Cryptographic Con51deratlons
12.7. Message Segmentation
12.8. Privacy Considerations
13. IANA Considerations
13.1. COSE Header Parameters Reglstry
13.2. CoAP Option Numbers Registry .
13.3. CoAP Signaling Option Numbers Reglstry
13.4. Header Field Registrations
13.5. Media Type Registration
13.6. CoAP Content-Formats Reglstry
13.7. OSCORE Flag Bits Registry
13.8. Expert Review Instructions

14. References e e
14.1. Normative References

14.2. Informative References
Appendix A. Scenario Examples

A.l. Secure Access to Sensor

A.2. Secure Subscribe to Sensor
Appendix B. Deployment Examples

B.1l. Security Context Derived Once

B.2. Security Context Derived Multiple Tlmes
Appendix C. Test Vectors . .
.1. Test Vector 1l: Key Derlvatlon w1th Master Salt

C

C.2. Test Vector 2: Key Derivation without Master Salt

C.3. Test Vector 3: Key Derivation with ID Context

C.4. Test Vector 4: OSCORE Request, Client

C.5. Test Vector 5: OSCORE Request, Client

C.6. Test Vector 6: OSCORE Request, Client .

C.7. Test Vector 7: OSCORE Response, Server e e e

C.8. Test Vector 8: OSCORE Response with Partial IV Server
Appendix D. Overview of Security Properties

D.1. Threat Model . .

D.2. Supporting Proxy Operatlons

D.3. Protected Message Fields

D.4. Uniqueness of (key, nonce)

D.5. Unprotected Message Fields

Appendix E. CDDL Summary
Acknowledgments
Authors’ Addresses

RFC 8613 OSCORE July 2019

53
53
54
54
55
55
55
56
57
57
58
58
59
60
60
62
65
65
66
68
68
70
75
75
77
78
80
81
82
84
85
86
86
87
87
88
89
93
94
94

Selander, et al. Standards Track [Page 4]

RFC 8613 OSCORE July 2019

1.

Introduction

The Constrained Application Protocol (CoAP) [RFC7252] is a web
transfer protocol designed for constrained nodes and networks
[REFC7228]; CoAP may be mapped from HTTP [RFC8075]. CoAP specifies
the use of proxies for scalability and efficiency and references DTLS
[RFC6347] for security. CoAP-to-CoAP, HTTP-to-CoAP, and CoAP-to-HTTP
proxies require DTLS or TLS [RFC8446] to be terminated at the proxy.
Therefore, the proxy not only has access to the data required for
performing the intended proxy functionality, but is also able to
eavesdrop on, or manipulate any part of, the message payload and
metadata in transit between the endpoints. The proxy can also
inject, delete, or reorder packets since they are no longer protected
by (D)TLS.

This document defines the Object Security for Constrained RESTful
Environments (OSCORE) security protocol, protecting CoAP and CoAP-
mappable HTTP requests and responses end-to-end across intermediary
nodes such as CoAP forward proxies and cross—-protocol translators
including HTTP-to-CoAP proxies [RFC8075]. 1In addition to the core
CoAP features defined in [RFC7252], OSCORE supports the Observe
[REC7641], Block-wise [RFC7959], and No-Response [RFC7967] options,

as well as the PATCH and FETCH methods [RFC8132]. An analysis of
end-to—-end security for CoAP messages through some types of
intermediary nodes is performed in [CoAP-E2E-Sec]. OSCORE
essentially protects the RESTful interactions: the request method,
the requested resource, the message payload, etc. (see Section 4),
where "RESTful" refers to the Representational State Transfer (REST)
Architecture [REST]. OSCORE protects neither the CoAP messaging

layer nor the CoAP Token, which may change between the endpoints;
therefore, those are processed as defined in [RFC7252].
Additionally, since the message formats for CoAP over unreliable
transport [RFC7252] and for CoAP over reliable transport [RFC8323]
differ only in terms of CoAP messaging layer, OSCORE can be applied
to both unreliable and reliable transports (see Figure 1).

OSCORE works in very constrained nodes and networks, thanks to its
small message size and the restricted code and memory requirements in
addition to what is required by CoAP. Examples of the use of OSCORE
are given in Appendix A. OSCORE may be used over any underlying
layer, such as UDP or TCP, and with non-IP transports (e.g.,
[CoAP-802.15.4]). OSCORE may also be used in different ways with
HTTP. OSCORE messages may be transported in HTTP, and OSCORE may
also be used to protect CoAP-mappable HTTP messages, as described
below.

Selander, et al. Standards Track [Page 5]

RFC 8613 OSCORE July 2019

——————— +

| Application |
B e, +
+-— + A\
I Requests / Responses / Signaling I I
I OSCORE I I CoAP
| Messaging Layer / Message Framing | |
+-— + /
B et T +

| UDP / TCP / |
—————— +

Figure 1: Abstract Layering of CoAP with OSCORE

OSCORE is designed to protect as much information as possible while
still allowing CoAP proxy operations (Section 10). It works with
existing CoAP-to-CoAP forward proxies [RFC7252], but an OSCORE-aware
proxy will be more efficient. HTTP-to-CoAP proxies [RFC8075] and
CoAP-to-HTTP proxies can also be used with OSCORE, as specified in
Section 11. OSCORE may be used together with TLS or DTLS over one or
more hops in the end-to-end path, e.g., transported with HTTPS in one
hop and with plain CoAP in another hop. The use of OSCORE does not
affect the URI scheme; therefore, OSCORE can be used with any URI
scheme defined for CoAP or HTTP. The application decides the
conditions for which OSCORE is required.

OSCORE uses pre-shared keys that may have been established out-of-
band or with a key establishment protocol (see Section 3.2). The
technical solution builds on CBOR Object Signing and Encryption
(COSE) [RFC8152], providing end-to-end encryption, integrity, replay
protection, and binding of response to request. A compressed version
of COSE is used, as specified in Section 6. The use of OSCORE is
signaled in CoAP with a new option (Section 2), and in HTTP with a
new header field (Section 11.1) and content type (Section 13.5). The
solution transforms a CoAP/HTTP message into an "OSCORE message"
before sending, and vice versa after receiving. The OSCORE message
is a CoAP/HTTP message related to the original message in the
following way: the original CoAP/HTTP message is translated to CoAP
(1f not already in CoAP) and protected in a COSE object. The
encrypted message fields of this COSE object are transported in the
CoAP payload/HTTP body of the OSCORE message, and the OSCORE option/
header field is included in the message. A sketch of an exchange of
OSCORE messages, 1in the case of the original message being CoAP, is
provided in Figure 2. The use of OSCORE with HTTP is detailed in
Section 11.

Selander, et al. Standards Track [Page 6]

RFC 8613 OSCORE July 2019

Client Server
OSCORE request — POST example.com:
Header, Token,
Options: OSCORE, ...,
Payload: COSE ciphertext

OSCORE response - 2.04 (Changed):
Header, Token,
Options: OSCORE, ...,
Payload: COSE ciphertext

Figure 2: Sketch of CoAP with OSCORE

An implementation supporting this specification MAY implement only
the client part, MAY implement only the server part, or MAY implement
only one of the proxy parts.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Readers are expected to be familiar with the terms and concepts
described in CoAP [RFC7252], COSE [RFC8152], Concise Binary Object
Representation (CBOR) [RFC7049], Concise Data Definition Language
(CDDL) [RFC8610] as summarized in Appendix E, and constrained
environments [RFC7228]. Additional optional features include Observe
[REC7641], Block-wise [RFC7959], No-Response [RFC7967] and CoAP over
reliable transport [RFC8323].

The term "hop" is used to denote a particular leg in the end-to-end
path. The concept "hop-by-hop" (as in "hop-by-hop encryption" or
"hop-by-hop fragmentation") opposed to "end-to-end", is used in this
document to indicate that the messages are processed accordingly in
the intermediaries, rather than just forwarded to the next node.

The term "stop processing" is used throughout the document to denote

that the message is not passed up to the CoAP request/response layer
(see Figure 1).

Selander, et al. Standards Track [Page 7]

RFC 8613 OSCORE July 2019

The terms Common Context, Sender Context, Recipient Context, Master
Secret, Master Salt, Sender ID, Sender Key, Recipient ID, Recipient
Key, ID Context, and Common IV are defined in Section 3.1.

2. The OSCORE Option

The OSCORE option defined in this section (see Figure 3, which
extends "Table 4: Options" of [RFC7252]) indicates that the CoAP
message 1s an OSCORE message and that it contains a compressed COSE
object (see Sections 5 and 6). The OSCORE option is critical, safe
to forward, part of the cache key, and not repeatable.

+————— s s e e it o o o +
| No. | ¢ | U | N | R | Name | Format | Length | Default |
+———— -ttt o o o +
| 9 | x | | | | OSCORE | (%) | 0-255 | (none) |
- -ttt - - - +
C = Critical, U = Unsafe, N = NoCacheKey, R = Repeatable
(*) See below.
Figure 3: The OSCORE Option
The OSCORE option includes the OSCORE flag bits (Section 6), the
Sender Sequence Number, the Sender ID, and the ID Context when these
fields are present (Section 3). The detailed format and length is
specified in Section 6. If the OSCORE flag bits are all zero (0x00),
the option value SHALL be empty (Option Length = 0). An endpoint

receiving a CoAP message without payload that also contains an OSCORE
option SHALL treat it as malformed and reject it.

A successful response to a request with the OSCORE option SHALL
contain the OSCORE option. Whether error responses contain the
OSCORE option depends on the error type (see Section 8).

For CoAP proxy operations, see Section 10.
3. The Security Context

OSCORE requires that client and server establish a shared security
context used to process the COSE objects. OSCORE uses COSE with an
Authenticated Encryption with Associated Data (AEAD, [RFC5116])
algorithm for protecting message data between a client and a server.
In this section, we define the security context and how it is derived
in client and server based on a shared secret and a key derivation
function.

Selander, et al. Standards Track [Page 8]

RFC 8613 OSCORE July 2019

.1. Security Context Definition

The security context is the set of information elements necessary to
carry out the cryptographic operations in OSCORE. For each endpoint,
the security context is composed of a "Common Context", a "Sender
Context", and a "Recipient Context".

The endpoints protect messages to send using the Sender Context and
verify messages received using the Recipient Context; both contexts
being derived from the Common Context and other data. Clients and
servers need to be able to retrieve the correct security context to
use.

An endpoint uses its Sender ID (SID) to derive its Sender Context;
the other endpoint uses the same ID, now called Recipient ID (RID),

to derive its Recipient Context. In communication between two
endpoints, the Sender Context of one endpoint matches the Recipient
Context of the other endpoint, and vice versa. Thus, the two

security contexts identified by the same IDs in the two endpoints are
not the same, but they are partly mirrored. Retrieval and use of the
security context are shown in Figure 4.

| Common Context | = | Common Context |
o + o +
| Sender Context | = | Recipient Context |
t————————————— + t————————————— +
| Recipient Context | = | Sender Context |
r o r r o r
Client Server
Retrieve context for OSCORE request:
target resource Token = Tokenl,
Protect request with kid = SID,
Sender Context e >| Retrieve context with
RID = kid

Verify request with
Recipient Context
OSCORE response: Protect response with
Token = Tokenl, ... Sender Context
Retrieve context with |<-—"——"-"--"—-"-""-"---—- +
Token = Tokenl
Verify request with
Recipient Context

Figure 4: Retrieval and Use of the Security Context

Selander, et al. Standards Track [Page 9]

RFC 8613 OSCORE July 2019

The Common Context contains the following parameters:

o

(@]

AEAD Algorithm. The COSE AEAD algorithm to use for encryption.

HKDF Algorithm. An HMAC-based key derivation function (HKDF,
[RFC5869]) used to derive the Sender Key, Recipient Key, and
Common IV.

Master Secret. Variable length, random byte string (see
Section 12.3) used to derive AEAD keys and Common IV.

Master Salt. Optional variable-length byte string containing the
salt used to derive AEAD keys and Common IV.

ID Context. Optional variable-length byte string providing
additional information to identify the Common Context and to
derive AEAD keys and Common IV. The use of ID Context is
described in Section 5.1.

Common IV. Byte string derived from the Master Secret, Master
Salt, and ID Context. Used to generate the AEAD nonce (see
Section 5.2). Same length as the nonce of the AEAD Algorithm.

The Sender Context contains the following parameters:

o

Sender ID. Byte string used to identify the Sender Context, to
derive AEAD keys and Common IV, and to contribute to the
uniqueness of AEAD nonces. Maximum length is determined by the
AEAD Algorithm.

Sender Key. Byte string containing the symmetric AEAD key to
protect messages to send. Derived from Common Context and Sender
ID. Length is determined by the AEAD Algorithm.

Sender Sequence Number. Non-negative integer used by the sender
to enumerate requests and certain responses, e.g., Observe
notifications. Used as "Partial IV" [RFC8152] to generate unique
AEAD nonces. Maximum value is determined by the AEAD Algorithm.
Initialization is described in Section 3.2.2.

The Recipient Context contains the following parameters:

o

Recipient ID. Byte string used to identify the Recipient Context,
to derive AEAD keys and Common IV, and to contribute to the
uniqueness of AEAD nonces. Maximum length is determined by the
AEAD Algorithm.

Selander, et al. Standards Track [Page 10]

RFC 8613 OSCORE July 2019

o Recipient Key. Byte string containing the symmetric AEAD key to
verify messages received. Derived from Common Context and
Recipient ID. Length is determined by the AEAD Algorithm.

o Replay Window (Server only). The replay window used to verify
requests received. Replay protection is described in Section 7.4
and Section 3.2.2.

All parameters except Sender Sequence Number and Replay Window are
immutable once the security context is established. An endpoint may
free up memory by not storing the Common IV, Sender Key, and
Recipient Key, deriving them when needed. Alternatively, an endpoint
may free up memory by not storing the Master Secret and Master Salt
after the other parameters have been derived.

Endpoints MAY operate as both client and server and use the same
security context for those roles. Independent of being client or
server, the endpoint protects messages to send using its Sender
Context, and verifies messages received using its Recipient Context.
The endpoints MUST NOT change the Sender/Recipient ID when changing
roles. 1In other words, changing the roles does not change the set of
AEAD keys to be used.
3.2. Establishment of Security Context Parameters

Each endpoint derives the parameters in the security context from a
small set of input parameters. The following input parameters SHALL
be preestablished:
o Master Secret
o Sender ID
o Recipient ID
The following input parameters MAY be preestablished. 1In case any of
these parameters is not preestablished, the default value indicated
below is used:
o AEAD Algorithm

* Default is AES-CCM-16-64-128 (COSE algorithm encoding: 10)

o Master Salt

* Default is the empty byte string

Selander, et al. Standards Track [Page 11]

RFC 8613 OSCORE July 2019

o HKDF Algorithm
* Default is HKDF SHA-256
o Replay Window

* The default mechanism is an anti-replay sliding window (see
Section 4.1.2.6 of [RFC6347] with a window size of 32

All input parameters need to be known and agreed on by both
endpoints, but the Replay Window may be different in the two
endpoints. The way the input parameters are preestablished is
application specific. Considerations of security context
establishment are given in Section 12.2 and examples of deploying
OSCORE in Appendix B.

3.2.1. Derivation of Sender Key, Recipient Key, and Common IV

The HKDF MUST be one of the HMAC-based HKDF [RFC5869] algorithms
defined for COSE [RFC8152]. HKDF SHA-256 is mandatory to implement.
The security context parameters Sender Key, Recipient Key, and Common
IV SHALL be derived from the input parameters using the HKDF, which
consists of the composition of the HKDF-Extract and HKDF-Expand steps
[REFC5869] :

output parameter = HKDF (salt, IKM, info, L)
where:
o salt is the Master Salt as defined above
o IKM is the Master Secret as defined above

o info is the serialization of a CBOR array consisting of (the
notation follows [RFC8610] as summarized in Appendix E):

info = [
id : bstr,
id_context : bstr / nil,
alg_aead : int / tstr,
type : tstr,
L : uint,

Selander, et al. Standards Track [Page 12]

RFC 8613 OSCORE July 2019

where:

o 1d is the Sender ID or Recipient ID when deriving Sender Key and
Recipient Key, respectively, and the empty byte string when
deriving the Common IV.

o 1id_context is the ID Context, or nil if ID Context is not
provided.

o alg_aead is the AEAD Algorithm, encoded as defined in [RFC8152].

o type is "Key" or "IV". The label is an ASCII string and does not
include a trailing NUL byte.

o L is the size of the key/nonce for the AEAD Algorithm used, in
bytes.

For example, if the algorithm AES-CCM-16-64-128 (see Section 10.2 in
[RFC8152]) is used, the integer value for alg_aead is 10, the value
for L is 16 for keys and 13 for the Common IV. Assuming use of the
default algorithms HKDF SHA-256 and AES-CCM-16-64-128, the extract
phase of HKDF produces a pseudorandom key (PRK) as follows:

PRK = HMAC-SHA-256 (Master Salt, Master Secret)

and as L is smaller than the hash function output size, the expand
phase of HKDF consists of a single HMAC invocation; therefore, the
Sender Key, Recipient Key, and Common IV are the first 16 or 13 bytes
of

output parameter = HMAC-SHA-256 (PRK, info || 0x01)

where different values of info are used for each derived parameter
and where || denotes byte string concatenation.

Note that [RFC5869] specifies that if the salt is not provided, it is
set to a string of zeros. For implementation purposes, not providing
the salt is the same as setting the salt to the empty byte string.
OSCORE sets the salt default value to empty byte string, which is
converted to a string of zeroes (see Section 2.2 of [RFC5869]).

Selander, et al. Standards Track [Page 13]

RFC 8613 OSCORE July 2019

3.2.2. Initial Sequence Numbers and Replay Window
The Sender Sequence Number is initialized to O.

The supported types of replay protection and replay window size is
application specific and depends on how OSCORE is transported (see
Section 7.4). The default mechanism is the anti-replay window of
received messages used by IPsec AH/ESP and DTLS (see Section 4.1.2.6
of [RFC6347]) with a window size of 32.

3.3. Requirements on the Security Context Parameters

To ensure unique Sender Keys, the quartet (Master Secret, Master
Salt, ID Context, Sender ID) MUST be unique, i.e., the pair (ID
Context, Sender ID) SHALL be unique in the set of all security
contexts using the same Master Secret and Master Salt. This means
that Sender ID SHALL be unique in the set of all security contexts
using the same Master Secret, Master Salt, and ID Context; such a
requirement guarantees unique (key, nonce) pairs for the AEAD.

Different methods can be used to assign Sender IDs: a protocol that
allows the parties to negotiate locally unique identifiers, a trusted

third party (e.g., [ACE-OAuth]), or the identifiers can be assigned
out-of-band. The Sender IDs can be very short (note that the empty
string is a legitimate wvalue). The maximum length of Sender ID in

bytes equals the length of the AEAD nonce minus 6, see Section 5.2.
For AES-CCM-16-64-128 the maximum length of Sender ID is 7 bytes.

To simplify retrieval of the right Recipient Context, the Recipient
ID SHOULD be unique in the sets of all Recipient Contexts used by an
endpoint. If an endpoint has the same Recipient ID with different
Recipient Contexts, i.e., the Recipient Contexts are derived from
different Common Contexts, then the endpoint may need to try multiple
times before verifying the right security context associated to the
Recipient ID.

The ID Context is used to distinguish between security contexts. The
methods used for assigning Sender ID can also be used for assigning
the ID Context. Additionally, the ID Context can be used to
introduce randomness into new Sender and Recipient Contexts (see
Appendix B.2). ID Context can be arbitrarily long.

Selander, et al. Standards Track [Page 14]

RFC 8613 OSCORE July 2019

4.

Protected Message Fields

OSCORE transforms a CoAP message (which may have been generated from
an HTTP message) into an OSCORE message, and vice versa. OSCORE
protects as much of the original message as possible while still
allowing certain proxy operations (see Sections 10 and 11). This
section defines how OSCORE protects the message fields and transfers
them end-to-end between client and server (in any direction).

The remainder of this section and later sections focus on the
behavior in terms of CoAP messages. If HTTP is used for a particular
hop in the end-to-end path, then this section applies to the
conceptual CoAP message that is mappable to/from the original HTTP
message as discussed in Section 11. That is, an HTTP message is
conceptually transformed to a CoAP message and then to an OSCORE
message, and similarly in the reverse direction. An actual
implementation might translate directly from HTTP to OSCORE without
the intervening CoAP representation.

Protection of signaling messages (Section 5 of [RFC8323]) is
specified in Section 4.3. The other parts of this section target
request/response messages.

Message fields of the CoAP message may be protected end-to-end
between CoAP client and CoAP server in different ways:

o Class E: encrypted and integrity protected,
o Class I: integrity protected only, or
o Class U: unprotected.

The sending endpoint SHALL transfer Class E message fields in the
ciphertext of the COSE object in the OSCORE message. The sending
endpoint SHALL include Class I message fields in the AAD of the AEAD
algorithm, allowing the receiving endpoint to detect if the value has
changed in transfer. Class U message fields SHALL NOT be protected
in transfer. Class I and Class U message field values are
transferred in the header or options part of the OSCORE message,
which is visible to proxies.

Message fields not visible to proxies, i.e., transported in the
ciphertext of the COSE object, are called "Inner" (Class E). Message
fields transferred in the header or options part of the OSCORE
message, which is visible to proxies, are called "Outer" (Class I or
Class U). There are currently no Class I options defined.

Selander, et al. Standards Track [Page 15]

RFC 8613 OSCORE July 2019

An OSCORE message may contain both an Inner and an Outer instance of
a certain CoAP message field. Inner message fields are intended for
the receiving endpoint, whereas Outer message fields are used to
enable proxy operations.

4.1. CoAP Options

A summary of how options are protected is shown in Figure 5. Note
that some options may have both Inner and Outer message fields, which
are protected accordingly. Certain options require special
processing as is described in Section 4.1.3.

Options that are unknown or for which OSCORE processing is not
defined SHALL be processed as Class E (and no special processing).
Specifications of new CoAP options SHOULD define how they are
processed with OSCORE. A new COAP option SHOULD be of Class E unless
it requires proxy processing. If a new CoAP option is of class U,
the potential issues with the option being unprotected SHOULD be
documented (see Appendix D.5).

4.1.1. Inner Options

Inner option message fields (Class E) are used to communicate
directly with the other endpoint.

The sending endpoint SHALL write the Inner option message fields
present in the original CoAP message into the plaintext of the COSE
object (Section 5.3) and then remove the Inner option message fields
from the OSCORE message.

The processing of Inner option message fields by the receiving
endpoint is specified in Sections 8.2 and 8.4.

Selander, et al. Standards Track [Page 16]

RFC 8613

Figure 5:

4.1.2. Outer Options

Outer option message fields

operations, see Appendix D.2.

Unprotected (Outer)

OSCORE July 2019
fom fom fo——t———+
| No Name E U |
F———— Fm ot

1 If-Match X
3 Uri-Host X
4 ETag b4
5 If-None-Match X
6 Observe X X
7 Uri-Port x
8 Location-Path X
9 OSCORE X
11 Uri-Path x
12 Content-Format X
14 Max—-Age X X
15 Uri-Query x
17 Accept X
20 Location-Query X
23 Block2 x x
27 Blockl X X
28 Size?2 X X
35 Proxy-Uri b4
39 Proxy—-Scheme b4
60 Sizel X X
258 No—-Response b4 b4
fom fom fo——t———+
= Encrypt and Integrity Protect (Inner)

Protection of CoAP Options

(Class U or I)

are used to support proxy

The sending endpoint SHALL include the Outer option message field
present in the original message in the options part of the OSCORE
including the OSCORE
SHALL be encoded as described in Section 3.1 of [RFC7252],
where the delta is the difference from the previously included
instance of Outer option message field.

message.
option,

All Outer option message fields,

The processing of Outer options by the receiving endpoint is
specified in Sections 8.2 and 8.4.

Selander,

et al.

Standards Track

[Page 17]

RFC 8613 OSCORE July 2019

A procedure for integrity-protection-only of Class I option message
fields is specified in Section 5.4. Specifications that introduce
repeatable Class I options MUST specify that proxies MUST NOT change
the order of the instances of such an option in the CoAP message.

Note: There are currently no Class I option message fields defined.
4.1.3. Special Options

Some options require special processing as specified in this section.
4.1.3.1. Max-Age

An Inner Max—-Age message field is used to indicate the maximum time a
response may be cached by the client (as defined in [RFC7252]), end-
to-end from the server to the client, taking into account that the
option is not accessible to proxies. The Inner Max—-Age SHALL be
processed by OSCORE as a normal Inner option, specified in

Section 4.1.1.

An Outer Max—-Age message field is used to avoid unnecessary caching
of error responses caused by OSCORE processing at OSCORE-unaware
intermediary nodes. A server MAY set a Class U Max—-Age message field
with value zero to such error responses, described in Sections 7.4,
8.2, and 8.4, since these error responses are cacheable, but
subsequent OSCORE requests would never create a hit in the
intermediary node caching it. Setting the Outer Max-Age to zero
relieves the intermediary from uselessly caching responses.
Successful OSCORE responses do not need to include an Outer Max-Age

option. Except when the Observe option (see Section 4.1.3.5) is
used, responses appear to the OSCORE-unaware intermediary as 2.04
(Changed) responses, which are non-cacheable (see Section 4.2). For

Observe responses, which are cacheable, an Outer Max-Age option with
value 0 may be used to avoid unnecessary proxy caching.

The Outer Max—-Age message field is processed according to
Section 4.1.2.

4.1.3.2. Uri-Host and Uri-Port

When the Uri-Host and Uri-Port are set to their default values (see
Section 5.10.1 [RFC7252]), they are omitted from the message
(Section 5.4.4 of [RFC7252]), which is favorable both for overhead
and privacy.

In order to support forward proxy operations, Proxy-Scheme, Uri-Host,

and Uri-Port need to be Class U. For the use of Proxy-Uri, see
Section 4.1.3.3.

Selander, et al. Standards Track [Page 18]

RFC 8613 OSCORE July 2019

Manipulation of unprotected message fields (including Uri-Host, Uri-
Port, destination IP/port or request scheme) MUST NOT lead to an
OSCORE message becoming verified by an unintended server. Different
servers SHALL have different security contexts.

4.1.3.3. Proxy-Uri

When Proxy-Uri is present, the client SHALL first decompose the
Proxy-Uri value of the original CoAP message into the Proxy-Scheme,
Uri-Host, Uri-Port, Uri-Path, and Uri-Query options according to
Section 6.4 of [RFC7252].

Uri-Path and Uri-Query are Class E options and SHALL be protected and
processed as Inner options (Section 4.1.1).

The Proxy-Uri option of the OSCORE message SHALL be set to the
composition of Proxy-Scheme, Uri-Host, and Uri-Port options as
specified in Section 6.5 of [RFC7252] and processed as an Outer
option of Class U (Section 4.1.2).

Note that replacing the Proxy-Uri value with the Proxy-Scheme and
Uri-* options works by design for all CoAP URIs (see Section 6 of
[REFC7252]) . OSCORE-aware HTTP servers should not use the userinfo
component of the HTTP URI (as defined in Section 3.2.1 of [RFC3986]),
so that this type of replacement is possible in the presence of CoAP-
to-HTTP proxies (see Section 11.2). In future specifications of
cross—-protocol proxying behavior using different URI structures, it
is expected that the authors will create Uri-* options that allow
decomposing the Proxy-Uri, and specifying the OSCORE processing.

An example of how Proxy-Uri is processed is given here. Assume that
the original CoAP message contains:

o Proxy-Uri = "coap://example.com/resource?qg=1"
During OSCORE processing, Proxy-Uri is split into:
o Proxy—-Scheme = "coap"

o Uri-Host = "example.com"

o Uri-Port "5683" (default)
o Uri-Path = "resource"

o Uri-Query = "g=1"

Selander, et al. Standards Track [Page 19]

RFC 8613 OSCORE July 2019

Uri-Path and Uri-Query follow the processing defined in
Section 4.1.1; thus, they are encrypted and transported in the COSE

object:
o Uri-Path = "resource"
o Uri-Query = "g=1"

The remaining options are composed into the Proxy-Uri included in the
options part of the OSCORE message, which has wvalue:

o Proxy-Uri = "coap://example.com"
See Sections 6.1 and 12.6 of [RFC7252] for more details.
4.1.3.4. The Block Options

Block-wise [RFC7959] is an optional feature. An implementation MAY
support CoAP [RFC7252] and the OSCORE option without supporting
block-wise transfers. The Block options (Blockl, Block2, Sizel,
Size2), when Inner message fields, provide secure message
segmentation such that each segment can be verified. The Block
options, when Outer message fields, enable hop-by-hop fragmentation

of the OSCORE message. Inner and Outer block processing may have
different performance properties depending on the underlying
transport. The end-to-end integrity of the message can be verified

both in case of Inner and Outer Block-wise transfers, provided all
blocks are received.

4.1.3.4.1. Inner Block Options
The sending CoAP endpoint MAY fragment a CoAP message as defined in

[REC7959] before the message is processed by OSCORE. In this case,
the Block options SHALL be processed by OSCORE as normal Inner

options (Section 4.1.1). The receiving CoAP endpoint SHALL process
the OSCORE message before processing Block-wise as defined in
[REC7959].

4.1.3.4.2. Outer Block Options

Proxies MAY fragment an OSCORE message using [RFC7959] by introducing
Block option message fields that are Outer (Section 4.1.2). Note
that the Outer Block options are neither encrypted nor integrity
protected. As a consequence, a proxy can maliciously inject block
fragments indefinitely, since the receiving endpoint needs to receive
the last block (see [RFC7959]) to be able to compose the OSCORE
message and verify its integrity. Therefore, applications supporting
OSCORE and [RFC7959] MUST specify a security policy defining a

Selander, et al. Standards Track [Page 20]

RFC 8613 OSCORE July 2019

maximum unfragmented message size (MAX_UNFRAGMENTED_SIZE) considering
the maximum size of message that can be handled by the endpoints.
Messages exceeding this size SHOULD be fragmented by the sending
endpoint using Inner Block options (Section 4.1.3.4.1).

An endpoint receiving an OSCORE message with an Outer Block option
SHALL first process this option according to [RFC7959], until all
blocks of the OSCORE message have been received or the cumulated
message size of the blocks exceeds MAX_UNFRAGMENTED_SIZE. 1In the
former case, the processing of the OSCORE message continues as
defined in this document. In the latter case, the message SHALL be
discarded.

Because of encryption of Uri-Path and Uri-Query, messages to the same
server may, from the point of view of a proxy, look like they also
target the same resource. A proxy SHOULD mitigate a potential mix-up
of blocks from concurrent requests to the same server, for example,
using the Request-Tag processing specified in Section 3.3.2 of
[COAP-ECHO-REQ-TAG] .

4.1.3.5. Observe

Observe [RFC7641] is an optional feature. An implementation MAY
support CoAP [RFC7252] and the OSCORE option without supporting
[RFC7641], in which case the Observe-related processing can be
omitted.

The support for Observe [RFC7641] with OSCORE targets the
requirements on forwarding of Section 2.2.1 of [CoAP-E2E-Sec], i.e.,
that observations go through intermediary nodes, as illustrated in
Figure 8 of [RFC7641].

Inner Observe SHALL be used to protect the value of the Observe
option between the endpoints. Outer Observe SHALL be used to support
forwarding by intermediary nodes.

The server SHALL include a new Partial IV (see Section 5) in
responses (with or without the Observe option) to Observe
registrations, except for the first response where Partial IV MAY be
omitted.

For cancellations, Section 3.6 of [RFC7641] specifies that all
options MUST be identical to those in the registration request except
for the Observe option and the set of ETag options. For OSCORE
messages, this matching is to be done to the options in the decrypted
message.

Selander, et al. Standards Track [Page 21]

RFC 8613 OSCORE July 2019

[RFC7252] does not specify how the server should act upon receiving
the same Token in different requests. When using OSCORE, the server
SHOULD NOT remove an active observation just because it receives a
request with the same Token.

Since POST with the Observe option is not defined, for messages with
the Observe option, the Outer Code MUST be set to 0.05 (FETCH) for
requests and to 2.05 (Content) for responses (see Section 4.2).

4.1.3.5.1. Registrations and Cancellations

The Inner and Outer Observe options in the request MUST contain the
Observe value of the original CoAP request; 0 (registration) or 1
(cancellation).

Every time a client issues a new request with the Observe option, a
new Partial IV MUST be used (see Section 5), and so the payload and
OSCORE option are changed. The server uses the Partial IV of the new
request as the ’'request_piv’ of all associated notifications (see
Section 5.4).

Intermediaries are not assumed to have access to the OSCORE security
context used by the endpoints; thus, they cannot make requests or
transform responses with the OSCORE option that pass verification (at

the receiving endpoint) as having come from the other endpoint. This
has the following consequences and limitations for Observe
operations.

o An intermediary node removing the Outer Observe 0 option does not
change the registration request to a request without the Observe
option (see Section 2 of [RFC7641]). Instead other means for
cancellation may be used as described in Section 3.6 of [RFC7641].

o An intermediary node is not able to transform a normal response
into an OSCORE-protected Observe notification (see Figure 7 of
[RFC7641]) that verifies as coming from the server.

o An intermediary node is not able to initiate an OSCORE protected
Observe registration (Observe option with value 0) that verifies
as coming from the client. An OSCORE-aware intermediary SHALL NOT
initiate registrations of observations (see Section 10). TIf an
OSCORE-unaware proxy resends an old registration message from a
client, the replay protection mechanism in the server will be
triggered. To prevent this from resulting in the OSCORE-unaware
proxy canceling the registration, a server MAY respond to a
replayed registration request with a replay of a cached
notification. Alternatively, the server MAY send a new
notification.

Selander, et al. Standards Track [Page 22]

RFC 8613 OSCORE July 2019

o An intermediary node is not able to initiate an OSCORE-protected
Observe cancellation (Observe option with value 1) that verifies
as coming from the client. An application MAY decide to allow
intermediaries to cancel Observe registrations, e.g., to send the
Observe option with value 1 (see Section 3.6 of [RFC7641]);
however, that can also be done with other methods, e.g., by
sending a RST message. This is out of scope for this
specification.

4.1.3.5.2. Notifications

If the server accepts an Observe registration, a Partial IV MUST be
included in all notifications (both successful and error), except for
the first one where the Partial IV MAY be omitted. To protect
against replay, the client SHALL maintain a Notification Number for
each Observation it registers. The Notification Number is a non-
negative integer containing the largest Partial IV of the received
notifications for the associated Observe registration. Further
details of replay protection of notifications are specified in
Section 7.4.1.

For notifications, the Inner Observe option value MUST be empty (see
Section 3.2 of [RFC7252]). The Outer Observe option in a
notification is needed for intermediary nodes to allow multiple
responses to one request, and it MAY be set to the value of the
Observe option in the original CoAP message. The client performs
ordering of notifications and replay protection by comparing their
Partial IVs and SHALL ignore the Outer Observe option value.

If the client receives a response to an Observe request without an
Inner Observe option, then it verifies the response as a non-Observe
response, as specified in Section 8.4. If the client receives a
response to a non-Observe request with an Inner Observe option, then
it stops processing the message, as specified in Section 8.4.

A client MUST consider the notification with the highest Partial IV
as the freshest, regardless of the order of arrival. In order to
support existing Observe implementations, the OSCORE client
implementation MAY set the Observe option value to the three least
significant bytes of the Partial IV. Implementations need to make
sure that the notification without Partial IV is considered the
oldest.

Selander, et al. Standards Track [Page 23]

RFC 8613 OSCORE July 2019

4.1.3.6. No-Response

No—-Response [RFC7967] is an optional feature used by the client to
communicate its disinterest in certain classes of responses to a
particular request. An implementation MAY support [RFC7252] and the
OSCORE option without supporting [RFC7967].

If used, No-Response MUST be Inner. The Inner No—-Response SHALL be
processed by OSCORE as specified in Section 4.1.1. The Outer option
SHOULD NOT be present. The server SHALL ignore the Outer No-Response
option. The client MAY set the Outer No-Response value to 26
(suppress all known codes) if the Inner value is set to 26. The
client MUST be prepared to receive and discard 5.04 (Gateway Timeout)
error messages from intermediaries potentially resulting from
destination time out due to no response.

4.1.3.7. OSCORE

The OSCORE option is only defined to be present in OSCORE messages as
an indication that OSCORE processing has been performed. The content
in the OSCORE option is neither encrypted nor integrity protected as
a whole, but some part of the content of this option is protected
(see Section 5.4). Nested use of OSCORE is not supported: If OSCORE
processing detects an OSCORE option in the original CoAP message,
then processing SHALL be stopped.

4.2. CoOAP Header Fields and Payload
A summary of how the CoAP header fields and payload are protected is

shown in Figure 6, including fields specific to CoAP over UDP and
CoAP over TCP (marked accordingly in the table).

et fo——t———

| Field | E | U |

o ot
Version (UDP) X
Type (UDP) X
Length (TCP) X
Token Length X
Code X
Message ID (UDP) X
Token x
Payload X

e ot

=
|

= Encrypt and Integrity Protect (Inner)
U = Unprotected (Outer)

Figure 6: Protection of CoAP Header Fields and Payload

Selander, et al. Standards Track [Page 24]

RFC 8613 OSCORE July 2019

Most CoAP header fields (i.e., the message fields in the fixed 4-byte
header) are required to be read and/or changed by CoAP proxies; thus,
they cannot, in general, be protected end-to-end from one endpoint to
the other. As mentioned in Section 1, OSCORE protects the CoAP
request/response layer only and not the CoAP messaging layer

(Section 2 of [RFC7252]), so fields such as Type and Message ID are
not protected with OSCORE.

The CoAP header field Code is protected by OSCORE. Code SHALL be
encrypted and integrity protected (Class E) to prevent an
intermediary from eavesdropping on or manipulating it (e.g., changing
from GET to DELETE).

The sending endpoint SHALL write the Code of the original CoAP
message into the plaintext of the COSE object (see Section 5.3).
After that, the sending endpoint writes an Outer Code to the OSCORE

message. With one exception (see Section 4.1.3.5), the Outer Code
SHALL be set to 0.02 (POST) for requests and to 2.04 (Changed) for
responses. The receiving endpoint SHALL discard the Outer Code in

the OSCORE message and write the Code of the COSE object plaintext
(Section 5.3) into the decrypted CoAP message.

The other currently defined CoAP header fields are Unprotected (Class
U) . The sending endpoint SHALL write all other header fields of the
original message into the header of the OSCORE message. The
receiving endpoint SHALL write the header fields from the received
OSCORE message into the header of the decrypted CoAP message.

The CoAP Payload, if present in the original CoAP message, SHALL be
encrypted and integrity protected; thus, it is an Inner message
field. The sending endpoint writes the payload of the original CoAP
message into the plaintext (Section 5.3) input to the COSE object.
The receiving endpoint verifies and decrypts the COSE object, and it
recreates the payload of the original CoAP message.

4.3. Signaling Messages

Signaling messages (CoAP Code 7.00-7.31) were introduced to exchange
information related to an underlying transport connection in the
specific case of CoAP over reliable transports [RFC8323].

OSCORE MAY be used to protect signaling if the endpoints for OSCORE
coincide with the endpoints for the signaling message. If OSCORE 1is
used to protect signaling then:

o To comply with [RFC8323], an initial empty Capabilities and

Settings Message (CSM) SHALL be sent. The subsequent signaling
message SHALL be protected.

Selander, et al. Standards Track [Page 25]

RFC 8613 OSCORE July 2019

o Signaling messages SHALL be protected as CoAP request messages,
except in the case in which the signaling message is a response to
a previous signaling message; then it SHALL be protected as a CoAP
response message. For example, 7.02 (Ping) is protected as a CoAP
request and 7.03 (Pong) as a CoAP response.

o The Outer Code for signaling messages SHALL be set to 0.02 (POST),
unless it is a response to a previous signaling message, in which
case it SHALL be set to 2.04 (Changed).

o All signaling options, except the OSCORE option, SHALL be Inner
(Class E) .

NOTE: Option numbers for signaling messages are specific to the CoAP
Code (see Section 5.2 of [RFC8323]).

If OSCORE is not used to protect signaling, Signaling messages SHALL
be unaltered by OSCORE.

5. The COSE Object

This section defines how to use COSE [RFC8152] to wrap and protect
data in the original message. OSCORE uses the untagged COSE_EncryptO
structure (see Section 5.2 of [RFC8152]) with an AEAD algorithm. The
AEAD key lengths, AEAD nonce length, and maximum Sender Sequence
Number are algorithm dependent.

The AEAD algorithm AES-CCM-16-64-128 defined in Section 10.2 of
[RFC8152] is mandatory to implement. For AES-CCM-16-64-128, the
length of Sender Key and Recipient Key is 128 bits; the length of
AEAD nonce and Common IV is 13 bytes. The maximum Sender Sequence
Number is specified in Section 12.

As specified in [RFC5116], plaintext denotes the data that is to be
encrypted and integrity protected, and Additional Authenticated Data
(AAD) denotes the data that is to be integrity protected only.

The COSE object SHALL be a COSE_Encrypt0 object with fields defined
as follows:

o The ’"protected’ field is empty.
o The ’"unprotected’ field includes:
* The ’Partial IV’ parameter. The value is set to the Sender
Sequence Number. All leading bytes of value zero SHALL be

removed when encoding the Partial IV, except in the case of
Partial IV value 0, which is encoded to the byte string 0x00.

Selander, et al. Standards Track [Page 26]

RFC 8613 OSCORE July 2019

This parameter SHALL be present in requests and will not
typically be present in responses (for two exceptions, see
Observe notifications (Section 4.1.3.5.2) and Replay Window
synchronization (Appendix B.1.2)).

* The ’'kid’ parameter. The value is set to the Sender ID. This
parameter SHALL be present in requests and will not typically
be present in responses. An example where the Sender ID is
included in a response is the extension of OSCORE to group
communication [Group—-OSCORE].

* Optionally, a ’'kid context’ parameter (see Section 5.1). This
parameter MAY be present in requests and, if so, MUST contain
an ID Context (see Section 3.1). This parameter SHOULD NOT be
present in responses: an example of how ’'kid context’ can be
used in responses is given in Appendix B.2. TIf 'kid context’
is present in the request, then the server SHALL use a security
context with that ID Context when verifying the request.

o The ’'ciphertext’ field is computed from the secret key (Sender Key
or Recipient Key), AEAD nonce (see Section 5.2), plaintext (see
Section 5.3), and the AAD (see Section 5.4) following Section 5.2
of [RFC8152].

The encryption process is described in Section 5.3 of [RFC8152].
5.1. 1ID Context and ’'kid context’

For certain use cases, e.g., deployments where the same Sender ID is
used with multiple contexts, it is possible (and sometimes necessary,
see Section 3.3) for the client to use an ID Context to distinguish
the security contexts (see Section 3.1). For example:

o If the client has a unique identifier in some namespace, then that
identifier can be used as ID Context.

o The ID Context may be used to add randomness into new Sender and
Recipient Contexts, see Appendix B.2.

o In the case of group communication [Group-OSCORE], a group
identifier is used as ID Context to enable different security
contexts for a server belonging to multiple groups.

The Sender ID and ID Context are used to establish the necessary

input parameters and in the derivation of the security context (see
Section 3.2).

Selander, et al. Standards Track [Page 27]

RFC 8613 OSCORE July 2019

While the ’'kid’ parameter is used to transport the Sender ID, the new
COSE header parameter ’kid context’ is used to transport the ID
Context in requests, see Figure 7.

fo—— - e fomm et Fom e +
| Name | Label | Value Type | Value Registry | Description |
fom fom fom fom fom +
kid	10	bstr		Identifies the
context				context for the
				key identifier
do—— - e Fo—m Fom Fom +

Figure 7: Common Header Parameter ’'kid context’ for the COSE Object

If ID Context is non-empty and the client sends a request without
"kid context’ resulting in an error indicating that the server could
not find the security context, then the client could include the ID
Context in the ’'kid context’ when making another request. Note that
since the error is unprotected, it may have been spoofed and the real
response blocked by an on-path attacker.

5.2. AEAD Nonce

The high-level design of the AEAD nonce follows Section 4.4 of
[IV-GEN]. The detailed construction of the AEAD nonce is presented
here (see Figure 8):

1. left-pad the Partial IV (PIV) with zeroes to exactly 5 bytes,

2. left-pad the Sender ID of the endpoint that generated the Partial
IV (ID_PIV) with zeroes to exactly nonce length minus 6 bytes,

3. concatenate the size of the ID_PIV (a single byte S) with the
padded ID_PIV and the padded PIV,

4. and then XOR with the Common IV.

Note that in this specification, only AEAD algorithms that use nonces
equal or greater than 7 bytes are supported. The nonce construction
with S, ID_PIV, and PIV together with endpoint-unique IDs and
encryption keys makes it easy to verify that the nonces used with a
specific key will be unique, see Appendix D.4.

If the Partial IV is not present in a response, the nonce from the
request is used. For responses that are not notifications (i.e.,
when there is a single response to a request), the request and the
response should typically use the same nonce to reduce message
overhead. Both alternatives provide all the required security

Selander, et al. Standards Track [Page 28]

RFC 8613 OSCORE July 2019

properties, see Section 7.4 and Appendix D.4. Another non-Observe
scenario where a Partial IV is included in a response is when the
server is unable to perform replay protection, see Appendix B.1l.2.
For processing instructions see Section 8.

<- nonce length minus 6 B —> <-— 5 bytes -—>
e R fom fom i +
| s | padding | ID_PIV | padding | PIV |-———+
s Ea Fom e +———— +
<—————— nonce length -——————————-———- >
- +
Common IV | -> (XOR)
o +
<—mmmmm nonce length --———————----——— >
e +
Nonce <-——+
o +

Figure 8: AEAD Nonce Formation
5.3. Plaintext

The plaintext is formatted as a CoAP message with a subset of the
header (see Figure 9) consisting of:

o the Code of the original CoAP message as defined in Section 3 of
[RFC7252]; and

o all Inner option message fields (see Section 4.1.1) present in the
original CoAP message (see Section 4.1). The options are encoded
as described in Section 3.1 of [RFC7252], where the delta is the
difference from the previously included instance of Class E
option; and

o the Payload of original CoAP message, if present, and in that case
prefixed by the one-byte Payload Marker (0xff).

NOTE: The plaintext contains all CoAP data that needs to be encrypted
end-to—-end between the endpoints.

Selander, et al. Standards Track [Page 29]

RFC 8613 OSCORE July 2019

0 1 2 3
0123456789 012345678901234567829C01
ft—+—+

| Code | Class E options (if any)
+—t—t—F—t—Ft—F—F—Ft—F—F—F+—F—F—Ft—F—F—F+—F—F—Ft—F -t —F -t —F+—F+—+—+
1111111 1] Payload (if any)

+—t—t—F—Ft—t—F—F—F—F—F—F—F—F—F—F—t—F—F—F—F—F—F—F—+—F—F—+—F—+—+—+—+
(only if there is payload)

Figure 9: Plaintext
5.4. Additional Authenticated Data
The external_aad SHALL be a CBOR array wrapped in a bstr object as
defined below, following the notation of [RFC8610] as summarized in
Appendix E:

external_aad = bstr .cbor aad_array

aad_array = [

oscore_version : uint,

algorithms : [alg_aead : int / tstr],
request_kid : bstr,

request_piv : bstr,

options : bstr,

]

where:
O oscore_version: contains the OSCORE version number.
Implementations of this specification MUST set this field to 1.

Other values are reserved for future versions.

o algorithms: contains (for extensibility) an array of algorithms,
according to this specification only containing alg_aead.

o alg_aead: contains the AEAD Algorithm from the security context
used for the exchange (see Section 3.1).

o request_kid: contains the value of the ’"kid’ in the COSE object of
the request (see Section 5).

o request_piv: contains the value of the ’"Partial IV’ in the COSE
object of the request (see Section 5).

Selander, et al. Standards Track [Page 30]

RFC 8613 OSCORE July 2019

o options: contains the Class I options (see Section 4.1.2) present
in the original CoAP message encoded as described in Section 3.1
of [RFC7252], where the delta is the difference from the
previously included instance of class I option.

The oscore_version and algorithms parameters are established out-of-

band; thus, they are not transported in OSCORE, but the external_aad

allows to verify that they are the same in both endpoints.

NOTE: The format of the external aad is, for simplicity, the same for

requests and responses, although some parameters, e.g., request_kid,

need not be integrity protected in all requests.

The AAD is composed from the external aad as described in Section 5.3

of [RFC8152] (the notation follows [RFC8610] as summarized in

Appendix E):

AAD = Enc_structure = ["EncryptO", h’’, external_aad]

The following is an example of AAD constructed using AEAD Algorithm =

AES-CCM-16-64-128 (10), request_kid = 0x00, request_piv = 0x25 and no

Class I options:

o oscore_version: 0x01 (1 byte)

o algorithms: 0x81l0a (2 bytes)

o request_kid: 0x00 (1 byte)

o request_piv: 0x25 (1 byte)

o options: 0x (0 bytes)

o aad_array: 0x8501810a4100412540 (9 bytes)

o external_aad: 0x498501810a4100412540 (10 bytes)

o AAD: 0x8368456e63727970743040498501810a4100412540 (21 bytes)

Note that the AAD consists of a fixed string of 11 bytes concatenated
with the external_aad.

6. OSCORE Header Compression
The Concise Binary Object Representation (CBOR) [RFC7049] combines
very small message sizes with extensibility. The CBOR Object Signing

and Encryption (COSE) [RFC8152] uses CBOR to create compact encoding
of signed and encrypted data. However, COSE is constructed to

Selander, et al. Standards Track [Page 31]

RFC 8613 OSCORE July 2019

support a large number of different stateless use cases and is not
fully optimized for use as a stateful security protocol, leading to a
larger than necessary message expansion. In this section, we define
a stateless header compression mechanism, simply removing redundant
information from the COSE objects, which significantly reduces the
per—-packet overhead. The result of applying this mechanism to a COSE
object is called the "compressed COSE object".

The COSE_Encrypt0 object used in OSCORE is transported in the OSCORE
option and in the Payload. The Payload contains the ciphertext of
the COSE object. The headers of the COSE object are compactly
encoded as described in the next section.

6.1. Encoding of the OSCORE Option Value
The value of the OSCORE option SHALL contain the OSCORE flag bits,

the ’'Partial IV’ parameter, the ’'kid context’ parameter (length and
value), and the ’'kid’ parameter as follows:

01234586 7 <m——————————— n bytes —————————————— >
F—t—t—F—t—F—F
|0 0 0|h|k|] n | Partial IV (if any)
+—4—4—4—+-+-+-++-—-—
<- 1 byte -> <-———- s bytes —————- >

o R et e et +
| s (if any) | kid context (if any) | kid (if any)
Fo———— Fo— Fo— +

Figure 10: The OSCORE Option Value

o The first byte, containing the OSCORE flag bits, encodes the
following set of bits and the length of the ’Partial IV’
parameter:

* The three least significant bits encode the Partial IV length
n. If n = 0, then the Partial IV is not present in the
compressed COSE object. The values n = 6 and n = 7 are
reserved.

* The fourth least significant bit is the ’"kid’ flag, k. It is
set to 1 if ’'kid’ is present in the compressed COSE obiject.

* The fifth least significant bit is the ’'kid context’ flag, h.

It is set to 1 if the compressed COSE object contains a ’kid
context’ (see Section 5.1).

Selander, et al. Standards Track [Page 32]

RFC 8613 OSCORE July 2019

* The sixth-to-eighth least significant bits are reserved for
future use. These bits SHALL be set to zero when not in use.
According to this specification, if any of these bits are set
to 1, the message is considered to be malformed and
decompression fails as specified in item 2 of Section 8.2.

The flag bits are registered in the "OSCORE Flag Bits" registry
specified in Section 13.7.

o The following n bytes encode the value of the Partial IV, if the
Partial IV is present (n > 0).

o The following 1 byte encodes the length s of the ’"kid context’
(Section 5.1), if the ’'kid context’ flag is set (h = 1).

o The following s bytes encode the "kid context’, if the ’kid
context’ flag is set (h = 1).

o The remaining bytes encode the value of the 'kid’, if the ’kid’ is
present (k = 1).

Note that the "kid’ MUST be the last field of the OSCORE option
value, even in the case in which reserved bits are used and
additional fields are added to it.

The length of the OSCORE option thus depends on the presence and
length of Partial IV, ’'kid context’, ’'kid’, as specified in this
section, and on the presence and length of additional parameters, as
defined in the future documents registering those parameters.

6.2. Encoding of the OSCORE Payload

The payload of the OSCORE message SHALL encode the ciphertext of the
COSE obiject.

6.3. Examples of Compressed COSE Objects

This section covers a list of OSCORE Header Compression examples for

requests and responses. The examples assume the COSE_Encrypt0 object
is set (which means the CoAP message and cryptographic material is
known) . Note that the full CoAP unprotected message, as well as the

full security context, is not reported in the examples, but only the
input necessary to the compression mechanism, i.e., the COSE_EncryptO
object. The output is the compressed COSE object as defined in
Section 6, divided into two parts, since the object is transported in
two CoAP fields: the OSCORE option and payload.

Selander, et al. Standards Track [Page 33]

RFC 8613 OSCORE July 2019

1. Request with ciphertext = 0xaea0155667924dff8a24e4cb35b9, kid =
0x25, and Partial IV = 0x05

Before compression (24 bytes):

[
hl’,
{ 4:h"25", 6:h"05" },
h’aea0155667924dff8a24e4cb35b9’,
]

After compression (17 bytes):
Flag byte: 0b00001001 = 0x09 (1 byte)
Option Value: 0x090525 (3 bytes)
Payload: 0xaea0155667924dff8a24e4cb35b9 (14 bytes)

2. Request with ciphertext = 0xaeal0l1l55667924dff8a24e4cb35b9, kid =
empty string, and Partial IV = 0x00

Before compression (23 bytes):

[
hl’,
{ 4:h’’, 6:h"00" 1},
h’aea0155667924dff8a24e4cb35b9’,
]

After compression (16 bytes):
Flag byte: 0b00001001 = 0x09 (1 byte)
Option Value: 0x0900 (2 bytes)
Payload: 0Oxaea0155667924dff8a24e4cb35b9 (14 bytes)

3. Request with ciphertext = 0xaeal0l155667924dff8a24e4cb35b9, kid =
empty string, Partial IV = 0x05, and kid context = 0x44616c656b

Before compression (30 bytes):

[
hl’,
{ 4:h’’, 6:h’05", 10:h’"44616c656b’ 1},
h’aea0155667924dff8a24e4cb35b9’,

]

Selander, et al. Standards Track [Page 34]

RFC 8613 OSCORE July 2019

After compression (22 bytes):
Flag byte: 0b00011001 = 0x19 (1 byte)
Option Value: 0x19050544616c656b (8 bytes)
Payload: Oxae a0155667924dff8a24e4cb35b9 (14 bytes)

4. Response with ciphertext = 0xaea0155667924dff8a24e4cb35b9 and no
Partial IV

Before compression (18 bytes):

[
hII,
{1},
h’aea0155667924dff8a24e4cb35b9’,
]
After compression (14 bytes):
Flag byte: 0b00000000 = 0x00 (1 byte)
Option Value: 0x (0 bytes)
Payload: 0Oxaea0155667924dff8a24e4cb35b9 (14 bytes)

5. Response with ciphertext = 0xaeal0l1l55667924dff8a24e4cb35b9 and
Partial IV = 0x07

Before compression (21 bytes):
[
hll,
{ 6:h"07" 1},
h’aea0155667924dff8a24e4cb35b9’,
]
After compression (16 bytes):
Flag byte: 0b00000001 = 0x01 (1 byte)
Option Value: 0x0107 (2 bytes)

Payload: Oxaea0155667924dff8a24e4cb35b9 (14 bytes)

Selander, et al. Standards Track [Page 35]

RFC 8613 OSCORE July 2019

7. Message Binding, Sequence Numbers, Freshness, and Replay Protection
7.1. Message Binding

In order to prevent response delay and mismatch attacks
[CoAP-Actuators] from on-path attackers and compromised
intermediaries, OSCORE binds responses to the requests by including
the 'kid’ and Partial IV of the request in the AAD of the response.
Therefore, the server needs to store the ’'kid’ and Partial IV of the
request until all responses have been sent.

7.2. Sequence Numbers

An AEAD nonce MUST NOT be used more than once per AEAD key. The
uniqueness of (key, nonce) pairs is shown in Appendix D.4, and in
particular depends on a correct usage of Partial IVs (which encode
the Sender Sequence Numbers, see Section 5). If messages are
processed concurrently, the operation of reading and increasing the
Sender Sequence Number MUST be atomic.

7.2.1. Maximum Sequence Number

The maximum Sender Sequence Number is algorithm dependent (see
Section 12) and SHALL be less than 2740. If the Sender Sequence
Number exceeds the maximum, the endpoint MUST NOT process any more
messages with the given Sender Context. If necessary, the endpoint
SHOULD acquire a new security context before this happens. The
latter is out of scope of this document.

7.3. Freshness

For requests, OSCORE provides only the guarantee that the request is
not older than the security context. For applications having
stronger demands on request freshness (e.g., control of actuators),
OSCORE needs to be augmented with mechanisms providing freshness (for
example, as specified in [CoAP-ECHO-REQ-TAG]) .

Assuming an honest server (see Appendix D), the message binding
guarantees that a response is not older than its request. For
responses that are not notifications (i.e., when there is a single
response to a request), this gives absolute freshness. For
notifications, the absolute freshness gets weaker with time, and it
is RECOMMENDED that the client regularly re-register the observation.
Note that the message binding does not guarantee that a misbehaving
server created the response before receiving the request, i.e., it
does not verify server aliveness.

Selander, et al. Standards Track [Page 36]

RFC 8613 OSCORE July 2019

For requests and notifications, OSCORE also provides relative
freshness in the sense that the received Partial IV allows a
recipient to determine the relative order of requests or responses.

7.4. Replay Protection

In order to protect from replay of requests, the server’s Recipient
Context includes a Replay Window. A server SHALL verify that the
Sender Sequence Number received in the ’'Partial IV’ parameter of the
COSE object (see Section 6.1) has not been received before. If this
verification fails, the server SHALL stop processing the message, and
it MAY optionally respond with a 4.01 (Unauthorized) error message.
Also, the server MAY set an Outer Max-Age option with wvalue zero to
inform any intermediary that the response is not to be cached. The
diagnostic payload MAY contain the string "Replay detected". The
size and type of the Replay Window depends on the use case and the
protocol with which the OSCORE message is transported. In case of
reliable and ordered transport from endpoint to endpoint, e.g., TCP,
the server MAY just store the last received Partial IV and require
that newly received Partial IVs equal the last received Partial IV +
1. However, in the case of mixed reliable and unreliable transports
and where messages may be lost, such a replay mechanism may be too
restrictive and the default replay window may be more suitable (see
Section 3.2.2).

Responses (with or without Partial IV) are protected against replay
as they are bound to the request and the fact that only a single
response is accepted. In this case the Partial IV is not used for
replay protection of responses.

The operation of validating the Partial IV and updating the replay
protection MUST be atomic.

7.4.1. Replay Protection of Notifications

The following applies additionally when the Observe option is
supported.

The Notification Number (see Section 4.1.3.5.2) is initialized to the
Partial IV of the first successfully verified notification in
response to the registration request. A client MUST only accept at
most one Observe notification without Partial IV, and treat it as the
oldest notification received. A client receiving a notification
containing a Partial IV SHALL compare the Partial IV with the
Notification Number associated to that Observe registration. The
client MUST stop processing notifications with a Partial IV that has

Selander, et al. Standards Track [Page 37]

RFC 8613 OSCORE July 2019

been previously received. Applications MAY decide that a client only
processes notifications that have a greater Partial IV than the
Notification Number.

If the verification of the response succeeds, and the received
Partial IV was greater than the Notification Number, then the client
SHALL overwrite the corresponding Notification Number with the
received Partial IV.

7.5. Losing Part of the Context State

To prevent reuse of an AEAD nonce with the same AEAD key or the
acceptance of replayed messages, an endpoint needs to handle the
situation of losing rapidly changing parts of the context, such as
the Sender Sequence Number and Replay Window. These are typically
stored in RAM and therefore lost in the case of, e.g., an unplanned

reboot. There are different alternatives to recover, for example:

1. The endpoints can reuse an existing Security Context after
updating the mutable parts of the security context (Sender
Sequence Number and Replay Window). This requires that the

mutable parts of the security context are available throughout
the lifetime of the device or that the device can establish a
fresh security context after loss of mutable security context
data. Examples are given based on careful use of nonvolatile
memory, see Appendix B.1l.1 and the use of the Echo option, see
Appendix B.1l.2. If an endpoint makes use of a partial security
context stored in nonvolatile memory, it MUST NOT reuse a
previous Sender Sequence Number and MUST NOT accept previously
received messages.

2. The endpoints can reuse an existing shared Master Secret and
derive new Sender and Recipient Contexts, see Appendix B.2 for an
example. This typically requires a good source of randomness.

3. The endpoints can use a trusted third-party-assisted key
establishment protocol such as [OSCORE-PROFILE]. This requires

the execution of a three-party protocol and may require a good
source of randomness.

4. The endpoints can run a key exchange protocol providing forward
secrecy resulting in a fresh Master Secret, from which an
entirely new Security Context is derived. This requires a good
source of randomness, and additionally, the transmission and
processing of the protocol may have a non-negligible cost, e.g.,
in terms of power consumption.

Selander, et al. Standards Track [Page 38]

RFC 8613 OSCORE July 2019

The endpoints need to be configured with information about which
method is used. The choice of method may depend on capabilities of
the devices deployed and the solution architecture. Using a key
exchange protocol is necessary for deployments that require forward
secrecy.

8. Processing

This section describes the OSCORE message processing. Additional
processing for Observe or Block-wise are described in subsections.

Note that, analogously to [RFC7252] where the Token and source/
destination pair are used to match a response with a request, both
endpoints MUST keep the association (Token, {Security Context,
Partial IV of the request}), in order to be able to find the Security
Context and compute the AAD to protect or verify the response. The
association MAY be forgotten after it has been used to successfully
protect or verify the response, with the exception of Observe
processing, where the association MUST be kept as long as the
Observation is active.

The processing of the Sender Sequence Number follows the procedure
described in Section 3 of [IV-GEN].

8.1. Protecting the Request

Given a CoAP request, the client SHALL perform the following steps to
create an OSCORE request:

1. Retrieve the Sender Context associated with the target resource.

2. Compose the AAD and the plaintext, as described in Sections 5.3

and 5.4.
3. Encode the Partial IV (Sender Sequence Number in network byte
order) and increment the Sender Sequence Number by one. Compute

the AEAD nonce from the Sender ID, Common IV, and Partial IV as
described in Section 5.2.

4. Encrypt the COSE object using the Sender Key. Compress the COSE
object as specified in Section 6.

5. Format the OSCORE message according to Section 4. The OSCORE
option is added (see Section 4.1.2).

Selander, et al. Standards Track [Page 39]

RFC 8613 OSCORE July 2019

8.2.

Verifying the Request

A server receiving a request containing the OSCORE option SHALL
perform the following steps:

1.

Discard Code and all Class E options (marked in Figure 5 with ’'x’
in column E) present in the received message. For example, an
If-Match Outer option is discarded, but an Uri-Host Outer option
is not discarded.

Decompress the COSE object (Section 6) and retrieve the Recipient
Context associated with the Recipient ID in the ’'kid’ parameter,
additionally using the ’"kid context’, if present. Note that the
Recipient Context MAY be retrieved by deriving a new security
context, e.g. as described in Appendix B.2. If either the
decompression or the COSE message fails to decode, or the server
fails to retrieve a Recipient Context with Recipient ID
corresponding to the ’"kid’ parameter received, then the server
SHALL stop processing the request.

* TIf either the decompression or the COSE message fails to
decode, the server MAY respond with a 4.02 (Bad Option) error
message. The server MAY set an Outer Max—-Age option with
value zero. The diagnostic payload MAY contain the string
"Failed to decode COSE".

* TIf the server fails to retrieve a Recipient Context with
Recipient ID corresponding to the ’'kid’ parameter received,
the server MAY respond with a 4.01 (Unauthorized) error
message. The server MAY set an Outer Max—-Age option with
value zero. The diagnostic payload MAY contain the string
"Security context not found".

Verify that the Partial IV has not been received before using the
Replay Window, as described in Section 7.4.

Compose the AAD, as described in Section 5.4.

Compute the AEAD nonce from the Recipient ID, Common IV, and the
Partial IV, received in the COSE obiject.

Selander, et al. Standards Track [Page 40]

RFC 8613 OSCORE July 2019

6. Decrypt the COSE object using the Recipient Key, as per
Section 5.3 of [RFC8152]. (The decrypt operation includes the
verification of the integrity.)

* If decryption fails, the server MUST stop processing the
request and MAY respond with a 4.00 (Bad Request) error
message. The server MAY set an Outer Max-Age option with
value zero. The diagnostic payload MAY contain the string
"Decryption failed".

* If decryption succeeds, update the Replay Window, as described
in Section 7.

7. Add decrypted Code, options, and payload to the decrypted
request. The OSCORE option is removed.

8. The decrypted CoAP request is processed according to [RFC7252].
8.2.1. Supporting Block-wise

If Block-wise is supported, insert the following step before any
other:

A. If Block-wise is present in the request, then process the Outer
Block options according to [RFC7959], until all blocks of the request
have been received (see Section 4.1.3.4).

8.3. Protecting the Response

If a CoAP response is generated in response to an OSCORE request, the
server SHALL perform the following steps to create an OSCORE
response. Note that CoAP error responses derived from CoAP
processing (step 8 in Section 8.2) are protected, as well as
successful CoAP responses, while the OSCORE errors (steps 2, 3, and 6
in Section 8.2) do not follow the processing below but are sent as
simple CoAP responses, without OSCORE processing.

1. Retrieve the Sender Context in the Security Context associated
with the Token.

2. Compose the AAD and the plaintext, as described in Sections 5.3
and 5.4.

3. Compute the AEAD nonce as described in Section 5.2:

* Either use the AEAD nonce from the request, or

Selander, et al. Standards Track [Page 41]

RFC 8613 OSCORE July 2019

* Encode the Partial IV (Sender Sequence Number in network byte
order) and increment the Sender Sequence Number by one.
Compute the AEAD nonce from the Sender ID, Common IV, and
Partial IV.

4. Encrypt the COSE object using the Sender Key. Compress the COSE
object as specified in Section 6. If the AEAD nonce was
constructed from a new Partial IV, this Partial IV MUST be
included in the message. TIf the AEAD nonce from the request was
used, the Partial IV MUST NOT be included in the message.

5. Format the OSCORE message according to Section 4. The OSCORE
option is added (see Section 4.1.2).

8.3.1. Supporting Observe

If Observe is supported, insert the following step between steps 2
and 3 of Section 8.3:

A. TIf the response is an Observe notification:
o If the response is the first notification:
* compute the AEAD nonce as described in Section 5.2:
+ Either use the AEAD nonce from the request, or
+ Encode the Partial IV (Sender Sequence Number in network
byte order) and increment the Sender Sequence Number by one.
Compute the AEAD nonce from the Sender ID, Common IV, and
Partial IV.
Then, go to 4.
o If the response is not the first notification:
* encode the Partial IV (Sender Sequence Number in network byte
order) and increment the Sender Sequence Number by one.

Compute the AEAD nonce from the Sender ID, Common IV, and
Partial IV, then go to 4.

Selander, et al. Standards Track [Page 42]

RFC 8613 OSCORE July 2019

8.4.

Verifying the Response

A client receiving a response containing the OSCORE option SHALL
perform the following steps:

1.

8.4.

1.

Discard Code and all Class E options (marked in Figure 5 with ’'x’
in column E) present in the received message. For example, ETag
Outer option is discarded, as well as Max—-Age Outer option.

Retrieve the Recipient Context in the Security Context associated
with the Token. Decompress the COSE object (Section 6). If
either the decompression or the COSE message fails to decode,
then go to 8.

Compose the AAD, as described in Section 5.4.

Compute the AEAD nonce

* If the Partial IV is not present in the response, the AEAD
nonce from the request is used.

* If the Partial IV is present in the response, compute the AEAD
nonce from the Recipient ID, Common IV, and the Partial IV,

received in the COSE obiject.

Decrypt the COSE object using the Recipient Key, as per

Section 5.3 of [RFC8152]. (The decrypt operation includes the
verification of the integrity.) If decryption fails, then go to
8.

Add decrypted Code, options and payload to the decrypted request.
The OSCORE option is removed.

The decrypted CoAP response is processed according to [RFC7252].

In case any of the previous erroneous conditions apply: the
client SHALL stop processing the response.

Supporting Block-wise

If Block-wise is supported, insert the following step before any
other:

A.
Block options according to [RFC7959], until all blocks of the
response have been received (see Section 4.1.3.4).

If Block-wise is present in the response, then process the Outer

Selander, et al. Standards Track [Page 43]

RFC 8613 OSCORE July 2019

8.4.2. Supporting Observe
If Observe is supported:
Insert the following step between step 5 and step 6:
A. If the request was an Observe registration, then:

o If the Partial IV is not present in the response, and the Inner
Observe option is present, and the AEAD nonce from the request was
already used once, then go to 8.

o If the Partial IV is present in the response and the Inner Observe
option is present, then follow the processing described in
Section 4.1.3.5.2 and Section 7.4.1, then:

* initialize the Notification Number (if first successfully
verified notification), or

* overwrite the Notification Number (if the received Partial IV
was greater than the Notification Number).

Replace step 8 of Section 8.4 with:

B. 1In case any of the previous erroneous conditions apply: the
client SHALL stop processing the response. An error condition
occurring while processing a response to an observation request does
not cancel the observation. A client MUST NOT react to failure by
re-registering the observation immediately.

9. Web Linking

The use of OSCORE MAY be indicated by a target "osc" attribute in a
web link [RFC8288] to a resource, e.g., using a link-format document
[RFC6690] if the resource is accessible over CoAP.

The "osc" attribute is a hint indicating that the destination of that
link is only accessible using OSCORE, and unprotected access to it is
not supported. Note that this is simply a hint, it does not include
any security context material or any other information required to
run OSCORE.

A value MUST NOT be given for the "osc" attribute; any present value
MUST be ignored by parsers. The "osc" attribute MUST NOT appear more
than once in a given link-value; occurrences after the first MUST be
ignored by parsers.

Selander, et al. Standards Track [Page 44]

RFC 8613 OSCORE July 2019

10.

The example in Figure 11 shows a use of the "osc" attribute: the
client does resource discovery on a server and gets back a list of
resources, one of which includes the "osc" attribute indicating that
the resource is protected with OSCORE. The link-format notation (see
Section 5 of [RFC6690]) is used.

REQ: GET /.well-known/core
RES: 2.05 Content
</sensors/temp>;osc,
</sensors/light>;if="sensor"
Figure 11: The Web Link
CoAP-to-CoAP Forwarding Proxy
CoAP is designed for proxy operations (see Section 5.7 of [RFC7252]).
OSCORE is designed to work with OSCORE-unaware CoAP proxies.
Security requirements for forwarding are listed in Section 2.2.1 of
[COAP-E2E-Sec]. Proxy processing of the (Outer) Proxy-Uri option
works as defined in [RFC7252]. Proxy processing of the (Outer) Block
options works as defined in [RFC7959].
However, not all CoAP proxy operations are useful:
o Since a CoAP response is only applicable to the original CoAP
request, caching is in general not useful. 1In support of existing
proxies, OSCORE uses the Outer Max-Age option, see

Section 4.1.3.1.

o Proxy processing of the (Outer) Observe option as defined in
[REFC7641] is specified in Section 4.1.3.5.

Optionally, a CoAP proxy MAY detect OSCORE and act accordingly. An
OSCORE—aware COAP proxy:

o SHALL bypass caching for the request if the OSCORE option is
present.

o SHOULD avoid caching responses to requests with an OSCORE option.

In the case of Observe (see Section 4.1.3.5),