Stream: Internet Engineering Task Force (IETF)

RFC: 8724

Category: Standards Track

Published: April 2020

ISSN: 2070-1721

Authors:
A.Minaburo L. Toutain C. Gomez D. Barthel JC. Zuniga
Acklio IMT Atlantique Universitat Politecnica de Catalunya Orange Labs SIGFOX

RFC 8724
SCHC: Generic Framework for Static Context Header
Compression and Fragmentation

Abstract

This document defines the Static Context Header Compression and fragmentation (SCHC)
framework, which provides both a header compression mechanism and an optional
fragmentation mechanism. SCHC has been designed with Low-Power Wide Area Networks
(LPWANS) in mind.

SCHC compression is based on a common static context stored both in the LPWAN device and in
the network infrastructure side. This document defines a generic header compression
mechanism and its application to compress IPv6/UDP headers.

This document also specifies an optional fragmentation and reassembly mechanism. It can be
used to support the IPv6 MTU requirement over the LPWAN technologies. Fragmentation is
needed for IPv6 datagrams that, after SCHC compression or when such compression was not
possible, still exceed the Layer 2 maximum payload size.

The SCHC header compression and fragmentation mechanisms are independent of the specific
LPWAN technology over which they are used. This document defines generic functionalities and
offers flexibility with regard to parameter settings and mechanism choices. This document
standardizes the exchange over the LPWAN between two SCHC entities. Settings and choices
specific to a technology or a product are expected to be grouped into profiles, which are specified
in other documents. Data models for the context and profiles are out of scope.

Status of This Memo

This is an Internet Standards Track document.

Minaburo, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8724

RFC 8724 LPWAN SCHC April 2020

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc8724.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
2. Requirements Notation
3. LPWAN Architecture
4. Terminology
5. SCHC Overview
5.1. SCHC Packet Format
5.2. Functional Mapping
6. RuleID
7. Compression/Decompression
7.1. SCHC C/D Rules
7.2. Packet Processing
7.3. Matching Operators
7.4. Compression/Decompression Actions (CDA)

7.4.1. Processing Fixed-Length Fields

Minaburo, et al. Standards Track Page 2

https://www.rfc-editor.org/info/rfc8724
https://trustee.ietf.org/license-info

RFC 8724 LPWAN SCHC April 2020

7.4.2. Processing Variable-Length Fields
7.4.3. Not-Sent CDA
7.4.4. Value-Sent CDA
7.4.5. Mapping-Sent CDA
7.4.6. LSB CDA
7.4.7. DevlID, ApplID CDA
7.4.8. Compute-*
8. Fragmentation/Reassembly
8.1. Overview
8.2. SCHC F/R Protocol Elements
8.2.1. Messages
8.2.2. Tiles, Windows, Bitmaps, Timers, Counters
8.2.3. Integrity Checking
8.2.4. Header Fields
8.3. SCHC F/R Message Formats
8.3.1. SCHC Fragment Format
8.3.2. SCHC ACK Format
8.3.3. SCHC ACK REQ Format
8.3.4. SCHC Sender-Abort Format
8.3.5. SCHC Receiver-Abort Format
8.4. SCHC F/R Modes
8.4.1. No-ACK Mode
8.4.2. ACK-Always Mode
8.4.3. ACK-on-Error Mode
9. Padding Management
10. SCHC Compression for IPv6 and UDP Headers

10.1. IPv6 Version Field

Minaburo, et al. Standards Track Page 3

RFC 8724 LPWAN SCHC

10.2. IPv6 Traffic Class Field
10.3. Flow Label Field
10.4. Payload Length Field
10.5. Next Header Field
10.6. Hop Limit Field
10.7. IPv6 Addresses Fields
10.7.1. IPv6 Source and Destination Prefixes
10.7.2. IPv6 Source and Destination IID
10.8. IPv6 Extension Headers
10.9. UDP Source and Destination Ports
10.10. UDP Length Field
10.11. UDP Checksum Field
11. IANA Considerations
12. Security Considerations
12.1. Security Considerations for SCHC Compression/Decompression
12.1.1. Forged SCHC Packet
12.1.2. Compressed Packet Size as a Side Channel to Guess a Secret Token
12.1.3. Decompressed Packet Different from the Original Packet
12.2. Security Considerations for SCHC Fragmentation/Reassembly
12.2.1. Buffer Reservation Attack
12.2.2. Corrupt Fragment Attack
12.2.3. Fragmentation as a Way to Bypass Network Inspection
12.2.4. Privacy Issues Associated with SCHC Header Fields
13. References
13.1. Normative References
13.2. Informative References

Appendix A. Compression Examples

Minaburo, et al. Standards Track

April 2020

Page 4

RFC 8724 LPWAN SCHC April 2020

Appendix B. Fragmentation Examples

Appendix C. Fragmentation State Machines

Appendix D. SCHC Parameters

Appendix E. Supporting Multiple Window Sizes for Fragmentation
Appendix F. ACK-Always and ACK-on-Error on Quasi-Bidirectional Links
Acknowledgements

Authors' Addresses

1. Introduction

This document defines the Static Context Header Compression and fragmentation (SCHC)
framework, which provides both a header compression mechanism and an optional
fragmentation mechanism. SCHC has been designed with Low-Power Wide Area Networks
(LPWANS) in mind.

LPWAN technologies impose some strict limitations on traffic. For instance, devices sleep most of
the time and may only receive data during short periods of time after transmission, in order to
preserve battery. LPWAN technologies are also characterized by a greatly reduced data unit and/
or payload size (see [RFC8376]).

Header compression is needed for efficient Internet connectivity to a node within an LPWAN.
The following properties of LPWANSs can be exploited to get an efficient header compression:

* The network topology is star-oriented, which means that all packets between the same
source-destination pair follow the same path. For the needs of this document, the
architecture can simply be described as Devices (Dev) exchanging information with LPWAN
Application Servers (Apps) through a Network Gateway (NGW).

* Because devices embed built-in applications, the traffic flows to be compressed are known in
advance. Indeed, new applications are less frequently installed in an LPWAN device than
they are in a general-purpose computer or smartphone.

SCHC compression uses a Context (a set of Rules) in which information about header fields is
stored. This Context is static: the values of the header fields and the actions to do compression/
decompression do not change over time. This avoids the need for complex resynchronization
mechanisms. Indeed, a return path may be more restricted/expensive, or may sometimes be
completely unavailable [RFC8376]. A compression protocol that relies on feedback is not
compatible with the characteristics of such LPWANSs.

Minaburo, et al. Standards Track Page 5

RFC 8724 LPWAN SCHC April 2020

In most cases, a small Rule identifier is enough to represent the full IPv6/UDP headers. The SCHC
header compression mechanism is independent of the specific LPWAN technology over which it
is used.

Furthermore, some LPWAN technologies do not provide a fragmentation functionality; to
support the IPv6 MTU requirement of 1280 bytes [RFC8200], they require a fragmentation
protocol at the adaptation layer below IPv6. Accordingly, this document defines an optional
fragmentation/reassembly mechanism to help LPWAN technologies support the IPv6 MTU
requirement.

This document defines generic functionality and offers flexibility with regard to parameter
settings and mechanism choices. Technology-specific settings are expected to be grouped into
Profiles specified in other documents.

2. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

3. LPWAN Architecture

LPWAN architectures are similar among them, but each LPWAN technology names architecture
elements differently. In this document, we use terminology from [RFC8376], which identifies the
following entities in a typical LPWAN (see Figure 1):

* Devices (Dev) are the end-devices or hosts (e.g., sensors, actuators, etc.). There can be a very
high density of devices per Radio Gateway.

* The Radio Gateway (RGW) is the endpoint of the constrained link.

* The Network Gateway (NGW) is the interconnection node between the Radio Gateway and
the Internet.

* The Application Server (App) is the endpoint of the application-level protocol on the Internet

side.

O O 0O |

O 000 /\ PR .
OO0 0000/ \======| | R .
O O 0O | | <==]-=>] |Application]|
() () () () / \::::::::::l \V |:::::::::::::| Server |
() () () / \ oo === + e +
Dev RGWs NGW App

Figure 1: LPWAN Architecture (Simplified from That Shown in RFC 8376)

Minaburo, et al. Standards Track Page 6

RFC 8724 LPWAN SCHC April 2020

4. Terminology

This section defines terminology and abbreviations used in this document. It extends the
terminology of [RFC8376].

The SCHC acronym is pronounced like "sheek" in English (or "chic" in French). Therefore, this
document writes "a SCHC Packet" instead of "an SCHC Packet".

App: LPWAN Application Server, as defined by [RFC8376]. It runs an application sending/
receiving packets to/from the Dev.

AppIID: Application Interface Identifier. The IID that identifies the App interface.

Compression Residue: The bits that remain to be sent (beyond the RulelD itself) after applying
the SCHC compression.

Context: A set of Rules used to compress/decompress headers, or to fragment/reassemble a
packet.

Dev: Device, as defined by [RFC8376].

DevIID: Device Interface Identifier. The IID that identifies the Dev interface.
Downlink: From the App to the Dev.

IID: Interface Identifier. See the IPv6 addressing architecture [RFC7136].

L2: Layer 2. The immediate lower layer that SCHC interfaces with, for example an
underlying LPWAN technology. It does not necessarily correspond to the OSI model
definition of Layer 2.

L2 Word: This is the minimum subdivision of payload data that the L2 will carry. In most L2
technologies, the L2 Word is an octet. In bit-oriented radio technologies, the L2 Word
might be a single bit. The L2 Word size is assumed to be constant over time for each
device.

Padding: Extra bits that may be appended by SCHC to a data unit that it passes down to L2 for
transmission. SCHC itself operates on bits, not bytes, and does not have any alignment
prerequisite. See Section 9.

Profile: SCHC offers variations in the way it is operated, with a number of parameters listed in
Appendix D. A Profile indicates a particular setting of all these parameters. Both ends of
a SCHC communication must be provisioned with the same Profile information and
with the same set of Rules before the communication starts, so that there is no
ambiguity in how they expect to communicate.

Rule: Part of the Context that describes how a packet is compressed/decompressed or
fragmented/reassembled.

RuleID: Rule Identifier. An identifier for a Rule.

Minaburo, et al. Standards Track Page 7

RFC 8724 LPWAN SCHC April 2020

SCHC: Static Context Header Compression and fragmentation (SCHC), a generic framework.

SCHC C/D: SCHC Compressor/Decompressor, or SCHC Compression/Decompression. The SCHC
entity or mechanism used on both sides, at the Dev and at the network, to achieve
compression/decompression of headers.

SCHC F/R: SCHC Fragmenter/Reassembler or SCHC Fragmentation/Reassembly. The SCHC entity
or mechanism used on both sides, at the Dev and at the network, to achieve
fragmentation/reassembly of SCHC Packets.

SCHC Packet: A packet (e.g., an IPv6 packet) whose header has been compressed as per the
header compression mechanism defined in this document. If the header compression
process is unable to actually compress the packet header, the packet with the
uncompressed header is still called a SCHC Packet (in this case, a RulelD is used to
indicate that the packet header has not been compressed). See Section 7 for more
details.

Uplink: From the Dev to the App.
Additional terminology for the optional SCHC F/R is found in Section 8.2.

Additional terminology for SCHC C/D is found in Section 7.1.

5. SCHC Overview

SCHC can be characterized as an adaptation layer between an upper layer (for example, IPv6)
and an underlying layer (for example, an LPWAN technology). SCHC comprises two sublayers
(i.e., the Compression sublayer and the Fragmentation sublayer), as shown in Figure 2.

Fom +
| IPv6 |

Fm e +

| Compression |

SCHC < #=———————mmmmmmem +
| | Fragmentation |

- b +

| LPWAN technology |

B T +

Figure 2: Example of Protocol Stack Comprising IPv6, SCHC, and an LPWAN Technology

Before an upper layer packet (e.g., an IPv6 packet) is transmitted to the underlying layer, header
compression is first attempted. The resulting packet is called a "SCHC Packet", whether or not any
compression is performed. If needed by the underlying layer, the optional SCHC fragmentation
MAY be applied to the SCHC Packet. The inverse operations take place at the receiver. This
process is illustrated in Figure 3.

Minaburo, et al. Standards Track Page 8

RFC 8724 LPWAN SCHC April 2020

A packet (e.g., an IPv6 packet)

v |
Fmm + o +
| SCHC Compression | | SCHC Decompression
Fom + Fom +
A
| If no fragmentation (%)
PemoEosaEEeST= SAE Packat sromcssososoos > |
| |
v |
Fom + Fom +
| SCHC Fragmentation | | SCHC Reassembly |
Fom + Fom +
| A | A
| | | |
| to—m—— - SCHC ACK (+) —=—————————-- + |
| |
Fomm e SCHC Fragments --------—-===———---- +
Sender Receiver

*: the decision not to use SCHC fragmentation is left to each Profile
+: optional, depends on Fragmentation mode

Figure 3: SCHC Operations at the Sender and the Receiver

5.1. SCHC Packet Format

The SCHC Packet is composed of the Compressed Header followed by the payload from the
original packet (see Figure 4). The Compressed Header itself is composed of the RuleID and a
Compression Residue, which is the output of compressing the packet header with the Rule
identified by that RulelD (see Section 7). The Compression Residue may be empty. Both the
RuleID and the Compression Residue potentially have a variable size, and are not necessarily a
multiple of bytes in size.

| RuleID | Compression Residue | Payload
o Fom +

Figure 4: SCHC Packet

5.2. Functional Mapping

Figure 5 maps the functional elements of Figure 3 onto the LPWAN architecture elements of
Figure 1.

Minaburo, et al. Standards Track Page 9

RFC 8724 LPWAN SCHC April 2020

Dev App
o + +————+ +————+ +————+
| Appl App2 App3 | }ApplI IApp2} IApp3I

UDP [UDP | |UDP | |UDP |

|
| |IPv6| |IPv6| |IPv6|
I I | | | | |
SCHC C/D and F/R]| | |] |] |
po— o + to———F F————+ +————+
+———+ +———+ +————+ +————+ . .
+~ |RGW| === |NGW| == |SCHC| == |SCHC|..... Internet .

pomed P |F/R | |C/D |

+————+ +————+

|
| IPv6
|
|

Figure 5: Architectural Mapping

SCHC C/D and SCHC F/R are located on both sides of the LPWAN transmission, hereafter called
the "Dev side" and the "Network Infrastructure side".

The operation in the Uplink direction is as follows. The Device application uses IPv6 or IPv6/UDP
protocols. Before sending the packets, the Dev compresses their headers using SCHC C/D; if the
SCHC Packet resulting from the compression needs to be fragmented by SCHC, SCHC F/R is
performed (see Section 8). The resulting SCHC Fragments are sent to an LPWAN Radio Gateway
(RGW), which forwards them to a Network Gateway (NGW). The NGW sends the data to a SCHC F/
R for reassembly (if needed) and then to the SCHC C/D for decompression. After decompression,
the packet can be sent over the Internet to one or several Apps.

The SCHC F/R and SCHC C/D on the Network Infrastructure side can be part of the NGW or
located in the Internet as long as a tunnel is established between them and the NGW. For some
LPWAN technologies, it may be suitable to locate the SCHC F/R functionality nearer the NGW, in
order to better deal with time constraints of such technologies.

The SCHC C/Ds on both sides MUST share the same set of Rules. So MUST the SCHC F/Rs on both
sides.

The operation in the Downlink direction is similar to that in the Uplink direction, only reversing
the order in which the architecture elements are traversed.

6. RulelID

RulelDs identify the Rules used for compression/decompression or for fragmentation/reassembly.

The scope of the RuleID of a compression/decompression Rule is the link between the SCHC C/D
in a given Dev and the corresponding SCHC C/D in the Network Infrastructure side. The scope of
the RuleID of a fragmentation/reassembly Rule is the link between the SCHC F/R in a given Dev
and the corresponding SCHC F/R in the Network Infrastructure side. If such a link is
bidirectional, the scope includes both directions.

Minaburo, et al. Standards Track Page 10

RFC 8724 LPWAN SCHC April 2020

The RulelDs are therefore specific to the Context related to one Dev. Hence, multiple Dev
instances, which refer to different Contexts, MAY reuse the same RulelD for different Rules. On
the Network Infrastructure side, in order to identify the correct Rule to be applied to Uplink
traffic, the SCHC C/D or SCHC F/R needs to associate the RuleID with the Dev identifier. Similarly,
for Downlink traffic, the SCHC C/D or SCHC F/R on the Network Infrastructure side first needs to
identify the destination Dev before looking for the appropriate Rule (and associated RuleID) in
the Context of that Dev.

Inside their scopes, Rules for compression/decompression and Rules for fragmentation/
reassembly share the same RulelID space.

The size of the RulelIDs is not specified in this document, as it is implementation-specific and can
vary according to the LPWAN technology and the number of Rules, among other things. It is
defined in Profiles.

The RulelDs are used:
* For SCHC C/D, to identify the Rule that is used to compress a packet header.

o At least one RuleID MUST be allocated to tagging packets for which SCHC compression was
not possible (i.e., no matching compression Rule was found).

* In SCHC F/R, to identify the specific mode and settings of fragmentation/reassembly for one
direction of data traffic (Uplink or Downlink).

o When SCHC F/R is used for both communication directions, at least two RuleID values are
needed for fragmentation/reassembly: one per direction of data traffic. This is because
fragmentation/reassembly may entail control messages flowing in the reverse direction
compared to data traffic.

7. Compression/Decompression

Compression with SCHC is based on using a set of Rules, which constitutes the Context of SCHC C/
D, to compress or decompress headers. SCHC avoids Context synchronization traffic, which
consumes considerable bandwidth in other header compression mechanisms such as RObust
Header Compression (RoHC) [RFC5795]. Since the content of packets is highly predictable in
LPWANS, static Contexts can be stored beforehand. The Contexts MUST be stored at both ends,
and they can be learned by a provisioning protocol, by out-of-band means, or by pre-
provisioning. The way the Contexts are provisioned is out of the scope of this document.

7.1. SCHC C/D Rules

The main idea of the SCHC compression scheme is to transmit the RulelD to the other end instead
of sending known field values. This RulelD identifies a Rule that matches the original packet
values. Hence, when a value is known by both ends, it is only necessary to send the

Minaburo, et al. Standards Track Page 11

RFC 8724 LPWAN SCHC April 2020

corresponding RuleID over the LPWAN. The manner by which Rules are generated is out of the
scope of this document. The Rules MAY be changed at run-time, but the mechanism is out of
scope of this document.

The SCHC C/D Context is a set of Rules. See Figure 6 for a high-level, abstract representation of the
Context. The formal specification of the representation of the Rules is outside the scope of this
document.

Each Rule itself contains a list of Field Descriptors composed of a Field Identifier (FID), a Field
Length (FL), a Field Position (FP), a Direction Indicator (DI), a Target Value (TV), a Matching
Operator (MO), and a Compression/Decompression Action (CDA).

|Field 1|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act|
fo—m Fo—d b Fom e fom +
| [Field 2|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act| |||
Fo—————— Fo— ot — Fom e Fom +
[... I I . . | ... | ...

|F=mmmmm= B it e e — e — +|]/

|Field N|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act|| |
= b —— e —————————————— h—m——————————————— e ———————————— +|/

Figure 6: A SCHC C/D Context

A Rule does not describe how the compressor parses a packet header to find and identify each
field (e.g., the IPv6 Source Address, the UDP Destination Port, or a CoAP URI path option). It is
assumed that there is a protocol parser alongside SCHC that is able to identify all the fields
encountered in the headers to be compressed, and to label them with a Field ID. Rules only
describe the compression/decompression behavior for each header field, after it has been
identified.

In a Rule, the Field Descriptors are listed in the order in which the fields appear in the packet
header. The Field Descriptors describe the header fields with the following entries:

* Field Identifier (FID) designates a protocol and field (e.g., UDP Destination Port),
unambiguously among all protocols that a SCHC compressor processes. In the presence of
protocol nesting, the Field ID also identifies the nesting.

* Field Length (FL) represents the length of the original field. It can be either a fixed value (in
bits) if the length is known when the Rule is created or a type if the length is variable. The
length of a header field is defined by its own protocol specification (e.g., IPv6 or UDP). If the

Minaburo, et al. Standards Track Page 12

RFC 8724 LPWAN SCHC April 2020

length is variable, the type defines the process to compute the length and its unit (bits,
bytes...).

* Field Position (FP): most often, a field only occurs once in a packet header. However, some
fields may occur multiple times. An example is the uri-path of CoAP. FP indicates which
occurrence this Field Descriptor applies to. The default value is 1. The value 1 designates the
first occurrence. The value 0 is special. It means "don't care", see Section 7.2.

A Direction Indicator (DI) indicates the packet direction(s) this Field Descriptor applies to. It
allows for asymmetric processing, using the same Rule. Three values are possible:

Up: this Field Descriptor is only applicable to packets traveling Uplink.
Dw: this Field Descriptor is only applicable to packets traveling Downlink.
Bi: this Field Descriptor is applicable to packets traveling Uplink or Downlink.

» Target Value (TV) is the value used to match against the packet header field. The Target Value
can be a scalar value of any type (integer, strings, etc.) or a more complex structure (array,
list, etc.). The types and representations are out of scope for this document.

» Matching Operator (MO) is the operator used to match the field value and the Target Value.
The Matching Operator may require some parameters. The set of MOs defined in this
document can be found in Section 7.3.

» Compression/Decompression Action (CDA) describes the pair of actions that are performed at
the compressor to compress a header field and at the decompressor to recover the original
value of the header field. Some CDAs might use parameter values for their operation. The set
of CDAs defined in this document can be found in Section 7.4.

7.2. Packet Processing

The compression/decompression process follows several phases:

Compression Rule selection:

Minaburo, et al. Standards Track Page 13

RFC 8724 LPWAN SCHC April 2020

the general idea is to browse the Rule set to find a Rule that has a matching Field
Descriptor (given the DI and FP) for all and only those header fields that appear in the
packet being compressed. The detailed algorithm is the following:

* The first step is to check the FIDs. If any header field of the packet being examined
cannot be matched with a Field Descriptor with the correct FID, the Rule MUST bhe
disregarded. If any Field Descriptor in the Rule has a FID that cannot be matched to
one of the header fields of the packet being examined, the Rule MUST be disregarded.

The next step is to match the Field Descriptors by their direction, using the DI. If any
field of the packet header cannot be matched with a Field Descriptor with the correct
FID and DI, the Rule MUST be disregarded.

Then, the Field Descriptors are further selected according to FP. If any field of the
packet header cannot be matched with a Field Descriptor with the correct FID, DI and
FP, the Rule MUST be disregarded.

The value 0 for FP means "don't care", i.e., the comparison of this Field Descriptor's FP
with the position of the field of the packet header being compressed returns True,
whatever that position. FP=0 can be useful to build compression Rules for protocol
headers in which some fields order is irrelevant. An example could be uri-queries in
CoAP. Care needs to be exercised when writing Rules containing FP=0 values. Indeed, it
may result in decompressed packets having fields ordered differently compared to the
original packet.

Once each header field has been associated with a Field Descriptor with matching FID,
DI, and FP, each packet field's value is then compared to the corresponding TV stored
in the Rule for that specific field, using the MO. If every field in the packet header
satisfies the corresponding MOs of a Rule (i.e., all MO results are True), that Rule is
valid for use to compress the header. Otherwise, the Rule MUST be disregarded.

This specification does not prevent multiple Rules from matching the above steps and,
therefore, being valid for use. Which Rule to use among multiple valid Rules is left to
the implementation. As long as the same Rule set is installed at both ends, this degree
of freedom does not constitute an interoperability issue.

If no valid compression Rule is found, then the packet MUST be sent uncompressed
using the RuleID dedicated to this purpose (see Section 6). The entire packet header is
the Compression Residue (see Figure 4). Sending an uncompressed header is likely to
require SCHC F/R.

Compression: if a valid Rule is found, each field of the header is compressed according to the
CDAs of the Rule. The fields are compressed in the order that the Field Descriptors appear
in the Rule. The compression of each field results in a residue, which may be empty. The
Compression Residue for the packet header is the concatenation of the non-empty residues
for each field of the header, in the order the Field Descriptors appear in the Rule. The
order in which the Field Descriptors appear in the Rule is therefore semantically
important.

Minaburo, et al. Standards Track Page 14

RFC 8724 LPWAN SCHC April 2020

| field 1 residue | field 2 residue | ... | field N residue |
fmm o f————= o +

Figure 7: Compression Residue Structure

Sending: The RulelD is sent to the other end jointly with the Compression Residue (which could
be empty) or the uncompressed header, and directly followed by the payload (see Figure
4). The way the RulelID is sent will be specified in the Profile and is out of the scope of the
present document. For example, it could be included in an L2 header or sent as part of the
L2 payload.

Decompression: when decompressing, on the Network Infrastructure side, the SCHC C/D needs
to find the correct Rule based on the L2 address of the Dev. On the Dev side, only the
RulelID is needed to identify the correct Rule since the Dev typically only holds Rules that
apply to itself.

This Rule describes the compressed header format. From this, the decompressor
determines the order of the residues, the fixed-size or variable-size nature of each residue
(see Section 7.4.2), and the size of the fixed-size residues.

Therefore, from the received compressed header, it can retrieve all the residue values and
associate them to the corresponding header fields.

For each field in the header, the receiver applies the CDA action associated with that field
in order to reconstruct the original header field value. The CDA application order can be
different from the order in which the fields are listed in the Rule. In particular, Compute-*
MUST be applied after the application of the CDAs of all the fields it computes on.

7.3. Matching Operators

MOs are functions used at the compression side of SCHC C/D. They are not typed and can be
applied to integer, string or any other data type. The result of the operation can either be True or
False. The following MOs are defined:

equal: The match resultis True if the field value in the packet matches the TV.

ignore: No matching is attempted between the field value in the packet and the TV in the Rule.
The result is always True.

MSB(x): A match is obtained if the most significant (leftmost) x bits of the packet header field
value are equal to the TV in the Rule. The X parameter of the MSB MO indicates how many
bits are involved in the comparison. If the FL is described as variable, the x parameter
must be a multiple of the FL unit. For example, x must be multiple of 8 if the unit of the
variable length is bytes.

Minaburo, et al. Standards Track Page 15

RFC 8724 LPWAN SCHC April 2020

match-mapping: With match-mapping, TV is a list of values. Each value of the list is identified
by an index. Compression is achieved by sending the index instead of the original header
field value. This operator matches if the header field value is equal to one of the values in
the target list.

7.4. Compression/Decompression Actions (CDA)

The CDA specifies the actions taken during the compression of header fields and the inverse
action taken by the decompressor to restore the original value. The CDAs defined by this
document are described in detail in Section 7.4.3 to Section 7.4.8. They are summarized in Table
1.

Action Compression Decompression

not-sent elided use TV stored in Rule

value-sent send use received value

mapping-sent send index retrieve value from TV list

LSB send least significant bits (LSB) concatenate TV and received value
compute-* elided recompute at decompressor
DevIID elided build IID from L2 Dev addr
AppIID elided build IID from L2 App addr

Table 1: Compression and Decompression Actions

The first column shows the action's name. The second and third columns show the compression
and decompression behaviors for each action.

7.4.1. Processing Fixed-Length Fields

If the field is identified in the Field Descriptor as being of fixed length, then applying the CDA to
compress this field results in a fixed amount of bits. The residue for that field is simply the bits
resulting from applying the CDA to the field. This value may be empty (e.g., not-sent CDA), in
which case the field residue is absent from the Compression Residue.

|- field residue -|

Figure 8: Fixed-Size Field Residue Structure

Minaburo, et al. Standards Track Page 16

RFC 8724 LPWAN SCHC April 2020

7.4.2. Processing Variable-Length Fields

If the field is identified in the Field Descriptor as being of variable length, then applying the CDA
to compress this field may result in a value of fixed size (e.g., not-sent or mapping-sent) or of
variable size (e.g., value-sent or LSB). In the latter case, the residue for that field is the bits that
result from applying the CDA to the field, preceded with the size of the value. The most
significant bit of the size is stored to the left (leftmost bit of the residue field).

|--- field residue ---|

Figure 9: Variable-Size Field Residue Structure
The size (using the unit defined in the FL) is encoded on 4, 12, or 28 bits as follows:

o If the size is between 0 and 14, it is encoded as a 4-bit unsigned integer.
* Sizes between 15 and 254 are encoded as 0b1111 followed by the 8-bit unsigned integer.
* Larger sizes are encoded as Oxfff followed by the 16-bit unsigned integer.

If the field is identified in the Field Descriptor as being of variable length and this field is not
present in the packet header being compressed, size 0 MUST be sent to denote its absence.
7.4.3. Not-Sent CDA

The not-sent action can be used when the field value is specified in a Rule and, therefore, known
by both the Compressor and the Decompressor. This action SHOULD be used with the "equal" MO.
If MO is "ignore", there is a risk of having a decompressed field value that is different from the
original field that was compressed.

The compressor does not send any residue for a field on which not-sent compression is applied.

The decompressor restores the field value with the TV stored in the matched Rule identified by
the received RulelD.

7.4.4. Value-Sent CDA

The value-sent action can be used when the field value is not known by both the Compressor and
the Decompressor. The field is sent in its entirety, using the same bit order as in the original
packet header.

If this action is performed on a variable-length field, the size of the residue value (using the units
defined in FL) MUST be sent as described in Section 7.4.2.

This action is generally used with the "ignore" MO.

Minaburo, et al. Standards Track Page 17

RFC 8724 LPWAN SCHC April 2020

7.4.5. Mapping-Sent CDA
The mapping-sent action is used to send an index (the index into the TV list of values) instead of
the original value. This action is used together with the "match-mapping" MO.

On the compressor side, the match-mapping MO searches the TV for a match with the header
field value. The mapping-sent CDA then sends the corresponding index as the field residue. The
most significant bit of the index is stored to the left (leftmost bit of the residue field).

On the decompressor side, the CDA uses the received index to restore the field value by looking
up the list in the TV.

The number of bits sent is the minimal size for coding all the possible indices.

The first element in the list MUST be represented by index value 0, and successive elements in the
list MUST have indices incremented by 1.

7.4.6. LSB CDA

The LSB action is used together with the "MSB(x)" MO to avoid sending the most significant part
of the packet field if that part is already known by the receiving end.

The compressor sends the LSBs as the field residue value. The number of bits sent is the original
header field length minus the length specified in the MSB(x) MO. The bits appear in the residue
in the same bit order as in the original packet header.

The decompressor concatenates the x most significant bits of the TV and the received residue
value.

If this action is performed on a variable-length field, the size of the residue value (using the units
defined in FL) MUST be sent as described in Section 7.4.2.
7.4.7. DevIID, ApplID CDA

These actions are used to process the DevIID and AppIID of the IPv6 addresses, respectively.
AppIID CDA is less common since most current LPWAN technologies frames contain a single L2
address, which is the Dev's address.

The DevIID value MAY be computed from the Dev ID present in the L2 header, or from some
other stable identifier. The computation is specific to each Profile and MAY depend on the Dev ID
size.

In the Downlink direction, at the compressor, the DevIID CDA may be used to generate the L2
addresses on the LPWAN, based on the packet's Destination Address.

7.4.8. Compute-*

Some fields can be elided at the compressor and recomputed locally at the decompressor.

Minaburo, et al. Standards Track Page 18

RFC 8724 LPWAN SCHC April 2020

Because the field is uniquely identified by its FID (e.g., IPv6 length), the relevant protocol
specification unambiguously defines the algorithm for such computation.

An example of a field that knows how to recompute itself is IPv6 length.

8. Fragmentation/Reassembly

8.1. Overview

In LPWAN technologies, the L2 MTU typically ranges from tens to hundreds of bytes. Some of
these technologies do not have an internal fragmentation/reassembly mechanism.

The optional SCHC F/R functionality enables such LPWAN technologies to comply with the IPv6
MTU requirement of 1280 bytes [RFC8200]. It is OPTIONAL to implement per this specification,
but Profiles may specify that it is REQUIRED.

This specification includes several SCHC F/R modes, which allow for a range of reliability options
such as optional SCHC Fragment retransmission. More modes may be defined in the future.

The same SCHC F/R mode MUST be used for all SCHC Fragments of a given SCHC Packet. This
document does not specify which mode(s) must be implemented and used over a specific LPWAN
technology. That information will be given in Profiles.

SCHC allows transmitting non-fragmented SCHC Packet concurrently with fragmented SCHC
Packets. In addition, SCHC F/R provides protocol elements that allow transmitting several
fragmented SCHC Packets concurrently, i.e., interleaving the transmission of fragments from
different fragmented SCHC Packets. A Profile MAY restrict the latter behavior.

The L2 Word size (see Section 4) determines the encoding of some messages. SCHC F/R usually
generates SCHC Fragments and SCHC ACKs that are multiples of L2 Words.

8.2. SCHC F/R Protocol Elements

This subsection describes the different elements that are used to enable the SCHC F/R
functionality defined in this document. These elements include the SCHC F/R messages, tiles,
windows, bitmaps, counters, timers, and header fields.

The elements are described here in a generic manner. Their application to each SCHC F/R mode
is found in Section 8.4.

8.2.1. Messages
SCHC F/R defines the following messages:

SCHC Fragment: A message that carries part of a SCHC Packet from the sender to the receiver.

SCHC ACK: An acknowledgement for fragmentation, by the receiver to the sender. This message
is used to indicate whether or not the reception of pieces of, or the whole of, the
fragmented SCHC Packet was successful.

Minaburo, et al. Standards Track Page 19

RFC 8724 LPWAN SCHC April 2020

SCHC ACKREQ: A request by the sender for a SCHC ACK from the receiver.

SCHC Sender-Abort: A message by the sender telling the receiver that it has aborted the
transmission of a fragmented SCHC Packet.

SCHC Receiver-Abort: A message by the receiver to tell the sender to abort the transmission of a
fragmented SCHC Packet.

The format of these messages is provided in Section 8.3.

8.2.2. Tiles, Windows, Bitmaps, Timers, Counters

8.2.2.1. Tiles

The SCHC Packet is fragmented into pieces, hereafter called "tiles". The tiles MUST be non-empty
and pairwise disjoint. Their union MUST be equal to the SCHC Packet.

See Figure 10 for an example.

SCHC Packet
it e e s BT ettt T TP T fo—m o —————— +

Tiles | | | [R I B I I

ot ——— e ————————} | ————— ot ————— +
Figure 10: SCHC Packet Fragmented in Tiles
Modes (see Section 8.4) MAY place additional constraints on tile sizes.

Each SCHC Fragment message carries at least one tile in its Payload, if the Payload field is
present.

8.2.2.2. Windows
Some SCHC F/R modes may handle successive tiles in groups, called windows.

If windows are used:

» all the windows of a SCHC Packet, except the last one, MUST contain the same number of
tiles. This number is WINDOW_SIZE.

* WINDOW_SIZE MUST be specified in a Profile.
* the windows are numbered.

o their numbers MUST increment by 1 from 0 upward, from the start of the SCHC Packet to its
end.

* the last window MUST contain WINDOW _SIZE tiles or less.
¢ tiles are numbered within each window.

* the tile indices MUST decrement by 1 from WINDOW_SIZE - 1 downward, looking from the
start of the SCHC Packet toward its end.

Minaburo, et al. Standards Track Page 20

RFC 8724 LPWAN SCHC April 2020

* therefore, each tile of a SCHC Packet is uniquely identified by a window number and a tile
index within this window.

See Figure 11 for an example.

T +
| SCHC Packet |
e T +
Tile# |4]3] 21|06]4]3|2]1]06]4| | © | 4 |3]
Window# |-------- §) == | 1], semoo=—s =2 .00 27 =|= 26|

Figure 11: SCHC Packet Fragmented in Tiles Grouped in 29 Windows, with WINDOW_SIZE = 5

Appendix E discusses the benefits of selecting one among multiple window sizes depending on
the size of the SCHC Packet to be fragmented.

When windows are used:

* Bitmaps (see Section 8.2.2.3) MAY be sent back by the receiver to the sender in a SCHC ACK
message.

» A Bitmap corresponds to exactly one Window.

8.2.2.3. Bitmaps

Each bit in the Bitmap for a window corresponds to a tile in the window. Therefore, each Bitmap
has WINDOW_SIZE bits. The bit at the leftmost position corresponds to the tile numbered
WINDOW_SIZE - 1. Consecutive bits, going right, correspond to sequentially decreasing tile
indices. In Bitmaps for windows that are not the last one of a SCHC Packet, the bit at the
rightmost position corresponds to the tile numbered 0. In the Bitmap for the last window, the bit
at the rightmost position corresponds either to the tile numbered 0 or to a tile that is sent/
received as "the last one of the SCHC Packet" without explicitly stating its number (see Section
8.3.1.2).

At the receiver:

* a bit set to 1 in the Bitmap indicates that a tile associated with that bit position has been
correctly received for that window.

* a bit set to 0 in the Bitmap indicates that there has been no tile correctly received, associated
with that bit position, for that window. Possible reasons include that the tile was not sent at
all, not received, or received with errors.

8.2.2.4. Timers and Counters
Some SCHC F/R modes can use the following timers and counters:

Inactivity Timer: a SCHC Fragment receiver uses this timer to abort waiting for a SCHC F/R
message.

Minaburo, et al. Standards Track Page 21

RFC 8724 LPWAN SCHC April 2020

Retransmission Timer: a SCHC Fragment sender uses this timer to abort waiting for an
expected SCHC ACK.

Attempts: this counter counts the requests for SCHC ACKs, up to MAX_ACK_REQUESTS.

8.2.3. Integrity Checking

The integrity of the fragmentation-reassembly process of a SCHC Packet MUST be checked at the
receive end. A Profile MUST specify how integrity checking is performed.

It is RECOMMENDED that integrity checking be performed by computing a Reassembly Check
Sequence (RCS) based on the SCHC Packet at the sender side and transmitting it to the receiver
for comparison with the RCS locally computed after reassembly.

The RCS supports UDP checksum elision by SCHC C/D (see Section 10.11).

The CRC32 polynomial 0XEDB88320 (i.e., the reversed polynomial representation, which is used
in the Ethernet standard [ETHERNET]) is RECOMMENDED as the default algorithm for computing
the RCS.

The RCS MUST be computed on the full SCHC Packet concatenated with the padding bits, if any, of
the SCHC Fragment carrying the last tile. The rationale is that the SCHC reassembler has no way
of knowing the boundary between the last tile and the padding bits. Indeed, this requires
decompressing the SCHC Packet, which is out of the scope of the SCHC reassembler.

The concatenation of the complete SCHC Packet and any padding bits, if present, of the last SCHC
Fragment does not generally constitute an integer number of bytes. CRC libraries are usually byte
oriented. It is RECOMMENDED that the concatenation of the complete SCHC Packet and any last
fragment padding bits be zero-extended to the next byte boundary and that the RCS be computed
on that byte array.

8.2.4. Header Fields

The SCHC F/R messages contain the following fields (see the formats in Section 8.3):
RuleID: this field is present in all the SCHC F/R messages. The Rule identifies:

« that a SCHC F/R message is being carried, as opposed to an unfragmented SCHC Packet,
* which SCHC F/R mode is used,

¢ in case this mode uses windows, what the value of WINDOW _SIZE is, and

» what other optional fields are present and what the field sizes are.

The Rule tells apart a non-fragmented SCHC Packet from SCHC Fragments. It will also tell
apart SCHC Fragments of fragmented SCHC Packets that use different SCHC F/R modes or
different parameters. Therefore, interleaved transmission of these is possible.

All SCHC F/R messages pertaining to the same SCHC Packet MUST bear the same RuleID.

Minaburo, et al. Standards Track Page 22

RFC 8724 LPWAN SCHC April 2020

Datagram Tag (DTag): This field allows differentiating SCHC F/R messages belonging to different
SCHC Packets that may be using the same RuleID simultaneously. Hence, it allows
interleaving fragments of a new SCHC Packet with fragments of a previous SCHC Packet
under the same RulelD.

The size of the DTag field (called "T", in bits) is defined by each Profile for each RuleID.
When T is 0, the DTag field does not appear in the SCHC F/R messages and the DTag value is
defined as 0.

When T is 0, there can be no more than one fragmented SCHC Packet in transit for each
fragmentation RuleID.

If Tis not 0, DTag:

* MUST be set to the same value for all the SCHC F/R messages related to the same
fragmented SCHC Packet, and

* MUST be set to different values for SCHC F/R messages related to different SCHC
Packets that are being fragmented under the same RuleID and whose transmission
may overlap.

W: The W field is optional. It is only present if windows are used. Its presence and size (called
"M", in bits) is defined by each SCHC F/R mode and each Profile for each RuleID.

This field carries information pertaining to the window a SCHC F/R message relates to. If
present, W MUST carry the same value for all the SCHC F/R messages related to the same
window. Depending on the mode and Profile, W may carry the full window number, or
just the LSB or any other partial representation of the window number.

Fragment Compressed Number (FCN): The FCN field is present in the SCHC Fragment Header.
Its size (called "N", in bits) is defined by each Profile for each RulelID.

This field conveys information about the progress in the sequence of tiles being
transmitted by SCHC Fragment messages. For example, it can contain a partial, efficient
representation of a larger-sized tile index. The description of the exact use of the FCN field
is left to each SCHC F/R mode. However, two values are reserved for special purposes. They
help control the SCHC F/R process:

» The FCN value with all the bits equal to 1 (called "All-1") signals that the very last tile of
a SCHC Packet has been transmitted. By extension, if windows are used, the last
window of a packet is called the "All-1" window.

 If windows are used, the FCN value with all the bits equal to 0 (called "All-0") signals
the last tile of a window that is not the last one of the SCHC packet. By extension, such
a window is called an "All-0 window".

Minaburo, et al. Standards Track Page 23

RFC 8724 LPWAN SCHC April 2020

Reassembly Check Sequence (RCS): This field only appears in the All-1 SCHC Fragments. Its size
(called "U", in bits) is defined by each Profile for each RuleID.

See Section 8.2.3 for the RCS default size, default polynomial and details on RCS
computation.

C (integrity Check): Cis a 1-bit field. This field is used in the SCHC ACK message to report on the
reassembled SCHC Packet integrity check (see Section 8.2.3).

A value of 1 tells that the integrity check was performed and is successful. A value of 0 tells
that the integrity check was not performed or that it was a failure.

Compressed Bitmap: The Compressed Bitmap is used together with windows and Bitmaps (see
Section 8.2.2.3). Its presence and size is defined for each SCHC F/R mode for each RulelD.

This field appears in the SCHC ACK message to report on the receiver Bitmap (see Section
8.3.2.1).

8.3. SCHC F/R Message Formats

This section defines the SCHC Fragment formats, the SCHC ACK format, the SCHC ACK REQ
format and the SCHC Abort formats.

8.3.1. SCHC Fragment Format

A SCHC Fragment conforms to the general format shown in Figure 12. It comprises a SCHC
Fragment Header and a SCHC Fragment Payload. The SCHC Fragment Payload carries one or
several tile(s).

e +——_———— e — — B R N R R R R R

| Fragment Header | Fragment Payload | padding (as needed)
Fom e Fom R N R R Rt

Figure 12: SCHC Fragment General Format

8.3.1.1. Regular SCHC Fragment

The Regular SCHC Fragment format is shown in Figure 13. Regular SCHC Fragments are generally
used to carry tiles that are not the last one of a SCHC Packet. The DTag field and the W field are
OPTIONAL, their presence is specified by each mode and Profile.

| -— SCHC Fragment Header ----|
== T | M=| == N |
P== 500 THS goo ThEETES g0 ShEommemes 3 0 g === A h bbb b bbbttt

| RuleID | DTag | W | FCN | Fragment Payload | padding (as needed)
$== 000 TP= goo THEIIhe oo CHTmmmmmos R AP I I I I

Figure 13: Detailed Header Format for Regular SCHC Fragments

Minaburo, et al. Standards Track Page 24

RFC 8724 LPWAN SCHC April 2020

The FCN field MUST NOT contain all bits set to 1.

Profiles MUST ensure that a SCHC Fragment with FCN equal to 0 (called an "All-0 SCHC
Fragment") is distinguishable by size, even in the presence of padding, from a SCHC ACK REQ
message (see Section 8.3.3) with the same RuleID value and with the same T, M, and N values.
This condition is met if the Payload is at least the size of an L2 Word. This condition is also met if
the SCHC Fragment Header is a multiple of L2 Words.

8.3.1.2. All-1 SCHC Fragment

The All-1 SCHC Fragment format is shown in Figure 14. The sender uses the All-1 SCHC Fragment
format for the message that completes the emission of a fragmented SCHC Packet. The DTag field,
the W field, the RCS field and the Payload are OPTIONAL, their presence is specified by each mode
and Profile. At least one of RCS field or Fragment Payload MUST be present. The FCN field is all
ones.

| SCHC Fragment Header ------- |
== T [M| N === U -]
P== 400 T2 coo TPTTITS go0 TS oo THTETTS 0 0 SS=== P S I I
| RuleID | DTag | W | 11..1 | RCS | FragPayload | pad. (as needed)
$== 000 TP® poo TPTTITE g0 THO poo TwTITTS o g=S=== P I DI DI
(FCN)

Figure 14: Detailed Header Format for the All-1 SCHC Fragment

Profiles MUST ensure that an All-1 SCHC Fragment message is distinguishable by size, even in the
presence of padding, from a SCHC Sender-Abort message (see Section 8.3.4) with the same RuleID
value and with the same T, M, and N values. This condition is met if the RCS is present and is at
least the size of an L2 Word or if the Payload is present and is at least the size an L2 Word. This
condition is also met if the SCHC Sender-Abort Header is a multiple of L2 Words.

8.3.2. SCHC ACK Format

The SCHC ACK message is shown in Figure 15. The DTag field and the W field are OPTIONAL, their
presence is specified by each mode and Profile. The Compressed Bitmap field MUST be present in
SCHC F/R modes that use windows and MUST NOT be present in other modes.

| -—- SCHC ACK Header ----|

== T = |M-] 1|

e s dtt P P

| RuleID | DTag | W |C=1| padding as needed (success)
I T it St T PP

s T e s e e ce. T IR E TR LA

| RuleID | DTag | W |C=0|Compressed Bitmap| pad. as needed (failure)
I R ve. - s

Figure 15: Format of the SCHC ACK Message

Minaburo, et al. Standards Track Page 25

RFC 8724 LPWAN SCHC April 2020

The SCHC ACK Header contains a C bit (see Section 8.2.4).
If the C bit is set to 1 (integrity check successful), no Bitmap is carried.

If the C bit is set to 0 (integrity check not performed or failed) and if windows are used, a
Compressed Bitmap for the window referred to by the W field is transmitted as specified in
Section 8.3.2.1.

8.3.2.1. Bitmap Compression

For transmission, the Compressed Bitmap in the SCHC ACK message is defined by the following
algorithm (see Figure 16 for a follow-along example):

* Build a temporary SCHC ACK message that contains the Header followed by the original
Bitmap (see Section 8.2.2.3 for a description of Bitmaps).

* Position scissors at the end of the Bitmap, after its last bit.

» While the bit on the left of the scissors is 1 and belongs to the Bitmap, keep moving left, then
stop.

* Then, while the scissors are not on an L2 Word boundary of the SCHC ACK message and
there is a Bitmap bit on the right of the scissors, keep moving right, then stop.

* At this point, cut and drop off any bits to the right of the scissors.

When one or more bits have effectively been dropped off as a result of the above algorithm, the
SCHC ACK message is a multiple of L2 Words; no padding bits will be appended.

Because the SCHC Fragment sender knows the size of the original Bitmap, it can reconstruct the
original Bitmap from the Compressed Bitmap received in the SCHC ACK message.

Figure 16 shows an example where L2 Words are actually bytes and where the original Bitmap
contains 17 bits, the last 15 of which are all set to 1.

| -—— SCHC ACK Header ----|-------- Bitmap ~ ---—---—- |
|~ T —=|M-] 1|

T T e et +

| RuleID | DTag | W |C=0]1 6 111111111111111]|

T T s et +

next Li.Word boundary ->|
Figure 16: SCHC ACK Header Plus Uncompressed Bitmap

Figure 17 shows that the last 14 bits are not sent.

Minaburo, et al. Standards Track Page 26

RFC 8724 LPWAN SCHC April 2020

| -—- SCHC ACK Header ----|CpBmp|
|-= T —[-M-] 1 |
R Tt e
| RuleID | DTag | W |C=0|1 0 1|
SIS Lo TRE Lg0 SHESStEose=s=od

next L2 Word boundary ->|
Figure 17: Resulting SCHC ACK Message with Compressed Bitmap

Figure 18 shows an example of a SCHC ACK with tile indices ranging from 6 down to 0, where the

Bitmap indicates that the second and the fourth tile of the window have not been correctly
received.

| --- SCHC ACK Header ----|--- Bitmap —-—|
|-- T --|-M-| 1 |6 54 32 10| (tile #)

o +om———— B R it S +
| RuleID | DTag | W |C=0|1 06 106 11 1| uncompressed Bitmap
pom—————— o B St +

next L2 Word boundary ->|<-- L2 Word --->|
fo————— o B R s S f~~nt
| RuleID | DTag | W |C=0|1 6 1 © 1 1 1|pad.| transmitted SCHC ACK
fomm————— t—————— B i et ot

next L2 Word boundary ->|<-- L2 Word --->|

Figure 18: Example of a SCHC ACK Message, Missing Tiles

Figure 19 shows an example of a SCHC ACK with tile indices ranging from 6 down to 0, where
integrity check has not been performed or has failed and the Bitmap indicates that there is no
missing tile in that window.

| -—- SCHC ACK Header ----|--- Bitmap --|
|-- T -—-|-M-| 1 |6 5432 10| (tile #)
pom—————— o B St +
| RuleID | DTag | W |C=0|1 111 11 1| with uncompressed Bitmap
Fomm———— t—————— B i +

next L2 Word boundary ->|
R T et bt ot

| RuleID | DTag | W |C=0]|1] transmitted SCHC ACK
S At Stk et

next L2 Word boundary ->|
Figure 19: Example of a SCHC ACK Message, No Missing Tile

8.3.3. SCHC ACK REQ Format

The SCHC ACK REQ is used by a sender to request a SCHC ACK from the receiver. Its format is
shown in Figure 20. The DTag field and the W field are OPTIONAL, their presence is specified by
each mode and Profile. The FCN field is all zero.

Minaburo, et al. Standards Track Page 27

RFC 8724 LPWAN SCHC April 2020

| -—— SCHC ACK REQ Header ----|
== T M- N
e T e R T

| RuleID | DTag | W | ©0..0 | padding (as needed) (no payload)
R Lt S e

Figure 20: SCHC ACK REQ Format

8.3.4. SCHC Sender-Abort Format
When a SCHC Fragment sender needs to abort an ongoing fragmented SCHC Packet transmission,
it sends a SCHC Sender-Abort message to the SCHC Fragment receiver.

The SCHC Sender-Abort format is shown in Figure 21. The DTag field and the W field are
OPTIONAL, their presence is specified by each mode and Profile. The FCN field is all ones.

| -—- Sender-Abort Header ----|

== T =M= N |
T I
| RuleID | DTag | W | 11..1 | padding (as needed)

e T e R T
Figure 21: SCHC Sender-Abort Format
If the W field is present:

o the fragment sender MUST set it to all ones. Other values are RESERVED.

* the fragment receiver MUST check its value. If the value is different from all ones, the
message MUST be ignored.

The SCHC Sender-Abort MUST NOT be acknowledged.

8.3.5. SCHC Receiver-Abort Format

When a SCHC Fragment receiver needs to abort an ongoing fragmented SCHC Packet
transmission, it transmits a SCHC Receiver-Abort message to the SCHC Fragment sender.

The SCHC Receiver-Abort format is shown in Figure 22. The DTag field and the W field are
OPTIONAL, their presence is specified by each mode and Profile.

| -— Receiver-Abort Header ---|

| === T ===[-M-] 1 |
to—— .. m—t—— ., m— et — bttt =t —t—t—+—+
| RuleID | DTag | W |C=1]| 1..1]| 1..1 |
to—— L. mmt—— L. ettt -+

next L2 Word boundary ->|<-- L2 Word -->|

Figure 22: SCHC Receiver-Abort Format

Minaburo, et al. Standards Track Page 28

RFC 8724 LPWAN SCHC April 2020

If the W field is present:

¢ the fragment receiver MUST set it to all ones. Other values are RESERVED.
o if the value is different from all ones, the fragment sender MUST ignore the message.

The SCHC Receiver-Abort has the same header as a SCHC ACK message. The bits that follow the
SCHC Receiver-Abort Header MUST be as follows:

o if the Header does not end at an .2 Word boundary, append bits set to 1 as needed to reach
the next L2 Word boundary.

* append exactly one more L2 Word with bits all set to ones.

Such a bit pattern never occurs in a legitimate SCHC ACK. This is how the fragment sender
recognizes a SCHC Receiver-Abort.

The SCHC Receiver-Abort MUST NOT be acknowledged.

8.4. SCHC F/R Modes
This specification includes several SCHC F/R modes that:

» allow for a range of reliability options, such as optional SCHC Fragment retransmission.

* support various LPWAN characteristics, such as links with variable MTU or unidirectional
links.

More modes may be defined in the future.

Appendix B provides examples of fragmentation sessions based on the modes described
hereafter.

Appendix C provides examples of Finite State Machines implementing the SCHC F/R modes
described hereafter.

8.4.1. No-ACK Mode

The No-ACK mode has been designed under the assumption that data unit out-of-sequence
delivery does not occur between the entity performing fragmentation and the entity performing
reassembly. This mode supports L2 technologies that have a variable MTU.

In No-ACK mode, there is no communication from the fragment receiver to the fragment sender.
The sender transmits all the SCHC Fragments without expecting any acknowledgement.
Therefore, No-ACK does not require bidirectional links: unidirectional links are just fine.

In No-ACK mode, only the All-1 SCHC Fragment is padded as needed. The other SCHC Fragments
are intrinsically aligned to L2 Words.

The tile sizes are not required to be uniform. Windows are not used. The Retransmission Timer is
not used. The Attempts counter is not used.

Minaburo, et al. Standards Track Page 29

RFC 8724 LPWAN SCHC April 2020

Each Profile MUST specify which RulelID value(s) corresponds to SCHC F/R messages operating in
this mode.

The W field MUST NOT be present in the SCHC F/R messages. SCHC ACK MUST NOT be sent. SCHC
ACK REQ MUST NOT be sent. SCHC Sender-Abort MAY be sent. SCHC Receiver-Abort MUST NOT be
sent.

The value of N (size of the FCN field) is RECOMMENDED to be 1.
Each Profile, for each RuleID value, MUST define:

o the size of the DTag field,
o the size and algorithm for the RCS field, and
* the expiration time of the Inactivity Timer.

Each Profile, for each RulelID value, MAY define

» a value of N different from the recommended one, and
¢ the meaning of values sent in the FCN field, for values different from the All-1 value.

For each active pair of RuleID and DTag values, the receiver MUST maintain an Inactivity Timer.
If the receiver is under-resourced to do this, it MUST silently drop the related messages.

8.4.1.1. Sender Behavior

At the beginning of the fragmentation of a new SCHC Packet, the fragment sender MUST select a
RuleID and DTag value pair for this SCHC Packet.

Each SCHC Fragment MUST contain exactly one tile in its Payload. The tile MUST be at least the
size of an L2 Word. The sender MUST transmit the SCHC Fragments messages in the order that
the tiles appear in the SCHC Packet. Except for the last tile of a SCHC Packet, each tile MUST be of
a size that complements the SCHC Fragment Header so that the SCHC Fragment is a multiple of
L2 Words without the need for padding bits. Except for the last one, the SCHC Fragments MUST
use the Regular SCHC Fragment format specified in Section 8.3.1.1. The SCHC Fragment that
carries the last tile MUST be an All-1 SCHC Fragment, described in Section 8.3.1.2.

The sender MAY transmit a SCHC Sender-Abort.

Figure 39 shows an example of a corresponding state machine.

8.4.1.2. Receiver Behavior
Upon receiving each Regular SCHC Fragment:

* the receiver MUST reset the Inactivity Timer.
* the receiver assembles the payloads of the SCHC Fragments.

Minaburo, et al. Standards Track Page 30

RFC 8724 LPWAN SCHC April 2020

On receiving an All-1 SCHC Fragment:

* the receiver MUST append the All-1 SCHC Fragment Payload and the padding bits to the
previously received SCHC Fragment Payloads for this SCHC Packet.

* the receiver MUST perform the integrity check.
o if integrity checking fails, the receiver MUST drop the reassembled SCHC Packet.
* the reassembly operation concludes.

On expiration of the Inactivity Timer, the receiver MUST drop the SCHC Packet being
reassembled.

On receiving a SCHC Sender-Abort, the receiver MAY drop the SCHC Packet being reassembled.

Figure 40 shows an example of a corresponding state machine.

8.4.2. ACK-Always Mode

The ACK-Always mode has been designed under the following assumptions:

* Data unit out-of-sequence delivery does not occur between the entity performing
fragmentation and the entity performing reassembly,

* The L2 MTU value does not change while the fragments of a SCHC Packet are being
transmitted, and

* There is a feedback path from the reassembler to the fragmenter. See Appendix F for a
discussion on using ACK-Always mode on quasi-bidirectional links.

In ACK-Always mode, windows are used. An acknowledgement, positive or negative, is
transmitted by the fragment receiver to the fragment sender at the end of the transmission of
each window of SCHC Fragments.

The tiles are not required to be of uniform size. In ACK-Always mode, only the All-1 SCHC
Fragment is padded as needed. The other SCHC Fragments are intrinsically aligned to L2 Words.

Briefly, the algorithm is as follows: after a first blind transmission of all the tiles of a window, the
fragment sender iterates retransmitting the tiles that are reported missing until the fragment
receiver reports that all the tiles belonging to the window have been correctly received or until
too many attempts were made. The fragment sender only advances to the next window of tiles
when it has ascertained that all the tiles belonging to the current window have been fully and
correctly received. This results in a per-window lock-step behavior between the sender and the
receiver.

Each Profile MUST specify which RuleID value(s) correspond to SCHC F/R messages operating in
this mode.

The W field MUST be present and its size M MUST be 1 bit.
Each Profile, for each RulelID value, MUST define:

e the value of N,

Minaburo, et al. Standards Track Page 31

RFC 8724 LPWAN SCHC April 2020

* the value of WINDOW _SIZE, which MUST be strictly less than 22N,
* the size and algorithm for the RCS field,

e the value of T,

* the value of MAX_ACK_REQUESTS,

o the expiration time of the Retransmission Timer, and

* the expiration time of the Inactivity Timer.

For each active pair of RuleID and DTag values, the sender MUST maintain:

* one Attempts counter
e one Retransmission Timer

For each active pair of RuleID and DTag values, the receiver MUST maintain

* one Inactivity Timer, and
* one Attempts counter.

8.4.2.1. Sender Behavior

At the beginning of the fragmentation of a new SCHC Packet, the fragment sender MUST select a
RuleID and DTag value pair for this SCHC Packet.

Each SCHC Fragment MUST contain exactly one tile in its Payload. All tiles with the index 0, as
well as the last tile, MUST be at least the size of an L2 Word.

In all SCHC Fragment messages, the W field MUST be filled with the LSB of the window number
that the sender is currently processing.

For a SCHC Fragment that carries a tile other than the last one of the SCHC Packet:

* the Fragment MUST be of the Regular type specified in Section 8.3.1.1.
* the FCN field MUST contain the tile index.

* each tile MUST be of a size that complements the SCHC Fragment Header so that the SCHC
Fragment is a multiple of L2 Words without the need for padding bits.

The SCHC Fragment that carries the last tile MUST be an All-1 SCHC Fragment, described in
Section 8.3.1.2.

The fragment sender MUST start by transmitting the window numbered 0.

All message receptions being discussed in the rest of this section are to be understood as
"matching the RuleID and DTag pair being processed"”, even if not spelled out, for brevity.

The sender starts by a "blind transmission” phase, in which it MUST transmit all the tiles
composing the window, in decreasing tile index order.

Minaburo, et al. Standards Track Page 32

RFC 8724 LPWAN SCHC April 2020

Then, it enters a "retransmission phase" in which it MUST initialize an Attempts counter to 0, it
MUST start a Retransmission Timer and it MUST await a SCHC ACK.

* Then, upon receiving a SCHC ACK:

o if the SCHC ACK indicates that some tiles are missing at the receiver, then the sender MUST
transmit all the tiles that have been reported missing, it MUST increment Attempts, it MUST
reset the Retransmission Timer, and MUST await the next SCHC ACK.

o if the current window is not the last one and the SCHC ACK indicates that all tiles were
correctly received, the sender MUST stop the Retransmission Timer, it MUST advance to the
next fragmentation window, and it MUST start a blind transmission phase as described
above.

o if the current window is the last one and the SCHC ACK indicates that more tiles were
received than the sender sent, the fragment sender MUST send a SCHC Sender-Abort, and it
MAY exit with an error condition.

o if the current window is the last one and the SCHC ACK indicates that all tiles were
correctly received, yet the integrity check was a failure, the fragment sender MUST send a
SCHC Sender-Abort, and it MAY exit with an error condition.

o if the current window is the last one and the SCHC ACK indicates that integrity checking
was successful, the sender exits successfully.

* on Retransmission Timer expiration:

o if Attempts is strictly less that MAX_ACK_REQUESTS, the fragment sender MUST send a
SCHC ACK REQ and MUST increment the Attempts counter.

o otherwise, the fragment sender MUST send a SCHC Sender-Abort, and it MAY exit with an
error condition.

At any time:

* on receiving a SCHC Receiver-Abort, the fragment sender MAY exit with an error condition.

* on receiving a SCHC ACK that bears a W value different from the W value that it currently
uses, the fragment sender MUST silently discard and ignore that SCHC ACK.

Figure 41 shows an example of a corresponding state machine.

8.4.2.2. Receiver Behavior
On receiving a SCHC Fragment with a RuleID and DTag pair not being processed at that time:

o the receiver SHOULD check if the DTag value has not recently been used for that RuleID
value, thereby ensuring that the received SCHC Fragment is not a remnant of a prior
fragmented SCHC Packet transmission. The initial value of the Inactivity Timer is the
RECOMMENDED lifetime for the DTag value at the receiver. If the SCHC Fragment is
determined to be such a remnant, the receiver MAY silently ignore it and discard it.

* the receiver MUST start a process to assemble a new SCHC Packet with that RuleID and DTag
value pair.

Minaburo, et al. Standards Track Page 33

RFC 8724 LPWAN SCHC April 2020

* the receiver MUST start an Inactivity Timer for that RuleID and DTag pair. It MUST initialize
an Attempts counter to 0 for that RuleID and DTag pair. It MUST initialize a window counter
to 0. If the receiver is under-resourced to do this, it MUST respond to the sender with a SCHC
Receiver-Abort.

In the rest of this section, "local W bit" means the least significant bit of the window counter of
the receiver.

On reception of any SCHC F/R message for the RuleID and DTag pair being processed, the
receiver MUST reset the Inactivity Timer pertaining to that RuleID and DTag pair.

All message receptions being discussed in the rest of this section are to be understood as
"matching the RuleID and DTag pair being processed", even if not spelled out, for brevity.

The receiver MUST first initialize an empty Bitmap for the first window then enter an
"acceptance phase", in which:

* on receiving a SCHC Fragment or a SCHC ACK REQ, either one having the W bit different
from the local W bit, the receiver MUST silently ignore and discard that message.

* on receiving a SCHC ACK REQ with the W bit equal to the local W bit, the receiver MUST send
a SCHC ACK for this window.

* on receiving a SCHC Fragment with the W bit equal to the local W bit, the receiver MUST
assemble the received tile based on the window counter and on the FCN field in the SCHC
Fragment, and it MUST update the Bitmap.

o if the SCHC Fragment received is an All-0 SCHC Fragment, the current window is
determined to be a not-last window, the receiver MUST send a SCHC ACK for this window
and it MUST enter the "retransmission phase" for this window.

o if the SCHC Fragment received is an All-1 SCHC Fragment, the current window is
determined to be the last window, the padding bits of the All-1 SCHC Fragment MUST be
assembled after the received tile, the receiver MUST perform the integrity check and it
MUST send a SCHC ACK for this window. Then:

= If the integrity check indicates that the full SCHC Packet has been correctly reassembled,
the receiver MUST enter the "clean-up phase" for this window.

= If the integrity check indicates that the full SCHC Packet has not been correctly
reassembled, the receiver enters the "retransmission phase" for this window.

In the "retransmission phase™:
« if the window is a not-last window:

o on receiving a SCHC Fragment that is not All-0 or All-1 and that has a W bit different from
the local W bit, the receiver MUST increment its window counter and allocate a fresh
Bitmap, it MUST assemble the tile received and update the Bitmap, and it MUST enter the
"acceptance phase" for that new window.

Minaburo, et al. Standards Track Page 34

RFC 8724 LPWAN SCHC April 2020

o on receiving a SCHC ACK REQ with a W bit different from the local W bhit, the receiver
MUST increment its window counter and allocate a fresh Bitmap, it MUST send a SCHC ACK
for that new window, and it MUST enter the "acceptance phase” for that new window.

o on receiving a SCHC All-0 Fragment with a W bit different from the local W bit, the
receiver MUST increment its window counter and allocate a fresh Bitmap, it MUST
assemble the tile received and update the Bitmap, it MUST send a SCHC ACK for that new
window, and it MUST stay in the "retransmission phase" for that new window.

o on receiving a SCHC All-1 Fragment with a W bit different from the local W bit, the
receiver MUST increment its window counter and allocate a fresh Bitmap; it MUST
assemble the tile received, including the padding bits; it MUST update the Bitmap and
perform the integrity check; it MUST send a SCHC ACK for the new window, which is
determined to be the last window. Then:

= If the integrity check indicates that the full SCHC Packet has been correctly reassembled,
the receiver MUST enter the "clean-up phase" for that new window.

= If the integrity check indicates that the full SCHC Packet has not been correctly
reassembled, the receiver enters the "retransmission phase" for that new window.

o on receiving a SCHC Fragment with a W bit equal to the local W bit:

= if the SCHC Fragment received is an All-1 SCHC Fragment, the receiver MUST silently
ignore it and discard it.

= otherwise, the receiver MUST assemble the tile received and update the Bitmap. If the
Bitmap becomes fully populated with 1's or if the SCHC Fragment is an All-0, the receiver
MUST send a SCHC ACK for this window.

o on receiving a SCHC ACK REQ with the W hit equal to the local W bit, the receiver MUST
send a SCHC ACK for this window.

¢ if the window is the last window:

o on receivin