Net wor k Wor ki ng Group D. Eastlake 3rd

Request for Comments: 3275 Mot or ol a
bsol etes: 3075 J. Reagle
Cat egory: Standards Track WBC
D. Solo

Citigroup

March 2002

(Ext ensi bl e Markup Language) XM.- Si gnature Syntax and Processing
Status of this Menp

Thi s docunent specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice

Copyright (c) 2002 The Internet Society & WVBC (MT, INRIA Keio), Al
Ri ghts Reserved.

Abst ract

Thi s docunment specifies XM. (Extensibl e Markup Language) digital
signature processing rules and syntax. XM Signatures provide
integrity, nessage authentication, and/or signer authentication
services for data of any type, whether |ocated within the XM that
i ncludes the signature or el sewhere.

Tabl e of Contents

1. IntroduCti ON. ... o 3
1.1 Editorial and Conformance Conventions......................... 4
1.2 Design Philosophy. 4
1.3 Versions, Namespaces and ldentifiers.......... 4
1.4 Acknow edgemBnt S. 6
1.5 VMBC StatUS. . .ottt 6
2. Signature Overview and Exanples........... 7
2.1 Sinple Exanple (Signature, Signedlnfo, Methods, and References) 8
2.1.1 More on Reference. e 9
2.2 Extended Exanple (Object and SignatureProperty)............... 10
2.3 Extended Exanple (Object and Manifest)........................ 12
3.0 Processing Rul es.......... .. . e e 13
3.1 Core Generati ON. ... 13
3.1.1 Reference Generati on., 13

East| ake, et al. St andards Track [Page 1]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

R = N R R e R N R O at ah o R s ok b ah aF oo b S NN N NP S AR AR AR
COONNAPRRWWNNRORWNROUARPRRAARRRRAVNRWWWRRWWONROONNNE

L2 Signature Generation. 13
Core Validation. e 14
.1 Reference Validation.......... i, 14
.2 Signature Validation....... 15
Core Signature SyNtaX. 15
1 The ds: CryptoBinary Sinple Type....... 17
The Signature element. i, 17
The SignatureValue Element. i 18
The Signedinfo Element. e 18
1 The CanonicalizationMethod Elenment................. 19
2 The SignatureMethod Element.......... 21
3 The Reference Element. 21
3.1 The URI Attribute....... ... e 22
3.2 The Reference Processing Mddel........ 23
3.3 Sane-Docunment URI-References............ 25
3.4 The Transforms Elenent....... 26
3.5 The DigestMethod Element. 28
3.6 The DigestValue Element............. i, 28
The Keylnfo Element. e 29
1 The KeyNane Element. i 31
2 The KeyValue Elenment. e 31
2.1 The DSAKeyValue Element....... 32
2.2 The RSAKeyValue Element....... 33
3 The Retrieval Method Element......... 34
4 The X509Data El ement e 35
5 The PGPData El enment. e 38
6 The SPKIData Element. 39
7 The MgmtData Element. 40
The Qoject Element. e 40
Additional Signature Syntax............... .. 42
The Manifest Element. 42
The SignatureProperties Elenment........... 43
Processing Instructions in Signature Elenents................. 44
Comrents in Signature Elements......... 44
AL gori t B, . . 44
Algorithmldentifiers and I nplenentation Requirenments......... 44
Message Digest S. ... e 46
L SHA- L. . e 46
Message Authentication Codes........ 46
L HMAC. . o 46
Signature Algorithms. 47
L DS A 47
2 PKCSL (RSA-SHAL) 48
Canonicalization Algorithms. 49
1 Canonical XMo. 49
Transform Algorithms. 50
1 Canonicalization....... 50
L2 BaSEbA. . 50

East | ake, et al. St andards Track [Page 2]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

6.6.3 XPath Filtering....... e 51
6.6.4 Envel oped Signature Transform.............. 54
6.6.5 XSLT Transform 54
7. XML Canonicalization and Syntax Constraint Considerations...... 55
7.1 XML 1.0, Syntax Constraints, and Canonicalization............. 56
7.2 DOM SAX Processing and Canonicalization....................... 57
7.3 Nanespace Context and Portable Signatures..................... 58
8.0 Security Considerati Ons.0 59
8.1 TransformB. 59
8.1.1 Only What is Signed isS SecUre. 60
8.1.2 Only What is *Seen’ Should be Signed........................ 60
8.1.3 "See’ What is Signed.......... e 61
8.2 Check the Security Mudel........ i, 62
8.3 Algorithns, Key Lengths, Certificates, Etc.................... 62
9. Schema, DID, Data Mddel, and Valid Exanples.................... 63
10. Defini tioNns. 63
Appendi x: Changes from RFC 3075. 67
Ref Br eNCEeS. . .. 67
AUt hor S’ AdAr BSSES. . . oot 72
Full Copyright Statement........... i, 73

1. Introduction

This docunent specifies XM. syntax and processing rules for creating
and representing digital signatures. XM Signhatures can be applied
to any digital content (data object), including XM.. An XM
Signature nay be applied to the content of one or nobre resources.
Envel oped or envel oping signatures are over data within the same XM
docunent as the signature; detached signatures are over data externa
to the signature elenent. Mre specifically, this specification
defines an XML signature el enment type and an XM. signature
application; conformance requirenents for each are specified by way
of schema definitions and prose respectively. This specification

al so includes other useful types that identify methods for
referencing collections of resources, algorithns, and keying and
managenent i nformation.

The XML Signature is a nmethod of associating a key with referenced
data (octets); it does not nornatively specify how keys are
associated with persons or institutions, nor the neaning of the data
bei ng referenced and signed. Consequently, while this specification
is an inportant conponent of secure XM. applications, it itself is
not sufficient to address all application security/trust concerns,
particularly with respect to using signed XM. (or other data formats)
as a basis of human-to-human conmuni cati on and agreenment. Such an
application nust specify additional key, algorithm processing and
rendering requirenments. For further information, please see Security
Consi derations (section 8).

East | ake, et al. St andards Track [Page 3]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

1.1 Editorial and Confornmance Conventions

For readability, brevity, and historic reasons this docunent uses the
term"signature" to generally refer to digital authentication val ues
of all types. Obviously, the termis also strictly used to refer to
aut hentication values that are based on public keys and that provide
signer authentication. Wen specifically discussing authentication
val ues based on symetric secret key codes we use the terns

aut henticators or authentication codes. (See Check the Security
Model , section 8.3.)

This specification provides an XM. Schema [XML-schenma] and DTD [XM] .
The schema definition is normative.

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
specification are to be interpreted as described in RFC2119

[KEYWORDS] :

"they MUST only be used where it is actually required for
interoperation or to limt behavior which has potential for
causing harm (e.g., limting retransm ssions)"

Consequently, we use these capitalized key words to unanbi guously
specify requirenments over protocol and application features and
behavi or that affect the interoperability and security of

i mpl enent ati ons. These key words are not used (capitalized) to
describe XML grammar; schema definitions unanbi guously describe such
requirenents and we wi sh to reserve the prom nence of these terns for
the natural |anguage descriptions of protocols and features. For
instance, an XM. attribute nmight be described as being "optional."
Compliance with the Nanespaces in XM specification [XM.-ns] is
descri bed as "REQU RED. "

1. 2 Design Phil osophy
The desi gn phil osophy and requirenents of this specification are
addressed in the XM.- Signature Requirenents docunment [XM- Signat ure-
RO .

1.3 Versions, Namespaces and ldentifiers
No provision is nade for an explicit version nunber in this syntax.
If a future version is needed, it will use a different nanespace
The XML nanespace [XM.-ns] URI that MJST be used by inpl ementations
of this (dated) specification is:

xm ns="http://ww. w3. or g/ 2000/ 09/ xm dsi g#"

East | ake, et al. St andards Track [Page 4]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

This nanespace is also used as the prefix for algorithmidentifiers
used by this specification. Wile applications MJST support XM. and
XML nanespaces, the use of internal entities [XM.] or our "dsig" XM
nanespace prefix and defaul ting/ scopi ng conventions are OPTI ONAL; we
use these facilities to provide conpact and readabl e exanpl es.

This specification uses Uniform Resource ldentifiers [URI] to
identify resources, algorithns, and semantics. The URl in the
namespace decl aration above is also used as a prefix for UR s under
the control of this specification. For resources not under the
control of this specification, we use the designated Uniform Resource
Nanmes [URN] or Uniform Resource Locators [URL] defined by its
normati ve external specification. |f an external specification has
not allocated itself a Uniform Resource Identifier we allocate an

i dentifier under our own nanmespace. For instance:

Si gnatureProperties is identified and defined by this specification’s
namespace
htt p: // ww. w3. or g/ 2000/ 09/ xm dsi g#Si gnat ur eProperties

XSLT is identified and defined by an external UR
http://ww. w3. org/ TR/ 1999/ REC- xsl t-19991116

SHAL1 is identified via this specification’'s nanespace and defined via
a normative reference
http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal
FIPS PUB 180-1. Secure Hash Standard. U.S. Departnment of
Commer ce/ National Institute of Standards and Technol ogy.

Finally, in order to provide for terse nanmespace decl arations we
sonetinmes use XM. internal entities [XM.] within URIs. For instance

<?xm version="1.0" ?>

<I DOCTYPE Si gnat ure SYSTEM
"xm dsi g-core-schema. dtd" [<!ENTITY dsig
"http://ww. w3. org/ 2000/ 09/ xm dsi g#">] >

<Si gnature xnm ns="&dsig;" |d="MFirstSignature">
<Si gnedl nf o>

East | ake, et al. St andards Track [Page 5]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

1.4 Acknow edgenents

The contributions of the followi ng Wrking Goup nenbers to this
specification are gratefully acknow edged:

Mark Bartel, Accelio (Author)

John Boyer, PureEdge (Author)

Mari ano P. Consens, University of Waterl oo
John Cowan, Reuters Health

Donal d Eastl ake 3rd, Mdtorola (Chair, Author/Editor)
Barb Fox, M crosoft (Author)

Christian Geuer-Pol |l mann, University Siegen
Tom G ndin, |BM

Phillip Hallam Baker, VeriSign Inc

Ri chard Hinmes, US Courts

Merlin Hughes, Baltinore

Gregor Karlinger, 1AIK TU G az

Bri an LaMacchia, Mcrosoft (Author)

Peter Lipp, IAIK TU Graz

Joseph Reagle, WBC (Chair, Author/Editor)
Ed Si non, XM.sec (Author)

David Solo, Citigroup (Author/Editor)
Petteri Stenius, DONE Information, Ltd
Raghavan Sri ni vas, Sun

Kent Tanura, |BM

W nchel Todd Vincent 111, GSU

Carl Wallace, Corsec Security, Inc.

Greg Wi tehead, Signio Inc.

L S T TR . N . N . N N I N N S

As are the Last Call comments fromthe foll ow ng:

Dan Connolly, WBC
Paul Biron, Kaiser Permanente, on behalf of the XML Schema WG
Martin J. Duerst, WBC, and Masahiro Sekiguchi, Fujitsu; on
behal f of the Internationalization W& | G

* Jonat han Marsh, M crosoft, on behalf of the Extensible
Styl esheet Language WG

1.5 WBC St at us

The World Wde Wb Consortium Recomendati on corresponding to
this RFC is at:

http://ww. w3. org/ TR/ 2002/ REC- xm dsi g- cor e- 20020212/

East | ake, et al. St andards Track [Page 6]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

2. Signature Overvi ew and Exanpl es

This section provides an overvi ew and exanples of XM_ digita
signature syntax. The specific processing is given in Processing
Rul es (section 3). The formal syntax is found in Core Signature
Syntax (section 4) and Additional Signature Syntax (section 5).

In this section, an informal representati on and exanples are used to
describe the structure of the XM signature syntax. This
representation and exanples nmay onmt attributes, details and
potential features that are fully explained | ater

XM. Signatures are applied to arbitrary digital content (data
objects) via an indirection. Data objects are digested, the
resulting value is placed in an elenent (with other information) and
that elenent is then digested and cryptographically signed. XM
digital signatures are represented by the Signature el enment which has
the following structure (where "?" denotes zero or one occurrence;
"+" denotes one or nore occurrences; and "*" denotes zero or nore
occurrences):

<Si gnature | D?>
<Si gnedl nf o>
<Canoni cal i zat i onMet hod/ >
<Si gnat ur eMet hod/ >
(<Reference URI ? >
(<Transforms>)?
<Di gest Met hod>
<Di gest Val ue>
</ Ref erence>) +
</ Si gnedl nf o>
<Si gnat ur eVal ue>
(<Keyl nf 0>) ?
(<Obj ect 1 D?>)*
</ Si gnat ur e>

Signatures are related to data objects via URIs [URI]. Wthin an XM
docunent, signatures are related to | ocal data objects via fragnent
identifiers. Such |ocal data can be included within an envel opi ng
signature or can encl ose an envel oped signature. Detached signatures
are over external network resources or |ocal data objects that reside
within the sane XML docunent as sibling elenents; in this case, the
signature is neither enveloping (signature is parent) nor envel oped
attribute (signature is child). Since a Signature elenment (and its

I d val ue/ nanme) may co-exist or be conbined with other elenents (and
their I1Ds) within a single XM. docunent, care should be taken in
choosi ng names such that there are no subsequent collisions that
violate the I D uni queness validity constraint [XM].

East | ake, et al. St andards Track [Page 7]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

2.1 Sinple Exanple (Signature, Signedlnfo, Mthods, and References)

The followi ng exanple is a detached signature of the content of the
HTM.4 in XM specification

[s01] <Signature |d="MFirstSignature"
xm ns="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
[s02] <Si gnedl nf o>
[s03] <Canoni cal i zati onMet hod
Al gorithm="http://ww. w3. org/ TR/ 2001/ REC- xm - c14n- 20010315"/ >
[s04] <Si gnat ur eMet hod
Al gorithnme"http://ww. w3. org/ 2000/ 09/ xm dsi g#dsa- shal"/ >
[s05] <Ref er ence
URI ="ht t p: // www. W3. or g/ TR/ 2000/ REC- xht i 1- 20000126/ " >

[s06] <Tr ansf or ns>
[s07] <Tr ansform
Al gorithnm="http://ww.w3. org/ TR/ 2001/ REC- xm - c14n- 20010315"/ >
[s08] </ Transf or ns>
[s09] <Di gest Met hod
Al gorithm="http://ww. w3. org/ 2000/ 09/ xm dsi g#shal"/ >
[s10] <Di gest Val ue>j 61 wx3r vEPQOVKt Mup4NbeVu8nk=</ Di gest Val ue>
[s11] </ Ref erence>

[s12] </ Signedl nfo>
[s13] <Si gnat ur eVal ue>MOOCFFr VLt Rl k=. . . </ Si gnat ur eVal ue>
[s14] <Keyl nf 0>

[s15a] <KeyVal ue>

[s15b] <DSAKeyVal ue>

[s15c] <P> .. </P><@...</Q@<C. .. </ G<Y> .. </ Y>
[s15d] </ DSAKeyVal ue>

[s15e] </ KeyVal ue>

[s16] </ Keyl nf 0>
[s17] </ Signature>

[s02-12] The required Signedinfo elenent is the information that is
actually signed. Core validation of Signedlnfo consists of two
mandat ory processes: validation of the signature over Signedlnfo and
val i dati on of each Reference digest within Signedlnfo. Note that the
al gorithnms used in calculating the SignatureValue are al so included
in the signed information while the SignatureVal ue el enment is outside
Si gnedl nf o.

[s03] The CanonicalizationMethod is the algorithmthat is used to
canoni cal i ze the Signedlinfo elenent before it is digested as part of
the signature operation. Note that this exanple, and all exanples in
this specification, are not in canonical form

East | ake, et al. St andards Track [Page 8]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

[s04] The SignatureMethod is the algorithmthat is used to convert

t he canonicalized Signedinfo into the SignaturevValue. It is a

conbi nati on of a digest algorithmand a key dependent al gorithm and
possi bly other algorithnms such as paddi ng, for exanple RSA-SHAl. The
al gorithm nanes are signed to resist attacks based on substituting a
weaker algorithm To pronote application interoperability we specify
a set of signature algorithns that MIST be i npl enented, though their
use is at the discretion of the signature creator. W specify
additional algorithnms as RECOMVENDED or OPTI ONAL for inplenentation;
the design also pernits arbitrary user specified algorithns.

[s05-11] Each Reference el enent includes the digest nethod and
resulting digest value calculated over the identified data object.
It may al so include transformations that produced the input to the
di gest operation. A data object is signed by conputing its digest
val ue and a signature over that value. The signature is later
checked via reference and signature validation.

[s14-16] Keylnfo indicates the key to be used to validate the
signature. Possible forms for identification include certificates,
key nanes, and key agreenent algorithnms and information -- we define
only a few Keylnfo is optional for two reasons. First, the signer
may not wish to reveal key information to all document processing
parties. Second, the information may be known within the
application’s context and need not be represented explicitly. Since
Keylnfo is outside of Signedinfo, if the signer wishes to bind the
keying information to the signature, a Reference can easily identify
and include the Keylnfo as part of the signature.

2.1.1 More on Reference

[s05] <Ref er ence
URI ="ht t p: // www. W3. or g/ TR/ 2000/ REC- xht ml 1- 20000126/ " >

[s06] <Tr ansf or ns>
[s07] <Tr ansform
Al gorithnm="http://ww. w3. org/ TR/ 2001/ REC- xm - c14n-20010315"/ >
[s08] </ Transf or ns>
[s09] <Di gest Met hod
Al gorithm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/ >
[s10] <Di gest Val ue>j 61 wx3r vEPQOVKt Mup4NbeVu8nk=</ Di gest Val ue>

[s11] </ Ref erence>

[s05] The optional URI attribute of Reference identifies the data
object to be signed. This attribute may be omitted on at nost one
Reference in a Signature. (This limtation is inposed in order to
ensure that references and objects may be mat ched unanbi guously.)

East | ake, et al. St andards Track [Page 9]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

[s05-08] This identification, along with the transforns, is a
description provided by the signer on how they obtained the signed
data object in the formit was digested (i.e., the digested content).
The verifier may obtain the digested content in another nmethod so
long as the digest verifies. |In particular, the verifier nmay obtain
the content froma different |ocation such as a |ocal store, as
opposed to that specified in the URI

[s06-08] Transfornms is an optional ordered list of processing steps
that were applied to the resource’s content before it was digested.
Transforns can include operations such as canonicalization
encodi ng/ decodi ng (including conpression/inflation), XSLT, XPath, XM
schena validation, or Xinclude. XPath transforns pernmit the signer
to derive an XM. docunent that onits portions of the source docunent.
Consequently those excluded portions can change wi thout affecting
signature validity. For exanple, if the resource being signed

encl oses the signature itself, such a transform nust be used to
exclude the signature value fromits own conputation. |If no
Transforns el enent is present, the resource’s content is digested
directly. While the Wrking Goup has specified mandatory (and
optional) canonicalization and decodi ng al gorithns, user specified
transforns are permtted.

[s09-10] DigestMethod is the algorithmapplied to the data after
Transforns is applied (if specified) to yield the DigestValue. The
signing of the DigestValue is what binds a resources content to the
signer’'s key.

2.2 Extended Exanple (Object and SignatureProperty)

This specification does not address nmechani sms for nmaki ng statenents
or assertions. Instead, this docunent defines what it neans for
sonmething to be signed by an XML Signature (integrity, message

aut henti cation, and/or signer authentication). Applications that

wi sh to represent other senmantics nust rely upon other technol ogi es,
such as [XM., RDF]. For instance, an application mght use a

foo: assuredby attribute within its own markup to reference a
Signature elenment. Consequently, it’'s the application that nust
under stand and know how to nake trust decisions given the validity of
the signature and the neani ng of assuredby syntax. W also define a
Si gnatureProperties element type for the inclusion of assertions
about the signature itself (e.g., signature senantics, the tinme of
signing or the serial nunmber of hardware used in cryptographic
processes). Such assertions may be signed by including a Reference
for the SignatureProperties in Signedinfo. While the signing
application should be very careful about what it signs (it should
understand what is in the SignatureProperty) a receiving application
has no obligation to understand that senantic (though its parent

East | ake, et al. St andards Track [Page 10]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

trust engine may wish to). Any content about the signature
generation may be located within the SignatureProperty elenent. The
mandat ory Target attribute references the Signature elenment to which
the property applies.

Consi der the preceding exanple with an additional reference to a
| ocal (bject that includes a SignatureProperty elenent. (Such a
signature would not only be detached [p02] but envel oping [p03].)

[] <Signature |Id="MSecondSi gnature" ...>
[pO1] <Si gnedl nf o>

[] c.
[p0O2] <Reference URI ="http://ww. w3. org/ TR/ xnl - styl esheet/">

[| .
[p0O3] <Ref erence URI ="#AMadeUpTi neSt anp"
[p04]
Type="http://www. w3. or g/ 2000/ 09/ xm dsi g#Si gnat ur ePr operti es">
[p0O5] <Di gest Met hod
Al gorithnm="http://ww. w3. org/ 2000/ 09/ xml dsi g#shal"/ >
[p06] <Di gest Val ue>k3453r vEPQOVKt Mup4NbeVu8nk=</ Di gest Val ue>
[p0O7] </ Ref erence>
[p08] </ Si gnedl nf o>
[p09] ...
[p10] <nject>
[p11] <Si gnat ur eProperti es>

[p12] <Si gnat ureProperty |d="AMadeUpTi meSt anp"
Tar get =" #MySecondSi gnat ure" >
[p13] <timestanp xm ns="http://wwm. ietf.org/rfcXXXX. txt">
[p14] <dat €>19990908</ dat e>
[p15] <time>14: 34: 34:; 34</ti me>
[p16] </tinestanp>
[p17] </ Si gnat ur ePr operty>

[p18] </ Si gnat ur ePr operties>
[p19] </ Object>
[p20] </ Si gnat ur e>

[p04] The optional Type attribute of Reference provides information
about the resource identified by the URI. In particular, it can
indicate that it is an Object, SignatureProperty, or Mnifest
element. This can be used by applications to initiate specia
processi ng of some Reference el enents. References to an XM data

el ement within an bject element SHOULD identify the actual el enent
pointed to. Were the elenment content is not XML (perhaps it is

bi nary or encoded data) the reference should identify the bject and
the Reference Type, if given, SHOULD indicate Object. Note that Type
is advisory and no action based on it or checking of its correctness
is required by core behavior

East | ake, et al. St andards Track [Page 11]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

[p10] bject is an optional elenent for including data objects within
the signature elenent or elsewhere. The Cbject can be optionally
typed and/or encoded.

[p11- 18] Signature properties, such as tine of signing, can be
optionally signed by identifying themfromw thin a Reference.
(These properties are traditionally called signature "attributes"

al though that termhas no relationship to the XML term "attribute".)

2.3 Extended Exanple (Object and Manifest)

The Manifest elenent is provided to neet additional requirenents not
directly addressed by the nmandatory parts of this specification. Two
requi renents and the way the Manifest satisfies themfollow

First, applications frequently need to efficiently sign multiple data
obj ects even where the signature operation itself is an expensive
public key signature. This requirenment can be net by incl uding

mul tiple Reference el ements within Signedlnfo since the inclusion of
each di gest secures the data digested. However, sone applications
may not want the core validation behavior associated with this
approach because it requires every Reference within Signedinfo to
undergo reference validation -- the Di gestVal ue el enents are checked.
These applications nay wish to reserve reference validation decision
logic to thenselves. For exanple, an application night receive a
signature valid Signedlnfo elenent that includes three Reference
elements. |If a single Reference fails (the identified data object
when di gested does not yield the specified DigestValue) the signature
woul d fail core validation. However, the application my w sh to
treat the signature over the two valid Reference elenents as valid or
take different actions depending on which fails. To acconplish this,
Signedlnfo would reference a Manifest el ement that contains one or
nore Reference elenents (with the sane structure as those in
Signedlnfo). Then, reference validation of the Mnifest is under
application control

Second, consider an application where nany signatures (using
different keys) are applied to a | arge nunber of documents. An
inefficient solution is to have a separate signature (per key)
repeatedly applied to a large Signedinfo elenment (wth many

Ref erences); this is wasteful and redundant. A nore efficient
solution is to include many references in a single Manifest that is
then referenced fromnultiple Signature el enents.

The exanpl e bel ow i ncludes a Reference that signs a Manifest found
within the Object el enent.

East | ake, et al. St andards Track [Page 12]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

[1 ...
[mD1] <Reference URI ="#MFirst Manifest"

[m02] Type="http://www. w3. or g/ 2000/ 09/ xm dsi g#Mani f est " >
[m03] <Di gest Met hod
Al gorithn="http://ww.w3. org/ 2000/ 09/ xm dsi g#shal"/ >
[mD4] <Di gest Val ue>345x3r vEPQOVKt Mup4NbeVu8nk=</ Di gest Val ue>

[m05] </ Ref erence>

[1 ...

[M06] <Object>

[m07] <Mani fest 1d="MFirstMnifest">

[m08] <Ref er ence>
[mD9] Ca

[mLO] </ Ref erence>
[m1] <Ref erence>
[mL2] C

[mL3] </ Ref erence>

[mL4] </ Mani f est >
[mMl5] </ hject>

3.0 Processing Rules

The sections bel ow describe the operations to be perforned as part of
signature generation and validation

3.1 Core Ceneration

The REQUI RED steps include the generation of Reference el enents and
t he Si gnatureVal ue over Signedl nfo.

3.1.1 Reference Ceneration
For each data object being signed:

1. Apply the Transforms, as determ ned by the application, to the
dat a object.

2. Calculate the digest value over the resulting data object.

3. Create a Reference el enent, including the (optional)
identification of the data object, any (optional) transform
el enments, the digest algorithmand the DigestValue. (Note, it is
the canonical form of these references that are signed in 3.1.2
and validated in 3.2.1.)

3.1.2 Sighature Ceneration
1. Create Signedinfo el ement wth SignatureMethod,
Canoni cal i zat i onMet hod and Ref erence(s).

2. Canonicalize and then cal cul ate the SignatureVal ue over Signedlnfo
based on al gorithns specified in Signedlnfo.

East | ake, et al. St andards Track [Page 13]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

3. Construct the Signature el enent that includes Signedlnfo,
hject(s) (if desired, encoding may be different than that used
for signing), Keylnfo (if required), and SignatureVal ue.

Note, if the Signature includes sane-docunent references, [XM] or

[XML- schema] validation of the document might introduce changes that
break the signature. Consequently, applications should be careful to
consistently process the docunent or refrain fromusing externa
contributions (e.g., defaults and entities).

3.2 Core Validation

The REQUI RED steps of core validation include (1) reference
validation, the verification of the digest contained in each
Ref erence in Signedlnfo, and (2) the cryptographic signature
val idation of the signature cal cul ated over Signedl nfo.

Note, there nmay be valid signatures that sone signature applications
are unable to validate. Reasons for this include failure to

i mpl enent optional parts of this specification, inability or
unwi I Ii ngness to execute specified algorithns, or inability or
unwi | I i ngness to dereference specified URIs (sone URI schenmes may
cause undesirabl e side effects), etc.

Conparison of values in reference and signature validation are over
the nuneric (e.g., integer) or decoded octet sequence of the val ue.
Different inplenmentations nay produce different encoded di gest and
si gnature val ues when processing the sanme resources because of
variances in their encoding, such as accidental white space. But if
one uses nuneric or octet conparison (choose one) on both the stated
and conputed val ues these problens are elinnated.

3.2.1 Reference Validation

1. Canonicalize the Signedlnfo el enment based on the

Canoni cal i zati onMet hod i n Si gnedl nf o.

2. For each Reference in Signedlnfo:

2.1 Obtain the data object to be digested. (For exanmple, the
signature application may dereference the URl and execute
Transforns provided by the signer in the Reference el ement, or
it may obtain the content through other nmeans such as a | oca
cache.)

2.2 Digest the resulting data object using the D gestMthod
specified in its Reference specification

2.3 Conpare the generated digest value agai nst DigestValue in the
Signedlnfo Reference; if there is any mismatch, validation
fails.

East | ake, et al. St andards Track [Page 14]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

Note, Signedinfo is canonicalized in step 1. The application nust
ensure that the CanonicalizationMethod has no dangerous side affects,
such as rewiting URIs, (see CanonicalizationMethod (section 4.3))
and that it Sees Wat is Signed, which is the canonical form

3.2.2 Signature Validation

1. Cbtain the keying informati on from Keylnfo or froman externa
sour ce.
2. (btain the canonical formof the SignatureMethod using the
Canoni cal i zati onMet hod and use the result (and previously obtained
Keyl nfo) to confirmthe SignatureVal ue over the Signedlnfo
el ement .

Note, Keylnfo (or sone transformed version thereof) may be signed via
a Reference elenment. Transformation and validation of this reference
(3.2.1) is orthogonal to Signature Validation which uses the Keylnfo

as parsed

Additionally, the SignatureMethod URI may have been altered by the
canoni cal i zation of Signedlnfo (e.g., absolutization of relative
URIs) and it is the canonical formthat MJST be used. However, the
requi red canonicalization [XM.-C14N] of this specification does not
change URIs.

4.0 Core Signature Syntax

The general structure of an XM. signature is described in Signature
Overview (section 2). This section provides detailed syntax of the
core signature features. Features described in this section are
mandatory to inplenent unless otherwi se indicated. The syntax is
defined via DIDs and [XM.- Schena] with the foll owi ng XM. preanbl e,
declaration, and internal entity.

East | ake, et al. St andards Track [Page 15]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

Schema Definition:

<?xm version="1.0" encodi ng="utf-8"?>
<I DOCTYPE schenma
PUBLIC "-//WBC// DTD XM.Schema 200102/ / EN"
"http://ww. w3. org/ 2001/ XM_Schena. dt d"
[
<! ATTLI ST schenmn
xm ns: ds CDATA #FI XED "htt p://wwv. w3. or g/ 2000/ 09/ xm dsi g#" >
<IENTITY dsig 'http://ww.w3. org/ 2000/ 09/ xm dsi g# >
<IENTITY %p '’ >
<IENTITY %s ''>
1>

<schema xm ns="htt p://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: ds="http://ww. w3. org/ 2000/ 09/ xm dsi g#"
t ar get Nanespace="htt p: / / www. w3. or g/ 2000/ 09/ xmi dsi g#"
versi on="0. 1" el ement FornDefaul t="qualified">

DTD:

<I--

The following entity declarations enabl e external/fl exible content
in the Signature content nodel.

#PCDATA emul at es schena: string; when conbined with el enent types
it ermulates schema mi xed="true".

% o00. ANY pernits the user to include their own el enent types from
ot her nanespaces, for exanpl e:
<IENTITY % KeyVal ue. ANY ' | ecds: ECDSAKeyVal ue’ >

< ELEMENT ecds: ECDSAKeyVal ue (#PCDATA) >

>

<IENTITY % Cbj ect. ANY '’ >
<IENTITY % Met hod. ANY '’ >
<IENTITY % Transform ANY '’ >
<IENTITY % Si gnat ureProperty. ANY '’ >
<IENTITY % Keyl nfo. ANY "’
<IENTI TY % KeyVal ue. ANY '’
<IENTITY % PGPDat a. ANY ' >
<IENTITY % X509Dat a. ANY "’
<IENTITY % SPKI Dat a. ANY "’

East | ake, et al. St andards Track [Page 16]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

4.0.1 The ds: CryptoBinary Sinple Type

This specification defines the ds: CryptoBinary sinple type for
representing arbitrary-length integers (e.g., "bignuns") in XM as
octet strings. The integer value is first converted to a "big

endi an" bitstring. The bitstring is then padded with | eading zero
bits so that the total nunber of bits == 0 nod 8 (so that there are
an integral nunber of octets). |If the bitstring contains entire

| eadi ng octets that are zero, these are renoved (so the high-order
octet is always non-zero). This octet string is then base64 [M Mg
encoded. (The conversion frominteger to octet string is equival ent
to | EEE 1363's |120SP [1363] with mininal |ength)

This type is used by "bi gnunt val ues such as RSAKeyVal ue and
DSAKeyVal ue. |If a value can be of type base64Bi nary or

ds: CryptoBinary they are defined as base64Binary. For exanple, if
the signature algorithmis RSA or DSA then SignatureVal ue represents
a bignumand could be ds: CryptoBinary. However, if HVAC-SHAl is the
signature algorithmthen SignatureValue could have | eading zero
octets that mnmust be preserved. Thus SignatureValue is generically
defined as of type base64Binary.

Schenma Definition

<si npl eType nane="CryptoBi nary">
<restriction base="base64Bi nary" >
</restriction>

</ si npl eType>

4.1 The Signature el enent

The Signature elenent is the root elenent of an XM. Signature.
| mpl enent ati on MUST generate laxly schenma valid [XM.- schens]
Signature el enments as specified by the foll ow ng schena:

Schema Definition

<el enent nanme="Si gnature" type="ds: Si gnatureType"/>
<conpl exType nane="Si ghat ureType" >
<sequence>
<el enent ref="ds: Si gnedl nfo"/>
<el enent ref="ds: Si gnatureVval ue"/ >
<el enent ref="ds: Keyl nfo" mi nCccurs="0"/>
<el enent ref="ds: Object" m nCccurs="0" maxCQccur s="unbounded"/ >
</ sequence>
<attribute name="1d" type="ID"' use="optional"/>
</ conpl exType>

East | ake, et al. St andards Track [Page 17]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

DTD:

<! ELEMENT Si gnature (Signedlnfo, SignatureValue, Keylnfo?,
hject*) >
<I ATTLI ST Si gnature
xnl ns CDATA #FI XED ' http://ww. w3. or g/ 2000/ 09/ xm dsi g#’
Id ID #l MPLIED >

4.2 The SignatureVal ue El enent

The SignatureVal ue el enent contains the actual value of the digita
signature; it is always encoded using base64 [MNME]. Wile we
identify two SignatureMethod al gorithns, one nandatory and one
optional to inplenent, user specified algorithns may be used as well.

Schenma Definition

<el enent nane="Si gnat ur eVal ue" type="ds: Si gnat ureVal ueType"/ >
<conpl exType name="Si gnat ur eVal ueType" >
<si npl eCont ent >
<ext ensi on base="base64Bi nary">
<attribute name="1d" type="ID"' use="optional"/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

DTD:

<I ELEMENT Si gnat ur eVal ue (#PCDATA) >
<! ATTLI ST Si gnat ur eVal ue
Id ID #1 MPLI ED>

4.3 The Signedlnfo El enent

The structure of Signedlnfo includes the canonicalization al gorithm
a signature algorithm and one or nore references. The Signedlnfo

el ement may contain an optional ID attribute that will allowit to be
ref erenced by other signatures and objects.

Si gnedl nfo does not include explicit signature or digest properties
(such as calculation tine, cryptographic device serial nunber, etc.).
If an application needs to associate properties with the signature or
digest, it may include such infornmation in a SignatureProperties

el ement within an Object elenent.

East | ake, et al. St andards Track [Page 18]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

Schenma Definition

<el enent name="Si gnedl nf 0" type="ds: Si gnedl nf oType"/ >
<conpl exType nane="Si gnedl nf oType" >
<sequence>
<el ement ref="ds: Canoni cal i zati onMet hod"/ >
<el enent ref="ds: Si gnat ureMet hod"/ >
<el ement ref="ds: Reference" maxCccurs="unbounded"/>
</ sequence>
<attribute name="1d" type="ID"' use="optional"/>
</ conpl exType>

DTD:

<! ELEMENT Si gnedl nfo (Canoni cali zati onMet hod,
Si gnat ur eMet hod, Reference+) >
<I ATTLI ST Si gnedl nfo

Id I D #1 MPLI ED

4.3.1 The Canonical i zati onMet hod El enent

Canoni cal i zati onMethod is a required el enent that specifies the
canoni cal i zation algorithmapplied to the Signedinfo el enent prior to
perform ng signature calculations. This elenent uses the genera
structure for algorithns described in AlgorithmIldentifiers and

| mpl enent ati on Requirenents (section 6.1). |Inplenentations MJST
support the REQUI RED canoni calization al gorithns.

Alternatives to the REQUI RED canoni calization algorithnms (section
6.5), such as Canonical XM. with Coments (section 6.5.1) or a

m ni mal canoni cal i zati on (such as CRLF and charset nornalization),
may be explicitly specified but are NOT REQU RED. Consequently,
their use may not interoperate with other applications that do not
support the specified algorithm (see XM. Canonicalization and Synt ax
Constraint Considerations, section 7). Security issues may al so
arise in the treatnent of entity processing and comments if non- XM
awar e canoni calization algorithns are not properly constrai ned (see
section 8.2: Only What is "Seen" Should be Signed).

The way in which the Signedinfo elenent is presented to the
canoni cal i zation nethod is dependent on that nethod. The follow ng
applies to algorithns which process XML as nodes or characters:

* XM based canonicali zation inplenmentati ons MJST be provided
with a [XPath] node-set originally formed fromthe docunent
contai ning the Signedlnfo and currently indicating the
Signedinfo, its descendants, and the attribute and nanmespace
nodes of Signedinfo and its descendant el enents.

East | ake, et al. St andards Track [Page 19]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

* Text based canonicalization algorithms (such as CRLF and
charset normalization) should be provided with the UTF-8 octets
that represent the well-formed Signedinfo elenent, fromthe
first character to the last character of the XM
representation, inclusive. This includes the entire text of
the start and end tags of the Signedinfo elenent as well as al
descendant markup and character data (i.e., the text) between
those tags. Use of text based canonicalization of Signedlnfo
i s NOT RECOMVENDED.

We recommend applications that inplenent a text-based instead of

XM.- based canoni calization -- such as resource constrained apps --
generate canonicalized XML as their output serialization so as to
mtigate interoperability and security concerns. For instance, such
an inplenmentati on SHOULD (at | east) generate standal one XM instances
[XM] .

NOTE: The signature application nust exercise great care in accepting
and executing an arbitrary Canonicalizati onMethod. For exanple, the
canoni cal i zation method could rewmite the URIs of the References
being validated. O, the nmethod could nassively transform Signedlnfo
so that validation would always succeed (i.e., converting it to a
trivial signature with a known key over trivial data). Since

Canoni cal i zati onMethod is inside Signedinfo, in the resulting
canonical formit could erase itself from Signedinfo or nodify the
Signedinfo elenent so that it appears that a different
canoni cal i zation function was used! Thus a Signature which appears to
aut henticate the desired data with the desired key, DigestMthod, and
Si gnat ur eMet hod, can be neaningless if a capricious

Canoni cal i zati onMet hod i s used.

Schema Definition
<el enent nane="Canoni cal i zat i onMet hod"

type="ds: Canoni cal i zat i onMet hodType"/ >
<conpl exType nanme="Canoni cal i zati onMet hodType" ni xed="true">

<sequence>
<any nanespace="##any" ni nCccurs="0" maxQccur s="unbounded"/>
<l-- (0, unbounded) elenents from(1,1) nanmespace -->

</ sequence>
<attribute name="Algorithni type="anyURlI" use="required"/>
</ conpl exType>

DTD:
<!l ELEMENT Canoni cal i zati onMet hod (#PCDATA %kt hod. ANY;) * >

<! ATTLI ST Canoni cal i zati onMet hod
Al gorithm CDATA #REQUI RED >

East | ake, et al. St andards Track [Page 20]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

4. 3.2 The SignatureMethod El enent

SignatureMethod is a required el ement that specifies the algorithm
used for signature generation and validation. This algorithm
identifies all cryptographic functions involved in the signature
operation (e.g., hashing, public key algorithns, MACs, padding,
etc.). This elenment uses the general structure here for algorithns
described in section 6.1: Algorithmldentifiers and | nplenmentation
Requirements. Wiile there is a single identifier, that identifier
may specify a format containing rmultiple distinct signature val ues.

Schema Definition

<el enent name="Si gnat ur eMet hod" type="ds: Si gnat ureMet hodType"/ >
<conpl exType nanme="Si gnhat ureMet hodType" m xed="true">
<sequence>
<el enent nanme="HVACQut put Lengt h" m nCccur s="0"
t ype="ds: HVACQut put Lengt hType"/ >
<any nanespace="##ot her" nmi nCccurs="0" nmaxCccur s="unbounded"/ >
<l-- (0,unbounded) elenents from(1,1) external nanmespace -->
</ sequence>
<attribute name="Algorithni type="anyURI" use="required"/>
</ conpl exType>

DTD:

<! ELEMENT Si gnat ur eMet hod

(#PCDATA| HVACQut put Lengt h %vet hod. ANY;) * >
<I ATTLI ST Si gnat ur eMet hod
Al gorithm CDATA #REQUI RED >

4.3.3 The Reference El enent

Reference is an elenment that may occur one or nore tinmes. It
specifies a digest algorithmand digest value, and optionally an
identifier of the object being signed, the type of the object, and/or
alist of transforns to be applied prior to digesting. The
identification (URI) and transfornms describe how the digested content
(i.e., the input to the digest nethod) was created. The Type
attribute facilitates the processing of referenced data. For
exanple, while this specification nmakes no requirenents over externa
data, an application may wish to signal that the referent is a

Mani fest. An optional ID attribute pernmits a Reference to be
referenced from el sewhere.

East | ake, et al. St andards Track [Page 21]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

Schenma Definition

<el enent name="Ref erence" type="ds: ReferenceType"/>
<conpl exType nanme="Ref erenceType">
<sequence>
<el ement ref="ds: Transfornms" m nQccurs="0"/>
<el enent ref="ds: D gest Met hod"/ >
<el enent ref="ds: D gestVal ue"/>
</ sequence>
<attribute name="1d" type="ID"' use="optional"/>
<attribute name="URI" type="anyURI" use="optional"/>
<attribute nane="Type" type="anyURI" use="optional"/>
</ conpl exType>

DTD:

<I ELEMENT Reference (Transforns?, D gestMthod, DigestValue) >
<I ATTLI ST Reference

Id 1D # MPLIED

URI CDATA #l MPLI ED

Type CDATA #l MPLI ED>

4.3.3.1 The URI Attribute

The URI attribute identifies a data object using a URI -Reference, as
specified by RFC2396 [URI]. The set of allowed characters for UR
attributes is the sane as for XM, nanely [Unicode]. However, sone
Uni code characters are disallowed fromUR references including all
non- ASCI | characters and the excluded characters listed in RFC2396
[URI, section 2.4]. However, the nunber sign (#), percent sign (%,
and square bracket characters re-allowed in RFC 2732 [URI -Literal]
are pernmitted. Disallowed characters nust be escaped as foll ows:

1. Each disall owed character is converted to [UTF-8] as one or nore
octets.

2. Any octets corresponding to a disallowed character are escaped
with the URI escapi ng nmechanism (that is, converted to %H, where
HH i s the hexadeci mal notation of the octet val ue).

3. The original character is replaced by the resulting character
sequence.

XM. signature applications MIST be able to parse URI syntax. W
RECOMVEND t hey be able to dereference URIs in the HITP schene.
Dereferencing a URI in the HTTP schenme MUST conply with the Status
Code Definitions of [HTTP] (e.g., 302, 305 and 307 redirects are
followed to obtain the entity-body of a 200 status code response).
Applications should al so be cognizant of the fact that protoco

East | ake, et al. St andards Track [Page 22]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

paraneter and state information, (such as HTTP cooki es, HTM. device
profiles or content negotiation), may affect the content yiel ded by
dereferencing a URI.

If a resource is identified by nore than one URI, the nost specific
shoul d be used (e.g., http://ww. w3. org/ 2000/ 06/i nter op-
pressrel ease. htnm . en instead of http://ww. w3. org/ 2000/ 06/ i nt er op-
pressrel ease). (See the Reference Validation (section 3.2.1) for a
further information on reference processing.)

If the URI attribute is omtted altogether, the receiving application
is expected to know the identity of the object. For exanple, a

I i ghtwei ght data protocol might omit this attribute given the
identity of the object is part of the application context. This
attribute may be onmitted fromat nost one Reference in any particul ar
Si gnedl nfo, or Manifest.

The optional Type attribute contains information about the type of
obj ect being signed. This is represented as a URI. For exanple:

Type="http://www. w3. or g/ 2000/ 09/ xm dsi g#Obj ect "
Type="http://www. w3. or g/ 2000/ 09/ xm dsi g#Mani f est "

The Type attribute applies to the itembeing pointed at, not its
contents. For exanple, a reference that identifies an bject el enent
containing a SignatureProperties element is still of type #Object.
The type attribute is advisory. No validation of the type
information is required by this specification

4.3.3.2 The Reference Processi ng Model

Note: XPath is RECOMMENDED. Signature applications need not conform
to [XPath] specification in order to conformto this specification
However, the XPath data nodel, definitions (e.g., node-sets) and
syntax is used within this docunent in order to describe
functionality for those that want to process XM.-as- XM. (i nstead of
octets) as part of signature generation. For those that want to use
these features, a conformant [XPath] inplenentation is one way to

i mpl enment these features, but it is not required. Such applications
could use a sufficiently functional replacenent to a node-set and

i npl ement only those XPath expressi on behaviors REQU RED by this
specification. However, for sinplicity we generally will use XPath
term nol ogy without including this qualification on every point.
Requi rements over "XPath node-sets" can include a node-set functiona
equi val ent. Requirenents over XPath processing can include
application behaviors that are equivalent to the correspondi ng XPath
behavi or.

East | ake, et al. St andards Track [Page 23]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

The data-type of the result of URI dereferencing or subsequent
Transforns is either an octet streamor an XPath node-set.

The Transforms specified in this docunent are defined with respect to
the input they require. The following is the default signature
appl i cati on behavi or

* |f the data object is an octet stream and the next transform
requires a node-set, the signature application MJST attenpt to
parse the octets yielding the required node-set via [XM]
wel | -formed processing.

* |f the data object is a node-set and the next transform
requires octets, the signature application MJST attenpt to
convert the node-set to an octet stream using Canonical XM
[XM_- C14N] .

Users may specify alternative transfornms that override these defaults
in transitions between transforns that expect different inputs. The
final octet streamcontains the data octets being secured. The

di gest al gorithm specified by Di gestMethod is then applied to these
data octets, resulting in the DigestVal ue.

Unl ess the URI-Reference is a 'sanme-docunent’ reference as defined in
[URI, Section 4.2], the result of dereferencing the URI -Reference
MUST be an octet stream In particular, an XM. docunent identified
by URI is not parsed by the signature application unless the URI is a
sane- docunment reference or unless a transformthat requires XM
parsing is applied. (See Transfornms (section 4.3.3.1).)

When a fragnent is preceded by an absolute or relative URI in the

URI - Ref erence, the neaning of the fragnment is defined by the
resource’s M Me type. Even for XM. docunents, URI dereferencing
(including the fragnent processing) night be done for the signature
application by a proxy. Therefore, reference validation nmight fai

if fragnent processing is not perforned in a standard way (as defined
in the followi ng section for sane-docunent references).

Consequently, we RECOMVEND that the URI attribute not include
fragment identifiers and that such processing be specified as an
addi ti onal XPath Transform

When a fragnent is not preceded by a URI in the URI -Reference, XM
signature applications MJST support the null URI and barenane
XPointer. W RECOMMEND support for the sanme-docunent XPointers
"#xpointer(/) and '#xpointer(id(’ID))’ if the application also
intends to support any canonicalization that preserves coments.

(G herwi se URI ="#foo" will automatically renove comments before the
canoni cal i zati on can even be invoked.) Al other support for
XPointers is OPTIONAL, especially all support for barenane and ot her

East | ake, et al. St andards Track [Page 24]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

XPointers in external resources since the application nay not have
control over how the fragnent is generated (leading to
interoperability problens and validation failures).

The foll owi ng exanpl es denonstrate what the URI attribute identifies
and how it is dereferenced:

URI ="htt p://exanpl e. con bar. xm "
Identifies the octets that represent the external resource
"http://exanple.conbar.xm’, that is probably an XM. docunent
given its file extension

URI ="htt p: // exanpl e. contf bar. xnl #chapt er 1"
Identifies the elenent with ID attribute value 'chapterl” of the
external XM. resource 'http://exanple.combar.xm’', provided as
an octet stream Again, for the sake of interoperability, the
element identified as ’chapterl” should be obtained using an
XPath transformrather than a URl fragnent (barenane XPointer
resolution in external resources is not REQURED in this
specification).

URI =""
Identifies the node-set (minus any conmment nodes) of the XM
resource containing the signature

URI =" #chapt er 1"
Identifies a node-set containing the element with ID attribute
val ue 'chapterl” of the XM. resource containing the signature.
XML Signature (and its applications) nodify this node-set to
i nclude the elenent plus all descendents including namespaces and
attributes -- but not coments.

4. 3. 3.3 Sane-Docunent URI - Ref er ences

Der ef erenci ng a sane-docunent reference MIST result in an XPath
node-set suitable for use by Canonical XM. [XM.-Cl14N]. Specifically,
dereferencing a null URI (URI="") MJST result in an XPath node-set
that includes every non-coment node of the XM. docunent contai ning
the URI attribute. 1In a fragnent URI, the characters after the
nunber sign ('#) character conformto the XPointer syntax [Xptr].
When processing an XPointer, the application MUST behave as if the
root node of the XM. docunent containing the URI attribute were used
toinitialize the XPointer evaluation context. The application MJST
behave as if the result of XPointer processing were a node-set
derived fromthe resultant |ocation-set as foll ows:

1. discard point nodes

2. replace each range node with all XPath nodes having full or
partial content within the range

3. replace the root node with its children (if it is in the node-set)

East | ake, et al. St andards Track [Page 25]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

4. replace any elenment node E with E plus all descendants of E (text,
comrent, PI, elenment) and all nanespace and attribute nodes of E
and its descendant el enents.

5. if the URI is not a full XPointer, then delete all conmment nodes

The second to | ast replacenent is necessary because XPointer
typically indicates a subtree of an XM. docunent’s parse tree using
just the elenent node at the root of the subtree, whereas Canonica
XML treats a node-set as a set of nodes in which absence of

descendant nodes results in absence of their representative text from
t he canoni cal form

The | ast step is perfornmed for null URI's, barenane XPointers and
child sequence XPointers. |It’s necessary because when [XM.-Cl14N] is
passed a node-set, it processes the node-set as is: with or wthout
comrents. Only when it’s called with an octet stream does it invoke
its own XPath expressions (default or w thout coments). Therefore
to retain the default behavior of stripping comments when passed a
node-set, they are renoved in the last step if the URl is not a ful
XPointer. To retain comments while selecting an el enment by an
identifier ID, use the following full XPointer:

URI =" #xpointer(id(’1D))’. To retain comments while selecting the
entire docunment, use the following full XPointer: URI = #xpointer(/)’.
This XPointer contains a sinple XPath expression that includes the
root node, which the second to |ast step above replaces with al
nodes of the parse tree (all descendants, plus all attributes, plus
al | nanespaces nodes).

4.3.3.4 The Transforns El enent

The optional Transforns el enent contains an ordered list of Transform
el ements; these describe how the signer obtained the data object that
was digested. The output of each Transform serves as input to the
next Transform The input to the first Transformis the result of
dereferencing the URI attribute of the Reference elenment. The out put
fromthe last Transformis the input for the D gestMethod al gorithm
When transforns are applied the signer is not signing the native
(original) docunent but the resulting (transformed) docunent. (See
Only What is Signed is Secure (section 8.1).)

Each Transform consists of an Algorithmattribute and content
paraneters, if any, appropriate for the given algorithm The
Algorithmattribute val ue specifies the nane of the algorithmto be
performed, and the Transform content provides additional data to
govern the algorithm s processing of the transforminput. (See
Algorithmldentifiers and I nplenentati on Requirenents (section 6).)

East | ake, et al. St andards Track [Page 26]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

As described in The Reference Processing Mddel (section 4.3.3.2),
sone transforms take an XPath node-set as input, while others require
an octet stream |If the actual input nmatches the input needs of the
transform then the transformoperates on the unaltered input. |If
the transforminput requirenment differs fromthe format of the actua
i nput, then the input nust be converted.

Sone Transforms may require explicit M ME type, charset (IANA

regi stered "character set"), or other such information concerning the
data they are receiving froman earlier Transformor the source data,
al t hough no Transform al gorithm specified in this docunment needs such
explicit information. Such data characteristics are provided as
paraneters to the Transform al gorithm and shoul d be described in the
specification for the algorithm

Exanpl es of transfornms include but are not linted to base64 decoding
[M ME], canonicalization [XM.-Cl4N], XPath filtering [XPath], and
XSLT [XSLT]. The generic definition of the Transform el ement al so
al | ows application-specific transformal gorithns. For exanple, the
transform coul d be a deconpression routine given by a Java cl ass
appearing as a base64 encoded paraneter to a Java Transform
algorithm However, applications should refrain from using
application-specific transforns if they wish their signatures to be
verifiable outside of their application domain. Transform Al gorithns
(section 6.6) define the list of standard transformations.

Schena Definition

<el enent name="Transformnms" type="ds: TransfornmsType"/>
<conpl exType nanme="Transf or nsType" >
<sequence>
<el ement ref="ds: Transform' maxCccurs="unbounded"/>
</ sequence>
</ conpl exType>

<el enent nanme="Transfornt type="ds: Transfornlype"/>
<conpl exType nanme="Transf or nType" mni xed="true">
<choi ce mi nCccurs="0" nmaxCccurs="unbounded" >

<any nanespace="##ot her" processContents="1ax"/>

<l-- (1,1) elenents from (0, unbounded) nanespaces -->
<el enent nanme="XPat h" type="string"/>
</ choi ce>

<attribute nane="Al gorithni type="anyURlI" use="required"/>
</ conpl exType>

East | ake, et al. St andards Track [Page 27]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

DTD:
<! ELEMENT Transforns (Transformt)>

<I ELEMENT Tr ansf orm (#PCDATA| XPat h %ransform ANY;)* >
<! ATTLI ST Transform
Al gorithm CDATA #REQUI RED >

<! ELEMENT XPath (#PCDATA) >
4.3.3.5 The Di gest Met hod El enment

Di gest Method is a required elenent that identifies the digest
algorithmto be applied to the signed object. This elenent uses the
general structure here for algorithnms specified in Al gorithm
Identifiers and I npl enentati on Requirenents (section 6.1).

If the result of the URI dereference and application of Transforms is
an XPath node-set (or sufficiently functional replacenent inplenented
by the application) then it nust be converted as described in the

Ref erence Processing Mdel (section 4.3.3.2). |If the result of UR
dereference and application of transforns is an octet stream then no
conversion occurs (comments mght be present if the Canonical XM
with Comments was specified in the Transforns). The digest algorithm
is applied to the data octets of the resulting octet stream

Schena Definition

<el enent nanme="Di gest Met hod" type="ds: Di gest Met hodType"/ >
<conpl exType name="Di gest Met hodType" m xed="true">

<sequence>

<any nanespace="##ot her" processContents="|ax"
nm nCccur s="0" maxQccur s="unbounded"/ >

</ sequence>

<attribute name="Algorithni type="anyURlI" use="required"/>
</ conpl exType>

DTD:
<! ELEMENT Di gest Met hod (#PCDATA %kt hod. ANY;) * >
<I ATTLI ST Di gest Met hod
Al gorithm CDATA #REQUI RED >
4.3.3.6 The Di gest Val ue El enent

Di gestValue is an el enent that contains the encoded val ue of the
digest. The digest is always encoded using base64 [M ME].

East | ake, et al. St andards Track [Page 28]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

Schenma Definition

<el enent name="Di gest Val ue" type="ds: Di gest Val ueType"/>
<si npl eType nane="Di gest Val ueType" >

<restriction base="base64Bi nary"/>
</ si npl eType>

DTD:

<I ELEMENT Di gest Val ue (#PCDATA) >
<l-- base64 encoded di gest value -->

4.4 The Keylnfo El enent

Keylnfo is an optional elenent that enables the recipient(s) to
obtain the key needed to validate the signature. Keylnfo may contain
keys, names, certificates and other public key managenent

i nformati on, such as in-band key distribution or key agreenent data.
This specification defines a few sinple types but applications may
extend those types or all together replace themwi th their own key
identification and exchange semantics using the XM. nanespace
facility. [XM.-ns] However, questions of trust of such key
information (e.g., its authenticity or strength) are out of scope of
this specification and left to the application

If Keylnfo is omitted, the recipient is expected to be able to
identify the key based on application context. Miltiple declarations
within Keylnfo refer to the sanme key. \While applications may define
and use any nechani smthey choose through inclusion of elenents from
a different nanespace, conpliant versions MJST inpl enent KeyVal ue
(section 4.4.2) and SHOULD i npl enent Retrieval Method (section 4.4.3).

The schena/ DTD specifications of many of Keylnfo's children (e.g.
PGPDat a, SPKI Data, X509Data) permt their content to be

ext ended/ conpl emented with el enents from anot her nanespace. This may
be done only if it is safe to ignore these extension elenents while
claimng support for the types defined in this specification

O herwi se, external elements, including alternative structures to

t hose defined by this specification, MIST be a child of Keylnfo. For
exanpl e, should a conplete XM.- PGP standard be defined, its root

el ement MUST be a child of Keylnfo. (O course, new structures from
ext ernal nanespaces can incorporate elenents fromthe &dsig;
nanespace via features of the type definition |anguage. For

i nstance, they can create a DID that ni xes their own and dsig
qualified elenments, or a schema that permits, includes, inports, or
derives new types based on &dsig; elenents.)

East | ake, et al. St andards Track [Page 29]

RFC 3275

XM.- Si gnature Syntax and Processing Mar ch 2002

The following Iist summari zes the Keylnfo types that are allocated to
an identifier in the &Isig; nanespace; these can be used within the
Retrieval Met hod Type attribute to describe a renote Keylnfo

structure.

* % X X F F

In addition to

Certificate.

htt p: // vww. w3,
htt p: // ww. w3,
http:// ww. w3,
htt p: // ww. w3,
http:// ww. w3,
http:// ww. w3.

or g/ 2000/ 09/ xm dsi g#DSAKeyVal ue
or g/ 2000/ 09/ xm dsi g#RSAKeyVal ue
or g/ 2000/ 09/ xm dsi g#X509Dat a

or g/ 2000/ 09/ xm dsi g#PGPDat a

or g/ 2000/ 09/ xm dsi g#SPKI Dat a

or g/ 2000/ 09/ xm dsi g#Mgnt Dat a

the types above for which we define an XM. structure,
we specify one additional type to indicate a binary (ASN. 1 DER) X 509

* http://ww. w3. or g/ 2000/ 09/ xm dsi g#r awx509Certificate

Schema Definition:

<el ement nanme="Keyl nfo" type="ds: Keyl nfoType"/>
<conpl exType name="Keyl nf oType" m xed="true">
<choi ce maxCccur s="unbounded" >

<el enent ref="ds: KeyNane"/ >

<el enent ref="ds: KeyVal ue"/ >

<el enent ref="ds: Retrieval Met hod"/ >

<el enent ref="ds: X509Dat a"/ >

<el ement ref="ds: PGPDat a"/>

<el enent ref="ds: SPKI Dat a"/ >

<el enent ref="ds: Mgnt Dat a"/ >

<any processContents="| ax" nanespace="##ot her"/>

<l-- (1,1) elenents from (0, unbounded) nanespaces -->
</ choi ce>

<attribute name="1d" type="ID"' use="optional"/>
</ conpl exType>

DTD:

<! ELEMENT Keyl nf o (#PCDATA| KeyNane| KeyVal ue| Retri eval Met hod]|
X509Dat a| PGPDat a| SPKI Dat a| Mgnt Dat a %Keyl nf 0. ANY;) * >
<! ATTLI ST Keylnfo

Id 1D # MPLIED >

East| ake, et al.

St andards Track [Page 30]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

4.4.1 The KeyNane El enent

The KeyNane el ement contains a string value (in which white space is
significant) which my be used by the signer to comunicate a key
identifier to the recipient. Typically, KeyNane contains an
identifier related to the key pair used to sign the nessage, but it
may contain other protocol-related information that indirectly
identifies a key pair. (Conmmon uses of KeyNane include sinple string
names for keys, a key index, a distinguished nane (DN), an emi
address, etc.)

Schenma Definition
<el enent nanme="KeyNane" type="string"/>
DTD:
<! ELEMENT KeyNane (#PCDATA) >
4. 4.2 The KeyVal ue El enent

The KeyVal ue el enent contains a single public key that may be useful
in validating the signature. Structured formats for defining DSA
(REQUI RED) and RSA (RECOMVENDED) public keys are defined in Signature
Al gorithns (section 6.4). The KeyVal ue el enment nmay incl ude
external ly defined public key values represented as PCDATA or el enent
types from an external namespace

Schenma Definition

<el enent nanme="KeyVal ue" type="ds: KeyVal ueType"/ >
<conpl exType name="KeyVal ueType" ni xed="true">
<choi ce>

<el enent ref="ds: DSAKeyVal ue"/ >

<el enent ref="ds: RSAKeyVal ue"/ >

<any nanespace="##ot her" processContents="1ax"/>
</ choi ce>
</ conpl exType>

DTD:

<! ELEMENT KeyVal ue (#PCDATA| DSAKeyVal ue| RSAKeyVal ue
%KeyVal ue. ANY;) * >

East | ake, et al. St andards Track [Page 31]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

4.4.2.1 The DSAKeyVal ue El enent

I dentifier
Type="http: //www. w3. or g/ 2000/ 09/ xm dsi g#DSAKeyVal ue" (this can be
used within a Retrieval Method or Reference elenent to identify the
referent’s type)

DSA keys and the DSA signature algorithmare specified in [DSS]. DSA
public key val ues can have the followi ng fields:

P
a prinme nodulus neeting the [DSS] requirenents
Q
an integer in the range 2**159 < Q < 2**160 which is a prine
di visor of P-1
G
an integer with certain properties with respect to P and Q
Y
G*X nod P (where X is part of the private key and not nmde
public)
J
(P-1)7Q
seed

a DSA prine generation seed
pgenCount er
a DSA prine generation counter

Paranmeter J is available for inclusion solely for efficiency as it is
calculatable fromP and Q Paraneters seed and pgenCounter are used
in the DSA prinme nunber generation algorithmspecified in [DSS]. As
such, they are optional, but nust either both be present or both be
absent. This prine generation algorithmis designed to provide
assurance that a weak prine is not being used and it yields a P and Q
value. Parameters P, Q and G can be public and common to a group of
users. They mght be known from application context. As such, they
are optional but P and Q nust either both appear or both be absent.

If all of P, Q seed, and pgenCounter are present, inplenentations
are not required to check if they are consistent and are free to use
either P and Q or seed and pgenCounter. All paranmeters are encoded
as base64 [M Mg] val ues.

Arbitrary-length integers (e.g., "bignuns" such as RSA noduli) are
represented in XML as octet strings as defined by the ds: CryptoBi nary

t ype.

East | ake, et al. St andards Track [Page 32]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

Schema Definition:

<el enent name="DSAKeyVal ue" type="ds: DSAKeyVal ueType"/>
<conpl exType nane="DSAKeyVal ueType" >
<sequence>
<sequence mni nCccurs="0">
<el enent name="P" type="ds: CryptoBi nary"/>
<el ement name="Q' type="ds: CryptoBinary"/>
</ sequence>
<el enent name="G' type="ds: Crypt oBi nary" nmi nCccurs="0"/>
<el enent name="Y" type="ds: CryptoBi nary"/>
<el enent nanme="J" type="ds: CryptoBi nary" nmi nCccurs="0"/>
<sequence mni nCccurs="0">
<el ement nanme="Seed" type="ds: CryptoBi nary"/>
<el ement nanme="PgenCounter" type="ds: CryptoBi nary"/>
</ sequence>
</ sequence>
</ conpl exType>

DTD Definition:

<! ELEMENT DSAKeyValue ((P, Q7?, G?, Y, J?, (Seed, PgenCounter)?) >
<! ELEMENT P (#PCDATA)
<! ELEMENT Q (#PCDATA)
<! ELEMENT G (#PCDATA)
<! ELEMENT Y (#PCDATA)
<! ELEMENT J (#PCDATA)
<! ELEMENT Seed (#PCDATA) >

<I ELEMENT PgenCount er (#PCDATA) >

vV V VYV

\%

4.4.2.2 The RSAKeyVal ue El enent

I dentifier
Type="http: //www. w3. or g/ 2000/ 09/ xm dsi g#RSAKeyVal ue" (this can be
used within a Retrieval Method or Reference elenent to identify the
referent’s type)

RSA key val ues have two fields: Mdulus and Exponent.

<RSAKeyVal ue>
<Mbdul us>
XA7SEU+e0y QH5r mBkbCDN9o3aPl o7HbP7t X6W0ocLZAt Nf yx SZDU16ksL6W
j ubaf OgNEpcWR3RdAFs T7bCqnXPBe5ELh5u4VEY 19Mzxk XRgr MvavzyBpVRg
BUWUI V5f oK5hhrbkt Ghy Ndy/ 6LpQRhDUDs TvK+g9Ucj 47es9AQI3U=
</ Modul us>
<Exponent >AQAB</ Exponent >
</ RSAKeyVal ue>

East | ake, et al. St andards Track [Page 33]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

Arbitrary-length integers (e.g., "bignuns" such as RSA noduli) are
represented in XML as octet strings as defined by the ds: CryptoBinary

type.
Schenma Definition

<el enent nanme="RSAKeyVal ue" type="ds: RSAKeyVal ueType"/>
<conpl exType nane="RSAKeyVal ueType" >
<sequence>
<el enent name="Modul us" type="ds: CryptoBi nary"/>
<el enent nanme="Exponent" type="ds: CryptoBi nary"/>
</ sequence>
</ conpl exType>

DTD Definition

<! ELEMENT RSAKeyVal ue (Modul us, Exponent) >
<! ELEMENT Modul us (#PCDATA) >
<! ELEMENT Exponent (#PCDATA) >

4.4.3 The Retrieval Met hod El enent

A Retrieval Method elenent within Keylnfo is used to convey a
reference to Keylnfo information that is stored at another |ocation
For exanple, several signatures in a docunment might use a key
verified by an X. 509v3 certificate chain appearing once in the
document or renotely outside the docunent; each signature’s Keylnfo
can reference this chain using a single Retrieval Met hod el enent
instead of including the entire chain with a sequence of
X509Certificate el ements.

Retri eval Met hod uses the same syntax and dereferenci ng behavi or as
Reference’s URI (section 4.3.3.1) and the Reference Processi ng Mdde
(section 4.3.3.2) except that there is no D gestMethod or DigestVal ue
child elenents and presence of the URl is mandatory.

Type is an optional identifier for the type of data to be retrieved.
The result of dereferencing a Retrieval Method Reference for al

Keyl nfo types defined by this specification (section 4.4) with a
corresponding XML structure is an XM. el ement or docunent with that

el ement as the root. The rawx509Certificate Keylnfo (for which there
is no XML structure) returns a binary X509 certificate.

East | ake, et al. St andards Track [Page 34]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

Schenma Definition

<el enent name="Retri eval Met hod" type="ds: Retrieval Met hodType"/ >
<conpl exType nanme="Retri eval Met hodType" >

<sequence>

<el ement ref="ds: Transfornms" m nQccurs="0"/>

</ sequence>

<attribute name="URI" type="anyURl"/>

<attribute name="Type" type="anyURI" use="optional"/>
</ conpl exType>

DTD:

<! ELEMENT Retrieval Met hod (Transforms?) >
<I ATTLI ST Retri eval Met hod

URI CDATA #REQUI RED

Type CDATA #l MPLI ED >

4.4.4 The X509Dat a El enent

ldentifier

Type="htt p: // www. w3. or g/ 2000/ 09/ xm dsi g#X509Dat a" (this can be
used within a Retrieval Method or Reference elenent to identify the
referent’s type)

An X509Dat a el ement within Keylnfo contains one or nore identifiers
of keys or X509 certificates (or certificates’ identifiers or a
revocation list). The content of X509Data is:

1

At | east one elenent, fromthe follow ng set of elenent types; any
of these nmay appear together or nore than once if (if and only if)
each instance describes or is related to the sane certificate:

0 The X509 ssuer Serial elenent, which contains an X 509 issuer
di stingui shed nane/serial nunber pair that SHOULD be conpli ant
with RFC 2253 [LDAP- DN,

0 The X509Subj ect Nane el enent, which contains an X 509 subject
di stingui shed name that SHOULD be conpliant with RFC 2253
[LDAP- DN ,

0 The X509SKI el ement, which contains the base64 encoded plain
(i.e., non-DER-encoded) value of a X509 V.3
Subj ect Keyl denti fi er extension

0 The X509Certificate el enent, which contains a base64-encoded
[X509v3] certificate, and

0 Elenents froman external namespace which
acconpani es/ conpl ements any of the el enents above

o The X509CRL el ement, which contains a base64-encoded
certificate revocation list (CRL) [X509v3].

East | ake, et al. St andards Track [Page 35]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

Any X509 ssuer Seri al, X509SKl, and X509Subj ect Nane el enents t hat
appear MJUST refer to the certificate or certificates containing the
validation key. Al such elenents that refer to a particul ar

i ndi vidual certificate MIUST be grouped inside a single X509Dat a
element and if the certificate to which they refer appears, it MJST
al so be in that X509Data el enment.

Any X509I ssuer Serial, X509SKI, and X509Subj ect Nane el ements t hat
relate to the same key but different certificates MJST be grouped
within a single Keylnfo but MAY occur in multiple X509Data el ements.

Al'l certificates appearing in an X509Data el enent MJST relate to the
validation key by either containing it or being part of a
certification chain that terninates in a certificate containing the
val i dati on key.

No ordering is inplied by the above constraints. The comments in the
foll owi ng i nstance denonstrate these constraints:

<Keyl nf 0>

<X509Data> <!-- two pointers to certificate-A -->

<X5091 ssuer Seri al >
<X509! ssuer Name>CN=TAMURA Kent, OUJLTRL, O=I BM
L=Yanat o- shi, ST=Kanagawa, C=JP</ X509l ssuer Nane>
<X509Seri al Number >12345678</ X509Ser i al Nunber >

</ X509I ssuer Seri al >
<X509SKI >31d97bd7</ X509SKI >

</ X509Dat a>

<X509Dat a><!-- single pointer to certificate-B -->
<X509Subj ect Nane>Subj ect of Certificate B</X509Subject Nane>

</ X509Dat a>

<X509Data> <!-- certificate chain -->
<l--Signer cert, issuer CN=arbol CA OQk=FVT, O=I BM C=US, serial 4-->
<X509Certificate>M | CXTCCA. . </ X509Certificate>
<I-- Internmediate cert subject CN=arbol CA OU=FVT, O=I BM C=US

i ssuer CN=tooti seCA, QU=FVT, O=Bri dgepoi nt, C=US -->

<X509Certificate>M | CPzCCA. .. </ X509Certificate>
<l-- Root cert subject CN=tootiseCA OJLFVT, C=Bridgepoint, C=US -->
<X509Certificate>M | CSTCCA. .. </ X509Certificate>

</ X509Dat a>

</ Keyl nf 0>

Note, there is no direct provision for a PKCS#7 encoded "bag" of
certificates or CRLs. However, a set of certificates and CRLs can
occur within an X509Data el ement and nultiple X509Data el enents can
occur in a Keylnfo. Wenever nultiple certificates occur in an
X509Dat a el enent, at |east one such certificate nust contain the
public key which verifies the signature.

East | ake, et al. St andards Track [Page 36]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

Al so, strings in DNanes (X509l ssuer Seri al, X509Subj ect Nane, and
KeyNanei f appropriate) should be encoded as foll ows:

Consi der the string as consisting of Unicode characters.
Escape occurrences of the follow ng special characters by
prefixing it with the "\" character: a "#" character occurring
at the beginning of the string or one of the characters ",",
"+", """, "\", "<", ">" or ";"
* Escape all occurrences of ASCI| control characters (Unicode
range \x00 - \x 1f) by replacing themwith "\" followed by a
two digit hex nunber showi ng its Uni code nunber
Escape any trailing white space by replacing "\ " with "\20"
Since a XM. docunent logically consists of characters, not
octets, the resulting Unicode string is finally encoded
according to the character encoding used for producing the

physi cal representation of the XM. docunent.
Schena Definition

<el enent nanme="X509Dat a" type="ds: X509Dat aType"/ >
<conpl exType nane="X509Dat aType" >
<sequence maxQccurs="unbounded" >
<choi ce>
<el ement name="X509] ssuer Seri al "
t ype="ds: X509 ssuer Seri al Type"/ >
<el ement nanme="X509SKI " type="base64Bi nary"/>
<el enent name="X509Subj ect Nane" type="string"/>
<el enent name="X509Certificate" type="base64Bi nary"/>
<el enent nanme="X509CRL" type="base64Bi nary"/>
<any nanespace="##ot her" processContents="1ax"/>
</ choi ce>
</ sequence>
</ conpl exType>
<conpl exType nane="X509] ssuer Seri al Type" >
<sequence>
<el enent nanme="X509] ssuer Nane" type="string"/>
<el enent nanme="X509Seri al Nunber" type="integer"/>
</ sequence>
</ conpl exType>

East | ake, et al. St andards Track [Page 37]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

DTD:

<! ELEMENT X509Dat a ((X5091 ssuerSerial | X509SKI | X509Subj ect Nare
| X509Certificate | X509CRL)+ %x509. ANY;) >

<I ELEMENT X509I ssuer Seri al (X509 ssuer Name, X509Seri al Nunber) >

<! ELEMENT X5091 ssuer Nane (#PCDATA) >

<! ELEMENT X509Subj ect Nanme (#PCDATA) >

<! ELEMENT X509Seri al Nunber (#PCDATA) >

<! ELEMENT X509SKlI (#PCDATA) >

<! ELEMENT X509Certificate (#PCDATA) >

<! ELEMENT X509CRL (#PCDATA) >

<l-- Note, this DID and schema pernit X509Data to be enpty; this is
precluded by the text in Keylnfo Elenent (section 4.4) which states
that at |east one elenent fromthe dsig nanmespace shoul d be present
in the PGP, SPKI, and X509 structures. This is easily expressed for
the ot her key types, but not for X509Data because of its rich
structure. -->

4.4.5 The PGPDat a El enent

I dentifier
Type="http://ww. w3. or g/ 2000/ 09/ xml dsi g#PGPDat a" (this can be used
within a Retrieval Method or Reference elenent to identify the
referent’s type)

The PGPData el ement within Keylnfo is used to convey infornmation
related to PGP public key pairs and signatures on such keys. The
PGPKeyl D's value is a base64Bi nary sequence containing a standard PGP
public key identifier as defined in [PGP, section 11.2]. The
PGPKeyPacket contains a base64-encoded Key Material Packet as defined
in [PGP, section 5.5]. These children elenment types can be

conpl enent ed/ ext ended by siblings froman external nanespace within
PGPDat a, or PGPData can be replaced all together with an alternative
PGP XM. structure as a child of Keylnfo. PGPData nust contain one
PGPKeyl D and/ or one PGPKeyPacket and O or nore el enents from an

ext ernal namespace.

East | ake, et al. St andards Track [Page 38]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

Schenma Definition

<el enent name="PGPDat a" type="ds: PGPDat aType"/ >
<conpl exType nane="PGPDat aType" >
<choi ce>
<sequence>
<el enent nanme="PGPKeyl D' type="base64Bi nary"/>
<el ement nanme="PGPKeyPacket" type="base64Bi nary"
m nCccurs="0"/>
<any nanespace="##ot her" processContents="1ax" m nCccurs="0"
maxQccur s=" unbounded"/ >
</ sequence>
<sequence>
<el ement name="PGPKeyPacket" type="base64Binary"/>
<any nanespace="##ot her" processContents="1ax" mi nCccurs="0"
maxQccur s=" unbounded"/ >
</ sequence>
</ choi ce>
</ conpl exType>

DTD:

<I ELEMENT PGPDat a ((PGPKeyl D, PGPKeyPacket ?) | (PGPKeyPacket)
%PGPDat a. ANY;) >

<! ELEMENT PGPKeyPacket (#PCDATA) >

<! ELEMENT PGPKeyl D (#PCDATA) >

4.4.6 The SPKI Dat a El enent

I dentifier
Type="http://ww. w3. or g/ 2000/ 09/ xml dsi g#SPKI Dat a" (this can be
used within a Retrieval Method or Reference elenment to identify the
referent’s type)

The SPKI Data elenent within Keylnfo is used to convey information
related to SPKI public key pairs, certificates and ot her SPKI data.
SPKI Sexp is the base64 encodi ng of a SPKI canoni cal S-expression
SPKI Dat a nust have at | east one SPKI Sexp; SPKI Sexp can be

conpl enent ed/ ext ended by siblings froman external nanespace within
SPKI Data, or SPKIData can be entirely replaced with an alternative
SPKI XML structure as a child of Keylnfo.

East | ake, et al. St andards Track [Page 39]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

Schenma Definition

<el enent name="SPKI Dat a" type="ds: SPKI Dat aType"/ >
<conpl exType nane="SPKI Dat aType" >
<sequence maxCccur s="unbounded" >
<el enent nanme="SPKI Sexp" type="base64Bi nary"/>
<any nanespace="##ot her" processContents="1ax" mi nCccurs="0"/>
</ sequence>
</ conpl exType>

DTD:

<! ELEMENT SPKI Data (SPKI Sexp %SPKI Dat a. ANY;) >
<! ELEMENT SPKI Sexp (#PCDATA) >

4.4.7 The Mnt Dat a El enent

I dentifier
Type="http://ww. w3. or g/ 2000/ 09/ xml dsi g#Mgnt Dat a" (this can be
used within a Retrieval Method or Reference element to identify the
referent’s type)

The MgntData elenent within Keylnfo is a string val ue used to convey
i n-band key distribution or agreenent data. For exanple, DH key
exchange, RSA key encryption, etc. Use of this elenent is NOT
RECOMVENDED. It provides a syntactic hook where in-band key

di stribution or agreenent data can be placed. However, superior

i nteroperable child elenents of Keylnfo for the transmni ssion of
encrypted keys and for key agreenent are being specified by the WBC
XML Encryption Wrking Goup and they should be used instead of

Mgnt Dat a.

Schema Definition
<el enent name="Mynt Dat a" type="string"/>
DTD:
<! ELEMENT Mynt Data (#PCDATA) >
4.5 The Object El enent
Identifier

Type="http://www. w3. or g/ 2000/ 09/ xml dsi g#Cbj ect"” (this can be used
within a Reference elenment to identify the referent’s type)

East | ake, et al. St andards Track [Page 40]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

bject is an optional elenent that nay occur one or nore tines. Wen
present, this elenent may contain any data. The Object el enent may
i nclude optional MM type, ID and encoding attributes.

The hject’s Encoding attri buted may be used to provide a URl that
identifies the nethod by which the object is encoded (e.g., a binary
file).

The M nmeType attribute is an optional attribute which describes the
data within the Object (independent of its encoding). This is a
string with values defined by [MME]. For exanple, if the Object
cont ai ns base64 encoded PNG the Encoding may be specified as
"base64’ and the M neType as 'inage/png’ . This attribute is purely
advi sory; no validation of the M neType information is required by
this specification. Applications which require normative type and
encodi ng information for signature validation should specify
Transforns with well defined resulting types and/or encodi ngs.

The oject’s Id is comonly referenced froma Reference in

Si gnedlnfo, or Manifest. This elenent is typically used for
envel opi ng signatures where the object being signed is to be included
in the signature elenent. The digest is calculated over the entire
hj ect element including start and end tags.

Note, if the application wishes to exclude the <bhject> tags fromthe
di gest cal cul ation, the Reference nust identify the actual data

obj ect (easy for XML docunents) or a transform nust be used to renove
the hject tags (likely where the data object is non-XM). Exclusion
of the object tags may be desired for cases where one wants the
signature to remain valid if the data object is noved frominside a
signature to outside the signature (or vice versa), or where the
content of the oject is an encoding of an original binary docunent
and it is desired to extract and decode so as to sign the origina
bitw se representation.

Schema Definition

<el enent nanme="bj ect" type="ds: Obj ect Type"/>
<conpl exType name="Cbj ect Type" ni xed="true">
<sequence m nCccurs="0" maxQCccur s="unbounded" >
<any nanespace="##any" processContents="|ax"/>
</ sequence>
<attribute nane="1d" type="ID"' use="optional"/>
<attribute name="M neType" type="string" use="optional"/>
<attribute name="Encodi ng" type="anyURlI" use="optional"/>
</ conpl exType>

East | ake, et al. St andards Track [Page 41]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

DTD:

<! ELEMENT Cbj ect (#PCDATA| Si gnat ure| Si gnat ureProperti es| Mani f est
%bj ect . ANY;) * >
<I ATTLI ST pj ect
Id 1D # MPLIED
M neType CDATA #l MPLI ED
Encodi ng CDATA #| MPLI ED >

5.0 Additional Signature Syntax

This section describes the optional to inplenent Manifest and

Si gnatureProperties el enents and describes the handling of XM
processing instructions and comments. Wth respect to the elenents
Mani f est and Si gnatureProperties, this section specifies syntax and
little behavior -- it is left to the application. These elenents can
appear anywhere the parent’s content nodel pernits; the Signature
content nodel only permits themw thin oject.

5.1 The Mani fest El enent

Identifier

Type="htt p: // www. w3. or g/ 2000/ 09/ xm dsi g#Mani fest" (this can be
used within a Reference elenent to identify the referent’s type)

The Manifest elenent provides a |ist of References. The difference
fromthe list in Signedinfo is that it is application defined which
if any, of the digests are actually checked agai nst the objects
referenced and what to do if the object is inaccessible or the digest
conpare fails. |If a Manifest is pointed to from Signedlnfo, the

di gest over the Manifest itself will be checked by the core signature
val i dati on behavior. The digests within such a Manifest are checked
at the application’s discretion. |If a Manifest is referenced from
anot her Mani fest, even the overall digest of this two | evel deep
Mani f est m ght not be checked.

Schema Definition

<el enent name="Mani fest" type="ds: Mani f est Type"/ >
<conpl exType nanme="Mani f est Type" >
<sequence>
<el ement ref="ds: Reference" maxCccurs="unbounded"/>
</ sequence>
<attribute nanme="1d" type="ID"' use="optional"/>
</ conpl exType>

East | ake, et al. St andards Track [Page 42]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

DTD:

<!l ELEMENT Mani fest (Reference+) >
<! ATTLI ST Mani f est
Id ID #l MPLIED >

5.2 The SignatureProperties Elenent

I dentifier
Type="http://www. w3. or g/ 2000/ 09/ xm dsi g#Si gnat ur eProperties"” (this
can be used within a Reference elenent to identify the referent’s
type)

Additional information items concerning the generation of the
signature(s) can be placed in a SignatureProperty elenent (i.e.
date/time stanp or the serial nunber of cryptographic hardware used
in signature generation).

Schema Definition

<el enent nanme="Si gnat ur eProperties"
type="ds: Si gnat ur eProperti esType"/ >

<conpl exType name="Si gnat ur ePropertiesType">

<sequence>

<el enent ref="ds: Si gnatureProperty" maxQccurs="unbounded"/ >

</ sequence>

<attribute nanme="1d" type="ID"' use="optional"/>
</ conpl exType>

<el enent nanme="Si gnat ur eProperty"
type="ds: Si gnat ur ePropertyType"/ >
<conpl exType nanme="Si ghat ur ePropertyType" mi xed="true">
<choi ce maxCccur s="unbounded" >
<any nanespace="##ot her" processContents="1ax"/>
<l-- (1,1) elenents from (1, unbounded) nanmespaces -->
</ choi ce>
<attribute nane="Target" type="anyURlI" use="required"/>
<attribute nanme="1d" type="ID"' use="optional"/>
</ conpl exType>

East | ake, et al. St andards Track [Page 43]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

DTD:

<! ELEMENT Si gnat ureProperties (SignatureProperty+) >
<I ATTLI ST Si gnat ureProperties
Id I D # MPLIED >

<! ELEMENT Si gnat ureProperty (#PCDATA %&i gnat ur eProperty. ANY;)* >
<I ATTLI ST Si gnat ureProperty

Target CDATA #REQUI RED

Id I D #| MPLIED >

5.3 Processing Instructions in Signature El enents
No XML processing instructions (Pls) are used by this specification

Note that Pls placed inside Signedlinfo by an application will be

si gned unl ess the Canoni calizati onMet hod al gorithm di scards them
(This is true for any signed XML content.) Al of the

Canoni cal i zati onMet hods identified within this specification retain
Pls. Wwen a Pl is part of content that is signed (e.g., within
Signedlnfo or referenced XM. docunents) any change to the Pl will
obviously result in a signature failure.

5.4 Comments in Signhature El enents
XML conments are not used by this specification

Not e that unl ess Canoni calizati onMet hod renpves conments within
Signedinfo or any other referenced XML (which [XM.- C14N] does), they
will be signed. Consequently, if they are retained, a change to the
comrent will cause a signature failure. Sinilarly, the XM. signature
over any XML data will be sensitive to comment changes unl ess a
comrent -i gnori ng canonicalization/transform nmethod, such as the
Canoni cal XML [XML- C14N], is specified.

6.0 Algorithns

This section identifies algorithns used with the XM. digita

signature specification. Entries contain the identifier to be used
in Signature elements, a reference to the formal specification, and
definitions, where applicable, for the representati on of keys and the
results of cryptographic operations.

6.1 Algorithmldentifiers and I nplenentation Requirenments
Algorithns are identified by URIs that appear as an attribute to the

el ement that identifies the algorithnms’ role (D gestMethod,
Transform Si gnatureMet hod, or CanonicalizationMethod). All

East | ake, et al. St andards Track [Page 44]

RFC 3275 XM.- Si gnature Syntax and Processing Mar ch 2002

al gorithns used herein take paraneters but in nany cases the
paraneters are inplicit. For exanple, a SignatureMethod is
implicitly given two paraneters: the keying info and the output of
Canoni cal i zati onMet hod. Explicit additional parameters to an

al gorithm appear as content elenments within the algorithmrole

el ement. Such paraneter el enents have a descriptive el enent naneg,
which is frequently algorithmspecific, and MJST be in the XM

Si gnat ure nanespace or an al gorithm specific nanespace.

This specification defines a set of algorithms, their URIs, and
requirenents for inplenmentation. Requirenents are specified over

i mpl enent ati on, not over requirenents for signature use.

Furt hernmore, the nmechanismis extensible; alternative a