
OpenImageIO 2.0
Programmer Documentation

Editor: Larry Gritz
lg@openimageio.org

Date: 1 Dec 2018

ii

The OpenImageIO source code and documentation are:

Copyright (c) 2008-2018 Larry Gritz, et al. All Rights Reserved.

The code that implements OpenImageIO is licensed under the BSD 3-clause (also some-
times known as “new BSD” or “modified BSD”) license:

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

• Neither the name of the software’s owners nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This manual and other text documentation about OpenImageIO are licensed under the Cre-
ative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/

OpenImageIO Programmer’s Documentation

iii

I kinda like “Oy-e-oh” with a bit of a groaning Yiddish accent, as in
“OIIO, did you really write yet another file I/O library?”

Dan Wexler

OpenImageIO Programmer’s Documentation

iv

OpenImageIO Programmer’s Documentation

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Simplifying Assumptions . 2
1.3 Historical Origins . 3
1.4 Acknowledgments . 4

I The OpenImageIO Library APIs 7

2 Image I/O API Helper Classes 9
2.1 Data Type Descriptions: TypeDesc . 9
2.2 Non-owning string views: string view . 12
2.3 Non-owning array views: span / cspan . 13
2.4 Efficient unique strings: ustring . 14
2.5 Helper: ROI . 15
2.6 Image Specification: ImageSpec . 17
2.7 “Deep” pixel data: DeepData . 24
2.8 Miscellaneous Utilities . 26

3 ImageOutput: Writing Images 31
3.1 Image Output Made Simple . 31
3.2 Advanced Image Output . 33
3.3 ImageOutput Class Reference . 51

4 ImageInput: Reading Images 59
4.1 Image Input Made Simple . 59
4.2 Advanced Image Input . 60
4.3 ImageInput Class Reference . 72

5 Writing ImageIO Plugins 81
5.1 Plugin Introduction . 81
5.2 Image Readers . 81
5.3 Image Writers . 91
5.4 Tips and Conventions . 102
5.5 Building ImageIO Plugins . 103

v

vi CONTENTS

6 Bundled ImageIO Plugins 105
6.1 BMP . 105
6.2 Cineon . 105
6.3 DDS . 105
6.4 DICOM . 106
6.5 DPX . 106
6.6 Field3D . 108
6.7 FITS . 109
6.8 GIF . 110
6.9 HDR/RGBE . 110
6.10 ICO . 111
6.11 IFF . 111
6.12 JPEG . 111
6.13 JPEG-2000 . 112
6.14 Movie formats (using ffmpeg) . 113
6.15 Null format . 113
6.16 OpenEXR . 114
6.17 OpenVDB . 116
6.18 PNG . 116
6.19 PNM / Netpbm . 117
6.20 PSD . 117
6.21 Ptex . 118
6.22 RAW digital camera files . 118
6.23 RLA . 120
6.24 SGI . 121
6.25 Softimage PIC . 121
6.26 Targa . 121
6.27 TIFF . 122
6.28 Webp . 127
6.29 Zfile . 127

7 Cached Images 129
7.1 Image Cache Introduction and Theory of Operation 129
7.2 ImageCache API . 131

8 Texture Access: TextureSystem 147
8.1 Texture System Introduction and Theory of Operation 147
8.2 Helper Classes . 147
8.3 TextureSystem Setup . 150
8.4 Texture Lookups – single point . 155
8.5 Batched Texture Lookups . 160
8.6 Texture Metadata and Raw Texels . 163
8.7 Miscellaneous – Statistics, errors, flushing the cache 167

OpenImageIO Programmer’s Documentation

CONTENTS vii

9 Image Buffers 171
9.1 ImageBuf Introduction and Theory of Operation 171
9.2 Constructing, reading, and writing an ImageBuf 171
9.3 Getting and setting basic information about an ImageBuf 175
9.4 Copying ImageBuf’s and blocks of pixels . 178
9.5 Getting and setting individual pixel values – simple but slow 179
9.6 Miscellaneous . 182
9.7 Iterators – the fast way of accessing individual pixels 183
9.8 Dealing with buffer data types . 186

10 Image Processing 189
10.1 ImageBufAlgo common principles . 189
10.2 Pattern generation . 192
10.3 Image transformations and data movement . 198
10.4 Image arithmetic . 206
10.5 Image comparison and statistics . 214
10.6 Convolutions . 219
10.7 Image Enhancement / Restoration . 222
10.8 Color manipulation . 226
10.9 Import / export . 230
10.10Deep images . 234

11 Python Bindings 239
11.1 Overview . 239
11.2 TypeDesc . 239
11.3 ROI . 242
11.4 ImageSpec . 244
11.5 DeepData . 251
11.6 ImageInput . 253
11.7 ImageOutput . 259
11.8 ImageBuf . 263
11.9 ImageBufAlgo . 273
11.10Miscellaneous Utilities . 296
11.11Python Recipes . 296

II Image Utilities 301

12 oiiotool: the OIIO Swiss Army Knife 303
12.1 Overview . 303
12.2 oiiotool Tutorial / Recipes . 307
12.3 oiiotool commands: general and image information 313
12.4 oiiotool commands: reading and writing images 317
12.5 oiiotool commands that change the current image metadata 323
12.6 oiiotool commands that shuffle channels or subimages 326
12.7 oiiotool commands that adjust the image stack 327

OpenImageIO Programmer’s Documentation

viii CONTENTS

12.8 oiiotool commands that make entirely new images 328
12.9 oiiotool commands that do image processing 331
12.10oiiotool commands for color management 351
12.11oiiotool commands for deep images . 354

13 The iv Image Viewer 357

14 Getting Image information With iinfo 359
14.1 Using iinfo . 359
14.2 iinfo command-line options . 361

15 Converting Image Formats With iconvert 363
15.1 Overview . 363
15.2 iconvert Recipes . 363
15.3 iconvert command-line options . 365

16 Searching Image Metadata With igrep 369
16.1 Using igrep . 369
16.2 igrep command-line options . 369

17 Comparing Images With idiff 371
17.1 Overview . 371
17.2 Using idiff . 371
17.3 idiff Reference . 373

18 Making Tiled MIP-Map Texture Files With maketx or oiiotool 377
18.1 Overview . 377
18.2 maketx . 377
18.3 oiiotool . 386

III Appendices 389

A Building OpenImageIO 391

B Metadata conventions 393
B.1 Description of the image . 393
B.2 Display hints . 394
B.3 Color information . 395
B.4 Disk file format info/hints . 396
B.5 Substituting an IOPRoxy for custom I/O overrides 396
B.6 Photographs or scanned images . 397
B.7 Texture Information . 397
B.8 Exif metadata . 399
B.9 GPS Exif metadata . 405
B.10 IPTC metadata . 408
B.11 SMPTE metadata . 410

OpenImageIO Programmer’s Documentation

CONTENTS ix

B.12 Extension conventions . 411

C Glossary 413

Index 415

OpenImageIO Programmer’s Documentation

x CONTENTS

OpenImageIO Programmer’s Documentation

1 Introduction

Welcome to OpenImageIO!

1.1 Overview

OpenImageIO provides simple but powerful ImageInput and ImageOutput APIs that abstract
the reading and writing of 2D image file formats. They don’t support every possible way of
encoding images in memory, but for a reasonable and common set of desired functionality, they
provide an exceptionally easy way for an application using the APIs support a wide — and
extensible — selection of image formats without knowing the details of any of these formats.

Concrete instances of these APIs, each of which implements the ability to read and/or write
a different image file format, are stored as plugins (i.e., dynamic libraries, DLL’s, or DSO’s)
that are loaded at runtime. The OpenImageIO distribution contains such plugins for several
popular formats. Any user may create conforming plugins that implement reading and writing
capabilities for other image formats, and any application that uses OpenImageIO would be able
to use those plugins.

The library also implements the helper class ImageBuf, which is a handy way to store and
manipulate images in memory. ImageBuf itself uses ImageInput and ImageOutput for its
file I/O, and therefore is also agnostic as to image file formats. A variety of functions in the
ImageBufAlgo namespace are available to perform common image processing operations on
ImageBuf’s.

The ImageCache class transparently manages a cache so that it can access truly vast amounts
of image data (thousands of image files totaling hundreds of GB to several TBs) very efficiently
using only a tiny amount (tens of megabytes to a few GB at most) of runtime memory. Addition-
ally, a TextureSystem class provides filtered MIP-map texture lookups, atop the nice caching
behavior of ImageCache.

Finally, the OpenImageIO distribution contains several utility programs that operate on im-
ages, each of which is built atop this functionality, and therefore may read or write any image
file type for which an appropriate plugin is found at runtime. Paramount among these utilities
oiiotool, a command-line image processing engine, and iv, an image viewing application.
Additionally, there are programs for converting images among different formats, comparing
image data between two images, and examining image metadata.

All of this is released as “open source” software using the very permissive “New BSD”
license. So you should feel free to use any or all of OpenImageIO in your own software, whether
it is private or public, open source or proprietary, free or commercial. You may also modify it on

1

2 CHAPTER 1. INTRODUCTION

your own. You are encouraged to contribute to the continued development of OpenImageIO and
to share any improvements that you make on your own, though you are by no means required
to do so.

1.2 Simplifying Assumptions

OpenImageIO is not the only image library in the world. Certainly there are many fine libraries
that implement a single image format (including the excellent libtiff, libjpeg, and OpenEXR
that OpenImageIO itself relies on). Many libraries attempt to present a uniform API for reading
and writing multiple image file formats. Most of these support a fixed set of image formats,
though a few of these also attempt to provide an extensible set by using the plugin approach.

But in our experience, these libraries are all flawed in one or more ways: (1) They either
support only a few formats, or many formats but with the majority of them somehow incomplete
or incorrect. (2) Their APIs are not sufficiently expressive as to handle all the image features
we need (such as tiled images, which is critical for our texture library). (3) Their APIs are too
complete, trying to handle every possible permutation of image format features, and as a result
are horribly complicated.

The third sin is the most severe, and is almost always the main problem at the end of the day.
Even among the many open source image libraries that rely on extensible plugins, we have not
found one that is both sufficiently flexible and has APIs anywhere near as simple to understand
and use as those of OpenImageIO.

Good design is usually a matter of deciding what not to do, and OpenImageIO is no ex-
ception. We achieve power and elegance only by making simplifying assumptions. Among
them:

• OpenImageIO only deals with ordinary 2D images, and to a limited extent 3D volumes,
and image files that contain multiple (but finite) independent images within them. Open-
ImageIO’s support of “movie” files is limited to viewing them as a sequence of separate
frames within the file, but not as movies per se (for example, no support for dealing with
audio or synchronization).

• Pixel data are presented as 8- 16- or 32-bit int (signed or unsigned), 16- 32- or 64-bit
float. NOTHING ELSE. No < 8 bit images, or pixel value boundaries that aren’t byte
boundaries. Files with < 8 bits will appear to the client application as 8-bit unsigned
grayscale images.

• Only fully elaborated, non-compressed data are accepted and returned by the API. Com-
pression or special encodings are handled entirely within an OpenImageIO plugin.

• Color space is by default converted to grayscale or RGB. Non-spectral color models,
such as XYZ, CMYK, or YUV, are converted to RGB upon reading. (There is a way to
override this and ask for raw pixel values.)

• All color channels can be treated (by apps or readers/writers) as having the same data for-
mat (though there is a way to deal with per-channel formats for apps and readers/writers
that truly need it).

OpenImageIO Programmer’s Documentation

1.3. HISTORICAL ORIGINS 3

• All image channels in a subimage are sampled at the same resolution. For file formats
that allow some channels to be subsampled, they will be automatically up-sampled to the
highest resolution channel in the subimage.

• Color information is always in the order R, G, B, and the alpha channel, if any, always
follows RGB, and Z channel (if any) always follows alpha. So if a file actually stores
ABGR, the plugin is expected to rearrange it as RGBA.

It’s important to remember that these restrictions apply to data passed through the APIs, not
to the files themselves. It’s perfectly fine to have an OpenImageIO plugin that supports YUV
data, or 4 bits per channel, or any other exotic feature. You could even write a movie-reading
ImageInput (despite OpenImageIO’s claims of not supporting movies) and make it look to
the client like it’s just a series of images within the file. It’s just that all the nonconforming
details are handled entirely within the OpenImageIO plugin and are not exposed through the
main OpenImageIO APIs.

1.3 Historical Origins

OpenImageIO is the evolution of concepts and tools I’ve been working on for two decades.
In the 1980’s, every program I wrote that output images would have a simple, custom format

and viewer. I soon graduated to using a standard image file format (TIFF) with my own library
implementation. Then I switched to Sam Leffler’s stable and complete libtiff.

In the mid-to-late-1990’s, I worked at Pixar as one of the main implementors of PhotoRe-
alistic RenderMan, which had display drivers that consisted of an API for opening files and
outputting pixels, and a set of DSO/DLL plugins that each implement image output for each of
a dozen or so different file format. The plugins all responded to the same API, so the renderer
itself did not need to know how to the details of the image file formats, and users could (in
theory, but rarely in practice) extend the set of output image formats the renderer could use by
writing their own plugins.

This was the seed of a good idea, but PRMan’s display driver plugin API was abstruse and
hard to use. So when I started Exluna in 2000, Matt Pharr, Craig Kolb, and I designed a new
API for image output for our own renderer, Entropy. This API, called “ExDisplay,” was C++,
and much simpler, clearer, and easier to use than PRMan’s display drivers.

NVIDIA’s Gelato (circa 2002), whose early work was done by myself, Dan Wexler, Jonathan
Rice, and Eric Enderton, had an API called “ImageIO.” ImageIO was much more powerful and
descriptive than ExDisplay, and had an API for reading as well as writing images. Gelato was
not only “format agnostic” for its image output, but also for its image input (textures, image
viewer, and other image utilities). We released the API specification and headers (though not
the library implementation) using the BSD open source license, firmly repudiating any notion
that the API should be specific to NVIDIA or Gelato.

For Gelato 3.0 (circa 2007), we refined ImageIO again (by this time, Philip Nemec was
also a major influence, in addition to Dan, Eric, and myself1). This revision was not a major
overhaul but more of a fine tuning. Our ideas were clearly approaching stability. But, alas, the

1Gelato as a whole had many other contributors; those I’ve named here are the ones I recall contributing to the
design or implementation of the ImageIO APIs

OpenImageIO Programmer’s Documentation

4 CHAPTER 1. INTRODUCTION

Gelato project was canceled before Gelato 3.0 was released, and despite our prodding, NVIDIA
executives would not open source the full ImageIO code and related tools.

After I left NVIDIA, I was determined to recreate this work once again – and ONLY once
more – and release it as open source from the start. Thus, OpenImageIO was born. I started with
the existing Gelato ImageIO specification and headers (which were BSD licensed all along), and
made further refinements since I had to rewrite the entire implementation from scratch anyway.
I think the additional changes are all improvements.

Over the years and with the help of dozens of open source contributors, OpenImageIO has
expanded beyond the original simple image format input/output to encompass a wide range of
image-related functionality. It has grown into a foundational technology in many products and
tools, particularly for the production of animation and visual effects for motion pictures (but
also many other uses and fields). This is the software you have in your hands today.

1.4 Acknowledgments

OpenImageIO incorporates, depends upon, or dynamically links against several other open
source packages, detailed below. These other packages are all distributed under licenses that al-
low them to be used by OpenImageIO. Where not specifically noted, they are all using the same
BSD license that OpenImageIO uses. Any omissions or inaccuracies in this list are inadvertent
and will be fixed if pointed out. The full original licenses can be found in the relevant parts of
the source code.

OpenImageIO incorporates, distributes, or contains derived works of:

• The SHA-1 implemenation we use is public domain by Dominik Reichl
http://www.dominik-reichl.de/

• Squish c© 2006 Simon Brown, MIT license. http://sjbrown.co.uk/?code=squish

• PugiXML c© 2006-2009 by Arseny Kapoulkine (based on work c© 2003 Kristen Weg-
ner), MIT license. http://pugixml.org/

• DPX reader/writer c© 2009 Patrick A. Palmer, BSD 3-clause license.
https://github.com/patrickpalmer/dpx

• tinyformat.h c© 2011 Chris Foster, Boost license.
http://github.com/c42f/tinyformat

• lookup3 code by Bob Jenkins, Public Domain.
http://burtleburtle.net/bob/c/lookup3.c

• xxhash c© 2014 Yann Collet, BSD 2-clause license.
https://github.com/Cyan4973/xxHash

• farmhash c© 2014 Google, Inc., MIT license. https://github.com/google/farmhash

• KissFFT c© 2003–2010 Mark Borgerding, 3-clause BSD license.
https://github.com/mborgerding/kissfft

OpenImageIO Programmer’s Documentation

http://www.dominik-reichl.de/
http://sjbrown.co.uk/?code=squish
http://pugixml.org/
https://github.com/patrickpalmer/dpx
http://github.com/c42f/tinyformat
http://burtleburtle.net/bob/c/lookup3.c
https://github.com/Cyan4973/xxHash
https://github.com/google/farmhash
https://github.com/mborgerding/kissfft

1.4. ACKNOWLEDGMENTS 5

• CTPL thread pool c© 2014 Vitaliy Vitsentiy, Apache License.
https://github.com/vit-vit/CTPL

• Droid fonts from the Android SDK are distributed under the Apache license.
http://www.droidfonts.com

• function view.h contains code derived from LLVM, c© 2003–2018 University of Illi-
nois at Urbana-Champaign. UIUC license (compatible with BSD)
llvm.org

• FindOpenVDB.cmake c© 2015 Blender Foundation, BSD license.

• FindTBB.cmake c© 2015 Justus Calvin, MIT license.

• fmt library c© Victor Zverovich. BSD 2-clause license.
https://github.com/fmtlib/fmt

OpenImageIO Has the following build-time dependencies (using system installs, referencing as
git submodules, or downloading as part of the build), including link-time dependencies against
dynamic libraries:

• libtiff c© 1988-1997 Sam Leffler and 1991-1997 Silicon Graphics, Inc.
http://www.remotesensing.org/libtiff

• IJG libjpeg c© 1991-1998, Thomas G. Lane. http://www.ijg.org

• OpenEXR, Ilmbase, and Half c© 2006, Industrial Light & Magic.
http://www.openexr.com

• zlib c© 1995-2005 Jean-loup Gailly and Mark Adler. http://www.zlib.net

• libpng c© 1998-2008 Glenn Randers-Pehrson, et al. http://www.libpng.org

• Boost c© various authors. http://www.boost.org

• GLEW c© 2002-2007 Milan Ikits, et al. http://glew.sourceforge.net

• Jasper c© 2001-2006 Michael David Adams, et al.
http://www.ece.uvic.ca/˜mdadams/jasper/

• Ptex c© 2009 Disney Enterprises, Inc. http://ptex.us

• Field3D c© 2009 Sony Pictures Imageworks. http://sites.google.com/site/field3d/

• GIFLIB c© 1997 Eric S. Raymond (MIT Licensed). http://giflib.sourceforge.
net/

• LibRaw c© 2008-2013 LibRaw LLC (LGPL, CDDL, and LibRaw licenses).
http://www.libraw.org/

• FFmpeg c© various authors and distributed under LGPL. https://www.ffmpeg.org

OpenImageIO Programmer’s Documentation

https://github.com/vit-vit/CTPL
http://www.droidfonts.com
llvm.org
https://github.com/fmtlib/fmt
http://www.remotesensing.org/libtiff
http://www.ijg.org
http://www.openexr.com
http://www.zlib.net
http://www.libpng.org
http://www.boost.org
http://glew.sourceforge.net
http://www.ece.uvic.ca/~mdadams/jasper/
http://ptex.us
http://sites.google.com/site/field3d/
http://giflib.sourceforge.net/
http://giflib.sourceforge.net/
http://www.libraw.org/
https://www.ffmpeg.org

6 CHAPTER 1. INTRODUCTION

• FreeType c© 1996-2002, 2006 by David Turner, Robert Wilhelm, and Werner Lemberg.
Distributed under the FreeType license (BSD compatible).

• JPEG-Turbo c© 2009–2015 D. R. Commander. Distributed under the BSD license.

• pybind11 c© 2016 Wenzel Jakob. Distributed under the BSD license. https://github.
com/pybind/pybind11

• OpenVDB c© 2012-2018 DreamWorks Animation LLC, Mozilla Public License 2.0.

• Thread Building Blocks c© Intel. Apache 2.0 license.

OpenImageIO Programmer’s Documentation

https://github.com/pybind/pybind11
https://github.com/pybind/pybind11

Part I

The OpenImageIO Library APIs

7

2 Image I/O API Helper Classes

2.1 Data Type Descriptions: TypeDesc

There are two kinds of data that are important to OpenImageIO:

• Internal data is in the memory of the computer, used by an application program.

• Native file data is what is stored in an image file itself (i.e., on the “other side” of the
abstraction layer that OpenImageIO provides).

Both internal and file data is stored in a particular data format that describes the numerical
encoding of the values. OpenImageIO understands several types of data encodings, and there
is a special class, TypeDesc, that allows their enumeration and is described in the header file
OpenImageIO/typedesc.h. A TypeDesc describes a base data format type, aggregation into
simple vector and matrix types, and an array length (if it’s an array).

The remainder of this section describes the C++ API for TypeDesc. See Section 11.2 for
the corresponding Python bindings.

TypeDesc supports the following base data format types, given by the enumerated type
BASETYPE:

UINT8 8-bit integer values ranging from 0..255, corresponding to the C/C++
unsigned char.

INT8 8-bit integer values ranging from -128..127, corresponding to the C/C++ char.
UINT16 16-bit integer values ranging from 0..65535, corresponding to the C/C++

unsigned short.
INT16 16-bit integer values ranging from -32768..32767, corresponding to the C/C++

short.
UINT 32-bit integer values, corresponding to the C/C++ unsigned int.
INT signed 32-bit integer values, corresponding to the C/C++ int.
UINT64 64-bit integer values, corresponding to the C/C++ unsigned long long (on

most architectures).
INT64 signed 64-bit integer values, corresponding to the C/C++ long long (on most

architectures).
FLOAT 32-bit IEEE floating point values, corresponding to the C/C++ float.
DOUBLE 64-bit IEEE floating point values, corresponding to the C/C++ double.
HALF 16-bit floating point values in the format supported by OpenEXR and OpenGL.

9

10 CHAPTER 2. IMAGE I/O API HELPER CLASSES

A TypeDesc can be constructed using just this information, either as a single scalar value, or an
array of scalar values:

TypeDesc (BASETYPE btype)
TypeDesc (BASETYPE btype, int arraylength)

Construct a type description of a single scalar value of the given base type, or an array
of such scalars if an array length is supplied. For example, TypeDesc(UINT8) describes
an unsigned 8-bit integer, and TypeDesc(FLOAT,7) describes an array of 7 32-bit float
values. Note also that a non-array TypeDesc may be implicitly constructed from just the
BASETYPE, so it’s okay to pass a BASETYPE to any function parameter that takes a full
TypeDesc.

In addition, TypeDesc supports certain aggregate types, described by the enumerated type
AGGREGATE:

SCALAR a single scalar value (such as a raw int or float in C). This is the default.
VEC2 two values representing a 2D vector.
VEC3 three values representing a 3D vector.
VEC4 four values representing a 4D vector.
MATRIX33 nine values representing a 3×3 matrix.
MATRIX44 sixteen values representing a 4×4 matrix.

And optionally, a hint about the semantics of the data, described by the enumerated type
VECSEMANTICS:1

NOSEMANTICS nothing special known.
COLOR indicates a vector that is intended to represent a “color,” not a spatial

quantity (and of course therefore does not undergo a transformation).
POINT indicates a vector that represents a spatial position and should be trans-

formed by a 4×4 matrix as if it had a 4th component of 1.
VECTOR indicates a vector that represents a spatial direction and should be

transformed by a 4×4 matrix as if it had a 4th component of 0.
NORMAL indicates a vector that represents a surface normal and should be trans-

formed like a vector, but using the inverse-transpose of a 4×4 matrix.
TIMECODE indicates an int[2] representing the standard 4-byte encoding of an

SMPTE timecode.
KEYCODE indicates an int[7] representing the standard 28-byte encoding of an

SMPTE keycode.
RATIONAL indicates an VEC2 representing a rational number val[0] / val[1].

These can be combined to fully describe a complex type:

1It’s unfortunately called VECSEMANTICS because it used to be used strictly for 3-vectors. If we were to do it over
again, it would just be SEMANTICS.

OpenImageIO Programmer’s Documentation

2.1. DATA TYPE DESCRIPTIONS: TYPEDESC 11

TypeDesc (BASETYPE btype, AGGREGATE agg=SCALAR, VECSEMANTICS xform=NOSEMANTICS)
TypeDesc (BASETYPE btype, int arraylen)
TypeDesc (BASETYPE btype, AGGREGATE agg, int arraylen)
TypeDesc (BASETYPE btype, AGGREGATE agg, VECSEMANTICS xform, int arraylen)

Construct a type description of an aggregate (or array of aggregates), with optional vector
transformation semantics. For example, TypeDesc(HALF,COLOR) describes an aggregate
of 3 16-bit floats comprising a color, and TypeDesc(FLOAT,VEC3,POINT) describes an
aggregate of 3 32-bit floats comprising a 3D position.

Note that aggregates and arrays are different. A TypeDesc(FLOAT,3) is an array of three
floats, a TypeDesc(FLOAT,COLOR) is a single 3-channel color comprised of floats, and
TypeDesc(FLOAT,3,COLOR) is an array of 3 color values, each of which is comprised of
3 floats.

TypeDesc (string view typestring)

Construct a type description based on a string. For example,

TypeDesc("int") == TypeDesc(TypeDesc::INT) // C++ int32_t
TypeDesc("float") == TypeDesc(TypeDesc::FLOAT) // C++ float
TypeDesc("float[4]") == TypeDesc(TypeDesc::FLOAT, 4) // array
TypeDesc("point") == TypeDesc(TypeDesc::FLOAT, TypeDesc::POINT)
TypeDesc("uint16") == TypeDesc(TypeDesc::UINT16) // C++ uint16_t

A number of static constexpr TypeDesc aliases for common types exist in the outer
OpenImageIO scope:

TypeUnknown TypeFloat TypeColor TypePoint TypeVector TypeNormal
TypeMatrix33 TypeMatrix44 TypeMatrix TypeHalf
TypeInt TypeUInt TypeInt16 TypeUInt16 TypeInt8 TypeUInt8
TypeString TypeTimeCode TypeKeyCode TypeFloat4 TypeRational

The only types commonly used to store pixel values in image files are scalars of UINT8,
UINT16, FLOAT, and HALF (the last only used by OpenEXR, to the best of our knowledge).

Note that the TypeDesc (which is also used for applications other than images) can describe
many types not used by OpenImageIO. Please ignore this extra complexity; only the above
simple types are understood by OpenImageIO as pixel storage data types, though a few others,
including STRING and MATRIX44 aggregates, are occasionally used for metadata for certain
image file formats (see Sections 3.2.5, 4.2.4, and the documentation of individual ImageIO
plugins for details).

OpenImageIO Programmer’s Documentation

12 CHAPTER 2. IMAGE I/O API HELPER CLASSES

2.2 Non-owning string views: string view

A string view a non-owning, non-copying, non-allocating reference to a sequence of char-
acters. It encapsulates both a character pointer and a length.

A function that takes a string input (but does not need to alter the string in place) may
use a string view parameter and accept input that is any of char* (C string), string literal
(constant char array), a std::string (C++ string), or OIIO ustring. For all of these cases,
no extra allocations are performed, and no extra copies of the string contents are performed
(as they would be, for example, if the function took a const std::string& argument but was
passed a char* or string literal).

Furthermore, a function that returns a copy or a substring of one of its inputs (for example,
a substr()-like function) may return a string view rather than a std::string, and thus
generate its return value without any allocation or copying. Upon assignment to a std::string
or ustring, it will properly auto-convert.

There are two important caveats to using this class:

1. The string view merely refers to characters owned by another string, so the string view
may not be used outside the lifetime of the string it refers to. Thus, string view is great
for parameter passing, but it’s not a good idea to use a string view to store strings in a
data structure (unless you are really sure you know what you’re doing).

2. Because the run of characters that the string view refers to may not be 0-terminated, it
is important to distinguish between the data() method, which returns the pointer to the
characters, and the c str() method, which is guaranteed to return a valid C string that is
0-terminated. Thus, if you want to pass the contents of a string view to a function that
expects a 0-terminated string (say, fopen), you must call fopen(my string view.c -
str()). Note that the usual case is that the string view does refer to a 0-terminated
string, and in that case c str() returns the same thing as data() without any extra expense;
but in the rare case that it is not 0-terminated, c str() will incur extra expense to internally
allocate a valid C string.

string view (const char *chars)
string view (const char *chars, size t length)
string view (const std::string &str)
string view (ustring ustr)

Constructs a string view. The string view doesn’t have its own copy of the charac-
ters, so don’t use the string view after the original string has been destroyed or altered.

Note that the version that takes a const char* but not a length will automatically take
the strlen(chars) to determine the length. (All the other constructors can deduce the
length without walking through all of the characters.)

OpenImageIO Programmer’s Documentation

2.3. NON-OWNING ARRAY VIEWS: SPAN / CSPAN 13

const char* string view::data ()
size t string view::size ()

The raw pointer to the characters (not necessarily 0-terminated!) and the length of the
string view.

const char* string view::c str ()

Return a 0-terminated char* version of the string view (a proper C string).

std::string (string view sr)
ustring (string view sr)

Automatic constructions of C++ std::string or OIIO ustring from a string view.

Additionally, a large portion of the usual API for std::string is mimicked by string view.
Please consult the public string view.h header file for full details, if you wish to use string view
in your own code.

2.3 Non-owning array views: span / cspan

Note: span and span are synonyms. The new preferred name is span, in keeping with the
equivalent template that has been accepted into future C++ standards. But the old name span is
still accepted. Over time, we will eventually update the documentation to reflect the change.

A template span<typename T> is a non-owning, non-copying, non-allocating reference
to an array of contiguous T objects. It encapsulates both a pointer and a length, and thus is a
safer way of passing pointers around (because the function called knows how long the array is).
A function that might ordinarily take a T* and a length could instead just take a span<T>.

A non-mutable (i.e., read-only) reference would be span<const T>. Thus, a function that
might ordinarily take a const T* and a length could instead take a span<const T>. As a
shorthand, cspan<T> is defined as a synonym to span<const T>, they are equivalent.

For historical reasons, the deprecated name span is accepted as a synonym for span. (But
will eventually be removed.)

A spanmay be initialized explicitly from a pointer and length, by initializing with a std::vector<T>,
or by initalizing with a constant (treated as an array of length 1). For all of these cases, no extra
allocations are performed, and no extra copies of the array contents are made.

Important caveat: The span merely refers to items owned by another array, so the span
should not be used outside the lifetime of the array it refers to. Thus, span is great for parameter
passing, but it’s not a good idea to use a span to store strings in a data structure (unless you are
really sure you know what you’re doing).
Commonly used span methods include:

OpenImageIO Programmer’s Documentation

14 CHAPTER 2. IMAGE I/O API HELPER CLASSES

span<T> (T *data, ptrdiff t len)
span<T> (T &data)
span<T> (T *begin, T *end)
span<T> (std::vector<T> &vec)
span<T> (std::array<T,N> &vec)
span<T> (T[N])

Constructs a span. The span doesn’t have its own copy of the array elements, so don’t
use the span after the original array has been destroyed or altered.

T* span<T>::data ()
ptrdiff t span<T>::size ()

The raw pointer to the array, and its length.

T& span<T>::operator[] (ptrdiff t pos)

References a single element of the span.

Please consult the public span.h header file for full details, if you wish to use span in your
own code.

2.4 Efficient unique strings: ustring

A ustring is an alternative to char* or std::string for storing strings, in which the character
sequence is stored uniquely. If there are many copies of the same ustring, they all point to
the same canonical characters, which themselves are stored only once. This allows ustring’s
to be assigned to one another with only the copy of a pointer assignment (not allocation or
copying of characters), and for == and != comparisons of two ustring values for only the cost
of comparing the pointers (not examining the characters).

OpenImageIO uses ustring in a few select places, where string assignment/copy and equal-
ity/inequality are the dominant string operation and we want them to be the same low cost as a
simple pointer assignment or comparison. (This primarily comes into play for the ImageCache
and TextureSystem, where we refer to images by their filenames and want very fast lookups.)

Please consult the public header ustring.h for details, especially if you want to use ustring
extensively in your own code. But here are the most important details to know if you are calling
the OpenImageIO functions that take ustring parameters:

ustring (const char *chars)
ustring (const char *chars, size t length)
ustring (const std::string &str)
ustring (string view sref)

Constructs a ustring from a C string (char*), C++ std::string, or a string view.

OpenImageIO Programmer’s Documentation

2.5. HELPER: ROI 15

const char* ustring::c str ()
const std::string& ustring::string()
string view ustring::operator string view()

Convert a ustring to a 0-terminated C string, a C++ std::string, or a string view.
All of these are extremely inexpensive.

static ustring ustring::sprintf (const char* fmt, ...)

Create a formatted ustring using the C printf formatting notation (e.g., "%d %s", akin
to C sprintf(), except that this one uses variadic templates and is type-safe).

2.5 Helper: ROI

ROI is a small helper struct that describes a rectangular region of pixels of an image (and a
channel range). An ROI holds the following data members:

int xbegin, xend, ybegin, yend, zbegin, zend;
int chbegin, chend;

Describes the x,y,z range of the region. The end values are exclusive; that is, (xbegin,
ybegin, zbegin) is the first pixel included in the range, (xend-1, yend-1, zend-1)
is the last pixel included in the range, and (xend, yend, zend) is one past the last pixel
in each dimension.

Similarly, chbegin and chend describe a range of channels: chbegin is the first channel,
chend is one past the last channel.

ROI has the following member functions and friends:

ROI ()

A default-constructed ROI has an undefined region, which is interpreted to mean all valid
pixels and all valid channels of an image.

bool ROI::defined () const

Returns true if the ROI is defined, having a specified region, or false if the ROI is
undefined.

static ROI ROI::All ()

Returns an undefined ROI, which is interpreted to mean all valid pixels and all valid
channels of an image.

OpenImageIO Programmer’s Documentation

16 CHAPTER 2. IMAGE I/O API HELPER CLASSES

int ROI::width () const
int ROI::height () const
int ROI::depth () const

Returns the width, height, and depth, respectively, of a defined region. These do not
return sensible values for an ROI that is not defined().

imagesize t ROI::npixels () const

For an ROI that is defined(), returns the total number of pixels included in the region,
or 0 for an undefined ROI.

imagesize t ROI::nchannels () const

For an ROI that is defined(), returns the number of channels in the channel range.

bool ROI::contains (int x, int y, int z=0, int ch=0) const

NEW! Returns true if the ROI contains the coordinate.

bool ROI::contains (const ROI &other) const

NEW! Returns true if the ROI other is entirel contained within this ROI.

ROI roi union (const ROI &A, const ROI &B)
ROI roi intersection (const ROI &A, const ROI &B)

Returns the union of two ROI’s (an ROI that is exactly big enough to include all the pixels
of both individual ROI’s) or intersection of two ROI’s (an ROI that contains only the pixels
that are contained in both ROI’s).

ROI get roi (const ImageSpec &spec)
ROI get roi full (const ImageSpec &spec)

Return the ROI describing spec’s pixel data window (the x, y, z, width, height,
depth fields) or the full (display) window (the full x, full y, full z, full -
width, full height, full depth fields), respectively.

void set roi (const ImageSpec &spec, const ROI &newroi)
void set roi full (const ImageSpec &spec, const ROI &newroi)

Alters the spec so to make its pixel data window or the full (display) window match
newroi.

OpenImageIO Programmer’s Documentation

2.6. IMAGE SPECIFICATION: IMAGESPEC 17

2.6 Image Specification: ImageSpec

An ImageSpec is a structure that describes the complete format specification of a single image.
It contains:

• The image resolution (number of pixels) and origin. This specifies what is often called
the “pixel data window.”

• The full size and offset of an abstract “full” or “display” window. Differing full and
data windows can indicate that the pixels are a crop region or a larger image, or contain
overscan pixels.

• Whether the image is organized into tiles, and if so, the tile size.

• The native data format of the pixel values (e.g., float, 8-bit integer, etc.).

• The number of color channels in the image (e.g., 3 for RGB images), names of the chan-
nels, and whether any particular channels represent alpha and depth.

• A user-extensible (and format-extensible) list of any other arbitrarily-named and -typed
data that may help describe the image or its disk representation.

The remainder of this section describes the C++ API for ImageSpec. See Section 11.4 for
the corresponding Python bindings.

2.6.1 ImageSpec Data Members

The ImageSpec contains data fields for the values that are required to describe nearly any image,
and an extensible list of arbitrary attributes that can hold metadata that may be user-defined or
specific to individual file formats. Here are the hard-coded data fields:

int width, height, depth
int x, y, z

width, height, depth are the size of the data of this image, i.e., the number of pixels
in each dimension. A depth greater than 1 indicates a 3D “volumetric” image.

x, y, z indicate the origin of the pixel data of the image. These default to (0,0,0), but
setting them differently may indicate that this image is offset from the usual origin.

Therefore the pixel data are defined over pixel coordinates [x ... x+width-1] horizontally,
[y ... y+height-1] vertically, and [z ... z+depth-1] in depth.

OpenImageIO Programmer’s Documentation

18 CHAPTER 2. IMAGE I/O API HELPER CLASSES

int full width, full height, full depth
int full x, full y, full z

These fields define a “full” or “display” image window over the region [full x ...
full x+full width-1] horizontally, [full y ... full y+full height-1] verti-
cally, and [full z ... full z+full depth-1] in depth.

Having the full display window different from the pixel data window can be helpful in
cases where you want to indicate that your image is a crop window of a larger image (if
the pixel data window is a subset of the full display window), or that the pixels include
overscan (if the pixel data is a superset of the full display window), or may simply indicate
how different non-overlapping images piece together.

int tile width, tile height, tile depth

If nonzero, indicates that the image is stored on disk organized into rectangular tiles of
the given dimension. The default of (0,0,0) indicates that the image is stored in scanline
order, rather than as tiles.

int nchannels

The number of channels (color values) present in each pixel of the image. For example,
an RGB image has 3 channels.

TypeDesc format

std::vector<TypeDesc> channelformats

Describes the native format of the pixel data values themselves, as a TypeDesc (see 2.1).
Typical values would be TypeDesc::UINT8 for 8-bit unsigned values, TypeDesc::FLOAT
for 32-bit floating-point values, etc.

If all channels of the image have the same data format, that will be described by format
and channelformats will be empty (zero length).

If there are different data formats for each channel, they will be described in the channelformats
vector, and the format field will indicate a single default data format for applications that
don’t wish to support per-channel formats (usually this will be the format of the channel
that has the most precision).

std::vector<std::string> channelnames

The names of each channel, in order. Typically this will be "R", "G","B", "A" (alpha),
"Z" (depth), or other arbitrary names.

int alpha channel

The index of the channel that represents alpha (pixel coverage and/or transparency). It
defaults to -1 if no alpha channel is present, or if it is not known which channel represents
alpha.

OpenImageIO Programmer’s Documentation

2.6. IMAGE SPECIFICATION: IMAGESPEC 19

int z channel

The index of the channel that respresents z or depth (from the camera). It defaults to -1 if
no depth channel is present, or if it is not know which channel represents depth.

bool deep

If true, this indicates that the image describes contains “deep” data consisting of multiple
samples per pixel. If false, it’s an ordinary image with one data value (per channel) per
pixel.

ParamValueList extra attribs

A list of arbitrarily-named and arbitrarily-typed additional attributes of the image, for
any metadata not described by the hard-coded fields described above. This list may be
manipulated with the attribute() and find attribute() methods.

2.6.2 ImageSpec member functions

ImageSpec contains the following methods that manipulate format specs or compute useful
information about images given their format spec:

ImageSpec (int xres, int yres, int nchans, TypeDesc fmt = UINT8)

Constructs an ImageSpec with the given x and y resolution, number of channels, and
pixel data format.

All other fields are set to the obvious defaults – the image is an ordinary 2D image (not a
volume), the image is not offset or a crop of a bigger image, the image is scanline-oriented
(not tiled), channel names are “R”, “G”, “B,” and “A” (up to and including 4 channels,
beyond that they are named “channel n”), the fourth channel (if it exists) is assumed to be
alpha, and values are assumed to be linear.

ImageSpec (const ROI &roi, TypeDesc fmt = TypeDesc::UINT8)

Constructs an ImageSpec whose dimensions (both data and “full”) and number of chan-
nels are given by the ROI (2.5), pixel data type by fmt, and other fields are set to their
default values.

void set format (TypeDesc fmt)

Sets the format as described, and clears any per-channel format information in channelformats.

void default channel names ()

Sets the channelnames to reasonable defaults for the number of channels. Specifically,
channel names are set to “R”, “G”, “B,” and “A” (up to and including 4 channels, beyond
that they are named “channeln”.

OpenImageIO Programmer’s Documentation

20 CHAPTER 2. IMAGE I/O API HELPER CLASSES

size t channel bytes () const

Returns the number of bytes comprising each channel of each pixel (i.e., the size of a
single value of the type described by the format field).

size t channel bytes (int chan, bool native=false) const

Returns the number of bytes needed for the single specified channel. If native is false
(default), compute the size of one channel of this->format, but if native is true, com-
pute the size of the channel in terms of the “native” data format of that channel as stored
in the file.

size t pixel bytes (bool native=false) const

Returns the number of bytes comprising each pixel (i.e. the number of channels multi-
plied by the channel size).

If native is true, this will be the sum of all the per-channel formats in channelformats.
If native is false (the default), or if all channels use the same format, this will simply be
the number of channels multiplied by the width (in bytes) of the format.

size t pixel bytes (int chbegin, int chend, bool native=false) const

Returns the number of bytes comprising the range of channels [chbegin, chend) for each
pixel.

If native is true, this will be the sum of the per-channel formats in channelformats
(for the given range of channels). If native is false (the default), or if all channels use
the same format, this will simply be the number of channels multiplied by the width (in
bytes) of the format.

imagesize t scanline bytes (bool native=false) const

Returns the number of bytes comprising each scanline, i.e.,
pixel bytes(native) * width
This will return std::numeric limits<imagesize t>::max() in the event of an over-
flow where it’s not representable in an imagesize t.

imagesize t tile pixels () const

Returns the number of tiles comprising an image tile (if it’s a tiled image). This will return
std::numeric limits<imagesize t>::max() in the event of an overflow where it’s
not representable in an imagesize t.

imagesize t tile bytes (bool native=false) const

Returns the number of bytes comprising an image tile (if it’s a tiled image), i.e.,
pixel bytes(native) * tile width * tile height * tile depth
This will return std::numeric limits<imagesize t>::max() in the event of an over-
flow where it’s not representable in an imagesize t.

OpenImageIO Programmer’s Documentation

2.6. IMAGE SPECIFICATION: IMAGESPEC 21

imagesize t image pixels () const

Returns the number of pixels comprising an entire image image of these dimensions. This
will return std::numeric limits<imagesize t>::max() in the event of an overflow
where it’s not representable in an imagesize t.

imagesize t image bytes (bool native=false) const

Returns the number of bytes comprising an entire image of these dimensions, i.e.,
pixel bytes(native) * width * height * depth
This will return std::numeric limits<imagesize t>::max() in the event of an over-
flow where it’s not representable in an imagesize t.

bool size t safe () const

Return true if an image described by this spec can the sizes (in pixels or bytes) of its
scanlines, tiles, and the entire image can be represented by a size t on that platform. If
this returns false, the client application should be very careful allocating storage!

int channelindex (string view name) const

Returns the index of the channel with the given name, or -1 if no such channel is present
in channelnames.

ROI roi () const
ROI roi full () const

NEW!The roi() method returns an ROI describing the pixel data window and channel range,
and roi full() returns an ROI describing the “full size” (a.k.a. “display window”).

void set roi (ROI roi)
void set roi full (ROI roi)

NEW!Sets the dimensions and offset of the pixel data window and full/display window, respec-
tively. Note that the channel range of the ROI is ignored, i.e., these methods do not modify
the nchannels field of the ImageSpec.

void copy dimensions (const ImageSpec &other)

NEW!Copies from other only the fields describing the dimensions and data types, and not ar-
bitrary named metadata or channel names (thus, for an ImageSpec with lots of metadata,
it is much less expensive than copying the whole thing with operator=()).

bool undefined () const

NEW!Returns true for a newly initialized (undefined) ImageSpec.

OpenImageIO Programmer’s Documentation

22 CHAPTER 2. IMAGE I/O API HELPER CLASSES

void attribute (string view name, TypeDesc type,
const void *value)

Add a metadata attribute to extra attribs, with the given name and data type. The
value pointer specifies the address of the data to be copied.

void attribute (string view name, unsigned int value)
void attribute (string view name, int value)
void attribute (string view name, float value)
void attribute (string view name, string view value)

Shortcuts for passing attributes comprised of a single integer, floating-point value, or
string.

void erase attribute (string view name,
TypeDesc searchtype=UNKNOWN,
bool casesensitive=false)

Searches extra attribs for any attributes matching name (as a regular expression),
removing them entirely from extra attribs. If searchtype is anything other than
TypeDesc::UNKNOWN, matches will be restricted only to attributes with the given type.
The name comparison will be case-sensitive if casesensitive is true, otherwise in a
case-insensitive manner if caseinsensitive is false.

ParamValue * find attribute (string view name,
TypeDesc searchtype=UNKNOWN,
bool casesensitive=false)

const ParamValue * find attribute (string view name,
TypeDesc searchtype=UNKNOWN,
bool casesensitive=false) const

Searches extra attribs for an attribute matching name, returning a pointer to the at-
tribute record, or NULL if there was no match. If searchtype is anything other than
TypeDesc::UNKNOWN, matches will be restricted only to attributes with the given type.
The name comparison will be exact if casesensitive is true, otherwise in a case-
insensitive manner if caseinsensitive is false.

const ParamValue * find attribute (string view name,
ParamValue &tmpparam,
TypeDesc searchtype=UNKNOWN,
bool casesensitive=false) const

Search for the named attribute and return the pointer to its ParamValue record, or NULL if
not found. This variety of find attribute() can retrieve items such as "width", which
are part of the ImageSpec, but not in extra attribs. The tmpparam is a temporary
storage area owned by the caller, which is used as temporary buffer in cases where the
information does not correspond to an actual extra attribs (in this case, the return
value will be &tmpparam).

OpenImageIO Programmer’s Documentation

2.6. IMAGE SPECIFICATION: IMAGESPEC 23

int get int attribute (string view name, int defaultval=0) const

Gets an integer metadata attribute (silently converting to int even if if the data is really
int8, uint8, int16, uint16, or uint32), and simply substituting the supplied default value if
no such metadata exists. This is a convenience function for when you know you are just
looking for a simple integer value.

float get float attribute (string view name, float defaultval=0) const

Gets a float metadata attribute (silently converting to float even if the data is really half
or double), simply substituting the supplied default value if no such metadata exists. This
is a convenience function for when you know you are just looking for a simple float value.

string view get string attribute (string view name,
string view defaultval = "") const

Gets a string metadata attribute, simply substituting the supplied default value if no such
metadata exists. This is a convenience function for when you know you are just looking
for a simple string value.

static std::string metadata val (const ParamValue &p, bool human=true) const

For a given parameter p, format the value nicely as a string. If human is true, use especially
human-readable explanations (units, or decoding of values) for certain known metadata.

std::string serialize (SerialFormat format, SerialVerbose verbose) const

Returns, as a string, a serialized version of the ImageSpec. The format may be either
ImageSpec::SerialText or ImageSpec::SerialXML. The verbose argument may be
one of: ImageSpec::SerialBrief (just resolution and other vital statistics, one line for
SerialText, ImageSpec::SerialDetailed (contains all metadata in orginal form), or
ImageSpec::SerialDetailedHuman (contains all metadata, in many cases with human-
readable explanation).

std::string to xml () const

Saves the contents of the ImageSpec as XML, returning it as a string.

void from xml (const char *xml) const

Populates the fields of the ImageSpec based on the XML passed in.

TypeDesc channelformat (int chan) const

Returns a TypeDesc describing the format of the requested channel.

OpenImageIO Programmer’s Documentation

24 CHAPTER 2. IMAGE I/O API HELPER CLASSES

void get channelformats (std::vector<TypeDesc> &formats) const

Fill in an array of channel formats describing all channels in the image. (Note that this
differs slightly from the member data channelformats, which is empty if there are not
separate per-channel formats.)

2.7 “Deep” pixel data: DeepData

A DeepData holds the contents of an image of “deep” pixels (multiple depth samples per pixel).
Commonly used DeepData fields and methods include:

void init (const ImageSpec &spec)

Initialize the DeepData based on the ImageSpec’s total number of pixels, number and
types of channels. At this stage, all pixels are assumed to have 0 samples, and no sample
data is allocated.

void init (int npix, int nchan,
cspan<TypeDesc> channeltypes),
cspan<std::string> channelnames)

Initialize the DeepData with a number of pixels, channels, channel types, and channel
names.

void clear ()

Reset the DeepData to be equivalent to its empty initial state.

void free ()

Not only clear(), but also ensure that all allocated memory has been truly freed.

int npixels () const

Retrieve the total number of pixels.

int nchannels () const

Retrieve the number of channels.

string view channelname (int c) const

Retrieve the name of channel c.

TypeDesc channeltype (int c) const

Retrieve the data type of channel c.

OpenImageIO Programmer’s Documentation

2.7. “DEEP” PIXEL DATA: DEEPDATA 25

size t channelsize (int c) const

Retrieve the size (in bytes) of one datum of channel c.

size t samplesize () const

Retrieve the packed size (in bytes) of all channels of one sample.

int samples (int pixel) const

Retrieve the number of samples for the given pixel index.

void set samples (int pixel, int samps)

Set the number of samples for the given pixel index.

void insert samples (int pixel, int samplepos, int n=1)

Insert n samples of the specified pixel, betinning at the sample position index. After
insertion, the new samples will have uninitialized values.

void erase samples (int pixel, int samplepos, int n=1)

Remove n samples of the specified pixel, betinning at the sample position index.

float deep value (int pixel, int channel, int sample) const
uint32 t deep value uint (int pixel, int channel, int sample) const

Retrieve the value of the given pixel, channel, and sample indices, for floating point or
unsigned integer channel types, respectively.

void set deep value (int pixel, int channel, int sample, float value)
void set deep value (int pixel, int channel, int sample, uint32 t value)

Set the value of the given pixel, channel, and sample indices, for floating point or unsigned
integer channel types, respectively.

bool copy deep sample (int pixel, int sample,
const DeepData &src, int srcpixel, int srcsample)

Copy a deep sample from src to this DeepData. They must have the same channel layout.
Return true if ok, false if the operation could not be performed.

bool copy deep pixel (int pixel, const DeepData &src, int srcpixel)

Copy an entire deep pixel from src to this DeepData, completely replacing any pixel
data for that pixel. They must have the same channel layout. Return true if ok, false if
the operation could not be performed.

OpenImageIO Programmer’s Documentation

26 CHAPTER 2. IMAGE I/O API HELPER CLASSES

bool split (int pixel, float depth)

Split any samples of the pixel that cross depth. Return true if any splits occurred, false
if the pixel was unmodified.

void sort (int pixel)

Sort the samples of the pixel by their Z depth.

void merge overlaps (int pixel)

Merge any adjacent samples in the pixel that exactly overlap in z range. This is only
useful if the pixel has previously been split at all sample starts and ends, and sorted by
depth. Note that this may change the number of samples in the pixel.

bool merge deep pixels (int pixel, const DeepData &src, int srcpixel)

Merge the samples of src’s pixel into this DeepData’s pixel. Return true if ok, false if
the operation could not be performed.

bool occlusion cull (int pixel)

Eliminate any samples beyond an opaque sample.

float opaque z (int pixel)

For the given pixel index. return the z value at which the pixel reaches full opacity.

2.8 Miscellaneous Utilities

These helper functions are not part of any other OpenImageIO class, they just exist in the
OpenImageIO namespace as general utilities. (See Section 11.10 for the corresponding Python
bindings.)

int openimageio version ()

Returns a numeric value for the version of OpenImageIO, 10000 for each major version,
100 for each minor version, 1 for each patch. For example, OpenImageIO 1.2.3 would
return a value of 10203.

std::string geterror ()

Returns any error string describing what went wrong if ImageInput::create() or
ImageOutput::create() failed (since in such cases, the ImageInput or ImageOutput
itself does not exist to have its own geterror() function called). This function returns
the last error for this particular thread; separate threads will not clobber each other’s
global error messages.

OpenImageIO Programmer’s Documentation

2.8. MISCELLANEOUS UTILITIES 27

bool attribute (string view name, TypeDesc type, const void *val)

Sets an global attribute (i.e., a property or option) of OpenImageIO. The name designates
the name of the attribute, type describes the type of data, and val is a pointer to memory
containing the new value for the attribute.

If the name is known, valid attribute that matches the type specified, the attribute will be
set to the new value and attribute() will return true. If name is not recognized, or if
the types do not match (e.g., type is TypeFloat but the named attribute is a string), the
attribute will not be modified, and attribute() will return false.

The following are the recognized attributes:

int threads

Some OpenImageIO operations can be accelerated if allowed to spawn multiple
threads to parallelize the task. (Examples: simultaneous format conversions of mul-
tiple scanlines read together, or many ImageBufAlgo operations.) This attribute
sets the default number of threads that will be spawned for these operations (the
“fan out”). The default is 0, which means that it should spawn as many threads as
there are hardware cores present on the system.
Situations where the main application logic is essentially single threaded (i.e., one
top-level call into OIIO at a time) should leave this at the default value, or some
reasonable number of cores, thus allowing lots of threads to fill the cores when
OIIO has big tasks to complete. But situations where you have many threads at
the application level, each of which is expected to be making separate OIIO calls
simultaneously, should set this to 1, thus having each calling thread do its own work
inside of OIIO rather than spawning new threads with a high overall “fan out.”

int exr threads

Sets the internal OpenEXR thread pool size. The default is to use as many threads
as the amount of hardware concurrency detected. Note that this is separate from the
OIIO "threads" attribute.

string plugin searchpath

A colon-separated list of directories to search for dynamically-loaded format plug-
ins.

string format list
string input format list
string output format list

A comma-separated list of all the names of, respectively, all supported image for-
mats, all formats accepted as inputs, and all formats accepted as outputs. (Note: can
only be retrieved by getattribute(), cannot be set by attribute().)

OpenImageIO Programmer’s Documentation

28 CHAPTER 2. IMAGE I/O API HELPER CLASSES

string extension list

For each format, the format name, followed by a colon, followed by a comma-
separated list of all extensions that are presumed to be used for that format. Semi-
colons separate the lists for formats. For example,

"tiff:tif;jpeg:jpg,jpeg;openexr:exr"

(Note: can only be retrieved by getattribute(), cannot be set by attribute().)

string library list

For each format that uses a dependent library, the format name, followed by a colon,
followed by the name and version of the dependency. Semicolons separate the lists
for formats. For example,

"tiff:LIBTIFF 4.0.4;gif:gif_lib 4.2.3;openexr:OpenEXR 2.2.0"

(Note: can only be retrieved by getattribute(), cannot be set by attribute().)

int read chunk

When performing a read image(), this is the number of scanlines it will attempt to
read at a time (some formats are more efficient when reading and decoding multiple
scanlines). The default is 256. The special value of 0 indicates that it should try to
read the whole image if possible.

int debug

When nonzero, various debug messages may be printed. The default is 0 for release
builds, 1 for DEBUG builds, but also may be overridden by the OPENIMAGEIO DEBUG
env variable. Values > 1 are for OIIO developers to print even more debugging
information.

int log times
string timing report

NEW! When the "log times" attribute is nonzero, ImageBufAlgo functions are instru-
mented to record the number of times they were called and the total amount of time
spent executing them. When enabled, there is a slight runtime performance cost
due to checking the time at the start and end of each of those function calls, and the
locking and recording of the data structure that holds the log information. When the
log times attribute is disabled, there is no additional performance cost.
The log times attribute is initialized to 0, but may be overridden by environment
variable OPENIMAGEIO LOG TIMES.
The report of totals can be retrieved as the value of the "timing report" attribute,
which is a string and is read-only. The report is sorted alphabetically and for each
named instrumentation region, prints the number of times it executed, the total run-
time, and the average per call, like this:

OpenImageIO Programmer’s Documentation

2.8. MISCELLANEOUS UTILITIES 29

IBA::computePixelStats 2 2.69ms (avg 1.34ms)
IBA::make_texture 1 74.05ms (avg 74.05ms)
IBA::mul 8 2.42ms (avg 0.30ms)
IBA::over 10 23.82ms (avg 2.38ms)
IBA::resize 20 0.24s (avg 12.18ms)
IBA::zero 8 0.66ms (avg 0.08ms)

If the value of log times is 2 or more when the application terminates, the timing
report will be printed to stdout upon exit.

string hw:simd
string oiio:simd

The "hw:simd" read-only attribute is a comma-separated list of hardware CPU fea-
tures for SIMD (and some other things). The "oiio:simd" is similarly a list of
which features this build of OIIO was compiled to support.

float resident memory used MB

NEW!This read-only attribute can be used for debugging purposes to report the approxi-
mate process memory used (resident) by the application, in MB.

bool attribute (string view name, int val)
bool attribute (string view name, float val)
bool attribute (string view name, const char *val)
bool attribute (string view name, const std::string & val)

Specialized versions of attribute() in which the data type is implied by the type of the
argument.

bool getattribute (string view name, TypeDesc type, void *val)

Gets the current value of a global attribute. The name designates the name of the attribute,
type describes the type of data, and val is a pointer to memory where the user would
like the value placed.

If the attribute name is valid and matches the type specified, the attribute value will be
stored at address val and attribute() will return true. If name is not recognized as a
valid attribute name, or if the types do not match (e.g., type is TypeFloat but the named
attribute is a string), no data will be written to val, and attribute() will return false.

The complete list of attributes can be found above, in the description of the attribute()
function.

OpenImageIO Programmer’s Documentation

30 CHAPTER 2. IMAGE I/O API HELPER CLASSES

bool getattribute (string view name, int &val)
bool getattribute (string view name, float &val)
bool getattribute (string view name, char **val)
bool getattribute (string view name, std::string & val)

Specialized versions of getattribute() in which the data type is implied by the type of
the argument.

For example, the following are equivalent to the example above for the general (pointer)
form of getattribute():

int threads;
OIIO::getattribute ("threads", &threads);
std::string path;
OIIO::getattribute ("plugin_searchpath", &path);

int get int attribute (string view name, int defaultvalue=0)
float get float attribute (string view name, float defaultvalue=0)
string view get string attribute (string view name,

string view defaultvalue="")

Specialized versions of getattribute() for common types, in which the data is returned
directly, and a supplied default value is returned if the attribute was not found.

For example, the following are equivalent to the example above for the general (pointer)
form of getattribute():

int threads = OIIO::getattribute ("threads", 0);
string_view path = OIIO::getattribute ("plugin_searchpath");

void declare imageio format (const std::string &format name,
ImageInput::Creator input creator,
const char **input extensions,
ImageOutput::Creator output creator,
const char **output extensions,
const char *lib version)

Register the input and output ‘create’ functions and list of file extensions for a particular
format.

OpenImageIO Programmer’s Documentation

3 ImageOutput: Writing Images

3.1 Image Output Made Simple

Here is the simplest sequence required to write the pixels of a 2D image to a file:

#include <OpenImageIO/imageio.h>
using namespace OIIO;
...

const char *filename = "foo.jpg";
const int xres = 640, yres = 480;
const int channels = 3; // RGB
unsigned char pixels[xres*yres*channels];

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out)

return;
ImageSpec spec (xres, yres, channels, TypeDesc::UINT8);
out->open (filename, spec);
out->write_image (TypeDesc::UINT8, pixels);
out->close ();

This little bit of code does a surprising amount of useful work:

• Search for an ImageIO plugin that is capable of writing the file ("foo.jpg"), deducing
the format from the file extension. When it finds such a plugin, it creates a subclass
instance of ImageOutput that writes the right kind of file format.

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);

• Open the file, write the correct headers, and in all other important ways prepare a file
with the given dimensions (640× 480), number of color channels (3), and data format
(unsigned 8-bit integer).

ImageSpec spec (xres, yres, channels, TypeDesc::UINT8);
out->open (filename, spec);

31

32 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

• Write the entire image, hiding all details of the encoding of image data in the file, whether
the file is scanline- or tile-based, or what is the native format of data in the file (in this
case, our in-memory data is unsigned 8-bit and we’ve requested the same format for disk
storage, but if they had been different, write image() would do all the conversions for
us).

out->write_image (TypeDesc::UINT8, &pixels);

• Close the file.

out->close ();

What happens when the file format doesn’t support the spec?

The open() call will fail (returning an empty pointer and set an appropriate error message) if
the output format cannot accommodate what is requested by the ImageSpec. This includes:

• Dimensions (width, height, or number of channels) exceeding the limits supported by the
file format.1

• Volumetric (depth > 1) if the format does not support volumetric data.

• Tile size > 1 if the format does not support tiles.

• Multiple subimages or MIP levels if not supported by the format.

However, several other mismatches between requested ImageSpec and file format capabil-
ities will be silently ignored, allowing open() to succeed:

• If the pixel data format is not supported (for example, a request for half pixels when
writing a JPEG/JFIF file), the format writer may substitute another data format (generally,
whichever commonly-used data format supported by the file type will result in the least
reduction of precision or range).

• If the ImageSpec requests different per-channel data formats, but the format supports only
a single format for all channels, it may just choose the most precise format requested and
use it for all channels.

• If the file format does not support arbitrarily-named channels, the channel names may be
lost when saving the file.

• Any other metadata in the ImageSpec may be summarily dropped if not supported by the
file format.

1One exception to the rule about number of channels is that a file format that supports only RGB, but not alpha,
is permitted to silently drop the alpha channel without considering that to be an error.

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 33

3.2 Advanced Image Output

Let’s walk through many of the most common things you might want to do, but that are more
complex than the simple example above.

3.2.1 Writing individual scanlines, tiles, and rectangles

The simple example of Section 3.1 wrote an entire image with one call. But sometimes you are
generating output a little at a time and do not wish to retain the entire image in memory until it
is time to write the file. OpenImageIO allows you to write images one scanline at a time, one
tile at a time, or by individual rectangles.

Writing individual scanlines

Individual scanlines may be written using the write scanline() API call:

...
unsigned char scanline[xres*channels];
out->open (filename, spec);
int z = 0; // Always zero for 2D images
for (int y = 0; y < yres; ++y) {

... generate data in scanline[0..xres*channels-1] ...
out->write_scanline (y, z, TypeDesc::UINT8, scanline);

}
out->close ();
...

The first two arguments to write scanline() specify which scanline is being written by
its vertical (y) scanline number (beginning with 0) and, for volume images, its slice (z) number
(the slice number should be 0 for 2D non-volume images). This is followed by a TypeDesc
describing the data you are supplying, and a pointer to the pixel data itself. Additional optional
arguments describe the data stride, which can be ignored for contiguous data (use of strides is
explained in Section 3.2.3).

All ImageOutput implementations will accept scanlines in strict order (starting with scan-
line 0, then 1, up to yres-1, without skipping any). See Section 3.2.6 for details on out-of-order
or repeated scanlines.

The full description of the write scanline() function may be found in Section 3.3.

Writing individual tiles

Not all image formats (and therefore not all ImageOutput implementations) support tiled im-
ages. If the format does not support tiles, then write tile() will fail. An application using
OpenImageIO should gracefully handle the case that tiled output is not available for the chosen
format.

Once you create() an ImageOutput, you can ask if it is capable of writing a tiled image
by using the supports("tiles") query:

OpenImageIO Programmer’s Documentation

34 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

...
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out->supports ("tiles")) {

// Tiles are not supported
}

Assuming that the ImageOutput supports tiled images, you need to specifically request a
tiled image when you open() the file. This is done by setting the tile size in the ImageSpec
passed to open(). If the tile dimensions are not set, they will default to zero, which indicates
that scanline output should be used rather than tiled output.

int tilesize = 64;
ImageSpec spec (xres, yres, channels, TypeDesc::UINT8);
spec.tile_width = tilesize;
spec.tile_height = tilesize;
out->open (filename, spec);
...

In this example, we have used square tiles (the same number of pixels horizontally and
vertically), but this is not a requirement of OpenImageIO. However, it is possible that some
image formats may only support square tiles, or only certain tile sizes (such as restricting tile
sizes to powers of two). Such restrictions should be documented by each individual plugin.

unsigned char tile[tilesize*tilesize*channels];
int z = 0; // Always zero for 2D images
for (int y = 0; y < yres; y += tilesize) {

for (int x = 0; x < xres; x += tilesize) {
... generate data in tile[] ..
out->write_tile (x, y, z, TypeDesc::UINT8, tile);

}
}
out->close ();
...

The first three arguments to write tile() specify which tile is being written by the pixel
coordinates of any pixel contained in the tile: x (column), y (scanline), and z (slice, which
should always be 0 for 2D non-volume images). This is followed by a TypeDesc describing
the data you are supplying, and a pointer to the tile’s pixel data itself, which should be ordered
by increasing slice, increasing scanline within each slice, and increasing column within each
scanline. Additional optional arguments describe the data stride, which can be ignored for
contiguous data (use of strides is explained in Section 3.2.3).

All ImageOutput implementations that support tiles will accept tiles in strict order of in-
creasing y rows, and within each row, increasing x column, without missing any tiles. See
Section 3.2.6 for details on out-of-order or repeated tiles.

The full description of the write tile() function may be found in Section 3.3.

Writing arbitrary rectangles

Some ImageOutput implementations — such as those implementing an interactive image dis-
play, but probably not any that are outputting directly to a file — may allow you to send arbitrary

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 35

rectangular pixel regions. Once you create() an ImageOutput, you can ask if it is capable of
accepting arbitrary rectangles by using the supports("rectangles") query:

...
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out->supports ("rectangles")) {

// Rectangles are not supported
}

If rectangular regions are supported, they may be sent using the write rectangle() API
call:

unsigned int rect[...];
... generate data in rect[] ..
out->write_rectangle (xbegin, xend, ybegin, yend, zbegin, zend,

TypeDesc::UINT8, rect);

The first six arguments to write rectangle() specify the region of pixels that is being
transmitted by supplying the minimum and one-past-maximum pixel indices in x (column), y
(scanline), and z (slice, always 0 for 2D non-volume images).2 The total number of pixels being
transmitted is therefore:

(xend-xbegin) * (yend-ybegin) * (zend-zbegin)

This is followed by a TypeDesc describing the data you are supplying, and a pointer to the
rectangle’s pixel data itself, which should be ordered by increasing slice, increasing scanline
within each slice, and increasing column within each scanline. Additional optional arguments
describe the data stride, which can be ignored for contiguous data (use of strides is explained in
Section 3.2.3).

3.2.2 Converting pixel data types

The code examples of the previous sections all assumed that your internal pixel data is stored
as unsigned 8-bit integers (i.e., 0-255 range). But OpenImageIO is significantly more flexible.

You may request that the output image pixels be stored in any of several data types. This is
done by setting the format field of the ImageSpec prior to calling open. You can do this upon
construction of the ImageSpec, as in the following example that requests a spec that stores pixel
values as 16-bit unsigned integers:

ImageSpec spec (xres, yres, channels, TypeDesc::UINT16);

Or, for an ImageSpec that has already been constructed, you may reset its format using the
set format() method.

ImageSpec spec (...);
spec.set_format (TypeDesc::UINT16);

2OpenImageIO nearly always follows the C++ STL convention of specifying ranges as [begin,end), that is,
begin, begin+1, ..., end-1.

OpenImageIO Programmer’s Documentation

36 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

Note that resetting the pixel data type must be done before passing the spec to open(), or it
will have no effect on the file.

Individual file formats, and therefore ImageOutput implementations, may only support a
subset of the pixel data types understood by the OpenImageIO library. Each ImageOutput plu-
gin implementation should document which data formats it supports. An individual ImageOutput
implementation is expected to always succeed, but if the file format does not support the re-
quested pixel data type, it is expected to choose a data type that is supported, usually the data
type that best preserves the precision and range of the originally-requested data type.

The conversion from floating-point formats to integer formats (or from higher to lower
integer, which is done by first converting to float) is always done by rescaling the value so
that 0.0 maps to integer 0 and 1.0 to the maximum value representable by the integer type, then
rounded to an integer value for final output. Here is the code that implements this transformation
(T is the final output integer type):

float value = quant_max * input;
T output = (T) clamp ((int)(value + 0.5), quant_min, quant_max);

Quantization limits for each integer type is as follows:

Data Format min max
UINT8 0 255
INT8 -128 127
UINT16 0 65535
INT16 -32768 32767
UINT 0 4294967295
INT -2147483648 2147483647

Note that the default is to use the entire positive range of each integer type to represent the
floating-point (0.0− 1.0) range. Floating-point types do not attempt to remap values, and do
not clamp (except to their full floating-point range).

It is not required that the pixel data passed to write image(), write scanline(), write tile(),
or write rectangle() actually be in the same data type as that requested as the native pixel
data type of the file. You can fully mix and match data you pass to the various write routines
and OpenImageIO will automatically convert from the internal format to the native file format.
For example, the following code will open a TIFF file that stores pixel data as 16-bit unsigned
integers (values ranging from 0 to 65535), compute internal pixel values as floating-point val-
ues, with write image() performing the conversion automatically:

std::unique_ptr<ImageOutput> out = ImageOutput::create ("myfile.tif");
ImageSpec spec (xres, yres, channels, TypeDesc::UINT16);
out->open (filename, spec);
...
float pixels [xres*yres*channels];
...
out->write_image (TypeDesc::FLOAT, pixels);

Note that write scanline(), write tile(), and write rectangle have a parameter that
works in a corresponding manner.

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 37

3.2.3 Data Strides

In the preceeding examples, we have assumed that the block of data being passed to the write
functions are contiguous, that is:

• each pixel in memory consists of a number of data values equal to the declared number
of channels that are being written to the file;

• successive column pixels within a row directly follow each other in memory, with the first
channel of pixel x immediately following last channel of pixel x−1 of the same row;

• for whole images, tiles or rectangles, the data for each row immediately follows the pre-
vious one in memory (the first pixel of row y immediately follows the last column of row
y−1);

• for 3D volumetric images, the first pixel of slice z immediately follows the last pixel of
of slice z−1.

Please note that this implies that data passed to write tile() be contiguous in the shape
of a single tile (not just an offset into a whole image worth of pixels), and that data passed to
write rectangle() be contiguous in the dimensions of the rectangle.

The write scanline() function takes an optional xstride argument, and the write image(),
write tile(), and write rectangle functions take optional xstride, ystride, and zstride
values that describe the distance, in bytes, between successive pixel columns, rows, and slices,
respectively, of the data you are passing. For any of these values that are not supplied, or are
given as the special constant AutoStride, contiguity will be assumed.

By passing different stride values, you can achieve some surprisingly flexible functionality.
A few representative examples follow:

• Flip an image vertically upon writing, by using negative y stride:

unsigned char pixels[xres*yres*channels];
int scanlinesize = xres * channels * sizeof(pixels[0]);
...
out->write_image (TypeDesc::UINT8,

(char *)pixels+(yres-1)*scanlinesize, // offset to last
AutoStride, // default x stride
-scanlinesize, // special y stride
AutoStride); // default z stride

• Write a tile that is embedded within a whole image of pixel data, rather than having a
one-tile-only memory layout:

unsigned char pixels[xres*yres*channels];
int pixelsize = channels * sizeof(pixels[0]);
int scanlinesize = xres * pixelsize;
...
out->write_tile (x, y, 0, TypeDesc::UINT8,

OpenImageIO Programmer’s Documentation

38 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

(char *)pixels + y*scanlinesize + x*pixelsize,
pixelsize,
scanlinesize);

• Write only a subset of channels to disk. In this example, our internal data layout consists
of 4 channels, but we write just channel 3 to disk as a one-channel image:

// In-memory representation is 4 channel
const int xres = 640, yres = 480;
const int channels = 4; // RGBA
const int channelsize = sizeof(unsigned char);
unsigned char pixels[xres*yres*channels];

// File representation is 1 channel
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
ImageSpec spec (xres, yres, 1, TypeDesc::UINT8);
out->open (filename, spec);

// Use strides to write out a one-channel "slice" of the image
out->write_image (TypeDesc::UINT8,

(char *)pixels+3*channelsize, // offset to chan 3
channels*channelsize, // 4 channel x stride
AutoStride, // default y stride
AutoStride); // default z stride

...

Please consult Section 3.3 for detailed descriptions of the stride parameters to each write
function.

3.2.4 Writing a crop window or overscan region

The ImageSpec fields width, height, and depth describe the dimensions of the actual pixel
data.

At times, it may be useful to also describe an abstract full or display image window, whose
position and size may not correspond exactly to the data pixels. For example, a pixel data
window that is a subset of the full display window might indicate a crop window; a pixel data
window that is a superset of the full display window might indicate overscan regions (pixels
defined outside the eventual viewport).

The ImageSpec fields full width, full height, and full depth describe the dimen-
sions of the full display window, and full x, full y, full z describe its origin (upper left
corner). The fields x, y, z describe the origin (upper left corner) of the pixel data.

These fields collectively describe an abstract full display image ranging from [full x ...
full x+full width-1] horizontally, [full y ... full y+full height-1] vertically, and
[full z ... full z+full depth-1] in depth (if it is a 3D volume), and actual pixel data over
the pixel coordinate range [x ... x+width-1] horizontally, [y ... y+height-1] vertically, and [z
... z+depth-1] in depth (if it is a volume).

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 39

Not all image file formats have a way to describe display windows. An ImageOutput
implementation that cannot express display windows will always write out the width× height
pixel data, may upon writing lose information about offsets or crop windows.

Here is a code example that opens an image file that will contain a 32× 32 pixel crop
window within an abstract 640× 480 full size image. Notice that the pixel indices (column,
scanline, slice) passed to the write functions are the coordinates relative to the full image, not
relative to the crop widow, but the data pointer passed to the write functions should point to the
beginning of the actual pixel data being passed (not the the hypothetical start of the full data, if
it was all present).

int fullwidth = 640, fulllength = 480; // Full display image size
int cropwidth = 16, croplength = 16; // Crop window size
int xorigin = 32, yorigin = 128; // Crop window position
unsigned char pixels [cropwidth * croplength * channels]; // Crop size!
...
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
ImageSpec spec (cropwidth, croplength, channels, TypeDesc::UINT8);
spec.full_x = 0;
spec.full_y = 0;
spec.full_width = fullwidth;
spec.full_length = fulllength;
spec.x = xorigin;
spec.y = yorigin;
out->open (filename, spec);
...
int z = 0; // Always zero for 2D images
for (int y = yorigin; y < yorigin+croplength; ++y) {

out->write_scanline (y, z, TypeDesc::UINT8,
(y-yorigin)*cropwidth*channels);

}
out->close ();

3.2.5 Writing metadata

The ImageSpec passed to open() can specify all the common required properties that describe
an image: data format, dimensions, number of channels, tiling. However, there may be a variety
of additional metadata3 that should be carried along with the image or saved in the file.

The remainder of this section explains how to store additional metadata in the ImageSpec.
It is up to the ImageOutput to store these in the file, if indeed the file format is able to accept the
data. Individual ImageOutput implementations should document which metadata they respect.

Channel names

In addition to specifying the number of color channels, it is also possible to name those channels.
Only a few ImageOutput implementations have a way of saving this in the file, but some do,
so you may as well do it if you have information about what the channels represent.

3Metadata refers to data about data, in this case, data about the image that goes beyond the pixel values and
description thereof.

OpenImageIO Programmer’s Documentation

40 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

By convention, channel names for red, green, blue, and alpha (or a main image) should be
named "R", "G", "B", and "A", respectively. Beyond this guideline, however, you can use any
names you want.

The ImageSpec has a vector of strings called channelnames. Upon construction, it starts
out with reasonable default values. If you use it at all, you should make sure that it contains the
same number of strings as the number of color channels in your image. Here is an example:

int channels = 4;
ImageSpec spec (width, length, channels, TypeDesc::UINT8);
spec.channelnames.clear ();
spec.channelnames.push_back ("R");
spec.channelnames.push_back ("G");
spec.channelnames.push_back ("B");
spec.channelnames.push_back ("A");

Here is another example in which custom channel names are used to label the channels in an
8-channel image containing beauty pass RGB, per-channel opacity, and texture s, t coordinates
for each pixel.

int channels = 8;
ImageSpec spec (width, length, channels, TypeDesc::UINT8);
spec.channelnames.clear ();
spec.channelnames.push_back ("R");
spec.channelnames.push_back ("G");
spec.channelnames.push_back ("B");
spec.channelnames.push_back ("opacityR");
spec.channelnames.push_back ("opacityG");
spec.channelnames.push_back ("opacityB");
spec.channelnames.push_back ("texture_s");
spec.channelnames.push_back ("texture_t");

The main advantage to naming color channels is that if you are saving to a file format that
supports channel names, then any application that uses OpenImageIO to read the image back
has the option to retain those names and use them for helpful purposes. For example, the iv
image viewer will display the channel names when viewing individual channels or displaying
numeric pixel values in “pixel view” mode.

Specially-designated channels

The ImageSpec contains two fields, alpha channel and z channel, which can be used to
designate which channel indices are used for alpha and z depth, if any. Upon construction, these
are both set to -1, indicating that it is not known which channels are alpha or depth. Here is an
example of setting up a 5-channel output that represents RGBAZ:

int channels = 5;
ImageSpec spec (width, length, channels, format);
spec.channelnames.push_back ("R");
spec.channelnames.push_back ("G");
spec.channelnames.push_back ("B");

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 41

spec.channelnames.push_back ("A");
spec.channelnames.push_back ("Z");
spec.alpha_channel = 3;
spec.z_channel = 4;

There are two advantages to designating the alpha and depth channels in this manner:

• Some file formats may require that these channels be stored in a particular order, with
a particular precision, or the ImageOutput may in some other way need to know about
these special channels.

Arbitrary metadata

For all other metadata that you wish to save in the file, you can attach the data to the ImageSpec
using the attribute() methods. These come in polymorphic varieties that allow you to attach
an attribute name and a value consisting of a single int, unsigned int, float, char*, or
std::string, as shown in the following examples:

ImageSpec spec (...);
...

unsigned int u = 1;
spec.attribute ("Orientation", u);

float x = 72.0;
spec.attribute ("dotsize", f);

std::string s = "Fabulous image writer 1.0";
spec.attribute ("Software", s);

These are convenience routines for metadata that consist of a single value of one of these
common types. For other data types, or more complex arrangements, you can use the more
general form of attribute(), which takes arguments giving the name, type (as a TypeDesc),
number of values (1 for a single value, > 1 for an array), and then a pointer to the data values.
For example,

ImageSpec spec (...);

// Attach a 4x4 matrix to describe the camera coordinates
float mymatrix[16] = { ... };
spec.attribute ("worldtocamera", TypeMatrix, &mymatrix);

// Attach an array of two floats giving the CIE neutral color
float neutral[2] = { ... };
spec.attribute ("adoptedNeutral", TypeDesc(TypeDesc::FLOAT, 2), &neutral);

In general, most image file formats (and therefore most ImageOutput implementations) are
aware of only a small number of name/value pairs that they predefine and will recognize. Some
file formats (OpenEXR, notably) do accept arbitrary user data and save it in the image file. If an

OpenImageIO Programmer’s Documentation

42 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

ImageOutput does not recognize your metadata and does not support arbitrary metadata, that
metadatum will be silently ignored and will not be saved with the file.

Each individual ImageOutput implementation should document the names, types, and
meanings of all metadata attributes that they understand.

Color space hints

We certainly hope that you are using only modern file formats that support high precision and
extended range pixels (such as OpenEXR) and keeping all your images in a linear color space.
But you may have to work with file formats that dictate the use of nonlinear color values. This
is prevalent in formats that store pixels only as 8-bit values, since 256 values are not enough to
linearly represent colors without banding artifacts in the dim values.

Since this can (and probably will) happen, we have a convention for explaining what color
space your image pixels are in. Each individual ImageOutput should document how it uses this
(or not).

The ImageSpec::extra attribs field should store metadata that reveals the color space
of the pixels you are sending the ImageOutput (see Section B.3 for explanations of particular
values).
The color space hints only describe color channels. You should always pass alpha, depth, or
other non-color channels with linear values.

Here is a simple example of setting up the ImageSpec when you know that the pixel values
you are writing are linear:

ImageSpec spec (width, length, channels, format);
spec.attribute ("oiio:ColorSpace", "Linear");
...

If a particular ImageOutput implementation is required (by the rules of the file format it
writes) to have pixels in a particular color space, then it should try to convert the color values of
your image to the right color space if it is not already in that space. For example, JPEG images
must be in sRGB space, so if you declare your pixels to be "Linear", the JPEG ImageOutput
will convert to sRGB.

If you leave the "oiio:ColorSpace" unset, the values will not be transformed, since the
plugin can’t be sure that it’s not in the correct space to begin with.

3.2.6 Random access and repeated transmission of pixels

All ImageOutput implementations that support scanlines and tiles should write pixels in strict
order of increasing z slice, increasing y scanlines/rows within each slice, and increasing x col-
umn within each row. It is generally not safe to skip scanlines or tiles, or transmit them out of
order, unless the plugin specifically advertises that it supports random access or rewrites, which
may be queried using:

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (out->supports ("random_access"))

...

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 43

Similarly, you should assume the plugin will not correctly handle repeated transmissions of a
scanline or tile that has already been sent, unless it advertises that it supports rewrites, which
may be queried using:

if (out->supports ("rewrite"))
...

3.2.7 Multi-image files

Some image file formats support storing multiple images within a single file. Given a created
ImageOutput, you can query whether multiple images may be stored in the file:

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (out->supports ("multiimage"))

...

Some image formats allow you to do the initial open() call without declaring the specifics
of the subimages, and simply append subimages as you go. You can detect this by checking

if (out->supports ("appendsubimage"))
...

In this case, all you have to do is, after writing all the pixels of one image but before calling
close(), call open() again for the next subimage and pass AppendSubimage as the value for
the mode argument (see Section 3.3 for the full technical description of the arguments to open).
The close() routine is called just once, after all subimages are completed. Here is an example:

const char *filename = "foo.tif";
int nsubimages; // assume this is set
ImageSpec specs[]; // assume these are set for each subimage
unsigned char *pixels[]; // assume a buffer for each subimage

// Create the ImageOutput
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);

// Be sure we can support subimages
if (subimages > 1 && (! out->supports("multiimage") ||

! out->supports("appendsubimage"))) {
std::cerr << "Does not support appending of subimages\n";
return;

}

// Use Create mode for the first level.
ImageOutput::OpenMode appendmode = ImageOutput::Create;

// Write the individual subimages
for (int s = 0; s < nsubimages; ++s) {

out->open (filename, specs[s], appendmode);
out->write_image (TypeDesc::UINT8, pixels[s]);
// Use AppendSubimage mode for subsequent levels
appendmode = ImageOutput::AppendSubimage;

OpenImageIO Programmer’s Documentation

44 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

}
out->close ();

On the other hand, if out->supports("appendsubimage") returns false, then you must
use a different open() variety that allows you to declare the number of subimages and their
specifications up front.

Below is an example of how to write a multi-subimage file, assuming that you know all the
image specifications ahead of time. This should be safe for any file format that supports multiple
subimages, regardless of whether it supports appending, and thus is the preferred method for
writing subimages, assuming that you are able to know the number and specification of the
subimages at the time you first open the file.

const char *filename = "foo.tif";
int nsubimages; // assume this is set
ImageSpec specs[]; // assume these are set for each subimage
unsigned char *pixels[]; // assume a buffer for each subimage

// Create the ImageOutput
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);

// Be sure we can support subimages
if (subimages > 1 && ! out->supports ("multiimage")) {

std::cerr << "Cannot write multiple subimages\n";
return;

}

// Open and declare all subimages
out->open (filename, nsubimages, specs);

// Write the individual subimages
for (int s = 0; s < nsubimages; ++s) {

if (s > 0) // Not needed for the first, which is already open
out->open (filename, specs[s], ImageInput::AppendSubimage);

out->write_image (TypeDesc::UINT8, pixels[s]);
}
out->close ();

In both of these examples, we have used write image(), but of course write scanline(),
write tile(), and write rectangle() work as you would expect, on the current subimage.

3.2.8 MIP-maps

Some image file formats support multiple copies of an image at successively lower resolu-
tions (MIP-map levels, or an “image pyramid”). Given a created ImageOutput, you can query
whether MIP-maps may be stored in the file:

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (out->supports ("mipmap"))

...

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 45

If you are working with an ImageOutput that supports MIP-map levels, it is easy to write
these levels. After writing all the pixels of one MIP-map level, call open() again for the next
MIP level and pass ImageInput::AppendMIPLevel as the value for the mode argument, and
then write the pixels of the subsequent MIP level. (See Section 3.3 for the full technical descrip-
tion of the arguments to open().) The close() routine is called just once, after all subimages
and MIP levels are completed.

Below is pseudocode for writing a MIP-map (a multi-resolution image used for texture
mapping):

const char *filename = "foo.tif";
const int xres = 512, yres = 512;
const int channels = 3; // RGB
unsigned char *pixels = new unsigned char [xres*yres*channels];

// Create the ImageOutput
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);

// Be sure we can support either mipmaps or subimages
if (! out->supports ("mipmap") && ! out->supports ("multiimage")) {

std::cerr << "Cannot write a MIP-map\n";
return;

}
// Set up spec for the highest resolution
ImageSpec spec (xres, yres, channels, TypeDesc::UINT8);

// Use Create mode for the first level.
ImageOutput::OpenMode appendmode = ImageOutput::Create;

// Write images, halving every time, until we’re down to
// 1 pixel in either dimension
while (spec.width >= 1 && spec.height >= 1) {

out->open (filename, spec, appendmode);
out->write_image (TypeDesc::UINT8, pixels);
// Assume halve() resamples the image to half resolution
halve (pixels, spec.width, spec.height);
// Don’t forget to change spec for the next iteration
spec.width /= 2;
spec.height /= 2;

// For subsequent levels, change the mode argument to
// open(). If the format doesn’t support MIPmaps directly,
// try to emulate it with subimages.
if (out->supports("mipmap"))

appendmode = ImageOutput::AppendMIPLevel;
else

appendmode = ImageOutput::AppendSubimage;
}
out->close ();

In this example, we have used write image(), but of course write scanline(), write tile(),
and write rectangle() work as you would expect, on the current MIP level.

OpenImageIO Programmer’s Documentation

46 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

3.2.9 Per-channel formats

Some image formats allow separate per-channel data formats (for example, half data for colors
and float data for depth). When this is desired, the following steps are necessary:

1. Verify that the writer supports per-channel formats by checking
supports ("channelformats").

2. The ImageSpec passed to open() should have its channelformats vector filled with the
types for each channel.

3. The call to write scanline, read scanlines, write tile, write tiles, or write -
image should pass a data pointer to the raw data, already in the native per-channel format
of the file and contiguously packed, and specify that the data is of type TypeDesc::UNKNOWN.

For example, the following code fragment will write a 5-channel image to an OpenEXR
file, consisting of R/G/B/A channels in half and a Z channel in float:

// Mixed data type for the pixel
struct Pixel { half r,g,b,a; float z; };
Pixel pixels[xres*yres];

std::unique_ptr<ImageOutput> out = ImageOutput::create ("foo.exr");

// Double check that this format accepts per-channel formats
if (! out->supports("channelformats")) {

return;
}

// Prepare an ImageSpec with per-channel formats
ImageSpec spec (xres, yres, 5, TypeDesc::FLOAT);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::HALF);
spec.channelformats.push_back (TypeDesc::FLOAT);
spec.channelnames.clear ();
spec.channelnames.push_back ("R");
spec.channelnames.push_back ("G");
spec.channelnames.push_back ("B");
spec.channelnames.push_back ("A");
spec.channelnames.push_back ("Z");

out->open (filename, spec);
out->write_image (TypeDesc::UNKNOWN, /* use channel formats */

pixels, /* data buffer */
sizeof(Pixel)); /* pixel stride */

3.2.10 Writing “deep” data

Some image file formats (OpenEXR only, at this time) support the concept of “deep” pixels –
those containing multiple samples per pixel (and a potentially differing number of them in each

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 47

pixel). You can tell if a format supports deep images by checking supports("deepdata"),
and you can specify a deep data in an ImageSpec by setting its deep field will be true.

Deep files cannot be written with the usual write scanline, write scanlines, write -
tile, write tiles, write image functions, due to the nature of their variable number of
samples per pixel. Instead, ImageOutput has three special member functions used only for
writing deep data:

bool write_deep_scanlines (int ybegin, int yend, int z,
const DeepData &deepdata);

bool write_deep_tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, const DeepData &deepdata);

bool write_deep_image (const DeepData &deepdata);

It is only possible to write “native” data types to deep files; that is, there is no automatic
translation into arbitrary data types as there is for ordinary images. All three of these functions
are passed deep data in a special DeepData structure, described in detail in Section 2.7.
Here is an example of using these methods to write a deep image:

// Prepare the spec for ’half’ RGBA, ’float’ z
int nchannels = 5;
ImageSpec spec (xres, yres, nchannels);
TypeDesc channeltypes[] = { TypeDesc::HALF, TypeDesc::HALF,

TypeDesc::HALF, TypeDesc::HALF, TypeDesc::FLOAT };
spec.z_channel = 4;
spec.channelnames[spec.z_channel] = "Z";
spec.channeltypes.assign (channeltypes+0, channeltypes+nchannels);
spec.deep = true;

// Prepare the data (sorry, complicated, but need to show the gist)
DeepData deepdata;
deepdata.init (spec);
for (int y = 0; y < yres; ++y)

for (int x = 0; x < xres; ++x)
deepdata.set_samples(y*xres+x, ...samples for that pixel...);

deepdata.alloc (); // allocate pointers and data
int pixel = 0;
for (int y = 0; y < yres; ++y)

for (int x = 0; x < xres; ++x, ++pixel)
for (int chan = 0; chan < nchannels; ++chan)

for (int samp = 0; samp < deepdata.samples(pixel); ++samp)
deepdata.set_deep_value (pixel, chan, samp, ...value...);

// Create the output
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out)

return;
// Make sure the format can handle deep data and per-channel formats

OpenImageIO Programmer’s Documentation

48 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

if (! out->supports("deepdata") || ! out->supports("channelformats"))
return;

// Do the I/O (this is the easy part!)
out->open (filename, spec);
out->write_deep_image (deepdata);
out->close ();

3.2.11 Copying an entire image

Suppose you want to copy an image, perhaps with alterations to the metadata but not to the
pixels. You could open an ImageInput and perform a read image(), and open another
ImageOutput and call write image() to output the pixels from the input image. However,
for compressed images, this may be inefficient due to the unnecessary decompression and sub-
sequent re-compression. In addition, if the compression is lossy, the output image may not
contain pixel values identical to the original input.

A special copy image method of ImageOutput is available that attempts to copy an image
from an open ImageInput (of the same format) to the output as efficiently as possible with
without altering pixel values, if at all possible.

Not all format plugins will provide an implementation of copy image (in fact, most will
not), but the default implemenatation simply copies pixels one scanline or tile at a time (with
decompression/recompression) so it’s still safe to call. Furthermore, even a provided copy -
image is expected to fall back on the default implementation if the input and output are not able
to do an efficient copy. Nevertheless, this method is recommended for copying images so that
maximal advantage will be taken in cases where savings can be had.

The following is an example use of copy image to transfer pixels without alteration while
modifying the image description metadata:

// Open the input file
const char *input = "input.jpg";
std::unique_ptr<ImageInput> in = ImageInput::open (input);

// Make an output spec, identical to the input except for metadata
ImageSpec out_spec = in->spec();
out_spec.attribute ("ImageDescription", "My Title");

// Create the output file and copy the image
const char *output = "output.jpg";
std::unique_ptr<ImageOutput> out = ImageOutput::create (output);
out->open (output, out_spec);
out->copy_image (in);

// Clean up
out->close ();
in->close ();

OpenImageIO Programmer’s Documentation

3.2. ADVANCED IMAGE OUTPUT 49

3.2.12 Custom I/O proxies (and writing the file to a memory buffer)

NEW!
Some file format writers allow you to supply a custom I/O proxy object that can allow bypassing
the usual file I/O with custom behavior, including the ability to fill an in-memory buffer with a
byte-for-byte representation of the correctly formatted file that would have been written to disk.

Only some output format writers support this feature. To find out if a particular file format
supports this feature, you can create an ImageOutput of the right type, and check if it supports
the feature name "ioproxy":

ImageOutput *out = ImageOutput::create (filename);
if (! out || ! out->supports ("ioproxy")) {

ImageOutput::destroy (out);
out = nullptr;
return;

}

ImageOutputwriters that support "ioproxy" will respond to a special attribute, "oiio:ioproxy",
which passes a pointer to a Filesystem::IOProxy* (see OpenImageIO’s filesystem.h for
this type and its subclasses). IOProxy is an abstract type, and concrete subclasses include
IOFile (which wraps I/O to an open FILE*) and IOVecOutput (which sends output to a
std::vector<unsigned char>).

Here is an example of using a proxy that writes the “file” to a std::vector<unsigned
char>:

// ImageSpec describing the image we want to write.
ImageSpec spec (xres, yres, channels, TypeDesc::UINT8);

std::vector<unsigned char> file_buffer; // bytes will go here
Filesystem::IOVecOutput vecout (file_buffer); // I/O proxy object
void *ptr = &file_buffer;
spec.attribute ("oiio:ioproxy", TypeDesc::PTR, &ptr);

ImageOutput *out = ImageOutput::open ("out.exr", spec);
out->write_image (...);
ImageOutput::destroy (out);

// At this point, file_buffer will contain the "file"

3.2.13 Custom search paths for plugins

When you call ImageOutput::create(), the OpenImageIO library will try to find a plugin
that is able to write the format implied by your filename. These plugins are alternately known
as DLL’s on Windows (with the .dll extension), DSO’s on Linux (with the .so extension), and
dynamic libraries on Mac OS X (with the .dylib extension).

OpenImageIO will look for matching plugins according to search paths, which are strings
giving a list of directories to search, with each directory separated by a colon (‘:’). Within a
search path, any substrings of the form ${FOO} will be replaced by the value of environment
variable FOO. For example, the searchpath "${HOME}/plugins:/shared/plugins" will first

OpenImageIO Programmer’s Documentation

50 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

check the directory "/home/tom/plugins" (assuming the user’s home directory is /home/tom),
and if not found there, will then check the directory "/shared/plugins".

The first search path it will check is that stored in the environment variable OIIO LIBRARY -
PATH. It will check each directory in turn, in the order that they are listed in the variable. If no
adequate plugin is found in any of the directories listed in this environment variable, then it will
check the custom searchpath passed as the optional second argument to ImageOutput::create(),
searching in the order that the directories are listed. Here is an example:

char *mysearch = "/usr/myapp/lib:${HOME}/plugins";
std::unique_ptr<ImageOutput> out = ImageOutput::create (filename, mysearch);
...

3.2.14 Error checking

Nearly every ImageOutput API function returns a bool indicating whether the operation suc-
ceeded (true) or failed (false). In the case of a failure, the ImageOutput will have saved
an error message describing in more detail what went wrong, and the latest error message
is accessible using the ImageOutput method geterror(), which returns the message as a
std::string.

The exception to this rule is ImageOutput::create, which returns NULL if it could not cre-
ate an appropriate ImageOutput. And in this case, since no ImageOutput exists for which you
can call its geterror() function, there exists a global geterror() function (in the OpenImageIO
namespace) that retrieves the latest error message resulting from a call to create.

Here is another version of the simple image writing code from Section 3.1, but this time it
is fully elaborated with error checking and reporting:

#include <OpenImageIO/imageio.h>
using namespace OIIO;
...

const char *filename = "foo.jpg";
const int xres = 640, yres = 480;
const int channels = 3; // RGB
unsigned char pixels[xres*yres*channels];

std::unique_ptr<ImageOutput> out = ImageOutput::create (filename);
if (! out) {

std::cerr << "Could not create an ImageOutput for "
<< filename << ", error = "
<< OpenImageIO::geterror() << "\n";

return;
}
ImageSpec spec (xres, yres, channels, TypeDesc::UINT8);

if (! out->open (filename, spec)) {
std::cerr << "Could not open " << filename

<< ", error = " << out->geterror() << "\n";
return;

}

OpenImageIO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 51

if (! out->write_image (TypeDesc::UINT8, pixels)) {
std::cerr << "Could not write pixels to " << filename

<< ", error = " << out->geterror() << "\n";
return;

}

if (! out->close ()) {
std::cerr << "Error closing " << filename

<< ", error = " << out->geterror() << "\n";
return;

}

3.3 ImageOutput Class Reference

static std::unique ptr<ImageOutput> create (const std::string &filename,
const std::string &plugin searchpath="")

Create an ImageOutput that can be used to write an image file. The type of image
file (and hence, the particular subclass of ImageOutput returned, and the plugin that
contains its methods) is inferred from the extension of the file name. The plugin -
searchpath parameter is a colon-separated list of directories to search for OpenImageIO
plugin DSO/DLL’s.

const char * format name ()

Returns the canonical name of the format that this ImageOutput instance is capable of
writing.

int supports (string view feature) const

Given the name of a feature, tells if this ImageOutput instance supports that feature.
Most queries will simply return 0 for “doesn’t support the feature” and nonzero for “sup-
ports the feature,” but it is acceptable to have queries return other nonzero integers to
indicate varying degrees of support or limits (but those queries should be clearly docu-
mented as such). The following features are recognized by this query:

"tiles" Is this plugin able to write tiled images?

"rectangles" Can this plugin accept arbitrary rectangular pixel regions (via write -
rectangle())? False indicates that pixels must be transmitted via write scanline()
(if scanline-oriented) or write tile() (if tile-oriented, and only if supports("tiles")
returns true).

"random access" May tiles or scanlines be written in any order? False indicates that
they must be in successive order.

"multiimage" Does this format support multiple subimages within a single file?

OpenImageIO Programmer’s Documentation

52 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

"appendsubimage" Does this format support multiple subimages that can be succes-
sively appended at will, without needing to pre-declare the number and specifica-
tions the subimages when the file is first opened?

"mipmap" Does this format support resolutions per image/subimage (MIP-map levels)?

"volumes" Does this format support “3D” pixel arrays (a.k.a. volume images)?

"alpha" Does this format support an alpha channel?

"nchannels" Does this format support an arbitrary number of channels (beyond RGBA)?

"rewrite" Does this plugin allow the same scanline or tile to be sent more than once?
Generally this is true for plugins that implement some sort of interactive display,
rather than a saved image file.

"empty" Does this plugin support passing a NULL data pointer to the various write
routines to indicate that the entire data block is composed of pixels with value zero.
Plugins that support this achieve a speedup when passing blank scanlines or tiles
(since no actual data needs to be transmitted or converted).

"channelformats" Does this format writer support per-channel data formats, respect-
ing the ImageSpec’s channelformats field? (If not, it only accepts a single data
format for all channels and will ignore the channelformats field of the spec.)

"displaywindow" Does the image format support specifying a display (“full”) window
that is distinct from the pixel data window?

"origin" Does the image format support specifying a pixel window origin (i.e., nonzero
ImageSpecx, y, z)?

"negativeorigin" Does the image format allow pixel and data window origins (i.e.,
nonzero ImageSpecx, y, z, full x, full y, full z) to have negative values?

"deepdata" Does the image format allow “deep” data consisting of multiple values per
pixel (and potentially a differing number of values from pixel to pixel)?

"arbitrary metadata" Does the image file format allow metadata with arbitrary names
(and either arbitrary, or a reasonable set of, data types)? (Versus the file format sup-
porting only a fixed list of specific metadata names/values?

"exif" Does the image file format support Exif camera data (either specifically, or via
arbitrary named metadata)?

"iptc" Does the image file format support IPTC data (either specifically, or via arbitrary
named metadata)?

"ioproxy" Does the image file format support writing to an IOProxy?

This list of queries may be extended in future releases. Since this can be done simply by
recognizing new query strings, and does not require any new API entry points, addition
of support for new queries does not break “link compatibility” with previously-compiled
plugins.

OpenImageIO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 53

bool open (const std::string &name, const ImageSpec &newspec,
OpenMode mode=Create)

Open the file with given name, with resolution and other format data as given in newspec.
This function returns true for success, false for failure. Note that it is legal to call
open() multiple times on the same file without a call to close(), if it supports multiim-
age and mode is AppendSubimage, or if it supports MIP-maps and mode is AppendMIPLevel
– this is interpreted as appending a subimage, or a MIP level to the current subimage, re-
spectively.

bool open (const std::string &name, int subimages, const ImageSpec *specs)

Open the file with given name, expecting to have a given total number of subimages, de-
scribed by specs[0..subimages-1]. Return true for success, false for failure. Upon
success, the first subimage will be open and ready for transmission of pixels. Subsequent
subimages will be denoted with the usual call of open(name,spec,AppendSubimage)
(and MIP levels by open(name,spec,AppendMIPLevel)).
The purpose of this call is to accommodate format-writing libraries that must know the
number and specifications of the subimages upon first opening the file; such formats can
be detected by

supports("multiimage") && ! supports("appendsubimage")

The individual specs passed to the appending open() calls for subsequent subimages
must match the ones originally passed.

const ImageSpec & spec ()

Returns the spec internally associated with this currently open ImageOutput.

bool close ()

Closes the currently open file associated with this ImageOutput and frees any memory
or resources associated with it.

bool write scanline (int y, int z, TypeDesc format, const void *data,
stride t xstride=AutoStride)

Write the scanline that includes pixels (∗,y,z) from data. For 2D non-volume images, z
is ignored. The xstride value gives the data spacing of adjacent pixels (in bytes). Strides
set to the special value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels * format.size()

This method automatically converts the data from the specified format to the actual out-
put format of the file. If format is TypeDesc::UNKNOWN, the data is assumed to al-
ready be in the file’s native format (including per-channel formats, as specified in the
ImageSpec’s channelformats field, if applicable). Return true for success, false for

OpenImageIO Programmer’s Documentation

54 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

failure. It is a failure to call write scanline() with an out-of-order scanline if this
format driver does not support random access.

bool write scanlines (int ybegin, int yend, int z,
TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride)

Write a block of scanlines that include pixels (∗,y,z), where ybegin ≤ y < yend. This
is essentially identical to write scanline(), except that it can write more than one
scanline at a time, which may be more efficient for certain image format writers.

For 2D non-volume images, z is ignored. The xstride value gives the distance between
successive pixels (in bytes), and ystride gives the distance between successive scan-
lines. Strides set to the special value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels*format.size()
ystride = spec.width*xstride

This method automatically converts the data from the specified format to the actual out-
put format of the file. If format is TypeDesc::UNKNOWN, the data is assumed to al-
ready be in the file’s native format (including per-channel formats, as specified in the
ImageSpec’s channelformats field, if applicable). Return true for success, false for
failure. It is a failure to call write scanline() with an out-of-order scanline if this
format driver does not support random access.

bool write tile (int x, int y, int z, TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Write the tile with (x,y,z) as the upper left corner. For 2D non-volume images, z is
ignored. The three stride values give the distance (in bytes) between successive pixels,
scanlines, and volumetric slices, respectively. Strides set to the special value AutoStride
imply contiguous data in the shape of a full tile, i.e.,

xstride = spec.nchannels * format.size()
ystride = xstride * spec.tile width
zstride = ystride * spec.tile height

This method automatically converts the data from the specified format to the actual out-
put format of the file. If format is TypeDesc::UNKNOWN, the data is assumed to al-
ready be in the file’s native format (including per-channel formats, as specified in the
ImageSpec’s channelformats field, if applicable). Return true for success, false for
failure. It is a failure to call write tile() with an out-of-order tile if this format driver
does not support random access.

This function returns true if it successfully writes the tile, otherwise false for a failure.
The call will fail if the image is not tiled, or if (x,y,z) is not actually a tile boundary.

OpenImageIO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 55

bool write tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Write the tiles that include pixels xbegin≤ x< xend, ybegin≤ y< yend, zbegin≤ z<
zend from data, converting if necessary from format specified into the file’s native data
format. If format is TypeDesc::UNKNOWN, the data will be assumed to already be in the
native format (including per-channel formats, if applicable). The stride values give the
data spacing of adjacent pixels, scanlines, and volumetric slices, respectively (measured
in bytes). Strides set to the special value of AutoStride imply contiguous data in the
shape of the region specified, i.e.,

xstride = spec.nchannels * spec.pixel size()
ystride = xstride * (xend - xbegin)
zstride = ystride * (yend - ybegin)

The data for those tiles is assumed to be in the usual image order, as if it were just one
big tile, and not “paded” to a whole multiple of the tile size.

This function returns true if it successfully writes the tiles, otherwise false for a failure.
The call will fail if the image is not tiled, or if the pixel ranges do not fall along tile (or
image) boundaries, or if it is not a valid tile range.

bool write rectangle (int xbegin, int xend, int ybegin, int yend,

int zbegin, int zend, TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Write pixels covering the range that includes pixels xbegin ≤ x < xend, ybegin ≤ y <
yend, zbegin ≤ z < zend. The three stride values give the distance (in bytes) between
successive pixels, scanlines, and volumetric slices, respectively. Strides set to the special
value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels*format.size()
ystride = xstride*(xend-xbegin)
zstride = ystride*(yend-ybegin)

This method automatically converts the data from the specified format to the actual out-
put format of the file. If format is TypeDesc::UNKNOWN, the data is assumed to al-
ready be in the file’s native format (including per-channel formats, as specified in the
ImageSpec’s channelformats field, if applicable). Return true for success, false for
failure. It is a failure to call write rectangle for a format plugin that does not return
true for supports("rectangles").

bool write image (TypeDesc format, const void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

OpenImageIO Programmer’s Documentation

56 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

Write the entire image of spec.width × spec.height × spec.depth pixels, with the
given strides and in the desired format. If format is TypeDesc::UNKNOWN, the data is
assumed to already be in the file’s native format (including per-channel formats, as spec-
ified in the ImageSpec’s channelformats field, if applicable). Strides set to the special
value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels * format.size()
ystride = xstride * spec.width
zstride = ystride * spec.height

The function will internally either call write scanline() or write tile(), depend-
ing on whether the file is scanline- or tile-oriented.

Because this may be an expensive operation, a progress callback may be passed. Period-
ically, it will be called as follows:

progress_callback (progress_callback_data, float done)

where done gives the portion of the image (between 0.0 and 1.0) that has been written
thus far.

bool write deep scanlines (int ybegin, int yend, int z,
const DeepData &deepdata)

bool write deep tiles (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, const DeepData &deepdata)

bool write deep image (const DeepData &deepdata)

Write deep data for a block of scanlines, a block of tiles, or an entire image (analogously
to the usual write scanlines, write tiles, and write image, but with deep data).
Return true for success, false for failure.

bool copy image (ImageInput *in)

Read the current subimage of in, and write it as the next subimage of *this, in a way that
is efficient and does not alter pixel values, if at all possible. Both in and this must be
a properly-opened ImageInput and ImageOutput, respectively, and their current images
must match in size and number of channels. Return true if it works ok, false if for
some reason the operation wasn’t possible.

If a particular ImageOutput implementation does not supply a copy image method, it
will inherit the default implementation, which is to simply read scanlines or tiles from
in and write them to *this. However, some file format implementations may have a
special technique for directly copying raw pixel data from the input to the output, when
both input and output are the same file type and the same data format. This can be
more efficient than in->read image followed by out->write image, and avoids any
unintended pixel alterations, especially for formats that use lossy compression.

OpenImageIO Programmer’s Documentation

3.3. IMAGEOUTPUT CLASS REFERENCE 57

int send to output (const char *format, ...)

General message passing between client and image output server. This is currently unde-
fined and is reserved for future use.

int send to client (const char *format, ...)

General message passing between client and image output server. This is currently unde-
fined and is reserved for future use.

void threads (int n)
int threads () const

Get or set the threading policy for this ImageOutput, controlling the maximum amount of
parallelizing thread “fan-out” that might occur during large write operations. The default
of 0 means that the global attribute("threads") value should be used (which itself
defaults to using as many threads as cores; see Section 2.8).

The main reason to change this value is to set it to 1 to indicate that the calling thread
should do all the work rather than spawning new threads. That is probably the desired
behavior in situations where the calling application has already spawned multiple worker
threads.

std::string geterror ()

Returns the current error string describing what went wrong if any of the public methods
returned false indicating an error. (Hopefully the implementation plugin called error()
with a helpful error message.)

OpenImageIO Programmer’s Documentation

58 CHAPTER 3. IMAGEOUTPUT: WRITING IMAGES

OpenImageIO Programmer’s Documentation

4 ImageInput: Reading Images

4.1 Image Input Made Simple

Here is the simplest sequence required to open an image file, find out its resolution, and read the
pixels (converting them into 8-bit values in memory, even if that’s not the way they’re stored in
the file):

#include <OpenImageIO/imageio.h>
using namespace OIIO;
...

auto in = ImageInput::open (filename);
if (! in)

return;
const ImageSpec &spec = in->spec();
int xres = spec.width;
int yres = spec.height;
int channels = spec.nchannels;
std::vector<unsigned char> pixels (xres*yres*channels);
in->read_image (TypeDesc::UINT8, &pixels[0]);
in->close ();

Here is a breakdown of what work this code is doing:

• Search for an ImageIO plugin that is capable of reading the file ("foo.jpg"), first by
trying to deduce the correct plugin from the file extension, but if that fails, by opening
every ImageIO plugin it can find until one will open the file without error. When it finds
the right plugin, it creates a subclass instance of ImageInput that reads the right kind of
file format, and tries to fully open the file. The open() method returns a std::unique -
ptr<ImageInput> that will be automatically freed when it exits scope.

auto in = ImageInput::open (filename);

• The specification, accessible as in->spec(), contains vital information such as the di-
mensions of the image, number of color channels, and data type of the pixel values. This
is enough to allow us to allocate enough space for the image.

const ImageSpec &spec = in->spec();
int xres = spec.width;

59

60 CHAPTER 4. IMAGEINPUT: READING IMAGES

int yres = spec.height;
int channels = spec.nchannels;
std::vector<unsigned char> pixels (xres*yres*channels);

Note that in this example, we don’t care what data format is used for the pixel data in the
file — we allocate enough space for unsigned 8-bit integer pixel values, and will rely on
OpenImageIO’s ability to convert to our requested format from the native data format of
the file.

• Read the entire image, hiding all details of the encoding of image data in the file, whether
the file is scanline- or tile-based, or what is the native format of the data in the file (in this
case, we request that it be automatically converted to unsigned 8-bit integers).

in->read_image (TypeDesc::UINT8, &pixels[0]);

• Close the file.

in->close ();

• When in exits its scope, the ImageInput will automatically be destroyed and any re-
sources used by the plugin will be released.

4.2 Advanced Image Input

Let’s walk through some of the most common things you might want to do, but that are more
complex than the simple example above.

4.2.1 Reading individual scanlines and tiles

The simple example of Section 4.1 read an entire image with one call. But sometimes you want
to read a large image a little at a time and do not wish to retain the entire image in memory as
you process it. OpenImageIO allows you to read images one scanline at a time or one tile at a
time.

Examining the ImageSpec reveals whether the file is scanline or tile-oriented: a scanline
image will have spec.tile width and spec.tile height set to 0, whereas a tiled images
will have nonzero values for the tile dimensions.

Reading scanlines

Individual scanlines may be read using the read scanline() API call:

...
auto in = ImageInput::open (filename);
const ImageSpec &spec = in->spec();
if (spec.tile_width == 0) {

OpenImageIO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 61

std::vector<unsigned char> scanline (spec.width*spec.channels);
for (int y = 0; y < yres; ++y) {

in->read_scanline (y, 0, TypeDesc::UINT8, &scanline[0]);
... process data in scanline[0..width*channels-1] ...

}
} else {

... handle tiles, or reject the file ...
}
in->close ();
...

The first two arguments to read scanline() specify which scanline is being read by its
vertical (y) scanline number (beginning with 0) and, for volume images, its slice (z) number (the
slice number should be 0 for 2D non-volume images). This is followed by a TypeDesc describ-
ing the data type of the pixel buffer you are supplying, and a pointer to the pixel buffer itself.
Additional optional arguments describe the data stride, which can be ignored for contiguous
data (use of strides is explained in Section 4.2.3).

Nearly all ImageInput implementations will be most efficient reading scanlines in strict
order (starting with scanline 0, then 1, up to yres-1, without skipping any). An ImageInput
is required to accept read scanline() requests in arbitrary order, but depending on the file
format and reader implementation, out-of-order scanline reads may be inefficient.

There is also a read scanlines() function that operates similarly, except that it takes a
ybegin and yend that specify a range, reading all scanlines ybegin ≤ y < yend. For most
image format readers, this is implemented as a loop over individual scanlines, but some image
format readers may be able to read a contiguous block of scanlines more efficiently than reading
each one individually.

The full descriptions of the read scanline() and read scanlines() functions may be
found in Section 4.3.

Reading tiles

Once you open() an image file, you can find out if it is a tiled image (and the tile size) by exam-
ining the ImageSpec’s tile width, tile height, and tile depth fields. If they are zero,
it’s a scanline image and you should read pixels using read scanline(), not read tile().

...
auto in = ImageInput::open (filename);
const ImageSpec &spec = in->spec();
if (spec.tile_width == 0) {

... read by scanline ...
} else {

// Tiles
int tilesize = spec.tile_width * spec.tile_height;
std::vector<unsigned char> tile (tilesize * spec.channels);
for (int y = 0; y < yres; y += spec.tile_height) {

for (int x = 0; x < xres; x += spec.tile_width) {
in->read_tile (x, y, 0, TypeDesc::UINT8, &tile[0]);
... process the pixels in tile[] ..

OpenImageIO Programmer’s Documentation

62 CHAPTER 4. IMAGEINPUT: READING IMAGES

}
}

}
in->close ();
...

The first three arguments to read tile() specify which tile is being read by the pixel
coordinates of any pixel contained in the tile: x (column), y (scanline), and z (slice, which
should always be 0 for 2D non-volume images). This is followed by a TypeDesc describing the
data format of the pixel buffer you are supplying, and a pointer to the pixel buffer. Pixel data
will be written to your buffer in order of increasing slice, increasing scanline within each slice,
and increasing column within each scanline. Additional optional arguments describe the data
stride, which can be ignored for contiguous data (use of strides is explained in Section 4.2.3).

All ImageInput implementations are required to support reading tiles in arbitrary order
(i.e., not in strict order of increasing y rows, and within each row, increasing x column, without
missing any tiles).

The full description of the read tile() function may be found in Section 4.3.

4.2.2 Converting formats

The code examples of the previous sections all assumed that your internal pixel data is stored
as unsigned 8-bit integers (i.e., 0-255 range). But OpenImageIO is significantly more flexible.

You may request that the pixels be stored in any of several formats. This is done merely
by passing the read function the data type of your pixel buffer, as one of the enumerated type
TypeDesc.

It is not required that the pixel data buffer passed to read image(), read scanline(),
or read tile() actually be in the same data format as the data in the file being read. Open-
ImageIO will automatically convert from native data type of the file to the internal data format
of your choice. For example, the following code will open a TIFF and read pixels into your
internal buffer represented as float values. This will work regardless of whether the TIFF file
itself is using 8-bit, 16-bit, or float values.

std::unique_ptr<ImageInput> in = ImageInput::open ("myfile.tif");
const ImageSpec &spec = in->spec();
...
int numpixels = spec.width * spec.height;
float pixels = new float [numpixels * channels];
...
in->read_image (TypeDesc::FLOAT, pixels);

Note that read scanline() and read tile() have a parameter that works in a correspond-
ing manner.

You can, of course, find out the native type of the file simply by examining spec.format.
If you wish, you may then allocate a buffer big enough for an image of that type and request
the native type when reading, therefore eliminating any translation among types and seeing the
actual numerical values in the file.

OpenImageIO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 63

4.2.3 Data Strides

In the preceeding examples, we have assumed that the buffer passed to the read functions (i.e.,
the place where you want your pixels to be stored) is contiguous, that is:

• each pixel in memory consists of a number of data values equal to the number of channels
in the file;

• successive column pixels within a row directly follow each other in memory, with the first
channel of pixel x immediately following last channel of pixel x−1 of the same row;

• for whole images or tiles, the data for each row immediately follows the previous one in
memory (the first pixel of row y immediately follows the last column of row y−1);

• for 3D volumetric images, the first pixel of slice z immediately follows the last pixel of
of slice z−1.

Please note that this implies that read tile() will write pixel data into your buffer so that
it is contiguous in the shape of a single tile, not just an offset into a whole image worth of pixels.

The read scanline() function takes an optional xstride argument, and the read image()
and read tile() functions take optional xstride, ystride, and zstride values that de-
scribe the distance, in bytes, between successive pixel columns, rows, and slices, respectively,
of your pixel buffer. For any of these values that are not supplied, or are given as the special
constant AutoStride, contiguity will be assumed.

By passing different stride values, you can achieve some surprisingly flexible functionality.
A few representative examples follow:

• Flip an image vertically upon reading, by using negative y stride:

unsigned char pixels[spec.width * spec.height * spec.nchannels];
int scanlinesize = spec.width * spec.nchannels * sizeof(pixels[0]);
...
in->read_image (TypeDesc::UINT8,

(char *)pixels+(yres-1)*scanlinesize, // offset to last
AutoStride, // default x stride
-scanlinesize, // special y stride
AutoStride); // default z stride

• Read a tile into its spot in a buffer whose layout matches a whole image of pixel data,
rather than having a one-tile-only memory layout:

unsigned char pixels[spec.width * spec.height * spec.nchannels];
int pixelsize = spec.nchannels * sizeof(pixels[0]);
int scanlinesize = xpec.width * pixelsize;
...
in->read_tile (x, y, 0, TypeDesc::UINT8,

(char *)pixels + y*scanlinesize + x*pixelsize,
pixelsize,
scanlinesize);

OpenImageIO Programmer’s Documentation

64 CHAPTER 4. IMAGEINPUT: READING IMAGES

Please consult Section 4.3 for detailed descriptions of the stride parameters to each read
function.

4.2.4 Reading metadata

The ImageSpec that is filled in by ImageInput::open() specifies all the common properties
that describe an image: data format, dimensions, number of channels, tiling. However, there
may be a variety of additional metadata that are present in the image file and could be queried
by your application.

The remainder of this section explains how to query additional metadata in the ImageSpec.
It is up to the ImageInput to read these from the file, if indeed the file format is able to carry
additional data. Individual ImageInput implementations should document which metadata
they read.

Channel names

In addition to specifying the number of color channels, the ImageSpec also stores the names of
those channels in its channelnames field, which is a vector<std::string>. Its length should
always be equal to the number of channels (it’s the responsibility of the ImageInput to ensure
this).

Only a few file formats (and thus ImageInput implementations) have a way of specifying
custom channel names, so most of the time you will see that the channel names follow the
default convention of being named "R", "G", "B", and "A", for red, green, blue, and alpha,
respectively.

Here is example code that prints the names of the channels in an image:

ImageInput *in = ImageInput::open (filename);
const ImageSpec &spec = in->spec();
for (int i = 0; i < spec.nchannels; ++i)

std::cout << "Channel " << i << " is "
<< spec.channelnames[i] << "\n";

Specially-designated channels

The ImageSpec contains two fields, alpha channel and z channel, which designate which
channel numbers represent alpha and z depth, if any. If either is set to -1, it indicates that it is
not known which channel is used for that data.

If you are doing something special with alpha or depth, it is probably safer to respect the
alpha channel and z channel designations (if not set to -1) rather than merely assuming
that, for example, channel 3 is always the alpha channel.

Arbitrary metadata

All other metadata found in the file will be stored in the ImageSpec’s extra attribs field,
which is a ParamValueList, which is itself essentially a vector of ParamValue instances. Each
ParamValue stores one meta-datum consisting of a name, type (specified by a TypeDesc),
number of values, and data pointer.

OpenImageIO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 65

If you know the name of a specific piece of metadata you want to use, you can find it
using the ImageSpec::find attribute() method, which returns a pointer to the matching
ParamValue, or NULL if no match was found. An optional TypeDesc argument can narrow
the search to only parameters that match the specified type as well as the name. Below is an
example that looks for orientation information, expecting it to consist of a single integer:

ImageInput *in = ImageInput::open (filename);
const ImageSpec &spec = in->spec();
...
ParamValue *p = spec.find_attribute ("Orientation", TypeInt);
if (p) {

int orientation = * (int *) p->data();
} else {

std::cout << "No integer orientation in the file\n";
}

By convention, ImageInput plugins will save all integer metadata as 32-bit integers (TypeDesc::INT
or TypeDesc::UINT), even if the file format dictates that a particular item is stored in the file
as a 8- or 16-bit integer. This is just to keep client applications from having to deal with all
the types. Since there is relatively little metadata compared to pixel data, there’s no real mem-
ory waste of promoting all integer types to int32 metadata. Floating-point metadata and string
metadata may also exist, of course.

For certain common types, there is an even simpler method for retrieving the metadata:

int i = spec.get_int_attribute ("Orientation", 0);
float f = spec.get_float_attribute ("PixelAspectRatio", 1.0f);
std::string s = spec.get_string_attribute ("ImageDescription", "");

This method simply returns the value. The second argument is the default value to use if the
attribute named is not found. These versions will do automatic type conversion as well — for
example, if you ask for a float and the attribute is really an int, it will return the proper float for
it; or if the attribute is a UINT16 and you call get int attribute, it will succeed, promoting
to an int.

It is also possible to step through all the metadata, item by item. This can be accomplished
using the technique of the following example:

for (size_t i = 0; i < spec.extra_attribs.size(); ++i) {
const ParamValue &p (spec.extra_attribs[i]);
printf (" \%s: ", p.name.c_str());
if (p.type() == TypeString)

printf ("\"\%s\"", *(const char **)p.data());
else if (p.type() == TypeFloat)

printf ("\%g", *(const float *)p.data());
else if (p.type() == TypeInt)

printf ("\%d", *(const int *)p.data());
else if (p.type() == TypeDesc::UINT)

printf ("\%u", *(const unsigned int *)p.data());
else if (p.type() == TypeMatrix) {

const float *f = (const float *)p.data();

OpenImageIO Programmer’s Documentation

66 CHAPTER 4. IMAGEINPUT: READING IMAGES

printf ("\%f \%f \%f \%f \%f \%f \%f \%f "
"\%f \%f \%f \%f \%f \%f \%f \%f",
f[0], f[1], f[2], f[3], f[4], f[5], f[6], f[7],
f[8], f[9], f[10], f[11], f[12], f[13], f[14], f[15]);

}
else

printf (" <unknown data type> ");
printf ("\n");

}

Each individual ImageInput implementation should document the names, types, and mean-
ings of all metadata attributes that they understand.

Color space hints

We certainly hope that you are using only modern file formats that support high precision and
extended range pixels (such as OpenEXR) and keeping all your images in a linear color space.
But you may have to work with file formats that dictate the use of nonlinear color values. This
is prevalent in formats that store pixels only as 8-bit values, since 256 values are not enough to
linearly represent colors without banding artifacts in the dim values.

The ImageSpec::extra attribs field may store metadata that reveals the color space the
image file in the "oiio:ColorSpace" attribute (see Section B.3 for explanations of particular
values).

The ImageInput sets the "oiio:ColorSpace" metadata in a purely advisory capacity —
the read will not convert pixel values among color spaces. Many image file formats only sup-
port nonlinear color spaces (for example, JPEG/JFIF dictates use of sRGB). So your application
should intelligently deal with gamma-corrected and sRGB input, at the very least.

The color space hints only describe color channels. You should assume that alpha or depth
(z) channels (designated by the alpha channel and z channel fields, respectively) always
represent linear values and should never be transformed by your application.

4.2.5 Multi-image files and MIP-maps

Some image file formats support multiple discrete subimages to be stored in one file, and/or
miltiple resolutions for each image to form a MIPmap. When you open() an ImageInput, it
will by default point to the first (i.e., number 0) subimage in the file, and the highest resolution
(level 0) MIP-map level. You can switch to viewing another subimage or MIP-map level using
the seek subimage() function:

ImageInput *in = ImageInput::open (filename);
const ImageSpec &spec = in->spec();
...
int subimage = 1;
int miplevel = 0;
if (in->seek_subimage (subimage, miplevel, spec)) {

...
} else {

... no such subimage/miplevel ...
}

OpenImageIO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 67

The seek subimage() function takes three arguments: the index of the subimage to switch
to (starting with 0), the MIPmap level (starting with 0 for the highest-resolution level), and a
reference to an ImageSpec, into which will be stored the spec of the new subimage/miplevel.
The seek subimage() function returns true upon success, and false if no such subimage or
MIP level existed. It is legal to visit subimages and MIP levels out of order; the ImageInput is
responsible for making it work properly. It is also possible to find out which subimage and MIP
level is currently being viewed, using the current subimage() and current miplevel()
functions, which return the index of the current subimage and MIP levels, respectively.

Below is pseudocode for reading all the levels of a MIP-map (a multi-resolution image used
for texture mapping) that shows how to read multi-image files:

auto in = ImageInput::open (filename);
const ImageSpec &spec = in->spec();

int num_miplevels = 0;
while (in->seek_subimage (0, num_miplevels, spec)) {

// Note: spec has the format of the current subimage/miplevel
int npixels = spec.width * spec.height;
int nchannels = spec.nchannels;
unsigned char *pixels = new unsigned char [npixels * nchannels];
in->read_image (TypeDesc::UINT8, pixels);

... do whatever you want with this level, in pixels ...

delete [] pixels;
++num_miplevels;

}
// Note: we break out of the while loop when seek_subimage fails
// to find a next MIP level.

in->close ();

In this example, we have used read image(), but of course read scanline() and read tile()
work as you would expect, on the current subimage and MIP level.

4.2.6 Per-channel formats

Some image formats allow separate per-channel data formats (for example, half data for colors
and float data for depth). If you want to read the pixels in their true native per-channel formats,
the following steps are necessary:

1. Check the ImageSpec’s channelformats vector. If non-empty, the channels in the file
do not all have the same format.

2. When calling read scanline, read scanlines, read tile, read tiles, or read -
image, pass a format of TypeDesc::UNKNOWN to indicate that you would like the raw data
in native per-channel format of the file written to your data buffer.

For example, the following code fragment will read a 5-channel image to an OpenEXR file,
consisting of R/G/B/A channels in half and a Z channel in float:

OpenImageIO Programmer’s Documentation

68 CHAPTER 4. IMAGEINPUT: READING IMAGES

ImageInput *in = ImageInput::open (filename);
const ImageSpec &spec = in->spec();

// Allocate enough space
unsigned char *pixels = new unsigned char [spec.image_bytes(true)];

in->read_image (TypeDesc::UNKNOWN, /* use native channel formats */
pixels); /* data buffer */

if (spec.channelformats.size() > 0) {
... the buffer contains packed data in the native

per-channel formats ...
} else {

... the buffer contains all data per spec.format ...
}

4.2.7 Reading “deep” data

Some image file formats (OpenEXR only, at this time) support the concept of “deep” pixels –
those containing multiple samples per pixel (and a potentially differing number of them in each
pixel). You can tell an image is “deep” from its ImageSpec: the deep field will be true.

Deep files cannot be read with the usual read scanline, read scanlines, read tile,
read tiles, read image functions, due to the nature of their variable number of samples
per pixel. Instead, ImageInput has three special member functions used only for reading deep
data:

bool read_native_deep_scanlines (int subimage, int miplevel,
int ybegin, int yend, int z,
int chbegin, int chend,
DeepData &deepdata);

bool read_native_deep_tiles (int subimage, int miplevel,
int xbegin, int xend, int ybegin int yend,
int zbegin, int zend,
int chbegin, int chend, DeepData &deepdata);

bool read_native_deep_image (int subimage, int miplevel,
DeepData &deepdata);

It is only possible to read “native” data types from deep files; that is, there is no automatic
translation into arbitrary data types as there is for ordinary images. All three of these functions
store the resulting deep data in a special DeepData structure, described in detail in Section 2.7.

Here is an example of using these methods to read a deep image from a file and print all its
values:

auto in = ImageInput::open (filename);
if (! in)

return;
const ImageSpec &spec = in->spec();

OpenImageIO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 69

if (spec.deep) {
DeepData deepdata;
in->read_native_deep_image (0, 0, deepdata);
int p = 0; // absolute pixel number
for (int y = 0; y < spec.height; ++y) {

for (int x = 0; x < spec.width; ++x, ++p) {
std::cout << "Pixel " << x << "," << y << ":\n";
if (deepdata.samples(p) == 0)

std::cout << " no samples\n";
else

for (int c = 0; c < spec.nchannels; ++c) {
TypeDesc type = deepdata.channeltype(c);
std::cout << " " << spec.channelnames[c] << ": ";
void *ptr = deepdata.pointers[p*spec.nchannels+c]
for (int s = 0; s < deepdata.samples(p); ++s) {

if (type.basetype == TypeDesc::FLOAT ||
type.basetype == TypeDesc::HALF)
std::cout << deepdata.deep_value(p, c, s) << ’ ’;

else if (type.basetype == TypeDesc::UINT32)
std::cout << deepdata.deep_value_uint(p, c, s) << ’ ’;

}
std::cout << "\n";

}
}

}
}
in->close ();

4.2.8 Custom I/O proxies (and reading the file from a memory buffer)

NEW!
Some file format readers allow you to supply a custom I/O proxy object that can allow bypassing
the usual file I/O with custom behavior, including the ability to read the file form an in-memory
buffer rather than reading from disk.

Only some input format readers support this feature. To find out if a particular file format
supports this feature, you can create an ImageInput of the right type, and check if it supports
the feature name "ioproxy":

ImageInput *in = ImageInput::create (filename);
if (! in || ! in->supports ("ioproxy")) {

ImageInput::destroy (in);
in = nullptr;
return;

}

ImageInput readers that support "ioproxy"will respond to a special attribute, "oiio:ioproxy",
which passes a pointer to a Filesystem::IOProxy* (see OpenImageIO’s filesystem.h for
this type and its subclasses). IOProxy is an abstract type, and concrete subclasses include
IOFile (which wraps I/O to an open FILE*) and IOMemReader (which reads input from a
block of memory).

Here is an example of using a proxy that reads the “file” from a memory buffer:

OpenImageIO Programmer’s Documentation

70 CHAPTER 4. IMAGEINPUT: READING IMAGES

const void *buf = ...; // pointer to memory block
size_t size = ...; // length of memory block

ImageSpec config; // ImageSpec describing input configuration options
Filesystem::IOMemReader memreader (buf, size); // I/O proxy object
void *ptr = &memreader;
config.attribute ("oiio:ioproxy", TypeDesc::PTR, &ptr);

ImageSpec spec;
ImageInput *in = ImageInput::open ("in.exr", spec, &config);
in->read_image (...);
ImageInput::destroy (in);

// That will have read the "file" from the memory buffer

4.2.9 Custom search paths for plugins

Please see Section 2.8 for discussion about setting the plugin search path via the attribute()
function. For example:

std::string mysearch = "/usr/myapp/lib:${HOME}/plugins";
OpenImageIO::attribute ("plugin_searchpath", mysearch);
ImageInput *in = ImageInput::open (filename);
...

4.2.10 Error checking

Nearly every ImageInput API function returns a bool indicating whether the operation suc-
ceeded (true) or failed (false). In the case of a failure, the ImageInput will have saved an er-
ror message describing in more detail what went wrong, and the latest error message is accessi-
ble using the ImageInput method geterror(), which returns the message as a std::string.

The exceptions to this rule are static methods such as the static ImageInput::open and
ImageInput::create, which return an empty pointer if it could not create an appropriate
ImageInput (and open it, in the case of open(). In such a case, since no ImageInput is
returned for which you can call its geterror() function, there exists a global geterror()
function (in the OpenImageIO namespace) that retrieves the latest error message resulting from
a call to static open() or create().

Here is another version of the simple image reading code from Section 4.1, but this time it
is fully elaborated with error checking and reporting:

#include <OpenImageIO/imageio.h>
using namespace OIIO;
...

const char *filename = "foo.jpg";
int xres, yres, channels;
std::vector<unsigned char> pixels;

auto in = ImageInput::open (filename);

OpenImageIO Programmer’s Documentation

4.2. ADVANCED IMAGE INPUT 71

if (! in) {
std::cerr << "Could not open " << filename

<< ", error = " << OpenImageIO::geterror() << "\n";
return;

}
const ImageSpec &spec = in->spec();
xres = spec.width;
yres = spec.height;
channels = spec.nchannels;
pixels.resize (xres*yres*channels);

if (! in->read_image (TypeDesc::UINT8, &pixels[0])) {
std::cerr << "Could not read pixels from " << filename

<< ", error = " << in->geterror() << "\n";
return;

}

if (! in->close ()) {
std::cerr << "Error closing " << filename

<< ", error = " << in->geterror() << "\n";
return;

}

OpenImageIO Programmer’s Documentation

72 CHAPTER 4. IMAGEINPUT: READING IMAGES

4.3 ImageInput Class Reference

std::unique ptr<ImageInput> open (const std::string &filename,
const ImageSpec *config=nullptr)

Create an ImageInput subclass instance that is able to read the given file and open it.
The return value is a managed unique pointer, with an included deleter that will properly
dispose the ImageInput when it exists its scope. If the open fails, return an empty pointer
and set an error that can be retrieved by OpenImageIO::geterror().

The config, if not nullptr, points to an ImageSpec giving requests or special instruc-
tions. ImageInput implementations are free to not respond to any such requests, so the
default implementation is just to ignore config.

The open() function will first try to make an ImageInput corresponding to the format
implied by the file extension (for example, "foo.tif" will try the TIFF plugin), but if
one is not found or if the inferred one does not open the file, every known ImageInput
type will be tried until one is found that will open the file.

std::unique ptr<ImageInput> create (const std::string &filename,
bool do open=false, const ImageSpec *config=nullptr,
string view plugin searchpath="")

Create and return an ImageInput implementation that is able to read the given file. If
do open is true, fully open it if possible (using the optional configuration spec, if sup-
plied), otherwise just create the ImageInput but don’t open it. The plugin searchpath
parameter is an override of the searchpath, colon-separated list of directories to search for
OpenImageIO plugin DSO/DLL’s (not a searchpath for the image itself!). This will actu-
ally just try every ImageIO plugin it can locate, until it finds one that’s able to open the
file without error. This just creates the ImageInput, it does not open the file.

const char * format name (void) const

Return the name of the format implemented by this class.

int supports (string view feature)

Given the name of a feature, tells if this ImageInput instance supports that feature. Most
queries will simply return 0 for “doesn’t support the feature” and nonzero for “supports
the feature,” but it is acceptable to have queries return other nonzero integers to indicate
varying degrees of support or limits (but those queries should be clearly documented as
such). The following features are recognized by this query:

"arbitrary metadata" Does the image file format allow metadata with arbitrary
names (and either arbitrary, or a reasonable set of, data types)? (Versus the file
format supporting only a fixed list of specific metadata names/values?

OpenImageIO Programmer’s Documentation

4.3. IMAGEINPUT CLASS REFERENCE 73

"exif" Does the image file format support Exif camera data (either specifically, or via
arbitrary named metadata)?

"iptc" Does the image file format support IPTC data (either specifically, or via arbitrary
named metadata)?

"procedural" Might the image “file format” generate pixels procedurally, without the
need for any disk file to be present?

Does the image file format support reading from an IOProxy?

bool valid file (const std::string &filename) const

"ioproxy" Return true if the named file is a file of the type for this ImageInput. The im-
plementation will try to determine this as efficiently as possible, in most cases much less
expensively than doing a full open(). Note that a file can appear to be of the right type
(i.e., valid file() returning true) but still fail a subsequent call to open(), such as if
the contents of the file are truncated, nonsensical, or otherwise corrupted.

bool open (const std::string &name, ImageSpec &newspec)

Opens the file with given name and seek to the first subimage in the file. Various file
attributes are put in newspec and a copy is also saved internally to the ImageInput (re-
trievable via spec(). From examining newspec or spec(), you can discern the resolu-
tion, if it’s tiled, number of channels, native data format, and other metadata about the
image. Return true if the file was found and opened okay, otherwise false.

bool open (const std::string &name, ImageSpec &newspec,
const ImageSpec &config)

Opens the file with given name, similarly to open(name, newspec). However, in this
version, any non-default fields of config, including metadata, will be taken to be con-
figuration requests, preferences, or hints. The default implementation of open (name,
newspec, config)will simply ignore config and calls the usual open (name, newspec).
But a plugin may choose to implement this version of open and respond in some way to
the configuration requests. Supported configuration requests should be documented by
each plugin.

const ImageSpec & spec (void) const

Returns a reference to the image format specification of the current subimage. Note that
the contents of the spec are invalid before open() or after close().

OpenImageIO Programmer’s Documentation

74 CHAPTER 4. IMAGEINPUT: READING IMAGES

ImageSpec spec (int subimage, int miplevel=0)
ImageSpec spec dimensions (int subimage, int miplevel=0)

NEW!Both of these thread-safe methods return a copy of the ImageSpec of the designated
subimage/miplevel.

The spec() method returns a full copy of the ImageSpec, including all metadata (which
may be expensive). The spec dimensions() method only copies the dimension fields
but none of the arbitrary named metadata (just as with a call to ImageSpec::copy -
dimensions()), and thus is relatively inexpensive.

bool close ()

Closes an open image.

int current subimage (void) const
int current miplevel (void) const

Returns the index of the subimage and MIP level, respectively, that is currently being
read. Subimage and MIP level index numbers begin with 0.

bool seek subimage (int subimage, int miplevel, ImageSpec &newspec)

Seek to the given subimage and MIP-map level within the open image file. The first
subimage in the file has index 0, and for each subimage, the highest-resolution MIP level
has index 0. Return true on success, false on failure (including that there is not a
subimage or MIP level with those indices). The new subimage’s vital statistics are put
in newspec (and also saved internally in a way that can be retrieved via spec()). The
ImageInput is expected to give the appearance of random access to subimages and MIP
levels — in other words, if it can’t randomly seek to the given subimage or MIP level,
it should transparently close, reopen, and sequentially read through prior subimages and
levels.

bool read scanline (int y, int z, TypeDesc format, void *data,
stride t xstride=AutoStride)

Read the scanline that includes pixels (∗,y,z) into data (z = 0 for non-volume images),
converting if necessary from the native data format of the file into the format specified. If
format is TypeDesc::UNKNOWN, the data will be preserved in its native format (including
per-channel formats, if applicable). The xstride value gives the data spacing of adjacent
pixels (in bytes). Strides set to the special value AutoStride imply contiguous data, i.e.,

xstride = spec.nchannels * spec.pixel size()
The ImageInput is expected to give the appearance of random access — in other words,
if it can’t randomly seek to the given scanline, it should transparently close, reopen,
and sequentially read through prior scanlines. The base ImageInput class has a default
implementation that calls read native scanline() and then does appropriate format
conversion, so there’s no reason for each format plugin to override this method.

OpenImageIO Programmer’s Documentation

4.3. IMAGEINPUT CLASS REFERENCE 75

bool read scanline (int y, int z, float *data)

This simplified version of read scanline() reads to contiguous float pixels.

bool read scanlines (int subimage, int miplevel
int ybegin, int yend, int z,
int chbegin, int chend, TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride)

Read from the specified subimage and MIP level all the scanlines that include pixels
(∗,y,z), where ybegin ≤ y < yend, and the given channel subset chbegin ≤ c < chend,
into data, converting if necessary from the file’s native data format to the specified buffer
format. If format is TypeDesc::UNKNOWN, the data will be preserved in its native format
(including per-channel formats, if applicable). The stride values give the data spacing of
adjacent pixels and scanlines, respectively (measured in bytes). Strides set to the special
value of AutoStride imply contiguous data in the shape of the region specified, i.e.,

xstride = spec.pixel size() * (chend - chbegin)
ystride = xstride * (xend - xbegin)

This function returns true if it successfully reads the scanlines, otherwise false for a
failure.

This function is guaranteed to be thread-safe against other concurrent calls to the read -
tiles() or read scanlines() varieties that takes explicit subimage and miplevel (but
not necessarily against any other ImageInput methods).

NEW!This call was changed for OpenImageIO 1.9 to include the explicit subimage and miplevel
parameters. The previous versions, which lacked subimage and miplevel parameters (thus
were dependent on a prior call to seek subimage) are considered deprecated.

bool read tile (int x, int y, int z, TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Read the tile whose upper-left origin is (x,y,z) into data (z = 0 for non-volume images),
converting if necessary from the native data format of the file into the format specified. If
format is TypeDesc::UNKNOWN, the data will be preserved in its native format (including
per-channel formats, if applicable). The stride values give the data spacing of adjacent
pixels, scanlines, and volumetric slices, respectively (measured in bytes). Strides set to
the special value of AutoStride imply contiguous data in the shape of a full tile, i.e.,

xstride = spec.nchannels * spec.pixel size()
ystride = xstride * spec.tile width
zstride = ystride * spec.tile height

The ImageInput is expected to give the appearance of random access — in other words,
if it can’t randomly seek to the given tile, it should transparently close, reopen, and se-
quentially read through prior tiles. The base ImageInput class has a default implemen-
tation that calls read native tile() and then does appropriate format conversion, so
there’s no reason for each format plugin to override this method.

OpenImageIO Programmer’s Documentation

76 CHAPTER 4. IMAGEINPUT: READING IMAGES

This function returns true if it successfully reads the tile, otherwise false for a failure.
The call will fail if the image is not tiled, or if (x,y,z) is not actually a tile boundary.

bool read tile (int x, int y, int z, float *data)

Simple version of read tile that reads to contiguous float pixels.

bool read tiles (int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride)

Read the tiles bounded by xbegin ≤ x < xend, ybegin ≤ y < yend, zbegin ≤ z <
zend, and the given channel subset chbegin ≤ c < chend, into data, converting if nec-
essary from the file’s native data format into the specified buffer format. If format
is TypeDesc::UNKNOWN, the data will be preserved in its native format (including per-
channel formats, if applicable). The stride values give the data spacing of adjacent pixels,
scanlines, and volumetric slices, respectively (measured in bytes). Strides set to the spe-
cial value of AutoStride imply contiguous data in the shape of the region specified, i.e.,

xstride = spec.pixel size() * (chend - chbegin)
ystride = xstride * (xend - xbegin)
zstride = ystride * (yend - ybegin)

The ImageInput is expected to give the appearance of random access — in other words,
if it can’t randomly seek to the given tile, it should transparently close, reopen, and se-
quentially read through prior tiles. The base ImageInput class has a default implementa-
tion that calls read native tiles() and then does appropriate format conversion, so
there’s no reason for each format plugin to override this method.

This function returns true if it successfully reads the tiles, otherwise false for a failure.
The call will fail if the image is not tiled, or if the pixel ranges do not fall along tile (or
image) boundaries, or if it is not a valid tile range.

This function is guaranteed to be thread-safe against other concurrent calls to the read -
tiles() or read scanlines() varieties that takes explicit subimage and miplevel (but
not necessarily against any other ImageInput methods).

NEW! This call was changed for OpenImageIO 1.9 to include the explicit subimage and miplevel
parameters. The previous versions, which lacked subimage and miplevel parameters (thus
were dependent on a prior call to seek subimage) are considered deprecated.

OpenImageIO Programmer’s Documentation

4.3. IMAGEINPUT CLASS REFERENCE 77

bool read image (TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

bool read image (int subimage, int miplevel, int chbegin, int chend,
TypeDesc format, void *data,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

Read the entire image of spec.width * spec.height * spec.depth pixels into data
(which must already be sized large enough for the entire image) with the given strides,
converting into the desired data format. If format is TypeDesc::UNKNOWN, the data will
be preserved in its native format (including per-channel formats, if applicable). This
function will automatically handle either tiles or scanlines in the file.

Strides set to the special value of AutoStride imply contiguous data, i.e.,
xstride = spec.nchannels * pixel size()
ystride = xstride * spec.width
zstride = ystride * spec.height

The function will internally either call read scanlines or read tiles, depending on
whether the file is scanline- or tile-oriented.

The version that specifies a channel range will read only channels [chbegin,chend) into
the buffer.

Because this may be an expensive operation, a progress callback may be passed. Period-
ically, it will be called as follows:

progress_callback (progress_callback_data, float done)

where done gives the portion of the image (between 0.0 and 1.0) that has been read thus
far.

NEW!The version of read image that takes explicit subimage and miplevel parameters is
guaranteed to be thread-safe against other concurrent calls to the read scanlines(),
read tiles(), or read image() varieties that take an explicit subimage and miplevel
(but not necessarily against any other ImageInput methods).

bool read image (float *data)

Simple version of read image() reads to contiguous float pixels.

OpenImageIO Programmer’s Documentation

78 CHAPTER 4. IMAGEINPUT: READING IMAGES

bool read native scanline (int subimage, int miplevel,
int y, int z, void *data)

The read native scanline() function is just like read scanline(), except that it
keeps the data in the native format of the disk file and always reads into contiguous mem-
ory (no strides). It’s up to the user to have enough space allocated and know what to do
with the data. IT IS EXPECTED THAT EACH FORMAT PLUGIN WILL OVERRIDE
THIS METHOD.

bool read native scanlines (int subimage, int miplevel,
int ybegin, int yend, int z, void *data)

The read native scanlines() function is just like read native scanline, except
that it reads a range of scanlines rather than only one scanline. It is not necessary for
format plugins to override this method — a default implementation in the ImageInput
base class simply calls read native scanline for each scanline in the range. But
format plugins may optionally override this method if there is a way to achieve higher
performance by reading multiple scanlines at once.

bool read native scanlines (int subimage, int miplevel,
int ybegin, int yend, int z, int chbegin, int chend, void *data)

A variant of read native scanlines that reads only a subset of channels
[chbegin,chend). If a format reader subclass does not override this method, the default
implementation will simply call the all-channel version of read native scanlines
into a temporary buffer and copy the subset of channels.

bool read native tile (int subimage, int miplevel,
int x, int y, int z, void *data)

The read native tile() function is just like read tile(), except that it keeps the
data in the native format of the disk file and always read into contiguous memory (no
strides). It’s up to the user to have enough space allocated and know what to do with
the data. IT IS EXPECTED THAT EACH FORMAT PLUGIN WILL OVERRIDE THIS
METHOD IF IT SUPPORTS TILED IMAGES.

bool read native tiles (int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, void *data)

The read native tiles() function is just like read tiles(), except that it keeps
the data in the native format of the disk file and always read into contiguous memory (no
strides). If a format reader does not override this method, the default implementation it
will simply be a loop calling read native tile for each tile in the block.

OpenImageIO Programmer’s Documentation

4.3. IMAGEINPUT CLASS REFERENCE 79

bool read native tiles (int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend, void *data)

A variant of read native tiles() that reads only a subset of channels
[chbegin,chend). If a format reader subclass does not override this method, the default
implementation will simply call the all-channel version of read native tiles into a
temporary buffer and copy the subset of channels.

bool read native deep scanlines (int subimage, int miplevel,
int ybegin, int yend, int z, int chbegin, int chend,

bigspc DeepData &deepdata)
bool read native deep tiles (int subimage, int miplevel,

int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend, DeepData &deepdata)

bool read native deep image (int subimage, int miplevel, DeepData &deepdata)

Read native deep data from scanlines, tiles, or an entire image, storing the results in
deepdata (analogously to the usual read scanlines, read tiles, and read image,
but with deep data). Only channels [chbegin,chend) will be read. Note that for the
scanline variety, the roi’s x range must specify the complete width of the image, and the
z range must be a single plane. For the tile variety, the roi must specify a whole number
of tiles.

int send to input (const char *format, ...)

General message passing between client and image input server. This is currently unde-
fined and is reserved for future use.

int send to client (const char *format, ...)

General message passing between client and image input server. This is currently unde-
fined and is reserved for future use.

void threads (int n)
int threads () const

Get or set the threading policy for this ImageInput, controlling the maximum amount of
parallelizing thread “fan-out” that might occur during large read operations. The default
of 0 means that the global attribute("threads") value should be used (which itself
defaults to using as many threads as cores; see Section 2.8).

The main reason to change this value is to set it to 1 to indicate that the calling thread
should do all the work rather than spawning new threads. That is probably the desired
behavior in situations where the calling application has already spawned multiple worker
threads.

OpenImageIO Programmer’s Documentation

80 CHAPTER 4. IMAGEINPUT: READING IMAGES

std::string geterror () const

Returns the current error string describing what went wrong if any of the public methods
returned false indicating an error. (Hopefully the implementation plugin called error()
with a helpful error message.)

OpenImageIO Programmer’s Documentation

5 Writing ImageIO Plugins

5.1 Plugin Introduction

As explained in Chapters 4 and 3, the ImageIO library does not know how to read or write any
particular image formats, but rather relies on plugins located and loaded dynamically at run-
time. This set of plugins, and therefore the set of image file formats that OpenImageIO or its
clients can read and write, is extensible without needing to modify OpenImageIO itself.

This chapter explains how to write your own OpenImageIO plugins. We will first explain
separately how to write image file readers and writers, then tie up the loose ends of how to build
the plugins themselves.

5.2 Image Readers

A plugin that reads a particular image file format must implement a subclass of ImageInput
(described in Chapter 4). This is actually very straightforward and consists of the following
steps, which we will illustrate with a real-world example of writing a JPEG/JFIF plug-in.

1. Read the base class definition from imageio.h. It may also be helpful to enclose the
contents of your plugin in the same namespace that the OpenImageIO library uses:

#include <OpenImageIO/imageio.h>
OIIO_PLUGIN_NAMESPACE_BEGIN

... everything else ...

OIIO_PLUGIN_NAMESPACE_END

2. Declare these public items:

(a) An integer called name imageio version that identifies the version of the Im-
ageIO protocol implemented by the plugin, defined in imageio.h as the constant
OIIO PLUGIN VERSION. This allows the library to be sure it is not loading a plugin
that was compiled against an incompatible version of OpenImageIO.

(b) An function named name imageio library version that identifies the under-
lying dependent library that is responsible for reading or writing the format (it may

81

82 CHAPTER 5. WRITING IMAGEIO PLUGINS

return nullptr to indicate that there is no dependent library being used for this
format).

(c) A function named name input imageio create that takes no arguments and
returns an ImageInput * constructed from a new instance of your ImageInput
subclass and a deleter. (Note that name is the name of your format, and must match
the name of the plugin itself.)

(d) An array of char * called name input extensions that contains the list of file
extensions that are likely to indicate a file of the right format. The list is terminated
by a nullptr.

All of these items must be inside an ‘extern "C"’ block in order to avoid name mangling
by the C++ compiler, and we provide handy macros OIIO PLUGIN EXPORTS BEGIN
and OIIO PLUGIN EXPORTS END to make this easy. Depending on your compiler, you
may need to use special commands to dictate that the symbols will be exported in the
DSO; we provide a special OIIO EXPORT macro for this purpose, defined in export.h.

Putting this all together, we get the following for our JPEG example:

OIIO_PLUGIN_EXPORTS_BEGIN
OIIO_EXPORT int jpeg_imageio_version = OIIO_PLUGIN_VERSION;
OIIO_EXPORT ImageInput *jpeg_input_imageio_create () {

return new JpgInput;
}
OIIO_EXPORT const char *jpeg_input_extensions[] = {

"jpg", "jpe", "jpeg", "jif", "jfif", "jfi", nullptr
};
OIIO_EXPORT const char* jpeg_imageio_library_version () {

#define STRINGIZE2(a) #a
#define STRINGIZE(a) STRINGIZE2(a)
#ifdef LIBJPEG_TURBO_VERSION

return "jpeg-turbo " STRINGIZE(LIBJPEG_TURBO_VERSION);
#else

return "jpeglib " STRINGIZE(JPEG_LIB_VERSION_MAJOR) "." \\
STRINGIZE(JPEG_LIB_VERSION_MINOR);

#endif
}

OIIO_PLUGIN_EXPORTS_END

3. The definition and implementation of an ImageInput subclass for this file format. It must
publicly inherit ImageInput, and must overload the following methods which are “pure
virtual” in the ImageInput base class:

(a) format name() should return the name of the format, which ought to match the
name of the plugin and by convention is strictly lower-case and contains no whites-
pace.

OpenImageIO Programmer’s Documentation

5.2. IMAGE READERS 83

(b) open() should open the file and return true, or should return false if unable to do
so (including if the file was found but turned out not to be in the format that your
plugin is trying to implement).

(c) close() should close the file, if open.

(d) read native scanline should read a single scanline from the file into the ad-
dress provided, uncompressing it but keeping it in its native data format without any
translation.

(e) The virtual destructor, which should close() if the file is still open, addition to
performing any other tear-down activities.

Additionally, your ImageInput subclass may optionally choose to overload any of the
following methods, which are defined in the ImageInput base class and only need to be
overloaded if the default behavior is not appropriate for your plugin:

(f) supports(), only if your format supports any of the optional features described in
Section 4.3.

(g) valid file(), if your format has a way to determine if a file is of the given format
in a way that is less expensive than a full open().

(h) seek subimage(), only if your format supports reading multiple subimages within
a single file.

(i) read native scanlines(), only if your format has a speed advantage when
reading multiple scanlines at once. If you do not supply this function, the default
implementation will simply call read scanline() for each scanline in the range.

(j) read native tile(), only if your format supports reading tiled images.

(k) read native tiles(), only if your format supports reading tiled images and
there is a speed advantage when reading multiple tiles at once. If you do not supply
this function, the default implementation will simply call read native tile()
for each tile in the range.

(l) “Channel subset” versions of read native scanlines() and/or read native -
tiles(), only if your format has a more efficient means of reading a subset of chan-
nels. If you do not supply these methods, the default implementation will simply use
read native scanlines() or read native tiles() to read into a temporary
all-channel buffer and then copy the channel subset into the user’s buffer.

(m) read native deep scanlines() and/or read native deep tiles(), only
if your format supports “deep” data images.

Here is how the class definition looks for our JPEG example. Note that the JPEG/JFIF
file format does not support multiple subimages or tiled images.

class JpgInput final : public ImageInput {
public:

JpgInput () { init(); }
virtual ˜JpgInput () { close(); }

OpenImageIO Programmer’s Documentation

84 CHAPTER 5. WRITING IMAGEIO PLUGINS

virtual const char * format_name (void) const override { return "jpeg"; }
virtual bool open (const std::string &name, ImageSpec &spec) override;
virtual bool read_native_scanline (int y, int z, void *data) override;
virtual bool close () override;

private:
FILE *m_fd;
bool m_first_scanline;
struct jpeg_decompress_struct m_cinfo;
struct jpeg_error_mgr m_jerr;

void init () { m_fd = NULL; }
};

Your subclass implementation of open(), close(), and read native scanline() are
the heart of an ImageInput implementation. (Also read native tile() and seek subimage(),
for those image formats that support them.)

The remainder of this section simply lists the full implementation of our JPEG reader, which
relies heavily on the open source jpeg-6b library to perform the actual JPEG decoding.

/*
Copyright 2008 Larry Gritz and the other authors and contributors.
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the software’s owners nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(This is the Modified BSD License)
*/

#include <algorithm>
#include <cassert>
#include <cstdio>

#include <OpenImageIO/color.h>
#include <OpenImageIO/filesystem.h>
#include <OpenImageIO/fmath.h>
#include <OpenImageIO/imageio.h>
#include <OpenImageIO/tiffutils.h>

#include "jpeg_pvt.h"

OIIO_PLUGIN_NAMESPACE_BEGIN

OpenImageIO Programmer’s Documentation

5.2. IMAGE READERS 85

// N.B. The class definition for JpgInput is in jpeg_pvt.h.

// Export version number and create function symbols
OIIO_PLUGIN_EXPORTS_BEGIN

OIIO_EXPORT int jpeg_imageio_version = OIIO_PLUGIN_VERSION;

OIIO_EXPORT const char*
jpeg_imageio_library_version()
{
#define STRINGIZE2(a) #a
#define STRINGIZE(a) STRINGIZE2(a)
#ifdef LIBJPEG_TURBO_VERSION

return "jpeg-turbo " STRINGIZE(LIBJPEG_TURBO_VERSION) "/jp" STRINGIZE(
JPEG_LIB_VERSION);

#else
return "jpeglib " STRINGIZE(JPEG_LIB_VERSION_MAJOR) "." STRINGIZE(

JPEG_LIB_VERSION_MINOR);
#endif
}

OIIO_EXPORT ImageInput*
jpeg_input_imageio_create()
{

return new JpgInput;
}

OIIO_EXPORT const char* jpeg_input_extensions[]
= { "jpg", "jpe", "jpeg", "jif", "jfif", "jfi", nullptr };

OIIO_PLUGIN_EXPORTS_END

static const uint8_t JPEG_MAGIC1 = 0xff;
static const uint8_t JPEG_MAGIC2 = 0xd8;

// For explanations of the error handling, see the "example.c" in the
// libjpeg distribution.

static void
my_error_exit(j_common_ptr cinfo)
{

/* cinfo->err really points to a my_error_mgr struct, so coerce pointer */
JpgInput::my_error_ptr myerr = (JpgInput::my_error_ptr)cinfo->err;

/* Always display the message. */
/* We could postpone this until after returning, if we chose. */
// (*cinfo->err->output_message) (cinfo);
myerr->jpginput->jpegerror(myerr, true);

/* Return control to the setjmp point */
longjmp(myerr->setjmp_buffer, 1);

}

static void
my_output_message(j_common_ptr cinfo)
{

JpgInput::my_error_ptr myerr = (JpgInput::my_error_ptr)cinfo->err;

// Create the message
char buffer[JMSG_LENGTH_MAX];
(*cinfo->err->format_message)(cinfo, buffer);
myerr->jpginput->jpegerror(myerr, true);

/* Return control to the setjmp point */
longjmp(myerr->setjmp_buffer, 1);

}

OpenImageIO Programmer’s Documentation

86 CHAPTER 5. WRITING IMAGEIO PLUGINS

static std::string
comp_info_to_attr(const jpeg_decompress_struct& cinfo)
{

// Compare the current 6 samples with our known definitions
// to determine the corresponding subsampling attr
std::vector<int> comp;
comp.push_back(cinfo.comp_info[0].h_samp_factor);
comp.push_back(cinfo.comp_info[0].v_samp_factor);
comp.push_back(cinfo.comp_info[1].h_samp_factor);
comp.push_back(cinfo.comp_info[1].v_samp_factor);
comp.push_back(cinfo.comp_info[2].h_samp_factor);
comp.push_back(cinfo.comp_info[2].v_samp_factor);
size_t size = comp.size();

if (std::equal(JPEG_444_COMP, JPEG_444_COMP + size, comp.begin()))
return JPEG_444_STR;

else if (std::equal(JPEG_422_COMP, JPEG_422_COMP + size, comp.begin()))
return JPEG_422_STR;

else if (std::equal(JPEG_420_COMP, JPEG_420_COMP + size, comp.begin()))
return JPEG_420_STR;

else if (std::equal(JPEG_411_COMP, JPEG_411_COMP + size, comp.begin()))
return JPEG_411_STR;

return "";
}

void
JpgInput::jpegerror(my_error_ptr myerr, bool fatal)
{

// Send the error message to the ImageInput
char errbuf[JMSG_LENGTH_MAX];
(*m_cinfo.err->format_message)((j_common_ptr)&m_cinfo, errbuf);
error("JPEG error: %s (\"%s\")", errbuf, filename().c_str());

// Shut it down and clean it up
if (fatal) {

m_fatalerr = true;
close();
m_fatalerr = true; // because close() will reset it

}
}

bool
JpgInput::valid_file(const std::string& filename) const
{

FILE* fd = Filesystem::fopen(filename, "rb");
if (!fd)

return false;

// Check magic number to assure this is a JPEG file
uint8_t magic[2] = { 0, 0 };
bool ok = (fread(magic, sizeof(magic), 1, fd) == 1);
fclose(fd);

if (magic[0] != JPEG_MAGIC1 || magic[1] != JPEG_MAGIC2) {
ok = false;

}
return ok;

}

bool
JpgInput::open(const std::string& name, ImageSpec& newspec,

const ImageSpec& config)
{

const ParamValue* p = config.find_attribute("_jpeg:raw", TypeInt);
m_raw = p && *(int*)p->data();
return open(name, newspec);

OpenImageIO Programmer’s Documentation

5.2. IMAGE READERS 87

}

bool
JpgInput::open(const std::string& name, ImageSpec& newspec)
{

// Check that file exists and can be opened
m_filename = name;
m_fd = Filesystem::fopen(name, "rb");
if (m_fd == NULL) {

error("Could not open file \"%s\"", name.c_str());
return false;

}

// Check magic number to assure this is a JPEG file
uint8_t magic[2] = { 0, 0 };
if (fread(magic, sizeof(magic), 1, m_fd) != 1) {

error("Empty file \"%s\"", name.c_str());
close_file();
return false;

}

rewind(m_fd);
if (magic[0] != JPEG_MAGIC1 || magic[1] != JPEG_MAGIC2) {

close_file();
error(

"\"%s\" is not a JPEG file, magic number doesn’t match (was 0x%x%x)",
name.c_str(), int(magic[0]), int(magic[1]));

return false;
}

// Set up the normal JPEG error routines, then override error_exit and
// output_message so we intercept all the errors.
m_cinfo.err = jpeg_std_error((jpeg_error_mgr*)&m_jerr);
m_jerr.pub.error_exit = my_error_exit;
m_jerr.pub.output_message = my_output_message;
if (setjmp(m_jerr.setjmp_buffer)) {

// Jump to here if there’s a libjpeg internal error
// Prevent memory leaks, see example.c in jpeg distribution
jpeg_destroy_decompress(&m_cinfo);
close_file();
return false;

}

jpeg_create_decompress(&m_cinfo); // initialize decompressor
jpeg_stdio_src(&m_cinfo, m_fd); // specify the data source

// Request saving of EXIF and other special tags for later spelunking
for (int mark = 0; mark < 16; ++mark)

jpeg_save_markers(&m_cinfo, JPEG_APP0 + mark, 0xffff);
jpeg_save_markers(&m_cinfo, JPEG_COM, 0xffff); // comment marker

// read the file parameters
if (jpeg_read_header(&m_cinfo, FALSE) != JPEG_HEADER_OK || m_fatalerr) {

error("Bad JPEG header for \"%s\"", filename().c_str());
return false;

}

int nchannels = m_cinfo.num_components;

if (m_cinfo.jpeg_color_space == JCS_CMYK
|| m_cinfo.jpeg_color_space == JCS_YCCK) {
// CMYK jpegs get converted by us to RGB
m_cinfo.out_color_space = JCS_CMYK; // pre-convert YCbCrK->CMYK
nchannels = 3;
m_cmyk = true;

}

if (m_raw)
m_coeffs = jpeg_read_coefficients(&m_cinfo);

else
jpeg_start_decompress(&m_cinfo); // start working

if (m_fatalerr)

OpenImageIO Programmer’s Documentation

88 CHAPTER 5. WRITING IMAGEIO PLUGINS

return false;
m_next_scanline = 0; // next scanline we’ll read

m_spec = ImageSpec(m_cinfo.output_width, m_cinfo.output_height, nchannels,
TypeDesc::UINT8);

// Assume JPEG is in sRGB unless the Exif or XMP tags say otherwise.
m_spec.attribute("oiio:ColorSpace", "sRGB");

if (m_cinfo.jpeg_color_space == JCS_CMYK)
m_spec.attribute("jpeg:ColorSpace", "CMYK");

else if (m_cinfo.jpeg_color_space == JCS_YCCK)
m_spec.attribute("jpeg:ColorSpace", "YCbCrK");

// If the chroma subsampling is detected and matches something
// we expect, then set an attribute so that it can be preserved
// in future operations.
std::string subsampling = comp_info_to_attr(m_cinfo);
if (!subsampling.empty())

m_spec.attribute(JPEG_SUBSAMPLING_ATTR, subsampling);

for (jpeg_saved_marker_ptr m = m_cinfo.marker_list; m; m = m->next) {
if (m->marker == (JPEG_APP0 + 1)

&& !strcmp((const char*)m->data, "Exif")) {
// The block starts with "Exif\0\0", so skip 6 bytes to get
// to the start of the actual Exif data TIFF directory
decode_exif(string_view((char*)m->data + 6, m->data_length - 6),

m_spec);
} else if (m->marker == (JPEG_APP0 + 1)

&& !strcmp((const char*)m->data,
"http://ns.adobe.com/xap/1.0/")) {

#ifndef NDEBUG
std::cerr << "Found APP1 XMP! length " << m->data_length << "\n";

#endif
std::string xml((const char*)m->data, m->data_length);
decode_xmp(xml, m_spec);

} else if (m->marker == (JPEG_APP0 + 13)
&& !strcmp((const char*)m->data, "Photoshop 3.0"))

jpeg_decode_iptc((unsigned char*)m->data);
else if (m->marker == JPEG_COM) {

if (!m_spec.find_attribute("ImageDescription", TypeDesc::STRING))
m_spec.attribute("ImageDescription",

std::string((const char*)m->data,
m->data_length));

}
}

// Handle density/pixelaspect. We need to do this AFTER the exif is
// decoded, in case it contains useful information.
float xdensity = m_spec.get_float_attribute("XResolution");
float ydensity = m_spec.get_float_attribute("YResolution");
if (!xdensity || !ydensity) {

xdensity = float(m_cinfo.X_density);
ydensity = float(m_cinfo.Y_density);
if (xdensity && ydensity) {

m_spec.attribute("XResolution", xdensity);
m_spec.attribute("YResolution", ydensity);

}
}
if (xdensity && ydensity) {

float aspect = ydensity / xdensity;
if (aspect != 1.0f)

m_spec.attribute("PixelAspectRatio", aspect);
switch (m_cinfo.density_unit) {
case 0: m_spec.attribute("ResolutionUnit", "none"); break;
case 1: m_spec.attribute("ResolutionUnit", "in"); break;
case 2: m_spec.attribute("ResolutionUnit", "cm"); break;
}

}

read_icc_profile(&m_cinfo, m_spec); /// try to read icc profile

newspec = m_spec;
return true;

OpenImageIO Programmer’s Documentation

5.2. IMAGE READERS 89

}

bool
JpgInput::read_icc_profile(j_decompress_ptr cinfo, ImageSpec& spec)
{

int num_markers = 0;
std::vector<unsigned char> icc_buf;
unsigned int total_length = 0;
const int MAX_SEQ_NO = 255;
unsigned char marker_present

[MAX_SEQ_NO
+ 1]; // one extra is used to store the flag if marker is found, set to one if marker is found

unsigned int data_length[MAX_SEQ_NO + 1]; // store the size of each marker
unsigned int data_offset[MAX_SEQ_NO + 1]; // store the offset of each marker
memset(marker_present, 0, (MAX_SEQ_NO + 1));

for (jpeg_saved_marker_ptr m = cinfo->marker_list; m; m = m->next) {
if (m->marker == (JPEG_APP0 + 2)

&& !strcmp((const char*)m->data, "ICC_PROFILE")) {
if (num_markers == 0)

num_markers = GETJOCTET(m->data[13]);
else if (num_markers != GETJOCTET(m->data[13]))

return false;
int seq_no = GETJOCTET(m->data[12]);
if (seq_no <= 0 || seq_no > num_markers)

return false;
if (marker_present[seq_no]) // duplicate marker

return false;
marker_present[seq_no] = 1; // flag found marker
data_length[seq_no] = m->data_length - ICC_HEADER_SIZE;

}
}
if (num_markers == 0)

return false;

// checking for missing markers
for (int seq_no = 1; seq_no <= num_markers; seq_no++) {

if (marker_present[seq_no] == 0)
return false; // missing sequence number

data_offset[seq_no] = total_length;
total_length += data_length[seq_no];

}

if (total_length == 0)
return false; // found only empty markers

icc_buf.resize(total_length * sizeof(JOCTET));

// and fill it in
for (jpeg_saved_marker_ptr m = cinfo->marker_list; m; m = m->next) {

if (m->marker == (JPEG_APP0 + 2)
&& !strcmp((const char*)m->data, "ICC_PROFILE")) {
int seq_no = GETJOCTET(m->data[12]);
memcpy(&icc_buf[0] + data_offset[seq_no], m->data + ICC_HEADER_SIZE,

data_length[seq_no]);
}

}
spec.attribute(ICC_PROFILE_ATTR, TypeDesc(TypeDesc::UINT8, total_length),

&icc_buf[0]);
return true;

}

static void
cmyk_to_rgb(int n, const unsigned char* cmyk, size_t cmyk_stride,

unsigned char* rgb, size_t rgb_stride)
{

for (; n; --n, cmyk += cmyk_stride, rgb += rgb_stride) {
// JPEG seems to store CMYK as 1-x
float C = convert_type<unsigned char, float>(cmyk[0]);
float M = convert_type<unsigned char, float>(cmyk[1]);

OpenImageIO Programmer’s Documentation

90 CHAPTER 5. WRITING IMAGEIO PLUGINS

float Y = convert_type<unsigned char, float>(cmyk[2]);
float K = convert_type<unsigned char, float>(cmyk[3]);
float R = C * K;
float G = M * K;
float B = Y * K;
rgb[0] = convert_type<float, unsigned char>(R);
rgb[1] = convert_type<float, unsigned char>(G);
rgb[2] = convert_type<float, unsigned char>(B);

}
}

bool
JpgInput::read_native_scanline(int subimage, int miplevel, int y, int z,

void* data)
{

if (!seek_subimage(subimage, miplevel))
return false;

if (m_raw)
return false;

if (y < 0 || y >= (int)m_cinfo.output_height) // out of range scanline
return false;

if (m_next_scanline > y) {
// User is trying to read an earlier scanline than the one we’re
// up to. Easy fix: close the file and re-open.
ImageSpec dummyspec;
int subimage = current_subimage();
if (!close() || !open(m_filename, dummyspec)

|| !seek_subimage(subimage, 0))
return false; // Somehow, the re-open failed

assert(m_next_scanline == 0 && current_subimage() == subimage);
}

// Set up our custom error handler
if (setjmp(m_jerr.setjmp_buffer)) {

// Jump to here if there’s a libjpeg internal error
return false;

}

void* readdata = data;
if (m_cmyk) {

// If the file’s data is CMYK, read into a 4-channel buffer, then
// we’ll have to convert.
m_cmyk_buf.resize(m_spec.width * 4);
readdata = &m_cmyk_buf[0];
ASSERT(m_spec.nchannels == 3);

}

for (; m_next_scanline <= y; ++m_next_scanline) {
// Keep reading until we’ve read the scanline we really need
if (jpeg_read_scanlines(&m_cinfo, (JSAMPLE**)&readdata, 1) != 1

|| m_fatalerr) {
error("JPEG failed scanline read (\"%s\")", filename().c_str());
return false;

}
}

if (m_cmyk)
cmyk_to_rgb(m_spec.width, (unsigned char*)readdata, 4,

(unsigned char*)data, 3);

return true;
}

bool
JpgInput::close()
{

if (m_fd != NULL) {
// unnecessary? jpeg_abort_decompress (&m_cinfo);
jpeg_destroy_decompress(&m_cinfo);

OpenImageIO Programmer’s Documentation

5.3. IMAGE WRITERS 91

close_file();
}
init(); // Reset to initial state
return true;

}

void
JpgInput::jpeg_decode_iptc(const unsigned char* buf)
{

// APP13 blob doesn’t have to be IPTC info. Look for the IPTC marker,
// which is the string "Photoshop 3.0" followed by a null character.
if (strcmp((const char*)buf, "Photoshop 3.0"))

return;
buf += strlen("Photoshop 3.0") + 1;

// Next are the 4 bytes "8BIM"
if (strncmp((const char*)buf, "8BIM", 4))

return;
buf += 4;

// Next two bytes are the segment type, in big endian.
// We expect 1028 to indicate IPTC data block.
if (((buf[0] << 8) + buf[1]) != 1028)

return;
buf += 2;

// Next are 4 bytes of 0 padding, just skip it.
buf += 4;

// Next is 2 byte (big endian) giving the size of the segment
int segmentsize = (buf[0] << 8) + buf[1];
buf += 2;

decode_iptc_iim(buf, segmentsize, m_spec);
}

OIIO_PLUGIN_NAMESPACE_END

5.3 Image Writers

A plugin that writes a particular image file format must implement a subclass of ImageOutput
(described in Chapter 3). This is actually very straightforward and consists of the following
steps, which we will illustrate with a real-world example of writing a JPEG/JFIF plug-in.

1. Read the base class definition from imageio.h, just as with an image reader (see Sec-
tion 5.2).

2. Declare four public items:

(a) An integer called name imageio version that identifies the version of the Im-
ageIO protocol implemented by the plugin, defined in imageio.h as the constant
OIIO PLUGIN VERSION. This allows the library to be sure it is not loading a plu-
gin that was compiled against an incompatible version of OpenImageIO. Note that if
your plugin has both a reader and writer and they are compiled as separate modules
(C++ source files), you don’t want to declare this in both modules; either one is fine.

(b) A function named name output imageio create that takes no arguments and
returns an ImageOutput * constructed from a new instance of your ImageOutput
subclass and a deleter. (Note that name is the name of your format, and must match
the name of the plugin itself.)

OpenImageIO Programmer’s Documentation

92 CHAPTER 5. WRITING IMAGEIO PLUGINS

(c) An array of char * called name output extensions that contains the list of file
extensions that are likely to indicate a file of the right format. The list is terminated
by a NULL pointer.

All of these items must be inside an ‘extern "C"’ block in order to avoid name mangling
by the C++ compiler, and we provide handy macros OIIO PLUGIN EXPORTS BEGIN
and OIIO PLUGIN EXPORTS END to mamke this easy. Depending on your compiler,
you may need to use special commands to dictate that the symbols will be exported in the
DSO; we provide a special OIIO EXPORT macro for this purpose, defined in export.h.

Putting this all together, we get the following for our JPEG example:

OIIO_PLUGIN_EXPORTS_BEGIN
OIIO_EXPORT int jpeg_imageio_version = OIIO_PLUGIN_VERSION;
OIIO_EXPORT ImageOutput *jpeg_output_imageio_create () {

return new JpgOutput;
}
OIIO_EXPORT const char *jpeg_input_extensions[] = {

"jpg", "jpe", "jpeg", nullptr
};

OIIO_PLUGIN_EXPORTS_END

3. The definition and implementation of an ImageOutput subclass for this file format. It
must publicly inherit ImageOutput, and must overload the following methods which are
“pure virtual” in the ImageOutput base class:

(a) format name() should return the name of the format, which ought to match the
name of the plugin and by convention is strictly lower-case and contains no whites-
pace.

(b) supports() should return true if its argument names a feature supported by your
format plugin, false if it names a feature not supported by your plugin. See Sec-
tion 3.3 for the list of feature names.

(c) open() should open the file and return true, or should return false if unable to do
so (including if the file was found but turned out not to be in the format that your
plugin is trying to implement).

(d) close() should close the file, if open.

(e) write scanline should write a single scanline to the file, translating from internal
to native data format and handling strides properly.

(f) The virtual destructor, which should close() if the file is still open, addition to
performing any other tear-down activities.

Additionally, your ImageOutput subclass may optionally choose to overload any of the
following methods, which are defined in the ImageOutput base class and only need to be
overloaded if the default behavior is not appropriate for your plugin:

OpenImageIO Programmer’s Documentation

5.3. IMAGE WRITERS 93

(g) write scanlines(), only if your format supports writing scanlines and you can
get a performance improvement when outputting multiple scanlines at once. If
you don’t supply write scanlines(), the default implementation will simply call
write scanline() separately for each scanline in the range.

(h) write tile(), only if your format supports writing tiled images.
(i) write tiles(), only if your format supports writing tiled images and you can

get a performance improvement when outputting multiple tiles at once. If you don’t
supply write tiles(), the default implementation will simply call write tile()
separately for each tile in the range.

(j) write rectangle(), only if your format supports writing arbitrary rectangles.
(k) write image(), only if you have a more clever method of doing so than the default

implementation that calls write scanline() or write tile() repeatedly.
(l) write deep scanlines() and/or write deep tiles(), only if your format

supports “deep” data images.

It is not strictly required, but certainly appreciated, if a file format does not support tiles,
to nonetheless accept an ImageSpec that specifies tile sizes by allocating a full-image
buffer in open(), providing an implementation of write tile() that copies the tile of
data to the right spots in the buffer, and having close() then call write scanlines to
process the buffer now that the image has been fully sent.

Here is how the class definition looks for our JPEG example. Note that the JPEG/JFIF
file format does not support multiple subimages or tiled images.

class JpgOutput final : public ImageOutput {
public:

JpgOutput () { init(); }
virtual ˜JpgOutput () { close(); }
virtual const char * format_name (void) const override { return "jpeg"; }
virtual int supports (string_view property) const override { return false; }
virtual bool open (const std::string &name, const ImageSpec &spec,

bool append=false) override;
virtual bool write_scanline (int y, int z, TypeDesc format,

const void *data, stride_t xstride) override;
bool close ();

private:
FILE *m_fd;
std::vector<unsigned char> m_scratch;
struct jpeg_compress_struct m_cinfo;
struct jpeg_error_mgr m_jerr;

void init () { m_fd = NULL; }
};

Your subclass implementation of open(), close(), and write scanline() are the heart
of an ImageOutput implementation. (Also write tile(), for those image formats that sup-
port tiled output.)

OpenImageIO Programmer’s Documentation

94 CHAPTER 5. WRITING IMAGEIO PLUGINS

An ImageOutput implementation must properly handle all data formats and strides passed
to write scanline() or write tile(), unlike an ImageInput implementation, which only
needs to read scanlines or tiles in their native format and then have the super-class handle the
translation. But don’t worry, all the heavy lifting can be accomplished with the following helper
functions provided as protected member functions of ImageOutput that convert a scanline, tile,
or rectangular array of values from one format to the native format(s) of the file.

const void * to native scanline (TypeDesc format, const void *data,
stride t xstride, std::vector<unsigned char> &scratch,
unsigned int dither=0, int yorigin=0, int zorigin=0)

Convert a full scanline of pixels (pointed to by data) with the given format and strides
into contiguous pixels in the native format (described by the ImageSpec returned by the
spec() member function). The location of the newly converted data is returned, which
may either be the original data itself if no data conversion was necessary and the requested
layout was contiguous (thereby avoiding unnecessary memory copies), or may point into
memory allocated within the scratch vector passed by the user. In either case, the caller
doesn’t need to worry about thread safety or freeing any allocated memory (other than
eventually destroying the scratch vector).

const void * to native tile (TypeDesc format, const void *data,
stride t xstride, stride t ystride, stride t zstride,
std::vector<unsigned char> &scratch, unsigned int dither=0,
int xorigin=0, int yorigin=0, int zorigin=0)

Convert a full tile of pixels (pointed to by data) with the given format and strides into con-
tiguous pixels in the native format (described by the ImageSpec returned by the spec()
member function). The location of the newly converted data is returned, which may ei-
ther be the original data itself if no data conversion was necessary and the requested
layout was contiguous (thereby avoiding unnecessary memory copies), or may point into
memory allocated within the scratch vector passed by the user. In either case, the caller
doesn’t need to worry about thread safety or freeing any allocated memory (other than
eventually destroying the scratch vector).

const void * to native rectangle (int xbegin, int xend,
int ybegin, int yend, int zbegin, int zend,
TypeDesc format, const void *data,
stride t xstride, stride t ystride, stride t zstride,
std::vector<unsigned char> &scratch, unsigned int dither=0,
int xorigin=0, int yorigin=0, int zorigin=0)

Convert a rectangle of pixels (pointed to by data) with the given format, dimensions, and
strides into contiguous pixels in the native format (described by the ImageSpec returned
by the spec() member function). The location of the newly converted data is returned,
which may either be the original data itself if no data conversion was necessary and the
requested layout was contiguous (thereby avoiding unnecessary memory copies), or may
point into memory allocated within the scratch vector passed by the user. In either case,

OpenImageIO Programmer’s Documentation

5.3. IMAGE WRITERS 95

the caller doesn’t need to worry about thread safety or freeing any allocated memory
(other than eventually destroying the scratch vector).

For float to 8 bit integer conversions only, if dither parameter is nonzero, random dither
will be added to reduce quantization banding artifacts; in this case, the specific nonzero dither
value is used as a seed for the hash function that produces the per-pixel dither amounts, and the
optional origin parameters help it to align the pixels to the right position in the dither pattern.

The remainder of this section simply lists the full implementation of our JPEG writer, which
relies heavily on the open source jpeg-6b library to perform the actual JPEG encoding.

/*
Copyright 2008 Larry Gritz and the other authors and contributors.
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the software’s owners nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(This is the Modified BSD License)
*/

#include <cassert>
#include <cstdio>
#include <vector>

#include <OpenImageIO/filesystem.h>
#include <OpenImageIO/fmath.h>
#include <OpenImageIO/imageio.h>
#include <OpenImageIO/tiffutils.h>

#include "jpeg_pvt.h"

OIIO_PLUGIN_NAMESPACE_BEGIN

#define DBG if (0)

// References:
// * JPEG library documentation: /usr/share/doc/libjpeg-devel-6b
// * JFIF spec: https://www.w3.org/Graphics/JPEG/jfif3.pdf
// * ITU T.871 (aka ISO/IEC 10918-5):
// https://www.itu.int/rec/T-REC-T.871-201105-I/en

class JpgOutput final : public ImageOutput {
public:

OpenImageIO Programmer’s Documentation

96 CHAPTER 5. WRITING IMAGEIO PLUGINS

JpgOutput() { init(); }
virtual ˜JpgOutput() { close(); }
virtual const char* format_name(void) const override { return "jpeg"; }
virtual int supports(string_view feature) const override
{

return (feature == "exif" || feature == "iptc");
}
virtual bool open(const std::string& name, const ImageSpec& spec,

OpenMode mode = Create) override;
virtual bool write_scanline(int y, int z, TypeDesc format, const void* data,

stride_t xstride) override;
virtual bool write_tile(int x, int y, int z, TypeDesc format,

const void* data, stride_t xstride,
stride_t ystride, stride_t zstride) override;

virtual bool close() override;
virtual bool copy_image(ImageInput* in) override;

private:
FILE* m_fd;
std::string m_filename;
unsigned int m_dither;
int m_next_scanline; // Which scanline is the next to write?
std::vector<unsigned char> m_scratch;
struct jpeg_compress_struct m_cinfo;
struct jpeg_error_mgr c_jerr;
jvirt_barray_ptr* m_copy_coeffs;
struct jpeg_decompress_struct* m_copy_decompressor;
std::vector<unsigned char> m_tilebuffer;

void init(void)
{

m_fd = NULL;
m_copy_coeffs = NULL;
m_copy_decompressor = NULL;

}

void set_subsampling(const int components[])
{

jpeg_set_colorspace(&m_cinfo, JCS_YCbCr);
m_cinfo.comp_info[0].h_samp_factor = components[0];
m_cinfo.comp_info[0].v_samp_factor = components[1];
m_cinfo.comp_info[1].h_samp_factor = components[2];
m_cinfo.comp_info[1].v_samp_factor = components[3];
m_cinfo.comp_info[2].h_samp_factor = components[4];
m_cinfo.comp_info[2].v_samp_factor = components[5];

}

// Read the XResolution/YResolution and PixelAspectRatio metadata, store
// in density fields m_cinfo.X_density,Y_density.
void resmeta_to_density();

};

OIIO_PLUGIN_EXPORTS_BEGIN

OIIO_EXPORT ImageOutput*
jpeg_output_imageio_create()
{

return new JpgOutput;
}

OIIO_EXPORT const char* jpeg_output_extensions[]
= { "jpg", "jpe", "jpeg", "jif", "jfif", "jfi", nullptr };

OIIO_PLUGIN_EXPORTS_END

bool
JpgOutput::open(const std::string& name, const ImageSpec& newspec,

OpenMode mode)
{

if (mode != Create) {

OpenImageIO Programmer’s Documentation

5.3. IMAGE WRITERS 97

error("%s does not support subimages or MIP levels", format_name());
return false;

}

// Save name and spec for later use
m_filename = name;
m_spec = newspec;

// Check for things this format doesn’t support
if (m_spec.width < 1 || m_spec.height < 1) {

error("Image resolution must be at least 1x1, you asked for %d x %d",
m_spec.width, m_spec.height);

return false;
}
if (m_spec.depth < 1)

m_spec.depth = 1;
if (m_spec.depth > 1) {

error("%s does not support volume images (depth > 1)", format_name());
return false;

}

m_fd = Filesystem::fopen(name, "wb");
if (m_fd == NULL) {

error("Unable to open file \"%s\"", name.c_str());
return false;

}

m_cinfo.err = jpeg_std_error(&c_jerr); // set error handler
jpeg_create_compress(&m_cinfo); // create compressor
jpeg_stdio_dest(&m_cinfo, m_fd); // set output stream

// Set image and compression parameters
m_cinfo.image_width = m_spec.width;
m_cinfo.image_height = m_spec.height;

// JFIF can only handle grayscale and RGB. Do the best we can with this
// limited format by truncating to 3 channels if > 3 are requested,
// truncating to 1 channel if 2 are requested.
if (m_spec.nchannels >= 3) {

m_cinfo.input_components = 3;
m_cinfo.in_color_space = JCS_RGB;

} else {
m_cinfo.input_components = 1;
m_cinfo.in_color_space = JCS_GRAYSCALE;

}

string_view resunit = m_spec.get_string_attribute("ResolutionUnit");
if (Strutil::iequals(resunit, "none"))

m_cinfo.density_unit = 0;
else if (Strutil::iequals(resunit, "in"))

m_cinfo.density_unit = 1;
else if (Strutil::iequals(resunit, "cm"))

m_cinfo.density_unit = 2;
else

m_cinfo.density_unit = 0;

resmeta_to_density();

m_cinfo.write_JFIF_header = TRUE;

if (m_copy_coeffs) {
// Back door for copy()
jpeg_copy_critical_parameters(m_copy_decompressor, &m_cinfo);
DBG std::cout << "out open: copy_critical_parameters\n";
jpeg_write_coefficients(&m_cinfo, m_copy_coeffs);
DBG std::cout << "out open: write_coefficients\n";

} else {
// normal write of scanlines
jpeg_set_defaults(&m_cinfo); // default compression
// Careful -- jpeg_set_defaults overwrites density
resmeta_to_density();
DBG std::cout << "out open: set_defaults\n";
int quality = newspec.get_int_attribute("CompressionQuality", 98);
jpeg_set_quality(&m_cinfo, quality, TRUE); // baseline values

OpenImageIO Programmer’s Documentation

98 CHAPTER 5. WRITING IMAGEIO PLUGINS

DBG std::cout << "out open: set_quality\n";

if (m_cinfo.input_components == 3) {
std::string subsampling = m_spec.get_string_attribute(

JPEG_SUBSAMPLING_ATTR);
if (subsampling == JPEG_444_STR)

set_subsampling(JPEG_444_COMP);
else if (subsampling == JPEG_422_STR)

set_subsampling(JPEG_422_COMP);
else if (subsampling == JPEG_420_STR)

set_subsampling(JPEG_420_COMP);
else if (subsampling == JPEG_411_STR)

set_subsampling(JPEG_411_COMP);
}
DBG std::cout << "out open: set_colorspace\n";

jpeg_start_compress(&m_cinfo, TRUE); // start working
DBG std::cout << "out open: start_compress\n";

}
m_next_scanline = 0; // next scanline we’ll write

// Write JPEG comment, if sent an ’ImageDescription’
ParamValue* comment = m_spec.find_attribute("ImageDescription",

TypeDesc::STRING);
if (comment && comment->data()) {

const char** c = (const char**)comment->data();
jpeg_write_marker(&m_cinfo, JPEG_COM, (JOCTET*)*c, strlen(*c) + 1);

}

if (Strutil::iequals(m_spec.get_string_attribute("oiio:ColorSpace"), "sRGB"))
m_spec.attribute("Exif:ColorSpace", 1);

// Write EXIF info
std::vector<char> exif;
// Start the blob with "Exif" and two nulls. That’s how it
// always is in the JPEG files I’ve examined.
exif.push_back(’E’);
exif.push_back(’x’);
exif.push_back(’i’);
exif.push_back(’f’);
exif.push_back(0);
exif.push_back(0);
encode_exif(m_spec, exif);
jpeg_write_marker(&m_cinfo, JPEG_APP0 + 1, (JOCTET*)&exif[0], exif.size());

// Write IPTC IIM metadata tags, if we have anything
std::vector<char> iptc;
encode_iptc_iim(m_spec, iptc);
if (iptc.size()) {

static char photoshop[] = "Photoshop 3.0";
std::vector<char> head(photoshop, photoshop + strlen(photoshop) + 1);
static char _8BIM[] = "8BIM";
head.insert(head.end(), _8BIM, _8BIM + 4);
head.push_back(4); // 0x0404
head.push_back(4);
head.push_back(0); // four bytes of zeroes
head.push_back(0);
head.push_back(0);
head.push_back(0);
head.push_back((char)(iptc.size() >> 8)); // size of block
head.push_back((char)(iptc.size() & 0xff));
iptc.insert(iptc.begin(), head.begin(), head.end());
jpeg_write_marker(&m_cinfo, JPEG_APP0 + 13, (JOCTET*)&iptc[0],

iptc.size());
}

// Write XMP packet, if we have anything
std::string xmp = encode_xmp(m_spec, true);
if (!xmp.empty()) {

static char prefix[] = "http://ns.adobe.com/xap/1.0/";
std::vector<char> block(prefix, prefix + strlen(prefix) + 1);
block.insert(block.end(), xmp.c_str(), xmp.c_str() + xmp.length());
jpeg_write_marker(&m_cinfo, JPEG_APP0 + 1, (JOCTET*)&block[0],

block.size());

OpenImageIO Programmer’s Documentation

5.3. IMAGE WRITERS 99

}

m_spec.set_format(TypeDesc::UINT8); // JPG is only 8 bit

// Write ICC profile, if we have anything
const ParamValue* icc_profile_parameter = m_spec.find_attribute(

ICC_PROFILE_ATTR);
if (icc_profile_parameter != NULL) {

unsigned char* icc_profile
= (unsigned char*)icc_profile_parameter->data();

unsigned int icc_profile_length = icc_profile_parameter->type().size();
if (icc_profile && icc_profile_length) {

/* Calculate the number of markers we’ll need, rounding up of course */
int num_markers = icc_profile_length / MAX_DATA_BYTES_IN_MARKER;
if ((unsigned int)(num_markers * MAX_DATA_BYTES_IN_MARKER)

!= icc_profile_length)
num_markers++;

int curr_marker = 1; /* per spec, count strarts at 1*/
std::vector<unsigned char> profile(MAX_DATA_BYTES_IN_MARKER

+ ICC_HEADER_SIZE);
while (icc_profile_length > 0) {

// length of profile to put in this marker
unsigned int length

= std::min(icc_profile_length,
(unsigned int)MAX_DATA_BYTES_IN_MARKER);

icc_profile_length -= length;
// Write the JPEG marker header (APP2 code and marker length)
strcpy((char*)&profile[0], "ICC_PROFILE");
profile[11] = 0;
profile[12] = curr_marker;
profile[13] = (unsigned char)num_markers;
memcpy(&profile[0] + ICC_HEADER_SIZE,

icc_profile + length * (curr_marker - 1), length);
jpeg_write_marker(&m_cinfo, JPEG_APP0 + 2, &profile[0],

ICC_HEADER_SIZE + length);
curr_marker++;

}
}

}

m_dither = m_spec.get_int_attribute("oiio:dither", 0);

// If user asked for tiles -- which JPEG doesn’t support, emulate it by
// buffering the whole image.
if (m_spec.tile_width && m_spec.tile_height)

m_tilebuffer.resize(m_spec.image_bytes());

return true;
}

void
JpgOutput::resmeta_to_density()
{

int X_density = int(m_spec.get_float_attribute("XResolution"));
int Y_density = int(m_spec.get_float_attribute("YResolution", X_density));
const float aspect = m_spec.get_float_attribute("PixelAspectRatio", 1.0f);
if (aspect != 1.0f && X_density <= 1 && Y_density <= 1) {

// No useful [XY]Resolution, but there is an aspect ratio requested.
// Arbitrarily pick 72 dots per undefined unit, and jigger it to
// honor it as best as we can.
//
// Here’s where things get tricky. By logic and reason, as well as
// the JFIF spec and ITU T.871, the pixel aspect ratio is clearly
// ydensity/xdensity (because aspect is xlength/ylength, and density
// is 1/length). BUT... for reasons lost to history, a number of
// apps get this exactly backwards, and these include PhotoShop,
// Nuke, and RV. So, alas, we must replicate the mistake, or else
// all these common applications will misunderstand the JPEG files
// written by OIIO and vice versa.
Y_density = 72;
X_density = int(Y_density * aspect + 0.5f);
m_spec.attribute("XResolution", float(Y_density * aspect + 0.5f));

OpenImageIO Programmer’s Documentation

100 CHAPTER 5. WRITING IMAGEIO PLUGINS

m_spec.attribute("YResolution", float(Y_density));
}
while (X_density > 65535 || Y_density > 65535) {

// JPEG header can store only UINT16 density values. If we
// overflow that limit, punt and knock it down to <= 16 bits.
X_density /= 2;
Y_density /= 2;

}
m_cinfo.X_density = X_density;
m_cinfo.Y_density = Y_density;

}

bool
JpgOutput::write_scanline(int y, int z, TypeDesc format, const void* data,

stride_t xstride)
{

y -= m_spec.y;
if (y != m_next_scanline) {

error("Attempt to write scanlines out of order to %s",
m_filename.c_str());

return false;
}
if (y >= (int)m_cinfo.image_height) {

error("Attempt to write too many scanlines to %s", m_filename.c_str());
return false;

}
assert(y == (int)m_cinfo.next_scanline);

// Here’s where we do the dirty work of conforming to JFIF’s limitation
// of 1 or 3 channels, by temporarily doctoring the spec so that
// to_native_scanline properly contiguizes the first 1 or 3 channels,
// then we restore it. The call to to_native_scanline below needs
// m_spec.nchannels to be set to the true number of channels we’re
// writing, or it won’t arrange the data properly. But if we doctored
// m_spec.nchannels permanently, then subsequent calls to write_scanline
// (including any surrounding call to write_image) with
// stride=AutoStride would screw up the strides since the user’s stride
// is actually not 1 or 3 channels.
m_spec.auto_stride(xstride, format, m_spec.nchannels);
int save_nchannels = m_spec.nchannels;
m_spec.nchannels = m_cinfo.input_components;

data = to_native_scanline(format, data, xstride, m_scratch, m_dither, y, z);
m_spec.nchannels = save_nchannels;

jpeg_write_scanlines(&m_cinfo, (JSAMPLE**)&data, 1);
++m_next_scanline;

return true;
}

bool
JpgOutput::write_tile(int x, int y, int z, TypeDesc format, const void* data,

stride_t xstride, stride_t ystride, stride_t zstride)
{

// Emulate tiles by buffering the whole image
return copy_tile_to_image_buffer(x, y, z, format, data, xstride, ystride,

zstride, &m_tilebuffer[0]);
}

bool
JpgOutput::close()
{

if (!m_fd) { // Already closed
return true;
init();

}

OpenImageIO Programmer’s Documentation

5.3. IMAGE WRITERS 101

bool ok = true;

if (m_spec.tile_width) {
// We’ve been emulating tiles; now dump as scanlines.
ASSERT(m_tilebuffer.size());
ok &= write_scanlines(m_spec.y, m_spec.y + m_spec.height, 0,

m_spec.format, &m_tilebuffer[0]);
std::vector<unsigned char>().swap(m_tilebuffer); // free it

}

if (m_next_scanline < spec().height && m_copy_coeffs == NULL) {
// But if we’ve only written some scanlines, write the rest to avoid
// errors
std::vector<char> buf(spec().scanline_bytes(), 0);
char* data = &buf[0];
while (m_next_scanline < spec().height) {

jpeg_write_scanlines(&m_cinfo, (JSAMPLE**)&data, 1);
// DBG std::cout << "out close: write_scanlines\n";
++m_next_scanline;

}
}

if (m_next_scanline >= spec().height || m_copy_coeffs) {
DBG std::cout << "out close: about to finish_compress\n";
jpeg_finish_compress(&m_cinfo);
DBG std::cout << "out close: finish_compress\n";

} else {
DBG std::cout << "out close: about to abort_compress\n";
jpeg_abort_compress(&m_cinfo);
DBG std::cout << "out close: abort_compress\n";

}
DBG std::cout << "out close: about to destroy_compress\n";
jpeg_destroy_compress(&m_cinfo);
fclose(m_fd);
m_fd = NULL;
init();

return ok;
}

bool
JpgOutput::copy_image(ImageInput* in)
{

if (in && !strcmp(in->format_name(), "jpeg")) {
JpgInput* jpg_in = dynamic_cast<JpgInput*>(in);
std::string in_name = jpg_in->filename();
DBG std::cout << "JPG copy_image from " << in_name << "\n";

// Save the original input spec and close it
ImageSpec orig_in_spec = in->spec();
in->close();
DBG std::cout << "Closed old file\n";

// Re-open the input spec, with special request that the JpgInput
// will recognize as a request to merely open, but not start the
// decompressor.
ImageSpec in_spec;
ImageSpec config_spec;
config_spec.attribute("_jpeg:raw", 1);
in->open(in_name, in_spec, config_spec);

// Re-open the output
std::string out_name = m_filename;
ImageSpec orig_out_spec = spec();
close();
m_copy_coeffs = (jvirt_barray_ptr*)jpg_in->coeffs();
m_copy_decompressor = &jpg_in->m_cinfo;
open(out_name, orig_out_spec);

// Strangeness -- the write_coefficients somehow sets things up
// so that certain writes only happen in close(), which MUST
// happen while the input file is still open. So we go ahead

OpenImageIO Programmer’s Documentation

102 CHAPTER 5. WRITING IMAGEIO PLUGINS

// and close() now, so that the caller of copy_image() doesn’t
// close the input file first and then wonder why they crashed.
close();

return true;
}

return ImageOutput::copy_image(in);
}

OIIO_PLUGIN_NAMESPACE_END

5.4 Tips and Conventions

OpenImageIO’s main goal is to hide all the pesky details of individual file formats from the
client application. This inevitably leads to various mismatches between a file format’s true ca-
pabilities and requests that may be made through the OpenImageIO APIs. This section outlines
conventions, tips, and rules of thumb that we recommend for image file support.

Readers

• If the file format stores images in a non-spectral color space (for example, YUV), the
reader should automatically convert to RGB to pass through the OIIO APIs. In such a
case, the reader should signal the file’s true color space via a "Foo:colorspace" attribute
in the ImageSpec.

• “Palette” images should be automatically converted by the reader to RGB.

• If the file supports thumbnail images in its header, the reader should store the thumbnail
dimensions in attributes "thumbnail width", "thumbnail height", and "thumbnail -
nchannels" (all of which should be int), and the thumbnail pixels themselves in "thumbnail -
image" as an array of channel values (the array length is the total number of channel
samples in the thumbnail).

Writers

The overall rule of thumb is: try to always “succeed” at writing the file, outputting the closest
approximation of the user’s data as possible. But it is permissible to fail the open() call if it is
clearly nonsensical or there is no possible way to output a decent approximation of the user’s
data. Some tips:

• If the client application requests a data format not directly supported by the file type,
silently write the supported data format that will result in the least precision or range loss.

• It is customary to fail a call to open() if the ImageSpec requested a number of color
channels plainly not supported by the file format. As an exception to this rule, it is
permissible for a file format that does not support alpha channels to silently drop the
fourth (alpha) channel of a 4-channel output request.

OpenImageIO Programmer’s Documentation

5.5. BUILDING IMAGEIO PLUGINS 103

• If the app requests a "Compression" not supported by the file format, you may choose
as a default any lossless compression supported. Do not use a lossy compression unless
you are fairly certain that the app wanted a lossy compression.

• If the file format is able to store images in a non-spectral color space (for example, YUV),
the writer may accept a "Foo:colorspace" attribute in the ImageSpec as a request to
automatically convert and store the data in that format (but it will always be passed as
RGB through the OIIO APIs).

• If the file format can support thumbnail images in its header, and the ImageSpec contain
attributes "thumbnail width", "thumbnail height", "thumbnail nchannels", and
"thumbnail image", the writer should attempt to store the thumbnail if possible.

5.5 Building ImageIO Plugins

FIXME – spell out how to compile and link plugins on each of the major platforms.

OpenImageIO Programmer’s Documentation

104 CHAPTER 5. WRITING IMAGEIO PLUGINS

OpenImageIO Programmer’s Documentation

6 Bundled ImageIO Plugins

This chapter lists all the image format plugins that are bundled with OpenImageIO. For each
plugin, we delineate any limitations, custom attributes, etc. The plugins are listed alphabetically
by format name.

6.1 BMP

BMP is a bitmap image file format used mostly on Windows systems. BMP files use the file
extension .bmp.

BMP is not a nice format for high-quality or high-performance images. It only supports
unsigned integer 1-, 2-, 4-, and 8- bits per channel; only grayscale, RGB, and RGBA; does not
support MIPmaps, multiimage, or tiles.

ImageSpec Attribute Type BMP header data or explanation
"XResolution" float hres
"YResolution" float vres
"ResolutionUnit" string always "m" (pixels per meter)

6.2 Cineon

Cineon is an image file format developed by Kodak that is commonly used for scanned motion
picture film and digital intermediates. Cineon files use the file extension .cin.

6.3 DDS

DDS (Direct Draw Surface) is an image file format designed by Microsoft for use in Direct3D
graphics. DDS files use the extension .dds.

DDS is an awful format, with several compression modes that are all so lossy as to be
completely useless for high-end graphics. Nevertheless, they are widely used in games and
graphics hardware directly supports these compression modes. Alas.

OpenImageIO currently only supports reading DDS files, not writing them.

105

106 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

ImageSpec Attribute Type DDS header data or explanation
"compression" string compression type
"oiio:BitsPerSample" int bits per sample
"textureformat" string Set correctly to one of "Plain Texture", "Volume

Texture", or "CubeFace Environment".
"texturetype" string Set correctly to one of "Plain Texture", "Volume

Texture", or "Environment".
"dds:CubeMapSides" string For environment maps, which cube faces are present (e.g.,

"+x -x +y -y" if x & y faces are present, but not z).

6.4 DICOM

DICOM (Digital Imaging and Communications in Medicine) is the standard format used for
medical images. DICOM files usually have the extension .dcm.

OpenImageIO 2.0 currently only supports reading DICOM files, not writing them.

ImageSpec Attribute Type DICOM header data or explanation
"oiio:BitsPerSample" int bits per sample
"dicom:*" DICOM header information and metadata is currently all

preceded by the dicom: prefix.

6.5 DPX

DPX (Digital Picture Exchange) is an image file format used for motion picture film scanning,
output, and digital intermediates. DPX files use the file extension .dpx.

Configuration settings for DPX input

When opening a DPX ImageInput with a configuration (see Section 4.3), the following special
configuration options are supported:

Configuration attribute Type Meaning
"oiio:RawColor" int If nonzero, reading images with non-RGB color

models (such as YCbCr) will return unaltered
pixel values (versus the default OIIO behavior of
automatically converting to RGB).

Configuration settings for DPX output

When opening a DPX ImageOutput, the following special metadata tokens control aspects of
the writing itself:

OpenImageIO Programmer’s Documentation

6.5. DPX 107

Output attribute Type Meaning
"oiio:RawColor" int If nonzero, writing images with non-RGB color

models (such as YCbCr) will keep unaltered
pixel values (versus the default OIIO behavior of
automatically converting from RGB to the desig-
nated color space as the pixels are written).

DPX Attributes

OIIO Attribute Type DPX header data or explanation
"ImageDescription" string Description of image element
"Copyright" string Copyright statement
"Software" string Creator
"DocumentName" string Project name
"DateTime" string Creation date/time
"Orientation" int the orientation of the DPX image data (see

B.2)
"compression" string The compression type
"PixelAspectRatio" float pixel aspect ratio
"oiio:BitsPerSample" int the true bits per sample of the DPX file.
"oiio:Endian" string When writing, force a particular endianness

for the output file ("little" or "big")
"smpte:TimeCode" int[2] SMPTE time code (vecsemantics will be

marked as TIMECODE)
"smpte:KeyCode" int[7] SMPTE key code (vecsemantics will be

marked as KEYCODE)
"dpx:Transfer" string Transfer characteristic
"dpx:Colorimetric" string Colorimetric specification
"dpx:ImageDescriptor" string ImageDescriptor
"dpx:Packing" string Image packing method
"dpx:TimeCode" int SMPTE time code
"dpx:UserBits" int SMPTE user bits
"dpx:SourceDateTime" string source time and date
"dpx:FilmEdgeCode" string FilmEdgeCode
"dpx:Signal" string Signal ("Undefined", "NTSC", "PAL", etc.)
"dpx:UserData" UCHAR[*] User data (stored in an array whose length is

whatever it was in the DPX file)
"dpx:EncryptKey" int Encryption key (-1 is not encrypted)
"dpx:DittoKey" int Ditto (0 = same as previous frame, 1 = new)
"dpx:LowData" int reference low data code value
"dpx:LowQuantity" float reference low quantity
"dpx:HighData" int reference high data code value
"dpx:HighQuantity" float reference high quantity
"dpx:XScannedSize" float X scanned size
"dpx:YScannedSize" float Y scanned size

OpenImageIO Programmer’s Documentation

108 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

"dpx:FramePosition" int frame position in sequence
"dpx:SequenceLength" int sequence length (frames)
"dpx:HeldCount" int held count (1 = default)
"dpx:FrameRate" float frame rate of original (frames/s)
"dpx:ShutterAngle" float shutter angle of camera (deg)
"dpx:Version" string version of header format
"dpx:Format" string format (e.g., "Academy")
"dpx:FrameId" string frame identification
"dpx:SlateInfo" string slate information
"dpx:SourceImageFileName" string source image filename
"dpx:InputDevice" string input device name
"dpx:InputDeviceSerialNumber" string input device serial number
"dpx:Interlace" int interlace (0 = noninterlace, 1 = 2:1 interlace)
"dpx:FieldNumber" int field number
"dpx:HorizontalSampleRate" float horizontal sampling rate (Hz)
"dpx:VerticalSampleRate" float vertical sampling rate (Hz)
"dpx:TemporalFrameRate" float temporal sampling rate (Hz)
"dpx:TimeOffset" float time offset from sync to first pixel (ms)
"dpx:BlackLevel" float black level code value
"dpx:BlackGain" float black gain
"dpx:BreakPoint" float breakpoint
"dpx:WhiteLevel" float reference white level code value
"dpx:IntegrationTimes" float integration time (s)
"dpx:EndOfLinePadding" int Padded bytes at the end of each line
"dpx:EndOfImagePadding" int Padded bytes at the end of each image

6.6 Field3D

Field3d is an open-source volume data file format. Field3d files commonly use the extension
.f3d. The official Field3D site is: https://github.com/imageworks/Field3D Currently,
OpenImageIO only reads Field3d files, and does not write them.

Fields are comprised of multiple layers (which appear to OpenImageIO as subimages). Each
layer/subimage may have a different name, resolution, and coordinate mapping. Layers may be
scalar (1 channel) or vector (3 channel) fields, and the data may be half, float, or double.

OpenImageIO always reports Field3D files as tiled. If the Field3d file has a “block size”,
the block size will be reported as the tile size. Otherwise, the tile size will be the size of the
entire volume.

OpenImageIO Programmer’s Documentation

https://github.com/imageworks/Field3D

6.7. FITS 109

ImageSpec Attribute Type Field3d header data or explanation
"ImageDescription" string unique layer name
"oiio:subimagename" string unique layer name
"field3d:partition" string the partition name
"field3d:layer" string the layer (a.k.a. attribute) name
"field3d:fieldtype" string field type, one of: "dense", "sparse", or "MAC"
"field3d:mapping" string the coordinate mapping type
"field3d:localtoworld" matrix of

doubles
if a matrixMapping, the local-to-world transfor-
mation matrix

"worldtolocal" matrix if a matrixMapping, the world-to-local coordinate
mapping

The “unique layer name” is generally the partition name + “:” + attribute name (exam-
ple: "defaultfield:density"), with the following exceptions: (1) if the partition and at-
tribute names are identical, just one is used rather than it being pointlessly concatenated (e.g.,
"density", not "density:density"); (2) if there are mutiple partitions + attribute combina-
tions with identical names in the same file, “.number” will be added after the partition name for
subsequent layers (e.g., "default:density", "default.2:density", "default.3:density").

6.7 FITS

FITS (Flexible Image Transport System) is an image file format used for scientific applications,
particularly professional astronomy. FITS files use the file extension .fits. Official FITS specs
and other info may be found at: http://fits.gsfc.nasa.gov/

OpenImageIO supports multiple images in FITS files, and supports the following pixel data
types: UINT8, UINT16, UINT32, FLOAT, DOUBLE.

FITS files can store various kinds of arbitrary data arrays, but OpenImageIO’s support of
FITS is mostly limited using FITS for image storage. Currently, OpenImageIO only supports
2D FITS data (images), not 3D (volume) data, nor 1-D or higher-dimensional arrays.

ImageSpec Attribute Type FITS header data or explanation
"Orientation" int derived from FITS “ORIENTAT” field.
"DateTime" string derived from the FITS “DATE” field.
"Comment" string FITS “COMMENT” (*)
"History" string FITS “HISTORY” (*)
"Hierarch" string FITS “HIERARCH” (*)

other all other FITS keywords will be added to the ImageSpec
as arbitrary named metadata.

(*) Note: If the file contains multiple COMMENT, HISTORY, or HIERARCH fields, their text
will be appended to form a single attribute (of each) in OpenImageIO’s ImageSpec.

OpenImageIO Programmer’s Documentation

http://fits.gsfc.nasa.gov/

110 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

6.8 GIF

GIF (Graphics Interchange Format) is an image file format developed by CompuServe in 1987.
Nowadays it is widely used to display basic animations despite its technical limitations.

ImageSpec Attribute Type GIF header data or explanation
"gif:Interlacing" int Specifies if image is interlaced (0 or 1).
"FramesPerSecond" int[2] (rational) Frames per second
"oiio:Movie" int If nonzero, indicates that it’s an animated GIF.
"gif:LoopCount" int Number of times the animation should be

played (0–65535, 0 stands for infinity).
"ImageDescription" string The GIF comment field.

Limitations

• GIF only supports 3-channel (RGB) images and at most 8 bits per channel.

• Each subimage can include its own palette or use global palette. Palettes contain up to 256
colors of which one can be used as background color. It is then emulated with additional
Alpha channel by OpenImageIO’s reader.

6.9 HDR/RGBE

HDR (High Dynamic Range), also known as RGBE (rgb with extended range), is a simple
format developed for the Radiance renderer to store high dynamic range images. HDR/RGBE
files commonly use the file extensions .hdr. The format is described in this section of the
Radiance documentation: http://radsite.lbl.gov/radiance/refer/filefmts.pdf

RGBE does not support tiles, multiple subimages, mipmapping, true half or float pixel
values, or arbitrary metadata. Only RGB (3 channel) files are supported.

RGBE became important because it was developed at a time when no standard file formats
supported high dynamic range, and is still used for many legacy applications and to distribute
HDR environment maps. But newer formats with native HDR support, such as OpenEXR, are
vastly superior and should be preferred except when legacy file access is required.

ImageSpec Attribute Type RGBE header data or explanation
"Orientation" int encodes the orientation (see Section B.2)
"oiio:ColorSpace" string Color space (see Section B.3).
"oiio:Gamma" float the gamma correction specified in the RGBE header

(if it’s gamma corrected).

OpenImageIO Programmer’s Documentation

http://radsite.lbl.gov/radiance/refer/filefmts.pdf

6.10. ICO 111

6.10 ICO

ICO is an image file format used for small images (usually icons) on Windows. ICO files use
the file extension .ico.

ImageSpec Attribute Type ICO header data or explanation
"oiio:BitsPerSample" int the true bits per sample in the ICO file.
"ico:PNG" int if nonzero, will cause the ICO to be written out using

PNG format.

Limitations

• ICO only supports UINT8 and UINT16 formats; all output images will be silently con-
verted to one of these.

• ICO only supports small images, up to 256× 256. Requests to write larger images will
fail their open() call.

6.11 IFF

IFF files are used by Autodesk Maya and use the file extension .iff.

OIIO Attribute Type DPX header data or explanation
"Artist" string The IFF “author”
"DateTime" string Creation date/time
"compression" string The compression type
"oiio:BitsPerSample" int the true bits per sample of the IFF file.

6.12 JPEG

JPEG (Joint Photographic Experts Group), or more properly the JFIF file format containing
JPEG-compressed pixel data, is one of the most popular file formats on the Internet, with ap-
plications, and from digital cameras, scanners, and other image acquisition devices. JPEG/JFIF
files usually have the file extension .jpg, .jpe, .jpeg, .jif, .jfif, or .jfi. The JFIF file
format is described by http://www.w3.org/Graphics/JPEG/jfif3.pdf.

Although we strive to support JPEG/JFIF because it is so widely used, we acknowledge
that it is a poor format for high-end work: it supports only 1- and 3-channel images, has no
support for alpha channels, no support for high dynamic range or even 16 bit integer pixel
data, by convention stores sRGB data and is ill-suited to linear color spaces, and does not
support multiple subimages or MIPmap levels. There are newer formats also blessed by the
Joint Photographic Experts Group that attempt to address some of these issues, such as JPEG-
2000, but these do not have anywhere near the acceptance of the original JPEG/JFIF format.

OpenImageIO Programmer’s Documentation

http://www.w3.org/Graphics/JPEG/jfif3.pdf

112 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

ImageSpec Attribute Type JPEG header data or explanation
"ImageDescription" string the JPEG Comment field
"Orientation" int the image orientation

"XResolution",
"YResolution",
"ResolutionUnit"

The resolution and units from the Exif header

"CompressionQuality" int Quality of compression (1-100)

"ICCProfile" uint8[] The ICC color profile

"jpeg:subsampling" string Describes the chroma subsampling, e.g., "4:2:0"
(the default), "4:4:4", "4:2:2", "4:2:1".

Exif, IPTC, XMP, GPS Extensive Exif, IPTC, XMP, and GPS data are sup-
ported by the reader/writer, and you should assume
that nearly everything described Appendix B is prop-
erly translated when using JPEG files.

Limitations

• JPEG/JFIF only supports 1- (grayscale) and 3-channel (RGB) images. As a special case,
OpenImageIO’s JPEG writer will accept n-channel image data, but will only output the
first 3 channels (if n ≥ 3) or the first channel (if n ≤ 2), silently drop any extra channels
from the output.

• Since JPEG/JFIF only supports 8 bits per channel, OpenImageIO’s JPEG/JFIF writer will
silently convert to UINT8 upon output, regardless of requests to the contrary from the
calling program.

• OpenImageIO’s JPEG/JFIF reader and writer always operate in scanline mode and do not
support tiled image input or output.

6.13 JPEG-2000

JPEG-2000 is a successor to the popular JPEG/JFIF format, that supports better (wavelet) com-
pression and a number of other extensions. It’s geared toward photography. JPEG-2000 files
use the file extensions .jp2 or .j2k. The official JPEG-2000 format specification and other
helpful info may be found at http://www.jpeg.org/JPEG2000.htm.

JPEG-2000 is not yet widely used, so OpenImageIO’s support of it is preliminary. In par-
ticular, we are not yet very good at handling the metadata robustly.

ImageSpec Attribute Type JPEG-2000 header data or explanation
"jpeg2000:streamformat" string specifies the JPEG-2000 stream format ("none"

or "jpc")

OpenImageIO Programmer’s Documentation

http://www.jpeg.org/JPEG2000.htm

6.14. MOVIE FORMATS (USING FFMPEG) 113

6.14 Movie formats (using ffmpeg)

The ffmpeg-based reader is capable of reading the individual frames from a variety of movie
file formats, including:

Format Extensions

AVI .avi
QuickTime .qt, .mov
MPEG-4 .mp4, .m4a, .m4v
3GPP files .3gp, .3g2
Motion JPEG-2000 .mj2
Apple M4V .m4v
MPEG-1/MPEG-2 .mpg

Currently, these files may only be read. Write support may be added in a future release.
Also, currently, these files simply look to OIIO like simple multi-image files and not much
support is given to the fact that they are technically movies (for example, there is no support for
reading audio information).

Some special attributes are used for movie files:

OIIO Attribute Type Explanation
"oiio:Movie" int Nonzero value for movie files
"FramesPerSecond" int[2] (rational) Frames per second

6.15 Null format

The null reader/writer is a mock-up that does not perform any actual I/O. The reader just
returns constant-colored pixels, and the writer just returns directly without saving any data.
This has several uses:

• Benchmarking, if you want to have OIIO’s input or output truly take as close to no time
whatsoever.

• “Dry run” of applications where you don’t want it to produce any real output (akin to a
Unix command that you redirect output to /dev/null).

• Make “fake” input that looks like a file, but the file doesn’t exist (if you are happy with
constant-colored pixels).

The filename allows a REST-ful syntax, where you can append modifiers that specify things
like resolution (of the non-existent file), etc. For example,

foo.null?RES=640x480&CHANNELS=3

would specify a null file with resolution 640x480 and 3 channels. Token/value pairs accepted
are:

OpenImageIO Programmer’s Documentation

114 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

RES=1024x1024 Set resolution (3D example: 256x256x100)
CHANNELS=4 Set number of channels
TILES=64x64 Makes it look like a tiled image with tile size
TYPE=uint8 Set the pixel data type
PIXEL=r,g,b,... Set pixel values (comma separates channel values)
TEX=1 Make it look like a full MIP-mapped texture
attrib=value Anything else will set metadata

6.16 OpenEXR

OpenEXR is an image file format developed by Industrial Light & Magic, and subsequently
open-sourced. OpenEXR’s strengths include support of high dynamic range imagery (half and
float pixels), tiled images, explicit support of MIPmaps and cubic environment maps, arbitrary
metadata, and arbitrary numbers of color channels. OpenEXR files use the file extension .exr.
The official OpenEXR site is http://www.openexr.com/.

ImageSpec Attribute Type OpenEXR header data or explanation
width, height, x, y dataWindow

full width, full height,
full x, full y

displayWindow.

"worldtocamera" matrix worldToCamera
"worldtoscreen" matrix worldToNDC
"ImageDescription" string comments
"Copyright" string owner
"DateTime" string capDate
"PixelAspectRatio" float pixelAspectRatio
"ExposureTime" float expTime
"FNumber" float aperture
"compression" string one of: "none", "rle", "zip", "zips",

"piz", "pxr24", "b44", "b44a", "dwaa", or
"dwab". If the writer receives a request for
a compression type it does not recognize or
is not supported by the version of OpenEXR
on the system, it will use "zip" by default.
For "dwaa" and "dwab", the dwaCompres-
sionLevel may be optionally appended to the
compression name after a colon, like this:
"dwaa:200".

OpenImageIO Programmer’s Documentation

http://www.openexr.com/

6.17. OPENVDB 115

"textureformat" string "Plain Texture" for MIP-mapped
OpenEXR files, "CubeFace Environment"
or "Latlong Environment" for OpenEXR
environment maps. Non-environment non-
MIP-mapped OpenEXR files will not set this
attribute.

"wrapmodes" string wrapmodes
"FramesPerSecond" int[2] Frames per second playback rate (vecseman-

tics will be marked as RATIONAL)
"captureRate" int[2] Frames per second capture rate (vecsemantics

will be marked as RATIONAL)
"smpte:TimeCode" int[2] SMPTE time code (vecsemantics will be

marked as TIMECODE)
"smpte:KeyCode" int[7] SMPTE key code (vecsemantics will be

marked as KEYCODE)
"openexr:lineOrder" string OpenEXR lineOrder attribut: "increasingY",

"randomY", or "decreasingY".
"openexr:roundingmode" int the MIPmap rounding mode of the file.
"openexr:dwaCompressionLevel" float compression level for dwaa or dwab compres-

sion (default: 45.0).
other All other attributes will be added to the

ImageSpec by their name and apparent type.

OpenEXR input and output both support the “custom I/O” feature via the special "oiio:ioproxy"
attributes (see Sections 3.2.12 and 4.2.8).

A note on channel names

The underlying OpenEXR library (libIlmImf) always saves channels into lexicographic order,
so the channel order on disk (and thus when read!) will NOT match the order when the image
was created.

But in order to adhere to OIIO’s convention that RGBAZ will always be the first channels
(if they exist), OIIO’s OpenEXR reader will automatically reorder just those channels to appear
at the front and in that order. All other channel names will remain in their relative order as
presented to OIIO by libIlmImf.

Limitations

• The OpenEXR format only supports HALF, FLOAT, and UINT32 pixel data. OpenIm-
ageIO’s OpenEXR writer will silently convert data in formats (including the common
UINT8 and UINT16 cases) to HALF data for output.

OpenImageIO Programmer’s Documentation

116 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

6.17 OpenVDB

NEW!
OpenVDB is an open-source volume data file format. OpenVDB files commonly use the ex-
tension .vdb. The official OpenVDB site is: http://www.openvdb.org/ Currently, OpenIm-
ageIO only reads OpenVDB files, and does not write them.

Volumes are comprised of multiple layers (which appear to OpenImageIO as subimages).
Each layer/subimage may have a different name, resolution, and coordinate mapping. Layers
may be scalar (1 channel) or vector (3 channel) fields, and the voxel data are always float.
OpenVDB files always report as tiled, using the leaf dimension size.

ImageSpec Attribute Type Field3d header data or explanation
"ImageDescription" string unique layer name
"oiio:subimagename" string unique layer name
"openvdb:indextoworld" matrix of

doubles
conversion of pixel index to world space coordi-
nates.

"openvdb:worldtoindex" matrix of
doubles

conversion of world space coordinates to pixel in-
dex.

"worldtolocal" matrix the world-to-local coordinate mapping.

6.18 PNG

PNG (Portable Network Graphics) is an image file format developed by the open source com-
munity as an alternative to the GIF, after Unisys started enforcing patents allegedly covering
techniques necessary to use GIF. PNG files use the file extension .png.

ImageSpec Attribute Type PNG header data or explanation
"ImageDescription" string Description
"Artist" string Author
"DocumentName" string Title
"DateTime" string the timestamp in the PNG header
"PixelAspectRatio" float pixel aspect ratio
"XResolution"
"YResolution"
"ResolutionUnit"

resolution and units from the PNG header.

"oiio:ColorSpace" string Color space (see Section B.3).
"oiio:Gamma" float the gamma correction value (if specified).
"ICCProfile" uint8[] The ICC color profile

PNG output supports the “custom I/O” feature via the special "oiio:ioproxy" attributes
(see Section 3.2.12).

Limitations

• PNG stupidly specifies that any alpha channel is “unassociated” (i.e., that the color chan-
nels are not “premultiplied” by alpha). This is a disaster, since it results in bad loss of

OpenImageIO Programmer’s Documentation

http://www.openvdb.org/

6.19. PNM / NETPBM 117

precision for alpha image compositing, and even makes it impossible to properly repre-
sent certain additive glows and other desirable pixel values. OpenImageIO automatically
associates alpha (i.e., multiplies colors by alpha) upon input and deassociates alpha (di-
vides colors by alpha) upon output in order to properly conform to the OIIO convention
(and common sense) that all pixel values passed through the OIIO APIs should use asso-
ciated alpha.

• PNG only supports UINT8 and UINT16 output; other requested formats will be automat-
ically converted to one of these.

6.19 PNM / Netpbm

The Netpbm project, a.k.a. PNM (portable “any” map) defines PBM, PGM, and PPM (portable
bitmap, portable graymap, portable pixmap) files. Without loss of generality, we will refer to
these all collectively as “PNM.” These files have extensions .pbm, .pgm, and .ppm and custom-
arily correspond to bi-level bitmaps, 1-channel grayscale, and 3-channel RGB files, respectively,
or .pnm for those who reject the nonsense about naming the files depending on the number of
channels and bitdepth.

PNM files are not much good for anything, but because of their historical significance and
extreme simplicity (that causes many “amateur” programs to write images in these formats),
OpenImageIO supports them. PNM files do not support floating point images, anything other
than 1 or 3 channels, no tiles, no multi-image, no MIPmapping. It’s not a smart choice unless
you are sending your images back to the 1980’s via a time machine.

ImageSpec Attribute Type PNG header data or explanation
"oiio:BitsPerSample" int the true bits per sample of the file (1 for true PBM files,

even though OIIO will report the format as UINT8).
"pnm:binary" int nonzero if the file itself used the PNM binary format, 0

if it used ASCII. The PNM writer honors this attribute in
the ImageSpec to determine whether to write an ASCII or
binary file.

6.20 PSD

PSD is the file format used for storing Adobe PhotoShop images. OpenImageIO provides lim-
ited read abilities for PSD, but not currently the ability to write PSD files.

Configuration settings for PSD input

When opening an ImageInput with a configuration (see Section 4.3), the following special
configuration options are supported:

OpenImageIO Programmer’s Documentation

118 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

Configuration attribute Type Meaning
"oiio:RawColor" int If nonzero, reading images with non-RGB color

models (such as CMYK or YCbCr) will return
unaltered raw pixel values (versus the default
OIIO behavior of automatically converting to
RGB).

Currently, the PSD format reader supports color modes RGB, CMYK, multichannel, grayscale,
indexed, and bitmap. It does NOT currenty support Lab or duotone modes.

6.21 Ptex

Ptex is a special per-face texture format developed by Walt Disney Feature Animation. The
format and software to read/write it are open source, and available from http://ptex.us/.
Ptex files commonly use the file extension .ptex.

OpenImageIO’s support of Ptex is still incomplete. We can read pixels from Ptex files, but
the TextureSystem doesn’t properly filter across face boundaries when using it as a texture.
OpenImageIO currently does not write Ptex files at all.

ImageSpec Attribute Type Ptex header data or explanation
"ptex:meshType" string the mesh type, either "triangle" or "quad".
"ptex:hasEdits" int nonzero if the Ptex file has edits.
"wrapmode" string the wrap mode as specified by the Ptex file.
other Any other arbitrary metadata in the Ptex file will

be stored directly as attributes in the ImageSpec.

6.22 RAW digital camera files

A variety of digital camera “raw” formats are supported via this plugin that is based on the
LibRaw library (http://www.libraw.org/).

Configuration settings for RAW input

When opening an ImageInput with a configuration (see Section 4.3), the following special
configuration options are supported:

OpenImageIO Programmer’s Documentation

http://ptex.us/

6.22. RAW DIGITAL CAMERA FILES 119

Configuration attribute Type Meaning
"raw:auto bright" int If nonzero, will use libraw’s exposure correction.

(Default: 0)
"raw:use camera wb" int If 1, use libraw’s camera white balance adjust-

ment. (Default: 1)
"raw:use camera matrix" int Whether to use the embedded color profile, if it’s

present: 0 = never, 1 (default) = only for DNG
files, 3 = always.

"raw:adjust maximum thr" float If nonzero, auto-adjusting maximum value. (De-
fault:0.0)

"raw:user sat" int If nonzero, sets the camera maximum value that
will be normalized to appear saturated. (Default:
0)

"raw:aber" float[2] Red and blue scale factors for chromatic aber-
ration correction when decoding the raw image.
The default (1,1) means to perform no correction.
This is an overall spatial scale, sensible values
will be very close to 1.0.

"raw:ColorSpace" string Which color primaries to use: "raw", "sRGB",
"Adobe", "Wide", "ProPhoto", "ACES", "XYZ".
(Default: "sRGB")

"raw:Exposure" float Amount of exposure before de-mosaicing, from
0.25 (2 stop darken) to 8 (3 stop brighten). (De-
fault: 0, meaning no correction.)

"raw:Demosaic" string Force a demosaicing algorithm: "linear",
"VNG", "PPG", "AHD" (default), "DCB",
"AHD-Mod", "AFD", "VCD", "Mixed", "LMMSE",
"AMaZE", "DHT", "AAHD", "none".

"raw:HighlightMode" int Set libraw highlight mode processing: 0 = clip, 1
= unclip, 2 = blend, 3+ = rebuild. (Default: 0.)

OpenImageIO Programmer’s Documentation

120 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

6.23 RLA

RLA (Run-Length encoded, version A) is an early CGI renderer output format, originating from
Wavefront Advanced Visualizer and used primarily by software developed at Wavefront. RLA
files commonly use the file extension .rla.

ImageSpec Attribute Type RLA header data or explanation
width, height, x, y int RLA “active/viewable” window.

full width, full height,
full x, full y

int RLA “full” window.

"rla:FrameNumber" int frame sequence number.
"rla:Revision" int file format revision number, currently

"0xFFFE".
"rla:JobNumber" int job number ID of the file.
"rla:FieldRendered" int whether the image is a field-rendered (inter-

laced) one ("0" for false, non-zero for true).
"rla:FileName" string name under which the file was orignally saved.
"ImageDescription" string RLA “Description” of the image.
"Software" string name of software used to save the image.
"HostComputer" string name of machine used to save the image.
"Artist" string RLA “UserName”: logon name of user who

saved the image.
"rla:Aspect" string aspect format description string.
"rla:ColorChannel" string textual description of color channel data for-

mat (usually "rgb").
"rla:Time" string description (format not standardized) of

amount of time spent on creating the image.
"rla:Filter" string name of post-processing filter applied to the

image.
"rla:AuxData" string textual description of auxiliary channel data

format.
"rla:AspectRatio" float image aspect ratio.
"rla:RedChroma" vec2 or vec3

of floats
red point XY (vec2) or XYZ (vec3) coordi-
nates.

"rla:GreenChroma" vec2 or vec3
of floats

green point XY (vec2) or XYZ (vec3) coordi-
nates.

"rla:BlueChroma" vec2 or vec3
of floats

blue point XY (vec2) or XYZ (vec3) coordi-
nates.

"rla:WhitePoint" vec2 or vec3
of floats

white point XY (vec2) or XYZ (vec3) coordi-
nates.

"oiio:ColorSpace" string Color space (see Section B.3).
"oiio:Gamma" float the gamma correction value (if specified).

OpenImageIO Programmer’s Documentation

6.24. SGI 121

Limitations

• OpenImageIO will only write a single image to each file, multiple subimages are not
supported by the writer (but are supported by the reader).

6.24 SGI

The SGI image format was a simple raster format used long ago on SGI machines. SGI files
use the file extensions sgi, rgb, rgba, "bw", "int", and "inta".

The SGI format is sometimes used for legacy apps, but has little merit otherwise: no support
for tiles, no MIPmaps, no multi-subimage, only 8- and 16-bit integer pixels (no floating point),
only 1-4 channels.

ImageSpec Attribute Type SGI header data or explanation
"ImageDescription" string image name
"Compression" string thee compression of the SGI file ("rle", if RLE

compression is used).

6.25 Softimage PIC

Softimage PIC is an image file format used by the SoftImage 3D application, and some other
programs that needed to be compatible with it. Softimage files use the file extension .pic.

The Softimage PIC format is sometimes used for legacy apps, but has little merit otherwise,
so currently OpenImageIO only reads Softimage files and is unable to write them.

ImageSpec Attribute Type PIC header data or explanation
"ImageDescription" string comment
"oiio:BitsPerSample" int the true bits per sample in the PIC file.

6.26 Targa

Targa (a.k.a. Truevision TGA) is an image file format with little merit except that it is very
simple and is used by many legacy applications. Targa files use the file extension .tga, or,
much more rarely, .tpic. The official Targa format specification may be found at
http://www.dca.fee.unicamp.br/˜martino/disciplinas/ea978/tgaffs.pdf.

OpenImageIO Programmer’s Documentation

http://www.dca.fee.unicamp.br/~martino/disciplinas/ea978/tgaffs.pdf

122 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

ImageSpec Attribute Type TGA header data or explanation
"ImageDescription" string comment
"Artist" string author
"DocumentName" string job name/ID
"Software" string software name
"DateTime" string TGA time stamp
"targa:JobTime" string TGA “job time.”
"Compression" string values of "none" and "rle" are supported. The

writer will use RLE compression if any unknown
compression methods are requested.

"targa:ImageID" string Image ID
"PixelAspectRatio" float pixel aspect ratio
"oiio:BitsPerSample" int the true (in the file) bits per sample.
"oiio:ColorSpace" string Color space (see Section B.3).
"oiio:Gamma" float the gamma correction value (if specified).

If the TGA file contains a thumbnail, its dimensions will be stored in the attributes "thumbnail -
width", "thumbnail height", and "thumbnail nchannels", and the thumbnail pixels them-
selves will be stored in "thumbnail image" (as an array of UINT8 values, whose length is
the total number of channel samples in the thumbnail).

Limitations

• The Targa reader reserves enough memory for the entire image. Therefore it is not a
good choice for high-performance image use such as would be used for ImageCache or
TextureSystem.

• Targa files only support 8- and 16-bit unsigned integers (no signed, floating point, or
HDR capabilities); the OpenImageIO TGA writer will silently convert all output images
to UINT8 (except if UINT16 is explicitly requested).

• Targa only supports grayscale, RGB, and RGBA; the OpenImageIO TGA writer will fail
its call to open() if it is asked create a file with more than 4 color channels.

6.27 TIFF

TIFF (Tagged Image File Format) is a flexible file format created by Aldus, now controlled
by Adobe. TIFF supports nearly everything anybody could want in an image format (and has
extactly the complexity you would expect from such a requirement). TIFF files commonly
use the file extensions .tif or, .tiff. Additionally, OpenImageIO associates the following
extensions with TIFF files by default: .tx, .env, .sm, .vsm.

The official TIFF format specification may be found here: http://partners.adobe.com/
public/developer/tiff/index.html The most popular library for reading TIFF directly is

OpenImageIO Programmer’s Documentation

http://partners.adobe.com/public/developer/tiff/index.html
http://partners.adobe.com/public/developer/tiff/index.html

6.27. TIFF 123

libtiff, available here: http://www.remotesensing.org/libtiff/ OpenImageIO uses
libtiff for its TIFF reading/writing.

We like TIFF a lot, especially since its complexity can be nicely hidden behind OIIO’s
simple APIs. It supports a wide variety of data formats (though unfortunately not half), an
arbitrary number of channels, tiles and multiple subimages (which makes it our preferred texture
format), and a rich set of metadata.

OpenImageIO supports the vast majority of TIFF features, including: tiled images ("tiled")
as well as scanline images; multiple subimages per file ("multiimage"); MIPmapping (using
multi-subimage; that means you can’t use multiimage and MIPmaps simultaneously); data for-
mats 8- 16, and 32 bit integer (both signed and unsigned), and 32- and 64-bit floating point;
palette images (will convert to RGB); “miniswhite” photometric mode (will convert to “minis-
black”).

The TIFF plugin attempts to support all the standard Exif, IPTC, and XMP metadata if
present.

Configuration settings for TIFF input

When opening an ImageInput with a configuration (see Section 4.3), the following special
configuration options are supported:

Configuration attribute Type Meaning
"oiio:UnassociatedAlpha" int If nonzero, will leave alpha unassociated (versus

the default of premultiplying color channels by
alpha if the alpha channel is unassociated).

"oiio:RawColor" int If nonzero, reading images with non-RGB color
models (such as CMYK or YCbCr) will return
unaltered raw pixel values (versus the default
OIIO behavior of automatically converting to
RGB).

Configuration settings for TIFF output

When opening an ImageOutput, the following special metadata tokens control aspects of the
writing itself:

OpenImageIO Programmer’s Documentation

http://www.remotesensing.org/libtiff/

124 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

Output attribute Type Meaning
"oiio:UnassociatedAlpha" int If nonzero, any alpha channel is understood to be

unassociated, and the EXTRASAMPLES tag in
the TIFF file will be set to reflect this).

"oiio:BitsPerSample" int Requests a rescaling to a specific bits per sample
(such as writing 12-bit TIFFs).

"tiff:write exif" int If zero, will not write any Exif data to the TIFF
file. (The default is 1.)

"tiff:half" int If nonzero, allow writing TIFF files with ‘half’
(16 bit float) pixels. The default of 0 will au-
tomatically translate to float pixels, since most
non-OIIO applications will not properly read half
TIFF files despite their being legal.

"tiff:ColorSpace" string Requests that the file be saved with a non-RGB
color spaces. Choices are "RGB", "CMYK".

"tiff:zipquality" int A time-vs-quality knob for "zip" compression,
ranging from 1–9 (default is 6). Higher means
compress to less space, but taking longer to do
so. It is strictly a time vs space tradeoff, the qual-
ity is identical (lossless) no matter what the set-
ting.

"tiff:RowsPerStrip" int Overrides TIFF scanline rows per strip with
a specific request (if not supplied, OIIO will
choose a reasonable default).

TIFF compression modes

The full list of possible TIFF compression mode values are as follows (∗ indicates that OpenIm-
ageIO can write that format, and is not part of the format name):
none∗ lzw∗ zip∗

ccitt t4 ccitt t6 ccittfax3 ccittfax4 ccittrle2 ccittrle∗ dcs isojbig
IT8BL IT8CTPAD IT8LW IT8MP jp2000 jpeg∗ lzma next ojpeg packbits∗

pixarfilm pixarlog sgilog24 sgilog T43 T85 thunderscan

Limitations

OpenImageIO’s TIFF reader and writer have some limitations you should be aware of:

• No separate per-channel data formats (not supported by libtiff).

• Only multiples of 8 bits per pixel may be passed through OpenImageIO’s APIs, e.g., 1-,
2-, and 4-bits per pixel will be passed by OIIO as 8 bit images; 12 bits per pixel will
be passed as 16, etc. But the "oiio:BitsPerSample" attribute in the ImageSpec will
correctly report the original bit depth of the file. Similarly for output, you must pass 8
or 16 bit output, but "oiio:BitsPerSample" gives a hint about how you want it to be
when written to the file, and it will try to accommodate the request (for signed integers,
TIFF output can accommodate 2, 4, 8, 10, 12, and 16 bits).

OpenImageIO Programmer’s Documentation

6.27. TIFF 125

• JPEG compression is limited to 8-bit per channel, 3-channel files.

OpenImageIO Programmer’s Documentation

126 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

TIFF Attributes

ImageSpec Attribute Type TIFF header data or explanation
ImageSpec::x int XPosition
ImageSpec::y int YPosition
ImageSpec::full width int PIXAR IMAGEFULLWIDTH
ImageSpec::full length int PIXAR IMAGEFULLLENGTH
"ImageDescription" string ImageDescription
"DateTime" string DateTime
"Software" string Software
"Artist" string Artist
"Copyright" string Copyright
"Make" string Make
"Model" string Model
"DocumentName" string DocumentName
"HostComputer" string HostComputer
"XResultion" "YResolution" float XResolution, YResolution
"ResolutionUnit" string ResolutionUnit ("in" or "cm").
"Orientation" int Orientation
"ICCProfile" uint8[] The ICC color profile
"textureformat" string PIXAR TEXTUREFORMAT
"wrapmodes" string PIXAR WRAPMODES
"fovcot" float PIXAR FOVCOT
"worldtocamera" matrix PIXAR MATRIX WORLDTOCAMERA
"worldtoscreen" matrix PIXAR MATRIX WORLDTOSCREEN
"compression" string based on TIFF Compression (one of "none",

"lzw", "zip", or others listed above.).
"tiff:compression" int the original integer code from the TIFF Com-

pression tag.
"tiff:planarconfig" string PlanarConfiguration ("separate" or

"contig"). The OpenImageIO TIFF writer
will honor such a request in the ImageSpec.

"tiff:PhotometricInterpretation" int Photometric
"tiff:PageName" string PageName
"tiff:PageNumber" int PageNumber
"tiff:RowsPerStrip" int RowsPerStrip
"tiff:subfiletype" 1 SubfileType
"Exif:*" A wide variety of EXIF data are honored, and

are all prefixed with "Exif:".
"oiio:BitsPerSample" int The actual bits per sample in the file (may dif-

fer from ImageSpec::format).
"oiio:UnassociatedAlpha" int Nonzero if the alpha channel contained

“unassociated” alpha.

OpenImageIO Programmer’s Documentation

6.28. WEBP 127

6.28 Webp

6.29 Zfile

Zfile is a very simple format for writing a depth (z) image, originally from Pixar’s PhotoRealistic
RenderMan but now supported by many other renderers. It’s extremely minimal, holding only
a width, height, world-to-screen and camera-to-screen matrices, and uncompressed float pixels
of the z-buffer. Zfile files use the file extension .zfile.

ImageSpec Attribute Type Zfile header data or explanation
"worldtocamera" matrix NP
"worldtoscreen" matrix Nl

OpenImageIO Programmer’s Documentation

128 CHAPTER 6. BUNDLED IMAGEIO PLUGINS

OpenImageIO Programmer’s Documentation

7 Cached Images

7.1 Image Cache Introduction and Theory of Operation

ImageCache is a utility class that allows an application to read pixels from a large number of
image files while using a remarkably small amount of memory and other resources. Of course
it is possible for an application to do this directly using ImageInput objects. But ImageCache
offers the following advantages:

• ImageCache presents an even simpler user interface than ImageInput— the only sup-
ported operations are asking for an ImageSpec describing a subimage in the file, re-
trieving for a block of pixels, and locking/reading/releasing individual tiles. You refer
to images by filename only; you don’t need to keep track of individual file handles or
ImageInput objects. You don’t need to explicitly open or close files.

• The ImageCache is completely thread-safe; if multiple threads are accessing the same
file, the ImageCache internals will handle all the locking and resource sharing.

• No matter how many image files you are accessing, the ImageCache will maintain a
reasonable number of simultaneously-open files, automatically closing files that have not
been needed recently.

• No matter how large the total pixels in all the image files you are dealing with are, the
ImageCache will use only a small amount of memory. It does this by loading only the
individual tiles requested, and as memory allotments are approached, automatically re-
leasing the memory from tiles that have not been used recently.

In short, if you have an application that will need to read pixels from many large image files,
you can rely on ImageCache to manage all the resources for you. It is reasonable to access
thousands of image files totalling hundreds of GB of pixels, efficiently and using a memory
footprint on the order of 50 MB.

129

130 CHAPTER 7. CACHED IMAGES

Below are some simple code fragments that shows ImageCache in action:

#include <OpenImageIO/imagecache.h>
using namespace OIIO;

// Create an image cache and set some options
ImageCache *cache = ImageCache::create ();
cache->attribute ("max_memory_MB", 500.0);
cache->attribute ("autotile", 64);

// Get a block of pixels from a file.
// (for brevity of this example, let’s assume that ’size’ is the
// number of channels times the number of pixels in the requested region)
float pixels[size];
cache->get_pixels ("file1.jpg", 0, 0, xbegin, xend, ybegin, yend,

zbegin, zend, TypeDesc::FLOAT, pixels);

// Get information about a file
ImageSpec spec;
bool ok = cache->get_imagespec ("file2.exr", spec);
if (ok)

std::cout << "resolution is " << spec.width << "x"
<< "spec.height << "\n";

// Request and hold a tile, do some work with its pixels, then release
ImageCache::Tile *tile;
tile = cache->get_tile ("file2.exr", 0, 0, x, y, z);
// The tile won’t be freed until we release it, so this is safe:
TypeDesc format;
void *p = cache->tile_pixels (tile, format);
// Now p points to the raw pixels of the tile, whose data format
// is given by ’format’.
cache->release_tile (tile);
// Now cache is permitted to free the tile when needed

// Note that all files were referenced by name, we never had to open
// or close any files, and all the resource and memory management
// was automatic.

ImageCache::destroy (cache);

OpenImageIO Programmer’s Documentation

7.2. IMAGECACHE API 131

7.2 ImageCache API

7.2.1 Creating and destroying an image cache

ImageCache is an abstract API described as a pure virtual class. The actual internal implemen-
tation is not exposed through the external API of OpenImageIO. Because of this, you cannot
construct or destroy the concrete implementation, so two static methods of ImageCache are
provided:

static ImageCache *ImageCache::create (bool shared=true)

Creates a new ImageCache and returns a pointer to it. If shared is true, create()
will return a pointer to a shared ImageCache (so that multiple parts of an application
that request an ImageCache will all end up with the same one). If shared is false, a
completely unique ImageCache will be created and returned.

static void ImageCache::destroy (ImageCache *x, bool teardown=false)

Destroys an allocated ImageCache, including freeing all system resources that it holds.

This is necessary to ensure that the memory is freed in a way that matches the way it was
allocated within the library. Note that simply using delete on the pointer will not always
work (at least, not on some platforms in which a DSO/DLL can end up using a different
allocator than the main program).

It is safe to destroy even a shared ImageCache, as the implementation of destroy() will
recognize a shared one and only truly release its resources if it has been requested to be de-
stroyed as many times as shared ImageCache’s were created. For a shared ImageCache,
if the teardown parameter is true, it will try to truly destroy the shared cache if nobody
else is still holding a reference (otherwise, it will leave it intact).

7.2.2 Setting options and limits for the image cache

The following member functions of ImageCache allow you to set (and in some cases retrieve)
options that control the overall behavior of the image cache:

bool attribute (string view name, TypeDesc type, const void *val)

Sets an attribute (i.e., a property or option) of the ImageCache. The name designates the
name of the attribute, type describes the type of data, and val is a pointer to memory
containing the new value for the attribute.

If the ImageCache recognizes a valid attribute name that matches the type specified,
the attribute will be set to the new value and attribute() will return true. If name
is not recognized as a valid attribute name, or if the types do not match (e.g., type is
TypeDesc::FLOAT but the named attribute is a string), the attribute will not be modified,
and attribute() will return false.

Here are examples:

ImageCache *ts;

OpenImageIO Programmer’s Documentation

132 CHAPTER 7. CACHED IMAGES

...
int maxfiles = 50;
ts->attribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char *path = "/my/path";
ts->attribute ("searchpath", TypeDesc::STRING, &path);

Note that when passing a string, you need to pass a pointer to the char*, not a pointer to
the first character. (Rationale: for an int attribute, you pass the address of the int. So
for a string, which is a char*, you need to pass the address of the string, i.e., a char**).

The complete list of attributes can be found at the end of this section.

bool attribute (string view name, int val)
bool attribute (string view name, float val)
bool attribute (string view name, double val)
bool attribute (string view name, string view val)

Specialized versions of attribute() in which the data type is implied by the type of the
argument.

For example, the following are equivalent to the example above for the general (pointer)
form of attribute():

ts->attribute ("max_open_files", 50);
ts->attribute ("searchpath", "/my/path");

bool getattribute (string view name, TypeDesc type, void *val)

Gets the current value of an attribute of the ImageCache. The name designates the name
of the attribute, type describes the type of data, and val is a pointer to memory where
the user would like the value placed.

If the ImageCache recognizes a valid attribute name that matches the type specified, the
attribute value will be stored at address val and attribute() will return true. If name
is not recognized as a valid attribute name, or if the types do not match (e.g., type is
TypeDesc::FLOAT but the named attribute is a string), no data will be written to val, and
attribute() will return false.

Here are examples:

ImageCache *ts;
...
int maxfiles;
ts->getattribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char *path;
ts->getattribute ("searchpath", TypeDesc::STRING, &path);

OpenImageIO Programmer’s Documentation

7.2. IMAGECACHE API 133

Note that when passing a string, you need to pass a pointer to the char*, not a pointer
to the first character. Also, the char* will end up pointing to characters owned by the
ImageCache; the caller does not need to ever free the memory that contains the characters.

The complete list of attributes can be found at the end of this section.

bool getattribute (string view name, int &val)
bool getattribute (string view name, float &val)
bool getattribute (string view name, double &val)
bool getattribute (string view name, char **val)
bool getattribute (string view name, std::string & val)

Specialized versions of getattribute() in which the data type is implied by the type of
the argument.

For example, the following are equivalent to the example above for the general (pointer)
form of getattribute():

int maxfiles;
ts->getattribute ("max_open_files", &maxfiles);
const char *path;
ts->getattribute ("searchpath", &path);

Image cache attributes

Recognized attributes include the following:

int max open files

The maximum number of file handles that the image cache will hold open simultaneously.
(Default = 100)

float max memory MB

The maximum amount of memory (measured in MB) that the image cache will use for its
“tile cache.” (Default: 256.0 MB)

string searchpath

The search path for images: a colon-separated list of directories that will be searched in
order for any image name that is not specified as an absolute path. (Default: no search
path.)

string plugin searchpath

The search path for plugins: a colon-separated list of directories that will be searched in
order for any OIIO plugins, if not found in OIIO’s “lib” directory.) (Default: no additional
search path.)

OpenImageIO Programmer’s Documentation

134 CHAPTER 7. CACHED IMAGES

int autotile
int autoscanline

These attributes control how the image cache deals with images that are not “tiled” (i.e.,
are stored as scanlines).

If autotile is set to 0 (the default), an untiled image will be treated as if it were a single
tile of the resolution of the whole image. This is simple and fast, but can lead to poor
cache behavior if you are simultaneously accessing many large untiled images.

If autotile is nonzero (e.g., 64 is a good recommended value), any untiled images will
be read and cached as if they were constructed in tiles of size:

autotile × autotile if autoscanline is 0
width × autotile if autoscanline is nonzero.

In both cases, this should lead more efficient caching. The autoscanline determines
whether the “virtual tiles” in the cache are square (if autoscanline is 0, the default) or
if they will be as wide as the image (but only autotile scanlines high). You should try
in your application to see which leads to higher performance.

int automip

If automip is set to 0 (the default), an untiled single-subimage file will only be able to
utilize that single subimage.

If automip is nonzero, any untiled, single-subimage (un-MIP-mapped) images will have
lower-resolution MIP-map levels generated on-demand if pixels are requested from the
lower-res subimages (that don’t really exist). Essentially this makes the ImageCache
pretend that the file is MIP-mapped even if it isn’t.

int forcefloat

If set to nonzero, all image tiles will be converted to float type when stored in the image
cache. This can be helpful especially for users of ImageBuf who want to simplify their
image manipulations to only need to consider float data.

The default is zero, meaning that image pixels are not forced to be float when in cache.

int accept untiled

When nonzero (the default), ImageCache accepts untiled images as usual. When set to
zero, ImageCache will reject untiled images with an error condition, as if the file could
not be properly read. This is sometimes helpful for applications that want to enforce use
of tiled images only.

int accept unmipped

When nonzero (the default), ImageCache accepts un-MIPmapped images as usual. When
set to zero, ImageCache will reject un-MIPmapped images with an error condition, as if
the file could not be properly read. This is sometimes helpful for applications that want
to enforce use of MIP-mapped images only.

OpenImageIO Programmer’s Documentation

7.2. IMAGECACHE API 135

int failure retries

When an open() or read tile() calls fails, pause and try again, up to failure -
retries times before truly returning a failure. This is meant to address spooky disk or
network failures. The default is zero, meaning that failures of open or tile reading will
immediately return as a failure.

int deduplicate

When nonzero, the ImageCache will notice duplicate images under different names if
their headers contain a SHA-1 fingerprint (as is done with maketx-produced textures)
and handle them more efficiently by avoiding redundant reads. The default is 1 (de-
duplication turned on). The only reason to set it to 0 is if you specifically want to disable
the de-duplication optimization.

string substitute image

When set to anything other than the empty string, the ImageCache will use the named
image in place of all other images. This allows you to run an app using OIIO and (if you
can manage to get this option set) automagically substitute a grid, zone plate, or other
special debugging image for all image/texture use.

int unassociatedalpha

When nonzero, will request that image format readers try to leave input images with
unassociated alpha as they are, rather than automatically converting to associated alpha
upon reading the pixels. The default is 0, meaning that the automatic conversion will take
place.

int max errors per file

The maximum number of errors that will be printed for each file. The default is 100.
If your output is cluttered with error messages and after the first few for each file you
aren’t getting any helpful additional information, this can cut down on the clutter and the
runtime.

string options

This catch-all is simply a comma-separated list of name=value settings of named options.
For example,

ic->attribute ("options", "max_memory_MB=512.0,autotile=1");

int max open files

The maximum number of file handles that the image cache will hold open simultaneously.
(Default = 100)

OpenImageIO Programmer’s Documentation

136 CHAPTER 7. CACHED IMAGES

int total files (read only)

The total number of unique file names referenced by calls to the ImageCache.

string[] all filenames (read only)

An array that will be filled with the list of the names of all files referenced by calls to the
ImageCache. (The array is of ustrings or char*’s.)

int64 stat:cache memory used (read only)

Total bytes used by tile cache.

int stat:tiles created (read only)
int stat:tiles current (read only)
int stat:tiles peak (read only)

Total times created, still allocated (at the time of the query), and the peak number of tiles
in memory at any time.

int stat:open files created (read only)
int stat:open files current (read only)
int stat:open files peak (read only)

Total number of times a file was opened, number still opened (at the time of the query),
and the peak number of files opened at any time.

int stat:find tile calls (read only)

Number of times a filename was looked up in the file cache.

int64 stat:image size (read only)

Total size (uncompressed bytes of pixel data) of all images referenced by the ImageCache.
(Note: Prior to 1.7, this was called "stat:files totalsize".)

int64 stat:file size (read only)

Total size of all files (as on disk, possibly compressed) of all images referenced by the
ImageCache.

int64 stat:bytes read (read only)

Total size (uncompressed bytes of pixel data) read.

int stat:unique files (read only)

Number of unique files opened.

OpenImageIO Programmer’s Documentation

7.2. IMAGECACHE API 137

float stat:fileio time (read only)

Total I/O-related time (seconds).

float stat:fileopen time (read only)

I/O time related to opening and reading headers (but not pixel I/O).

float stat:file locking time (read only)

Total time (across all threads) that threads blocked waiting for access to the file data
structures.

float stat:tile locking time (read only)

Total time (across all threads) that threads blocked waiting for access to the tile cache
data structures.

float stat:find file time (read only)

Total time (across all threads) that threads spent looking up files by name.

float stat:find tile time (read only)

Total time (across all threads) that threads spent looking up individual tiles.

7.2.3 Opaque data for performance lookups

Perthread * get perthread info (Perthread *thread info=NULL)
Perthread * create perthread info ()
void destroy perthread info (Perthread *thread info)

The ImageCache implementation needs to maintain certain per-thread state, and some
ImageCache methods take an opaque Perthread pointer to this record. There are three
options for how to deal with it:

1. Don’t worry about it at all: don’t use the methods that want Perthread pointers,
or always pass NULL for any Perthread* arguments, and ImageCache will do thread-
specific-pointer retrieval as necessary (though at some small cost).

2. If your app already stores per-thread information of its own, you may call get -
perthread info(NULL) to retrieve it for that thread, and then pass it into the functions
that allow it (thus sparing them the need and expense of retrieving the thread-specific
pointer). However, it is crucial that this pointer not be shared between multiple threads.
In this case, the ImageCache manages the storage, which will automatically be released
when the thread terminates.

3. If your app also wants to manage the storage of the Perthread, it can explicitly create
one with create perthread info, pass it around, and eventually be responsible for

OpenImageIO Programmer’s Documentation

138 CHAPTER 7. CACHED IMAGES

destroying it with destroy perthread info. When managing the storage, the app
may reuse the Perthread for another thread after the first is terminated, but still may not
use the same Perthread for two threads running concurrently.

ImageHandle * get image handle (ustring filename,
Perthread *thread info=NULL)

Retrieve an opaque handle for fast ImageCache lookups. The optional opaque pointer
thread info is thread-specific information returned by get perthread info(). Re-
turn NULL if something has gone horribly wrong.

bool good (ImageHandle *file)

Return true if the image handle (previously returned by get image handle()) is a valid
image that can be subsequently read.

7.2.4 Getting information about images

bool get image info (ustring filename, int subimage, int miplevel,
ustring dataname, TypeDesc datatype, void *data)

bool get image info (ImageHandle *file, Perthread *thread info,
int subimage, int miplevel,
ustring dataname, TypeDesc datatype, void *data)

Retrieves information about the image named by filename (or specified by the opaque
image handle). The dataname is a keyword indcating what information should be re-
trieved, datatype is the type of data expected, and data points to caller-owned memory
where the results should be placed. It is up to the caller to ensure that data contains
enough space to hold an item of the requested datatype.

The return value is true if get image info() is able to answer the query – that is, find
the requested dataname for the texture and it matched the requested datatype. If the
requested data was not found, or was not of the right data type, get texture info()
will return false. Except for the "exists" query, file that does not exist or could not be
read properly as an image also constitutes a query failure that will return false.

Supported dataname values include:

exists Stores the value 1 (as an int) if the file exists and is an image format that
OpenImageIO can read, or 0 if the file does not exist, or could not be properly read
as an image. Note that unlike all other queries, this query will “succeed” (return
true) even if the file does not exist.

udim Stores the value 1 (as an int) if the file is a “virtual UDIM” or texture atlas file (as
described in Section 8.7.1) or 0 otherwise.

subimages The number of subimages in the file, as an integer.

resolution The resolution of the image file, which is an array of 2 integers (described
as TypeDesc(INT,2)).

OpenImageIO Programmer’s Documentation

7.2. IMAGECACHE API 139

miplevels The number of MIPmap levels for the specified subimage (an integer).

texturetype A string describing the type of texture of the given file, which describes
how the texture may be used (also which texture API call is probably the right one
for it). This currently may return one of: "unknown", "Plain Texture", "Volume
Texture", "Shadow", or "Environment".

textureformat A string describing the format of the given file, which describes the kind
of texture stored in the file. This currently may return one of: "unknown", "Plain
Texture", "Volume Texture", "Shadow", "CubeFace Shadow", "Volume Shadow",
"LatLong Environment", or "CubeFace Environment". Note that there are sev-
eral kinds of shadows and environment maps, all accessible through the same API
calls.

channels The number of color channels in the file (an integer).

format The native data format of the pixels in the file (an integer, giving the TypeDesc::BASETYPE
of the data). Note that this is not necessarily the same as the data format stored in
the image cache.

cachedformat The native data format of the pixels as stored in the image cache (an inte-
ger, giving the TypeDesc::BASETYPE of the data). Note that this is not necessarily
the same as the native data format of the file.

datawindow Returns the pixel data window of the image, which is either an array of 4 in-
tegers (returning xmin, ymin, xmax, ymax) or an array of 6 integers (returning xmin,
ymin, zmin, xmax, ymax, zmax). The z values may be useful for 3D/volumetric im-
ages; for 2D images they will be 0).

displaywindow Returns the display (a.k.a. full) window of the image, which is either
an array of 4 integers (returning xmin, ymin, xmax, ymax) or an array of 6 integers
(returning xmin, ymin, zmin, xmax, ymax, zmax). The z values may be useful for
3D/volumetric images; for 2D images they will be 0).

worldtocamera The viewing matrix, which is a 4× 4 matrix (an Imath::M44f, de-
scribed as TypeDesc(FLOAT,MATRIX)), giving the world-to-camera 3D transfor-
mation matrix that was used when the image was created. Generally, only rendered
images will have this.

worldtoscreen The projection matrix, which is a 4× 4 matrix (an Imath::M44f, de-
scribed as TypeDesc(FLOAT,MATRIX)), giving the matrix that projected points from
world space into a 2D screen coordinate system where x and y range from−1 to +1.
Generally, only rendered images will have this.

averagecolor If available in the metadata (generally only for files that have been pro-
cessed by maketx), this will return the average color of the texture (into an array of
floats).

averagealpha If available in the metadata (generally only for files that have been pro-
cessed by maketx), this will return the average alpha value of the texture (into a
float).

constantcolor If the metadata (generally only for files that have been processed by
maketx) indicates that the texture has the same values for all pixels in the texture,

OpenImageIO Programmer’s Documentation

140 CHAPTER 7. CACHED IMAGES

this will retrieve the constant color of the texture (into an array of floats). A non-
constant image (or one that does not have the special metadata tag identifying it as
a constant texture) will fail this query (return false).

constantalpha If the metadata indicates that the texture has the same values for all
pixels in the texture, this will retrieve the constant alpha value of the texture (into
a float). A non-constant image (or one that does not have the special metadata tag
identifying it as a constant texture) will fail this query (return false).

stat:tilesread Number of tiles read from this file (int64).

stat:bytesread Number of bytes of uncompressed pixel data read from this file (int64).

stat:redundant tiles Number of times a tile was read, where the same tile had been
rad before. (int64).

stat:redundant bytesread Number of bytes (of uncompressed pixel data) in tiles
that were read redundantly. (int64).

stat:redundant bytesread Number of tiles read from this file (int).

stat:image size Size of the uncompressed image pixel data of this image, in bytes
(int64).

stat:file size Size of the disk file (possibly compressed) for this image, in bytes
(int64).

stat:timesopened Number of times this file was opened (int).

stat:iotime Time (in seconds) spent on all I/O for this file (float).

stat:mipsused Stores 1 if any MIP levels beyond the highest resolution were accesed,
otherwise 0. (int)

stat:is duplicate Stores 1 if this file was a duplicate of another image, otherwise 0.
(int)

Anything else – For all other data names, the the metadata of the image file will be
searched for an item that matches both the name and data type.

bool get imagespec (ustring filename, ImageSpec &spec,
int subimage=0, int miplevel=0, bool native=false)

bool get imagespec (ImageHandle *file, Perthread *thread info,
ImageSpec &spec, int subimage=0,
int miplevel=0, bool native=false)

If the image (and the specific subimage and MIP level) is found and able to be opened
by an available image format plugin, and the designated subimage exists, this function
copies its image specification for that subimage into spec and returns true. Otherwise,
if the file is not found, could not be opened, is not of a format readable by any plugin that
could be found, or the designated subimage did not exist in the file, the return value is
false and spec will not be modified. The image may be specified either by name, or by
the opaque handle returned by get image handle().

If native is false (the default), then the spec retrieved will accurately describe the
image stored internally in the cache, whereas if native is true, the spec retrieved will

OpenImageIO Programmer’s Documentation

7.2. IMAGECACHE API 141

reflect the original file. These may differ due to use of certain ImageCache settings such
as "forcefloat" or "autotile".

const ImageSpec * imagespec (ustring filename, int subimage=0,
int miplevel=0, bool native=false)

const ImageSpec * imagespec (ImageHandle *file, Perthread *thread info,
int subimage=0, int miplevel=0, bool native=false)

If the image is found and able to be opened by an available image format plugin, and the
designated subimage exists, this function returns a pointer to an ImageSpec that describes
it. Otherwise, if the file is not found, could not be opened, is not of a format readable
by any plugin that could be find, or the designated subimage did not exist in the file, the
return value is NULL. The image may be specified either by name, or by the opaque
handle returned by get image handle().

If native is false (the default), then the spec retrieved will accurately describe the
image stored internally in the cache, whereas if native is true, the spec retrieved will
reflect the original file. These may differ due to use of certain ImageCache settings such
as "forcefloat" or "autotile".

This method is much more efficient than get imagespec(), since it just returns a pointer
to the spec held internally by the ImageCache (rather than copying the spec to the user’s
memory). However, the caller must beware that the pointer is only valid as long as nobody
(even other threads) calls invalidate() on the file, or invalidate all(), or destroys
the ImageCache.

std::string resolve filename (const std::string &filename)

Returns the true path to the given file name, with searchpath logic applied.

7.2.5 Getting pixels

bool get pixels (ustring filename, int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend,
TypeDesc format, void *result)

bool get pixels (ImageHandle *file, Perthread *thread info,
int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend,
TypeDesc format, void *result)

For an image specified by either name or handle, retrieve the rectangle of pixels of the
designated subimage and miplevel, storing the pixel values beginning at the address
specified by result. The pixel values will be converted to the type specified by format.
It is up to the caller to ensure that result points to an area of memory big enough to

OpenImageIO Programmer’s Documentation

142 CHAPTER 7. CACHED IMAGES

accommodate the requested rectangle (taking into consideration its dimensions, number
of channels, and data format). The rectangular region to be retrieved includes begin but
does not include end (much like STL begin/end usage). Requested pixels that are not part
of the valid pixel data region of the image file will be filled with zero values.

bool get pixels (ustring filename, int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *result,
stride t xstride, stride t ystride, stride t zstride,
int cache chbegin=0, int cache chend=-1)

bool get pixels (ImageHandle *file, Perthread *thread info,
int subimage, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *result,
stride t xstride, stride t ystride, stride t zstride,
int cache chbegin=0, int cache chend=-1)

For an image specified by either name or handle, retrieve the rectangle of pixels and
subset of channels of the designated subimage and miplevel, storing the pixel values
beginning at the address specified by result and with the given strides. The pixel values
will be converted to the type specified by format. It is up to the caller to ensure that result
points to an area of memory big enough to accommodate the requested rectangle (taking
into consideration its dimensions, number of channels, data format, and strides). Any
stride values set to AutoStride will be assumed to indicate a contiguous data layout. The
rectangular region and channel set to be retrieved includes begin but does not include end
(much like STL begin/end usage). Requested pixels that are not part of the valid pixel data
region of the image file will be filled with zero values. The optional parameters cache -
chbegin and cache chend can be used to tell the ImageCache to read and cache a
subset of channels (if not specified, all the channels of the file will be stored in the cached
tile).

7.2.6 Dealing with tiles

ImageCache::Tile * get tile (ustring filename, int subimage, int miplevel,
int x, int y, int z, int chbegin=0, int chend=-1)

ImageCache::Tile * get tile (ImageHandle *file, Perthread *thread info,
int subimage, int miplevel,
int x, int y, int z, int chbegin=0, int chend=-1)

Find a tile of an image (identified by either name or handle) for the requested subimage,
pixel coordinates, and channel range (if chend < chbegin, the full range of channels in
the file will be used). An opaque pointer to the tile will be returned, or NULL if no such file

OpenImageIO Programmer’s Documentation

7.2. IMAGECACHE API 143

(or tile within the file) exists or can be read. The tile will not be purged from the cache
until after release tile() is called on the tile pointer. This is thread-safe.

void release tile (ImageCache::Tile *tile)

After finishing with a tile, release tile() will allow it to once again be purged from
the tile cache if required.

const void * tile pixels (ImageCache::Tile *tile, TypeDesc &format)

For a tile retrived by get tile(), return a pointer to the pixel data itself, and also store in
format the data type that the pixels are internally stored in (which may be different than
the data type of the pixels in the disk file). This method should only be called on a tile that
has been requested by get tile() but has not yet been released with release tile().

void invalidate (ustring filename)

Invalidate any loaded tiles or open file handles associated with the filename, so that any
subsequent queries will be forced to re-open the file or re-load any tiles (even those that
were previously loaded and would ordinarily be reused). A client might do this if, for
example, they are aware that an image being held in the cache has been updated on disk.
This is safe to do even if other procedures are currently holding reference-counted tile
pointers from the named image, but those procedures will not get updated pixels until
they release the tiles they are holding.

void invalidate all (bool force=false)

Invalidate all loaded tiles and open file handles, so that any subsequent queries will be
forced to re-open the file or re-load any tiles (even those that were previously loaded and
would ordinarily be reused). A client might do this if, for example, they are aware that
an image being held in the cache has been updated on disk. This is safe to do even if
other procedures are currently holding reference-counted tile pointers from the named
image, but those procedures will not get updated pixels until they release the tiles they
are holding. If force is true, everything will be invalidated, no matter how wasteful it is,
but if force is false, in actuality files will only be invalidated if their modification times
have been changed since they were first opened.

void close (ustring filename)
void close all ()

NEW!Close any open file handles associated with a named file, or for all files, but do not in-
validate any image spec information or pixels associated with the files. A client might do
this in order to release OS file handle resources, or to make it safe for other processes to
modify cached files.

OpenImageIO Programmer’s Documentation

144 CHAPTER 7. CACHED IMAGES

7.2.7 Seeding the cache

bool add file (ustring filename,
ImageInput::Creator creator = NULL,
const ImageSpec *config = NULL)

This method causes a file to be opened or added to the cache. There is no reason to use
this method unless you are supplying a custom creator, or configuration, or both.

If creator is not NULL, it points to an ImageInput::Creator that will be used rather
than the default ImageInput::create(), thus instead of reading from disk, creates and
uses a custom ImageInput to generate the image. The creator is a factory that creates
the custom ImageInput and will be called like this:

ImageInput *in = creator();

Once created, the ImageCache owns the ImageInput and is responsible for destroying
it when done. Custom ImageInput’s allow “procedural” images, among other things.
Also, this is the method you use to set up a “writeable” ImageCache images (perhaps
with a type of ImageInput that’s just a stub that does as little as possible).

If config is not NULL, it points to an ImageSpec with configuration options/hints that
will be passed to the underlying ImageInput::open() call. Thus, this can be used to
ensure that the ImageCache opens a call with special configuration options.

This call (including any custom creator or configuration hints) will have no effect if
there’s already an image by the same name in the cache. Custom creators or configu-
rations only “work” the first time a particular filename is referenced in the lifetime of the
ImageCache.

bool add tile (ustring filename, int subimage, int miplevel,
int x, int y, int z, int chbegin, int chend,
TypeDesc format, const void *buffer,
stride t xstride=AutoStride, stride t ystride=AutoStride,
stride t zstride=AutoStride

Preemptively add a tile corresponding to the named image, at the given subimage and
MIP level. The tile added is the one whose corner is (x,y,z), with the given channel range,
and buffer points to the pixels (in the given format, with supplied strides) which will be
copied and inserted into the cache and made available for future lookups.

7.2.8 Errors and statistics

std::string geterror ()

If any other API routines return false, indicating that an error has occurred, this routine
will retrieve the error and clear the error status. If no error has occurred since the last
time geterror() was called, it will return an empty string.

OpenImageIO Programmer’s Documentation

7.2. IMAGECACHE API 145

std::string getstats (int level=1)

Returns a big string containing useful statistics about the ImageCache operations, suitable
for saving to a file or outputting to the terminal. The level indicates the amount of detail
in the statistics, with higher numbers (up to a maximum of 5) yielding more and more
esoteric information.

void reset stats ()

Reset most statistics to be as they were with a fresh ImageCache. Caveat emptor: this
does not flush the cache itelf, so the resulting statistics from the next set of texture re-
quests will not match the number of tile reads, etc., that would have resulted from a new
ImageCache.

OpenImageIO Programmer’s Documentation

146 CHAPTER 7. CACHED IMAGES

OpenImageIO Programmer’s Documentation

8 Texture Access: TextureSystem

8.1 Texture System Introduction and Theory of Operation

Coming soon. FIXME

8.2 Helper Classes

8.2.1 Imath

The texture functinality of OpenImageIO uses the excellent open source Ilmbase package’s
Imath types when it requires 3D vectors and transformation matrixes. Specifically, we use
Imath::V3f for 3D positions and directions, and Imath::M44f for 4×4 transformation matri-
ces. To use these yourself, we recommend that you:

#include <OpenEXR/ImathVec.h>
#include <OpenEXR/ImathMatrix.h>

Please refer to the Ilmbase and OpenEXR documentation and header files for more complete
information about use of these types in your own application. However, note that you are not
strictly required to use these classes in your application — Imath::V3f has a memory layout
identical to float[3] and Imath::M44f has a memory layout identical to float[16], so as
long as your own internal vectors and matrices have the same memory layout, it’s ok to just cast
pointers to them when passing as arguments to TextureSystem methods.

8.2.2 TextureOpt

TextureOpt is a structure that holds many options controlling single-point texture lookups.
Because each texture lookup API call takes a reference to a TextureOpt, the call signatures
remain uncluttered rather than having an ever-growing list of parameters, most of which will
never vary from their defaults. Here is a brief description of the data members of a TextureOpt
structure:

int firstchannel

The beginning channel for the lookup. For example, to retrieve just the blue channel, you
should have firstchannel = 2 while passing nchannels = 1 to the appropriate texture
function.

147

148 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

int subimage
ustring subimagename

Specifies the subimage or face within the file to use for the texture lookup. If subimagename
is set (it defaults to the empty string), it will try to use the subimage that had a matching
metadata "oiio:subimagename", otherwise the integer subimage will be used (which
defaults to 0, i.e., the first/default subimage). Nonzero subimage indices only make sense
for a texture file that supports subimages or separate images per face (such as Ptex). This
will be ignored if the file does not have multiple subimages or separate per-face textures.

Wrap swrap, twrap

Specify the wrap mode for 2D texture lookups (and 3D volume texture lookups, using the
additional rwrap field). These fields are ignored for shadow and environment lookups.

These specify what happens when texture coordinates are found to be outside the usual
[0,1] range over which the texture is defined. Wrap is an enumerated type that may take
on any of the following values:

WrapBlack The texture is black outside the [0,1] range.

WrapClamp The texture coordinates will be clamped to [0,1], i.e., the value outside [0,1]
will be the same as the color at the nearest point on the border.

WrapPeriodic The texture is periodic, i.e., wraps back to 0 after going past 1.

WrapMirror The texture presents a mirror image at the edges, i.e., the coordinates go
from 0 to 1, then back down to 0, then back up to 1, etc.

WrapDefault Use whatever wrap might be specified in the texture file itself, or some
other suitable default (caveat emptor).

The wrap mode does not need to be identical in the s and t directions.

float swidth, twidth

For each direction, gives a multiplier for the derivatives. Note that a width of 0 indicates a
point sampled lookup (assuming that blur is also zero). The default width is 1, indicating
that the derivatives should guide the amount of blur applied to the texture filtering (not
counting any additional blur specified).

float sblur, tblur

For each direction, specifies an additional amount of pre-blur to apply to the texture (after
derivatives are taken into account), expressed as a portion of the width of the texture. In
other words, blur = 0.1 means that the texture lookup should act as if the texture was
pre-blurred with a filter kernel with a width 1/10 the size of the full image. The default
blur amount is 0, indicating a sharp texture lookup.

OpenImageIO Programmer’s Documentation

8.2. HELPER CLASSES 149

float fill

Specifies the value that will be used for any color channels that are requested but not
found in the file. For example, if you perform a 4-channel lookup on a 3-channel texture,
the last channel will get the fill value. (Note: this behavior is affected by the "gray -
to rgb" attribute described in Section 8.3.2.)

const float* missingcolor

If not NULL, indicates that a missing or broken texture should not be treated as an error,
but rather will simply return the supplied color as the texture lookup color and texture()
will return true. If the missingcolor field is left at its default (a NULL pointer), a
missing or broken texture will be treated as an error and texture() will return false.
Note: When not NULL, the data must point to nchannels contiguous floats.

float bias

For shadow map lookups only, this gives the “shadow bias” amount.

int samples

For shadow map lookups only, the number of samples to use for the lookup.

Wrap rwrap
float rblur, rwidth

Specifies wrap, blur, and width for the third component of 3D volume texture lookups.
These are not used for 2D texture lookups.

OpenImageIO Programmer’s Documentation

150 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

8.3 TextureSystem Setup

8.3.1 Creating and destroying texture systems

TextureSystem is an abstract API described as a pure virtual class. The actual internal imple-
mentation is not exposed through the external API of OpenImageIO. Because of this, you cannot
construct or destroy the concrete implementation, so two static methods of TextureSystem are
provided:

static TextureSystem *TextureSystem::create (bool share=true,
ImageCache *imagecache=nullptr)

Creates a new TextureSystem and returns a pointer to it. If shared is true, the TextureSystem
returned will be a global shared one, with a globally shared cache. If shared is false, a
new private TextureSystemwill be created, either with a newly created private ImageCache
(if imagecache is nullptr), or with the ImageCache passed from (and owned by) the
caller.

static void TextureSystem::destroy (TextureSystem *x,
bool teardown imagecache=false)

Destroys an allocated TextureSystem, including freeing all system resources that it
holds (such as its underlying ImageCache).

This is necessary to ensure that the memory is freed in a way that matches the way it was
allocated within the library. Note that simply using delete on the pointer will not always
work (at least, not on some platforms in which a DSO/DLL can end up using a different
allocator than the main program).

If teardown imagecache is true, and the TextureSystem’s underlying ImageCache is
the shared one, then that ImageCache will be thoroughly destroyed, not merely releasing
the reference.

8.3.2 Setting options and limits for the texture system

The following member functions of TextureSystem allow you to set (and in some cases re-
trieve) options that control the overall behavior of the texture system:

bool attribute (string view name, TypeDesc type, const void *val)

Sets an attribute (i.e., a property or option) of the TextureSystem. The name designates
the name of the attribute, type describes the type of data, and val is a pointer to memory
containing the new value for the attribute.

If the TextureSystem recognizes a valid attribute name that matches the type specified,
the attribute will be set to the new value and attribute() will return true. If name
is not recognized as a valid attribute name, or if the types do not match (e.g., type is
TypeDesc::FLOAT but the named attribute is a string), the attribute will not be modified,
and attribute() will return false.

OpenImageIO Programmer’s Documentation

8.3. TEXTURESYSTEM SETUP 151

Here are examples:

TextureSystem *ts;
...
int maxfiles = 50;
ts->attribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char *path = "/my/path";
ts->attribute ("searchpath", TypeDesc::STRING, &path);

Note that when passing a string, you need to pass a pointer to the char*, not a pointer to
the first character. (Rationale: for an int attribute, you pass the address of the int. So
for a string, which is a char*, you need to pass the address of the string, i.e., a char**).

The complete list of attributes can be found at the end of this section.

bool attribute (string view name, int val)
bool attribute (string view name, float val)
bool attribute (string view name, double val)
bool attribute (string view name, string view val)

Specialized versions of attribute() in which the data type is implied by the type of the
argument.

For example, the following are equivalent to the example above for the general (pointer)
form of attribute():

ts->attribute ("max_open_files", 50);
ts->attribute ("searchpath", "/my/path");

bool getattribute (string view name, TypeDesc type, void *val)

Gets the current value of an attribute of the TextureSystem. The name designates the
name of the attribute, type describes the type of data, and val is a pointer to memory
where the user would like the value placed.

If the TextureSystem recognizes a valid attribute name that matches the type specified,
the attribute value will be stored at address val and attribute() will return true. If
name is not recognized as a valid attribute name, or if the types do not match (e.g., type
is TypeDesc::FLOAT but the named attribute is a string), no data will be written to val,
and attribute() will return false.

Here are examples:

TextureSystem *ts;
...
int maxfiles;
ts->getattribute ("max_open_files", TypeDesc::INT, &maxfiles);

const char *path;
ts->getattribute ("searchpath", TypeDesc::STRING, &path);

OpenImageIO Programmer’s Documentation

152 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

Note that when passing a string, you need to pass a pointer to the char*, not a pointer
to the first character. Also, the char* will end up pointing to characters owned by the
TextureSystem; the caller does not need to ever free the memory that contains the char-
acters.

The complete list of attributes can be found at the end of this section.

bool getattribute (string view name, int &val)
bool getattribute (string view name, float &val)
bool getattribute (string view name, double &val)
bool getattribute (string view name, char **val)
bool getattribute (string view name, std::string & val)

Specialized versions of getattribute() in which the data type is implied by the type of
the argument.

For example, the following are equivalent to the example above for the general (pointer)
form of getattribute():

int maxfiles;
ts->getattribute ("max_open_files", &maxfiles);
const char *path;
ts->getattribute ("searchpath", &path);

Texture system attributes

Recognized attributes include the following:

int max open files
float max memory MB
string searchpath
string plugin searchpath
int autotile
int autoscanline
int automip
int accept untiled
int accept unmipped
int failure retries
int deduplicate
string substitute image
int max errors per file

These attributes are all passed along to the underlying ImageCache that is used internally
by the TextureSystem. Please consult the ImageCache attribute list in Section 7.2.2 for
explanations of these attributes.

OpenImageIO Programmer’s Documentation

8.3. TEXTURESYSTEM SETUP 153

matrix worldtocommon

The 4× 4 matrix that provides the spatial transformation from “world” to a “common”
coordinate system. This is used for shadow map lookups, in which the shadow map itself
encodes the world coordinate system, but positions passed to shadow() are expressed in
“common” coordinates.

matrix commontoworld

The 4× 4 matrix that is the inverse of worldtocommon — that is, it transforms points
from “common” to “world” coordinates.

You do not need to set commontoworld and worldtocommon separately; just setting either
one will implicitly set the other, since each is the inverse of the other.

int gray to rgb

If set to nonzero, texture lookups of single-channel (grayscale) images will replicate the
sole channel’s values into the next two channels, making it behave like an RGB image
that happens to have all three channels with identical pixel values. (Channels beyond the
third will get the “fill” value.)

The default value of zero means that all missing channels will get the “fill” color.

int max tile channels

Sets the maximum number of color channels in a texture file for which all channels will
be loaded as cached tiles. Files with more than this number of color channels will have
only the requested subset loaded, in order to save cache space (but at the possible wasted
expense of separate tiles that overlap their channel ranges). The default is 5.

string latlong up

Sets the default “up” direction for latlong environment maps (only applies if the map itself
doesn’t specify a format or is in a format that explicitly requires a particular orientation).
The default is "y". (Currently any other value will result in z being “up.”)

int flip t

If nonzero, t coordinates will be flipped (1− t) for texture lookups. The default is 0.

string options

This catch-all is simply a comma-separated list of name=value settings of named options.
For example,

ic->attribute ("options", "max_memory_MB=512.0,autotile=1");

OpenImageIO Programmer’s Documentation

154 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

8.3.3 Opaque data for performance lookups

Perthread * get perthread info (Perthread *thread info=NULL)
Perthread * create perthread info ()
void destroy perthread info (Perthread *thread info)

The TextureSystem implementation needs to maintain certain per-thread state, and some
TextureSystem methods take an opaque Perthread pointer to this record. There are
three options for how to deal with it:

1. Don’t worry about it at all: don’t use the methods that want Perthread pointers, or
always pass NULL for any Perthread* arguments, and TextureSystem will do thread-
specific-pointer retrieval as necessary (though at some small cost).

2. If your app already stores per-thread information of its own, you may call get -
perthread info(NULL) to retrieve it for that thread, and then pass it into the functions
that allow it (thus sparing them the need and expense of retrieving the thread-specific
pointer). However, it is crucial that this pointer not be shared between multiple threads. In
this case, the TextureSystem manages the storage, which will automatically be released
when the thread terminates.

3. If your app also wants to manage the storage of the Perthread, it can explicitly create
one with create perthread info, pass it around, and eventually be responsible for
destroying it with destroy perthread info. When managing the storage, the app
may reuse the Perthread for another thread after the first is terminated, but still may not
use the same Perthread for two threads running concurrently.

TextureHandle * get texture handle (ustring filename,
Perthread *thread info=NULL)

Retrieve an opaque handle for fast texture lookups. The optional opaque pointer thread -
info is thread-specific information returned by get perthread info(). Return NULL
if something has gone horribly wrong.

bool good (TextureHandle *texture handle)

Return true if the texture handle (previously returned by get texture handle()) is a
valid image that can be subsequently read or sampled.

OpenImageIO Programmer’s Documentation

8.4. TEXTURE LOOKUPS – SINGLE POINT 155

8.4 Texture Lookups – single point

8.4.1 2D Texture Lookups

bool texture (ustring filename, TextureOpt &options,
float s, float t, float dsdx, float dtdx,
float dsdy, float dtdy, int nchannels, float *result),
float *dresultds=NULL, float *dresultdt=NULL)

Perform a filtered 2D texture lookup on a position centered at 2D coordinates (s, t) from
the texture identified by filename, and using relevant texture options. The nchannels
parameter determines the number of channels to retrieve (e.g., 1 for a single value, 3 for
an RGB triple, etc.). The filtered results will be stored in result[0..nchannels-1].

We assume that this lookup will be part of an image that has pixel coordinates x and y.
By knowing how s and t change from pixel to pixel in the final image, we can properly
filter or antialias the texture lookups. This information is given via derivatives dsdx and
dtdx that define the change in s and t per unit of x, and dsdy and dtdy that define the
change in s and t per unit of y. If it is impossible to know the derivatives, you may pass
0 for them, but in that case you will not receive an antialiased texture lookup.

If the dresultds and dresultdt parameters are not NULL (the default), these specify
locations in which to store the derivatives of the texture lookup, i.e., the change of the
filtered texture per unit of s and t, respectively. Each must point to at least nchannels
contiguous floats. If they are NULL, the derivative computations will not be performed.

Fields within options that are honored for 2D texture lookups include the following:

int firstchannel

The index of the first channel to look up from the texture.

int subimage

The subimage or face within the file. This will be ignored if the file does not have
multiple subimages or separate per-face textures.

Wrap swrap, twrap

Specify the wrap mode for each direction, one of: WrapBlack, WrapClamp, WrapPeriodic,
WrapMirror, or WrapDefault.

float swidth, twidth

For each direction, gives a multiplier for the derivatives.

float sblur, tblur

For each direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the
texture.

OpenImageIO Programmer’s Documentation

156 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

float fill

Specifies the value that will be used for any color channels that are requested but not
found in the file. For example, if you perform a 4-channel lookup on a 3-channel
texture, the last channel will get the fill value. (Note: this behavior is affected by
the "gray to rgb" attribute described in Section 8.3.2.)

const float *missingcolor

If not NULL, specifies the color that will be returned for missing or broken textures
(rather than being an error).

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

bool texture (TextureHandle *texture handle, Perthread *thread info,
TextureOpt &options, float s, float t, float dsdx, float dtdx,
float dsdy, float dtdy, int nchannels, float *result,
float *dresultds=NULL, float *dresultdt=NULL)

A slightly faster texture call for applications that are willing to do the extra housekeep-
ing of knowing the handle of the texture they are accessing and the per-thread info for
the curent thread. These may be retrieved by the get texture handle() and get -
perthread info() methods, respectively.

8.4.2 Volume Texture Lookups

bool texture3d (ustring filename, TextureOpt &options,
const Imath::V3f &P, const Imath::V3f &dPdx,
const Imath::V3f &dPdy, const Imath::V3f &dPdz,
int nchannels, float *result,
float *dresultds=NULL, float *dresultdt=NULL,
float *dresultdr=NULL)

Perform a filtered 3D volumetric texture lookup on a position centered at 3D position P
from the texture identified by filename, and using relevant texture options. The filtered
results will be stored in result[0..nchannels-1].

We assume that this lookup will be part of an image that has pixel coordinates x and y
and depth z. By knowing how P changes from pixel to pixel in the final image, and as we
step in z depth, we can properly filter or antialias the texture lookups. This information is
given via derivatives dPdx, dPdy, and dPdz that define the changes in P per unit of x, y,
and z, respectively. If it is impossible to know the derivatives, you may pass 0 for them,
but in that case you will not receive an antialiased texture lookup.

The P coordinate and dPdx, dPdy, and dPdz derivatives are assumed to be in some kind
of common global coordinate system (usually "world" space) and will be automatically
transformed into volume local coordinates, if such a transormation is specified in the
volume file itself.

OpenImageIO Programmer’s Documentation

8.4. TEXTURE LOOKUPS – SINGLE POINT 157

If the dresultds, dresultdt, and dresultdr parameters are not NULL (the default),
these specify locations in which to store the derivatives of the texture lookup, i.e., the
change of the filtered texture per unit of s, t and r, respectively. Each must point to at
least nchannels contiguous floats. If they are NULL, the derivative computations will not
be performed.

Fields within options that are honored for 3D texture lookups include the following:

int firstchannel

The index of the first channel to look up from the texture.

Wrap swrap, twrap, rwrap

Specify the wrap modes for each direction, one of: WrapBlack, WrapClamp, WrapPeriodic,
WrapMirror, or WrapDefault.

float swidth, twidth, rwidth

For each direction, gives a multiplier for the derivatives.

float sblur, tblur, rblur

For each direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the
texture.

float fill

Specifies the value that will be used for any color channels that are requested but not
found in the file. For example, if you perform a 4-channel lookup on a 3-channel
texture, the last channel will get the fill value. (Note: this behavior is affected by
the "gray to rgb" attribute described in Section 8.3.2.)

const float *missingcolor

If not NULL, specifies the color that will be returned for missing or broken textures
(rather than being an error).

float time

A time value to use if the volume texture specifies a time-varying local transforma-
tion (default: 0).

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

bool texture3d (TextureHandle *texture handle, Perthread *thread info,
TextureOpt &opt, const Imath::V3f &P, const Imath::V3f &dPdx,
const Imath::V3f &dPdy, const Imath::V3f &dPdz,
int nchannels, float *result, float *dresultds=NULL,
float *dresultdt=NULL, float *dresultdr=NULL)

A slightly faster texture3d call for applications that are willing to do the extra house-
keeping of knowing the handle of the texture they are accessing and the per-thread info for
the curent thread. These may be retrieved by the get texture handle() and get -
perthread info() methods, respectively.

OpenImageIO Programmer’s Documentation

158 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

8.4.3 Shadow Lookups

bool shadow (ustring filename, TextureOpt &opt,
const Imath::V3f &P, const Imath::V3f &dPdx,
const Imath::V3f &dPdy, int nchannels, float *result,
float *dresultds=NULL, float *dresultdt=NULL)

Perform a shadow map lookup on a position centered at 3D coordinate P (in a designated
“common” space) from the shadow map identified by filename, and using relevant tex-
ture options. The filtered results will be stored in result[].

We assume that this lookup will be part of an image that has pixel coordinates x and y.
By knowing how P changes from pixel to pixel in the final image, we can properly filter
or antialias the texture lookups. This information is given via derivatives dPdx and dPdy
that define the changes in P per unit of x and y, respectively. If it is impossible to know the
derivatives, you may pass 0 for them, but in that case you will not receive an antialiased
texture lookup.

Fields within options that are honored for 2D texture lookups include the following:

float swidth, twidth

For each direction, gives a multiplier for the derivatives.

float sblur, tblur

For each direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the
texture.

float bias

Specifies the amount of shadow bias to use — this effectively ignores shadow oc-
clusion that is closer than the bias amount to the surface, helping to eliminate self-
shadowing artifacts.

int samples

Specifies the number of samples to use when evaluating the shadow map. More
samples will give a smoother, less noisy, appearance to the shadows, but may also
take longer to compute.

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

OpenImageIO Programmer’s Documentation

8.4. TEXTURE LOOKUPS – SINGLE POINT 159

bool shadow (TextureHandle *texture handle, Perthread *thread info,
TextureOpt &opt, const Imath::V3f &P,
const Imath::V3f &dPdx, const Imath::V3f &dPdy,
int nchannels, float *result,
float *dresultds=NULL, float *dresultdt=NULL)

A slightly faster shadow call for applications that are willing to do the extra housekeep-
ing of knowing the handle of the texture they are accessing and the per-thread info for
the curent thread. These may be retrieved by the get texture handle() and get -
perthread info() methods, respectively.

8.4.4 Environment Lookups

bool environment (ustring filename, TextureOpt &options,
const Imath::V3f &R, const Imath::V3f &dRdx,
const Imath::V3f &dRdy, int nchannels, float *result,
float *dresultds=NULL, float *dresultdt=NULL)

Perform a filtered directional environment map lookup in the direction of vector R, from
the texture identified by filename, and using relevant texture options. The filtered
results will be stored in result[].

We assume that this lookup will be part of an image that has pixel coordinates x and y.
By knowing how R changes from pixel to pixel in the final image, we can properly filter
or antialias the texture lookups. This information is given via derivatives dRdx and dRdy
that define the changes in R per unit of x and y, respectively. If it is impossible to know the
derivatives, you may pass 0 for them, but in that case you will not receive an antialiased
texture lookup.

Fields within options that are honored for 3D texture lookups include the following:

int firstchannel

The index of the first channel to look up from the texture.

float swidth, twidth

For each direction, gives a multiplier for the derivatives.

float sblur, tblur

For each direction, specifies an additional amount of pre-blur to apply to the texture
(after derivatives are taken into account), expressed as a portion of the width of the
texture.

float fill

Specifies the value that will be used for any color channels that are requested but not
found in the file. For example, if you perform a 4-channel lookup on a 3-channel
texture, the last channel will get the fill value. (Note: this behavior is affected by
the "gray to rgb" attribute described in Section 8.3.2.)

OpenImageIO Programmer’s Documentation

160 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

bool environment (TextureHandle *texture handle, Perthread *thread info,
TextureOpt &opt, const Imath::V3f &R,
const Imath::V3f &dRdx, onst Imath::V3f &dRdy,
int nchannels, float *result,
float *dresultds=NULL, float *dresultdt=NULL)

A slightly faster environment call for applications that are willing to do the extra house-
keeping of knowing the handle of the texture they are accessing and the per-thread info for
the curent thread. These may be retrieved by the get texture handle() and get -
perthread info() methods, respectively.

8.5 Batched Texture Lookups

On CPU architectures with SIMD processing, texturing entire batches of samples at once may
provide a large speedup compared to texturing each sample point individually. The batch size
is fixed (for any build of OpenImageIO) and may be accessed with the following constant:

static const int Tex::BatchWidth

This constant specifies the batch size. This is fixed within any release of OpenImageIO,
but may change from release to release and also may be overridden at build time. A
typical batch size is 16.

All of the batched calls take a run mask, which describes which subset of “lanes” should be
computed by the batched lookup:

typedef ... Tex::RunMask

The RunMask is defined to be an integer large enough to hold at least BatchWidth bits.
The least significant bit corresponds to the first (i.e., [0]) position of all batch arrays. For
each position i in the batch, the bit identified by (1 << i) controls whether that position
will be computed.

The defined constant RunMaskOn contants the value with all bits 0..BatchWidth-1 set
to 1.

8.5.1 Batched Options

OpenImageIO Programmer’s Documentation

8.5. BATCHED TEXTURE LOOKUPS 161

class TextureOptBatch

TextureOptBatch is a structure that holds the options for doing an entire batch of
lookups from the same texture at once. The members of TextureOptBatch correspond
to the similarly named members of the single-point TextureOpt, so we refer you to Sec-
tion 8.2.2 for detailed explanations, and this section will only explain the differences
between batched and single-point options.

int firstchannel
int subimage
ustring subimagename
Tex::Wrap swrap, twrap, rwrap
Tex::MipMode mipmode
Tex::InterpMode interpmode
int anisotropic
bool conservative filter
float fill
const float *missingcolor

These fields are all scalars — a single value for each TextureOptBatch— which
means that the value of these options must be the same for every texture sample
point within a batch. If you have a number of texture lookups to perform for the
same texture, but they have (for example) differing wrap modes or subimages from
point to point, then you must split them into separate batch calls.

float sblur[Tex::BatchWidth]
float tblur[Tex::BatchWidth]
float rblur[Tex::BatchWidth]

These arrays hold the s, and t blur amounts, for each sample in the batch, respec-
tively. (And the r blur amount, used only for volumetric texture3d() lookups.)

float swidth[Tex::BatchWidth]
float twidth[Tex::BatchWidth]
float rwidth[Tex::BatchWidth]

These arrays hold the s, and t filtering width multiplier for derivatives, for each
sample in the batch, respectively. (And the r multiplier, used only for volumetric
texture3d() lookups.)

8.5.2 Batched Texture Lookup Calls

OpenImageIO Programmer’s Documentation

162 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

bool texture (ustring filename, TextureOptBatch &options,
Tex::RunMask mask, const float *s, const float *t,
const float *dsdx, const float *dtdx,
const float *dsdy, const float *dtdy,
int nchannels, float *result,
float *dresultds=nullptr, float *dresultdt=nullptr)

bool texture (TextureHandle *texture handle, Perthread *thread info,
TextureOptBatch &options,
Tex::RunMask mask, const float *s, const float *t,
const float *dsdx, const float *dtdx,
const float *dsdy, const float *dtdy,
int nchannels, float *result,
float *dresultds=nullptr, float *dresultdt=nullptr)

Perform filtered 2D texture lookups on a batch of positions from the same texture, all at
once. The parameters s, t, dsdx, dtdx, and dsdy, dtdy are each a pointer to [BatchSize]
values. The mask determines which of those array elements to actually compute.

The various results are arranged as arrays that behave as if they were declared

float result[channels][BatchSize]

In other words, all the batch values for channel 0 are adjacent, followed by all the batch
values for channel 1, etc. (This is “SOA” order.)

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

bool texture3d (ustring filename, TextureOptBatch &options,
Tex::RunMask mask, const float *P, const float *dPdx,
const float *dPdy, const float *dPdz,
int nchannels, float *result, float *dresultds=nullptr,
float *dresultdt=nullptr,float *dresultdr=nullptr)

bool texture3d (TextureHandle *texture handle, Perthread *thread info,
TextureOptBatch &options,
Tex::RunMask mask, const float *P, const float *dPdx,
const float *dPdy, const float *dPdz,
int nchannels, float *result, float *dresultds=nullptr,
float *dresultdt=nullptr, float *dresultdr=nullptr)

Perform filtered 3D volumetric texture lookups on a batch of positions from the same
texture, all at once. The “point-like” parameters P, dPdx, dPdy, and dPdz are each a
pointers to arrays of float value[3][BatchSize]. That is, each one points to all the x
values for the batch, immediately followed by all the y values, followed by the z values.

The various results arrays are also arranged as arrays that behave as if they were declared
float result[channels][BatchSize], where all the batch values for channel 0 are
adjacent, followed by all the batch values for channel 1, etc.

OpenImageIO Programmer’s Documentation

8.6. TEXTURE METADATA AND RAW TEXELS 163

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

bool environment (ustring filename, TextureOptBatch &options,
Tex::RunMask mask,
const float *R, const float *dRdx,
const float *dRdy, int nchannels, float *result,
float *dresultds=nullptr, float *dresultdt=nullptr)

bool environment (TextureHandle *texture handle, Perthread *thread info,
TextureOptBatch &options, Tex::RunMask mask,
const float *R, const float *dRdx,
const float *dRdy, int nchannels, float *result,
float *dresultds=nullptr, float *dresultdt=nullptr)

Perform filtered directional environment map lookups on a batch of positions from the
same texture, all at once. The “point-like” parameters R, dRdx, and dRdy are each a
pointers to arrays of float value[3][BatchSize]. That is, each one points to all the x
values for the batch, immediately followed by all the y values, followed by the z values.

Perform filtered directional environment map lookups on a collection of directions all at
once, which may be much more efficient than repeatedly calling the single-point version
of environment(). The parameters R, dRdx, and dRdy are now VaryingRef’s that may
refer to either a single or an array of values, as are many the fields in the options.

The various results arrays are also arranged as arrays that behave as if they were declared
float result[channels][BatchSize], where all the batch values for channel 0 are
adjacent, followed by all the batch values for channel 1, etc.

This function returns true upon success, or false if the file was not found or could not
be opened by any available ImageIO plugin.

8.6 Texture Metadata and Raw Texels

bool get texture info (ustring filename, int subimage,
ustring dataname, TypeDesc datatype, void *data)

bool get texture info (TextureHandle *texture handle,
Perthread *thread info, int subimage,
ustring dataname, TypeDesc datatype, void *data)

Retrieves information about the texture, either named by filename or specified by an
opaque handle returned by get texture handle(). The dataname is a keyword in-
dcating what information should be retrieved, datatype is the type of data expected,
and data points to caller-owned memory where the results should be placed. It is up
to the caller to ensure that data contains enough space to hold an item of the requested
datatype.

OpenImageIO Programmer’s Documentation

164 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

The return value is true if get texture info() is able to answer the query – that is,
find the requested dataname for the texture and it matched the requested datatype. If the
requested data was not found, or was not of the right data type, get texture info()
will return false. Except for the "exists" and "udim" queries, file that does not exist
or could not be read properly as an image also constitutes a query failure that will return
false.

Supported dataname values include:

exists Stores the value 1 (as an int if the file exists and is an image format that
OpenImageIO can read, or 0 if the file does not exist, or could not be properly read
as a texture. Note that unlike all other queries, this query will “succeed” (return
true) even if the file does not exist.

udim Stores the value 1 (as an int) if the file is a “virtual UDIM” or texture atlas file (as
described in Section 8.7.1) or 0 otherwise.

subimages The number of subimages/faces in the file, as an integer.

resolution The resolution of the texture file, which is an array of 2 integers (described
as TypeDesc(INT,2)).

resolution (int[3)] The 3D resolution of the texture file, which is an array of 3
integers (described as TypeDesc(INT,3)) The third value will e 1 unless it’s a vol-
umetric (3D) image.

miplevels The number of MIPmap levels for the specified subimage (an integer).

texturetype A string describing the type of texture of the given file, which describes
how the texture may be used (also which texture API call is probably the right one
for it). This currently may return one of: "unknown", "Plain Texture", "Volume
Texture", "Shadow", or "Environment".

textureformat A string describing the format of the given file, which describes the kind
of texture stored in the file. This currently may return one of: "unknown", "Plain
Texture", "Volume Texture", "Shadow", "CubeFace Shadow", "Volume Shadow",
"LatLong Environment", or "CubeFace Environment". Note that there are sev-
eral kinds of shadows and environment maps, all accessible through the same API
calls.

channels The number of color channels in the file (an integer).

format The native data format of the pixels in the file (an integer, giving the TypeDesc::BASETYPE
of the data). Note that this is not necessarily the same as the data format stored in
the image cache.

cachedformat The native data format of the pixels as stored in the image cache (an inte-
ger, giving the TypeDesc::BASETYPE of the data). Note that this is not necessarily
the same as the native data format of the file.

datawindow Returns the pixel data window of the image, which is either an array of 4 in-
tegers (returning xmin, ymin, xmax, ymax) or an array of 6 integers (returning xmin,
ymin, zmin, xmax, ymax, zmax). The z values may be useful for 3D/volumetric im-
ages; for 2D images they will be 0).

OpenImageIO Programmer’s Documentation

8.6. TEXTURE METADATA AND RAW TEXELS 165

displaywindow Returns the display (a.k.a. full) window of the image, which is either
an array of 4 integers (returning xmin, ymin, xmax, ymax) or an array of 6 integers
(returning xmin, ymin, zmin, xmax, ymax, zmax). The z values may be useful for
3D/volumetric images; for 2D images they will be 0).

worldtocamera The viewing matrix, which is a 4× 4 matrix (an Imath::M44f, de-
scribed as TypeDesc(FLOAT,MATRIX)), giving the world-to-camera 3D transfor-
mation matrix that was used when the image was created. Generally, only rendered
images will have this.

worldtoscreen The projection matrix, which is a 4× 4 matrix (an Imath::M44f, de-
scribed as TypeDesc(FLOAT,MATRIX)), giving the matrix that projected points from
world space into a 2D screen coordinate system where x and y range from−1 to +1.
Generally, only rendered images will have this.

averagecolor If available in the metadata (generally only for files that have been pro-
cessed by maketx), this will return the average color of the texture (into an array of
floats).

averagealpha If available in the metadata (generally only for files that have been pro-
cessed by maketx), this will return the average alpha value of the texture (into a
float).

constantcolor If the metadata (generally only for files that have been processed by
maketx) indicates that the texture has the same values for all pixels in the texture,
this will retrieve the constant color of the texture (into an array of floats). A non-
constant image (or one that does not have the special metadata tag identifying it as
a constant texture) will fail this query (return false).

constantalpha If the metadata indicates that the texture has the same values for all
pixels in the texture, this will retrieve the constant alpha value of the texture (into
a float). A non-constant image (or one that does not have the special metadata tag
identifying it as a constant texture) will fail this query (return false).

stat:tilesread Number of tiles read from this file (int64).
stat:bytesread Number of bytes of uncompressed pixel data read from this file (int64).
stat:redundant tiles Number of times a tile was read, where the same tile had been

rad before. (int64).
stat:redundant bytesread Number of bytes (of uncompressed pixel data) in tiles

that were read redundantly. (int64).
stat:redundant bytesread Number of tiles read from this file (int).
stat:timesopened Number of times this file was opened (int).
stat:iotime Time (in seconds) spent on all I/O for this file (float).
stat:mipsused Stores 1 if any MIP levels beyond the highest resolution were accesed,

otherwise 0. (int)
stat:is duplicate Stores 1 if this file was a duplicate of another image, otherwise 0.

(int)
Anything else – For all other data names, the the metadata of the image file will be

searched for an item that matches both the name and data type.

OpenImageIO Programmer’s Documentation

166 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

bool get imagespec (ustring filename, int subimage, ImageSpec &spec)
bool get imagespec (TextureHandle *texture handle, Perthread *thread info,

int subimage, ImageSpec &spec)

If the image (specified by either name or handle) is found and able to be opened by an
available image format plugin, this function copies its image specification into spec and
returns true. Otherwise, if the file is not found, could not be opened, or is not of a format
readable by any plugin that could be found, the return value is false.

const ImageSpec * imagespec (ustring filename, int subimage)
const ImageSpec * imagespec (TextureHandle *texture handle,

Perthread *thread info, int subimage)

If the named image is found and able to be opened by an available image format plugin,
and the designated subimage exists, this function returns a pointer to an ImageSpec that
describes it. Otherwise, if the file is not found, could not be opened, is not of a format
readable by any plugin that could be find, or the designated subimage did not exist in the
file, the return value is NULL.

This method is much more efficient than get imagespec(), since it just returns a pointer
to the spec held internally by the underlying ImageCache (rather than copying the spec to
the user’s memory). However, the caller must beware that the pointer is only valid as long
as nobody (even other threads) calls invalidate() on the file, or invalidate all(),
or destroys the TextureSystem.

bool get texels (ustring filename, TextureOpt &options, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *result)

bool get texels (TextureHandle *texture handle, PerThread *thread info,
Perthread *thread info, TextureOpt &options, int miplevel,
int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *result)

For a texture identified by either name or handle, retrieve a rectangle of raw unfiltered tex-
els at the named MIP-map level, storing the texel values beginning at the address specified
by result. Note that the face/subimage is communicated through options.subimage.
The texel values will be converted to the type specified by format. It is up to the caller to
ensure that result points to an area of memory big enough to accommodate the requested
rectangle (taking into consideration its dimensions, number of channels, and data format).
The rectangular region to be retrieved includes begin but does not include end (much like
STL begin/end usage). Requested pixels that are not part of the valid pixel data region of
the image file will be filled with zero values.

Fields within options that are honored for raw texel retieval include the following:

OpenImageIO Programmer’s Documentation

8.7. MISCELLANEOUS – STATISTICS, ERRORS, FLUSHING THE CACHE 167

int subimage

The subimage to retrieve.

float fill

Specifies the value that will be used for any color channels that are requested but not
found in the file. For example, if you perform a 4-channel lookup on a 3-channel
texture, the last channel will get the fill value. (Note: this behavior is affected by
the "gray to rgb" attribute described in Section 8.3.2.)

Return true if the file is found and could be opened by an available ImageIO plugin,
otherwise return false.

std::string resolve filename (const std::string &filename)

Returns the true path to the given file name, with searchpath logic applied.

8.7 Miscellaneous – Statistics, errors, flushing the cache

std::string geterror ()

If any other API routines return false, indicating that an error has occurred, this routine
will retrieve the error and clear the error status. If no error has occurred since the last
time geterror() was called, it will return an empty string.

std::string getstats (int level=1, bool icstats=true)

Returns a big string containing useful statistics about the ImageCache operations, suitable
for saving to a file or outputting to the terminal. The level indicates the amount of detail
in the statistics, with higher numbers (up to a maximum of 5) yielding more and more
esoteric information. If icstats is true, the returned string will also contain all the
statistics of the underlying ImageCache, but if false will only contain texture-specific
statistics.

void reset stats ()

Reset most statistics to be as they were with a fresh ImageCache. Caveat emptor: this
does not flush the cache itelf, so the resulting statistics from the next set of texture re-
quests will not match the number of tile reads, etc., that would have resulted from a new
ImageCache.

OpenImageIO Programmer’s Documentation

168 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

void invalidate (ustring filename)

Invalidate any loaded tiles or open file handles associated with the filename, so that any
subsequent queries will be forced to re-open the file or re-load any tiles (even those that
were previously loaded and would ordinarily be reused). A client might do this if, for
example, they are aware that an image being held in the cache has been updated on disk.
This is safe to do even if other procedures are currently holding reference-counted tile
pointers from the named image, but those procedures will not get updated pixels until
they release the tiles they are holding.

void invalidate all (bool force=false)

Invalidate all loaded tiles and open file handles, so that any subsequent queries will be
forced to re-open the file or re-load any tiles (even those that were previously loaded and
would ordinarily be reused). A client might do this if, for example, they are aware that
an image being held in the cache has been updated on disk. This is safe to do even if
other procedures are currently holding reference-counted tile pointers from the named
image, but those procedures will not get updated pixels until they release the tiles they
are holding. If force is true, everything will be invalidated, no matter how wasteful it is,
but if force is false, in actuality files will only be invalidated if their modification times
have been changed since they were first opened.

void close (ustring filename)
void close all ()

NEW! Close any open file handles associated with a named file, or for all files, but do not in-
validate any image spec information or pixels associated with the files. A client might do
this in order to release OS file handle resources, or to make it safe for other processes to
modify cached files.

8.7.1 UDIM and texture atlases

The texture() call supports virtual filenames that expand per lookup for UDIM and other tiled
texture atlas techniques. The substitutions will occur if the texture filename initially passed to
texture() does not exist as a concrete file and contains one or more of the following substrings:

<UDIM> 1001 + utile + vtile*10
<u> utile
<v> vtile
<U> utile + 1
<V> vtile + 1

where the tile numbers are derived from the input u,v texture coordinates as follows:

// Each unit square of texture is a different tile
utile = max (0, int(u));
vtile = max (0, int(v));
// Re-adjust the texture coordinates to the offsets within the tile
u = u - utile;
v = v - vtile;

OpenImageIO Programmer’s Documentation

8.7. MISCELLANEOUS – STATISTICS, ERRORS, FLUSHING THE CACHE 169

Example:

ustring filename ("paint.<UDIM>.tif");
float s = 1.4, t = 3.8;
texsys->texture (filename, s, t, ...);

will retrieve from file "paint.1032.tif" at coordinates (0.4,0.8).

Please note that most other calls, including most queries for get texture info(), will
fail with one of these special filenames, since it’s not a real file and the system doesn’t know
which concrete file you it corresponds to in the absence of specific texture coordinates.

OpenImageIO Programmer’s Documentation

170 CHAPTER 8. TEXTURE ACCESS: TEXTURESYSTEM

OpenImageIO Programmer’s Documentation

9 Image Buffers

9.1 ImageBuf Introduction and Theory of Operation

ImageBuf is a utility class that stores an entire image. It provides a nice API for reading,
writing, and manipulating images as a single unit, without needing to worry about any of the
details of storage or I/O.

An ImageBuf can store its pixels in one of several ways:

• Allocate “local storage” to hold the image pixels internal to the ImageBuf. This storage
will be freed when the ImageBuf is destroyed.

• “Wrap” pixel memory already allocated by the calling application, which will continue
to own that memory and be responsible for freeing it after the ImageBuf is destroyed.

• Be “backed” by an ImageCache, which will automatically be used to retreive pixels when
requested, but the ImageBuf will not allocate separate storage for it. This brings all
the advantages of the ImageCache, but can only be used for read-only ImageBuf’s that
reference a stored image file.

All I/O involving ImageBuf (that is, calls to read or write) are implemented in terms of
ImageCache, ImageInput, and ImageOutput underneath, and so support all of the image file
formats supported by OIIO.
The ImageBuf class definition requires that you

#include <OpenImageIO/imagebuf.h>

9.2 Constructing, reading, and writing an ImageBuf

Default constructor of an empty ImageBuf

ImageBuf ()

The default constructor makes an uninitialized ImageBuf. There isn’t much you can do
with an uninitialized buffer until you call reset().

171

172 CHAPTER 9. IMAGE BUFFERS

void clear ()

Resets the ImageBuf to a pristine state identical to that of a freshly constructed ImageBuf
using the default constructor.

Constructing and initializing a writeable ImageBuf

ImageBuf (const ImageSpec &spec)
ImageBuf (string view name, const ImageSpec &spec)

Constructs a writeable ImageBuf with the given specification (including resolution, data
type, metadata, etc.), initially set to all black pixels. Optionally, you may name the
ImageBuf.

void reset (const ImageSpec &spec)
void reset (string view name, const ImageSpec &spec)

Destroys any previous contents of the ImageBuf and re-initializes it as a writeable all-
black ImageBuf with the given specification (including resolution, data type, metadata,
etc.). Optionally, you may name the ImageBuf.

bool make writeable (bool keep cache type = false)

Force the ImageBuf to be writeable. That means that if it was previously backed by an
ImageCache (storage was IMAGECACHE), it will force a full read so that the whole image
is in local memory. This will invalidate any current iterators on the image. It has no
effect if the image storage not IMAGECACHE. Return true if it works (including if no read
was necessary), false if something went horribly wrong. If keep cache type is true,
it preserves any ImageCache-forced data types (you might want to do this if it is critical
that the apparent data type doesn’t change, for example if you are calling make writeable
from within a type-specialized function).

Constructing a readable ImageBuf and reading from a file

Constructing a readable ImageBuf that will hold an image to be read from disk.

ImageBuf (string view name, int subimage=0, int miplevel=0,
ImageCache *imagecache = NULL,
const ImageSpec *config = NULL)

Construct an ImageBuf that will be used to read the named file (at the given subimage
and MIP-level, defaulting to the first in the file). But don’t read it yet! The image will
actually be read when other methods need to access the spec and/or pixels, or when an
explicit call to init spec() or read() is made, whichever comes first. If imagecache
is non-NULL, the custom ImageCache will be used (if applicable); otherwise, a NULL
imagecache indicates that the global/shared ImageCache should be used. If config is
not NULL, it points to an ImageSpec giving requests or special instructions to be passed
on to the eventual ImageInput::open() call.

OpenImageIO Programmer’s Documentation

9.2. CONSTRUCTING, READING, AND WRITING AN IMAGEBUF 173

void reset (string view name, int subimage=0, int miplevel=0,
ImageCache *imagecache = NULL
const ImageSpec *config = NULL)

Destroys any previous contents of the ImageBuf and re-initializes it to read the named file
(but doesn’t actually read yet). If config is not NULL, it points to an ImageSpec giving
requests or special instructions to be passed on to the eventual ImageInput::open()
call.

bool read (int subimage=0, int miplevel=0, bool force=false,
TypeDesc convert=TypeDesc::UNKNOWN,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

bool read (int subimage, int miplevel,
int chbegin, int chend, bool force, TypeDesc convert,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL)

Explicitly reads the particular subimage and MIP level of the image. Generally, this will
skip the expensive read if the file has already been read into the ImageBuf (at the specified
subimage and MIP level). It will clear and re-allocate memory if the previously allocated
space was not appropriate for the size or data type of the image being read. If convert is
set to a specific type (not UNKNOWN), the ImageBuf memory will be allocated for that type
specifically and converted upon read.

In general, read() will try not to do any I/O at the time of the read() call, but rather to
have the ImageBuf “backed” by an ImageCache, which will do the file I/O on demand, as
pixel values are needed, and in that case the ImageBuf doesn’t actually allocate memory
for the pixels (the data lives in the ImageCache). However, there are several conditions
for which the ImageCache will be bypassed, the ImageBuf will allocate “local” memory,
and the disk file will be read directly into allocated buffer at the time of the read() call:
(a) if the force parameter is true; (b) if the convert parameter requests a data format
conversion to a type that is not the native file type and also is not one of the internal
types supported by the ImageCache (specifically, FLOAT and UINT8); (c) if the ImageBuf
already has local pixel memory allocated, or “wraps” an application buffer.

The variety of read() that takes chbegin and chend parameters allows you to populate
the ImageBuf with a (contiguous) subset of channels from the file. This can be useful if
you are only interested in a subset of channels and want to save the memory and I/O costs
for the channels you won’t want.
If progress callback is non-NULL, the underlying read, if expensive, may make sev-
eral calls to

progress_callback(progress_callback_data, portion_done);

which allows you to implement some sort or progress meter. Note that if the ImageBuf
is backed by an ImageCache, the progress callback will never be called, since no actual
file I/O will occur at this time (ImageCache will load tiles or scanlines on demand, as
individual pixel values are needed).

OpenImageIO Programmer’s Documentation

174 CHAPTER 9. IMAGE BUFFERS

Note that read() is not strictly necessary. If you are happy with the filename, subimage
and MIP level specified by the ImageBuf constructor (or the last call to reset()), and
you want the storage to be backed by the ImageCache (including storing the pixels in
whatever data format that implies), then the file contents will be automatically read the
first time you make any other ImageBuf API call that requires the spec or pixel values.
The only reason to call read() yourself is if you are changing the filename, subimage,
or MIP level, or if you want to use force=true or a specific convert value to force data
format conversion.

bool init spec (string view filename, int subimage, int miplevel)

This call will read the ImageSpec for the given file, subimage, and MIP level into the
ImageBuf, but will not read the pixels or allocate any local storage (until a subsequent call
to read()). This is helpful if you have an ImageBuf and you need to know information
about the image, but don’t want to do a full read yet, and maybe won’t need to do the full
read, depending on what’s found in the spec.

Note that init spec() is not strictly necessary. If you are happy with the filename,
subimage and MIP level specified by the ImageBuf constructor (or the last call to reset()),
then the spec will be automatically read the first time you make any other ImageBuf API
call that requires it. The only reason to call read() yourself is if you are changing the file-
name, subimage, or MIP level, or if you want to use force=true or a specific convert
value to force data format conversion.

Constructing an ImageBuf that “wraps” an application buffer

ImageBuf (const ImageSpec &spec, void *buffer)
ImageBuf (string view name, const ImageSpec &spec, void *buffer)

Constructs an ImageBuf that ”wraps” a memory buffer owned by the calling application.
It can write pixels to this buffer, but can’t change its resolution or data type. Optionally,
it names the ImageBuf.

Writing an ImageBuf to a file

bool write (string view filename,
TypeDesc dtype = TypeUnknown,
string view fileformat = "",
ProgressCallback progress callback=NULL,
void *progress callback data=NULL) const

Write the image to the named file, converted to the specified pixel data type dtype
(TypeUnknown signifies to use the data type of the buffer), in the named file format (an
empty fileformat means to infer the type from the filename extension). Return true if
all went ok, false if there were errors writing.

OpenImageIO Programmer’s Documentation

9.3. GETTING AND SETTING BASIC INFORMATION ABOUT AN IMAGEBUF 175

By default, it will always write a scanline-oriented file, unless the set write tiles()
method has been used to override this. Also, it will use the data format of the buffer itself,
unless the set write format() method has been used to override the data format.

bool write (ImageOutput *out,
ProgressCallback progress callback=NULL,
void *progress callback data=NULL) const

Write the image to the open ImageOutputout. Return true if all went ok, false if there
were errors writing. It does NOT close the file when it’s done (and so may be called in a
loop to write a multi-image file).

void set write format (TypeDesc format=TypeDesc::UNKNOWN)
void set write tiles (int width=0, int height=0, int depth=0)

These methods allow the caller to override the data format and tile sizing when using the
write() function (the variety that does not take an open ImageOutput*).

9.3 Getting and setting basic information about an ImageBuf

bool initialized () const

Returns true if the ImageBuf is initialized, false if not yet initialized.

IBStorage storage () const

Returns an enumerated type describing the type of storage currently employed by the
ImageBuf: UNINITIALIZED (no storage), LOCALBUFFER (the ImageBuf has allocated and
owns the pixel memory), APPBUFFER (the ImageBuf “wraps” memory owned by the call-
ing application), or IMAGECACHE (the image is backed by an ImageCache).

const ImageSpec & spec () const
const ImageSpec & nativespec () const

The spec() function returns a const reference to an ImageSpec that describes the image
data held by the ImageBuf.

The nativespec() function returns a const reference to an ImageSpec that describes
the actual data in the file that was read.

These may differ — for example, if a data format conversion was requested, if the buffer
is backed by an ImageCache which stores the pixels internally in a different data format
than that of the file, or if the file had differing per-channel data formats (ImageBuf must
contain a single data format for all channels).

OpenImageIO Programmer’s Documentation

176 CHAPTER 9. IMAGE BUFFERS

string view name () const

Returns the name of the buffer (name of the file, for an ImageBuf read from disk).

string view file format name () const

Returns the name of the file format, for an ImageBuf read from disk (for example,
"openexr").

int subimage () const
int nsubimages () const
int miplevel () const
int nmiplevels () const

The subimage() and miplevel() methods return the subimage and MIP level of the
image held by the ImageBuf (the file it came from may hold multiple subimages and/or
MIP levels, but the ImageBuf can only store one of those at any given time).

The nsubimages() method returns the total number of subimages in the file, and the
nmiplevels() method returns the total number of MIP levels in the currently-loaded
subimage.

int nchannels () const

Returns the number of channels stored in the buffer (this is equivalent to spec().nchannels).

int xbegin () const
int xend () const
int ybegin () const
int yend () const
int zbegin () const
int zend () const

Returns the [begin,end) range of the pixel data window of the buffer. These are equiv-
alent to spec().x, spec().x+spec().width, spec().y, spec().y+spec().height,
spec().z, and spec().z+spec().depth, respectively.

int orientation () const
int oriented width () const
int oriented height () const
int oriented x () const
int oriented y () const
int oriented full width () const
int oriented full height () const
int oriented full x () const
int oriented full y () const

OpenImageIO Programmer’s Documentation

9.3. GETTING AND SETTING BASIC INFORMATION ABOUT AN IMAGEBUF 177

The orientation() returns the interpretation of the layout (top/bottom, left/right) of the
image, per the table in Section B.2.

The oriented width, height, x, and y describe the pixel data window after taking the
display orientation into consideration. The full versions the “full” (a.k.a. display) window
after taking the display orientation into consideration.

void set orientation (int orient)

Sets the "Orientation" metadata value.

TypeDesc pixeltype () const

The data type of the pixels stored in the buffer (equivalent to spec().format).

void set origin (int x, int y, int z=0)

NEW!Alters the metadata of the spec in the ImageBuf to reset the “origin” of the pixel data
window to be the specified coordinates. This does not affect the size of the pixel data
window, only its position.

void set full (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend)

void set roi full (const ROI &newroi)

Alters the metadata of the spec in the ImageBuf to reset the “full” image size (a.k.a.
“display window”). This does not affect the size of the pixel data window.

ImageSpec & specmod ()

This returns a writeable reference to the ImageSpec describing the buffer. It’s ok to
modify most of the metadata, but if you modify the spec’s format, width, height, or
depth fields, you get the pain you deserve, as the ImageBuf will no longer have correct
knowledge of its pixel memory layout. USE WITH EXTREME CAUTION.

void threads (int n)
int threads () const

Get or set the threading policy for this ImageBuf, controlling the maximum amount of
parallelizing thread “fan-out” that might occur during expensive operations. The default
of 0 means that the global attribute("threads") value should be used (which itself
defaults to using as many threads as cores; see Section 2.8).

The main reason to change this value is to set it to 1 to indicate that the calling thread
should do all the work rather than spawning new threads. That is probably the desired
behavior in situations where the calling application has already spawned multiple worker
threads.

OpenImageIO Programmer’s Documentation

178 CHAPTER 9. IMAGE BUFFERS

9.4 Copying ImageBuf’s and blocks of pixels

const ImageBuf& operator= (const ImageBuf &src)
const ImageBuf& operator= (ImageBuf &&src)

NEW! Copy and move assignment.

ImageBuf copy (TypeDesc format=TypeUnknown) const

NEW! Returns a full copy of this (pixels and metadata), with optional data format conversion.

bool copy (const ImageBuf &src, TypeDesc format=TypeUnknown)

Copies src to this – both pixel values and all metadata. If a format is provided, this
will get the specified pixel data type rather than using the same pixel format as src.

void copy metadata (const ImageBuf &src)

Copies all metadata (except for format, width, height, depth from src to this.

bool copy pixels (const ImageBuf &src)

Copies the pixels of src to this, but does not change the metadata (other than format
and resolution) of this.

void swap (ImageBuf &other)

Swaps the entire contents of other and this.

bool get pixels (ROI roi, TypeDesc format,
void *result, stride t xstride=AutoStride,
stride t ystride=AutoStride,
stride t zstride=AutoStride) const

Retrieve the rectangle of pixels specified by ROI, at the current subimage and MIP-map
level, storing the pixel values beginning at the address specified by result and with the
given strides (by default, AutoStride means the usual contiguous packing of pixels) and
converting into the data type described by format. It is up to the caller to ensure that
result points to an area of memory big enough to accommodate the requested rectangle.
Return true if the operation could be completed, otherwise return false.

OpenImageIO Programmer’s Documentation

9.5. GETTING AND SETTING INDIVIDUAL PIXEL VALUES – SIMPLE BUT SLOW179

bool get pixel channels (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, int chbegin, int chend,
TypeDesc format, void *result,
stride t xstride=AutoStride,
stride t ystride=AutoStride,
stride t zstride=AutoStride) const

Retrieve the rectangle of pixels spanning [xbegin..xend)× [ybegin..yend)× [zbegin..zend),
channels [chbegin,chend) (all with exclusive end), specified as integer pixel coordi-
nates, at the current subimage and MIP-map level, storing the pixel values beginning
at the address specified by result and with the given strides (by default, AutoStride
means the usual contiguous packing of pixels) and converting into the data type described
by format. It is up to the caller to ensure that result points to an area of memory big
enough to accommodate the requested rectangle. Return true if the operation could be
completed, otherwise return false.

bool get pixels (int xbegin, int xend, int ybegin, int yend,
int zbegin, int zend, TypeDesc format,
void *result, stride t xstride=AutoStride,
stride t ystride=AutoStride,
stride t zstride=AutoStride) const

Retrieve the rectangle of pixels spanning [xbegin..xend)× [ybegin..yend)× [zbegin..zend)
(all with exclusive end), specified as integer pixel coordinates, at the current subimage and
MIP-map level, storing the pixel values beginning at the address specified by result and
with the given strides (by default, AutoStride means the usual contiguous packing of
pixels) and converting into the data type described by format. It is up to the caller to en-
sure that result points to an area of memory big enough to accommodate the requested
rectangle. Return true if the operation could be completed, otherwise return false.

bool set pixels (ROI roi, TypeDesc format,
const void *result, stride t xstride=AutoStride,
stride t ystride=AutoStride,
stride t zstride=AutoStride)

Copy the rectangle of data into the specified ROI of the ImageBuf. The data points
to values specified by format, with layout detailed by the stride values (in bytes, with
AutoStride indicating “contiguous” layout). It is up to the caller to ensure that data
points to an area of memory big enough to account for the ROI. Return true if the oper-
ation could be completed, otherwise return false.

9.5 Getting and setting individual pixel values – simple but slow

OpenImageIO Programmer’s Documentation

180 CHAPTER 9. IMAGE BUFFERS

float getchannel (int x, int y, int z, int c,
WrapMode wrap=WrapBlack) const

Returns the value of pixel x, y, z, channel c.

The wrap describes what value should be returned if the x, y, z coordinates are outside
the pixel data window, and may be one of: WrapBlack, WrapClamp, WrapPeriodic, or
WrapMirror.

void getpixel (int x, int y, int z, float *pixel,
int maxchannels=1000, WrapMode wrap=WrapBlack) const

Retrieves pixel (x, y, z), placing its contents in pixel[0..n-1], where n is the smaller
of maxchannels or the actual number of channels stored in the buffer. It is up to the
application to ensure that pixel points to enough memory to hold the required number
of channels.

The wrap describes what value should be returned if the x, y, z coordinates are outside
the pixel data window, and may be one of: WrapBlack, WrapClamp, WrapPeriodic, or
WrapMirror.

void interppixel (float x, float y, float *pixel,
WrapMode wrap=WrapBlack) const

void interppixel bicubic (float x, float y, float *pixel,
WrapMode wrap=WrapBlack) const

Sample the image plane at coordinates (x,y), using linear interpolation between pixels by
default, or B-spline bicubic interpolation for the bicubic varieties, placing the result in
pixel[0..n-1], where n is the smaller of maxchannels or the actual number of channels
stored in the buffer. It is up to the application to ensure that pixel points to enough
memory to hold the required number of channels. The sampling location is specified in
the floating-point pixel coordinate system, where pixel (i, j) is centered at image plane
coordinate (i+0.5, j+0.5).

The wrap describes how the image function should be computed outside the boundaries
of the pixel data window, and may be one of: WrapBlack, WrapClamp, WrapPeriodic,
or WrapMirror.

void interppixel NDC (float s, float t, float *pixel,
WrapMode wrap=WrapBlack) const

void interppixel bicubic NDC (float s, float t, float *pixel,
WrapMode wrap=WrapBlack) const

Sample the image plane at coordinates (s, t), similar to the interppixel and interppixel -

bicubic methods, but specifying location using the “NDC” (normalized device coordi-
nate) system where (0,0) is the upper left corner of the full (a.k.a. “display”) window and
(1,1) is the lower right corner of the full/display window.

OpenImageIO Programmer’s Documentation

9.5. GETTING AND SETTING INDIVIDUAL PIXEL VALUES – SIMPLE BUT SLOW181

void setpixel (int x, int y, int z, const float *pixel, int maxchannels=1000)

Set the pixel with coordinates (x, y, z) to have the values pixel[0..n-1]. The num-
ber of channels, n, is the minimum of minchannels and the actual number of channels
in the image.

Deep data in an ImageBuf

bool deep () const

Returns true if the ImageBuf holds a “deep” image, false if the ImageBuf holds an
ordinary pixel-based image.

int deep samples (int x, int y, int z=0) const

Returns the number of deep samples for the given pixel, or 0 if there are no deep samples
for that pixel (including if the pixel coordinates are outside the data area). For non-deep
images, it will always return 0.

void set deep samples (int x, int y, int z, int nsamples)

Set the number of samples for pixel (x,y,z). If data has already been allocated, this is
equivalent to inserting or erasing samples.

void deep insert samples (int x, int y, int z, int samplepos, int nsamples)

Insert nsamples new samples, starting at position samplepos of pixel (x,y,z).

void deep erase samples (int x, int y, int z, int samplepos, int nsamples)

Remove nsamples new samples, starting at position samplepos of pixel (x,y,z).

float deep value (int x, int y, int z, int c, int s) const
uint32 t deep value uint (int x, int y, int z, int c, int s) const

Return the value of sample s of channel c of pixel (x,y,z). Return 0 if not a deep image
or if the pixel coordinates, channel number, or sample number are out of range, or if it
has no deep samples. You are expected to call the float or uint32 t version based on
the data type of channel c.

void set deep value (int x, int y, int z, int c, int s, float value) const
void set deep value (int x, int y, int z, int c, int s, uint32 t value) const

Set the value of sample s of channel c of pixel (x,y,z). It is expected that you choose
the float or uint32 t variety of the call based on the data type of channel c.

OpenImageIO Programmer’s Documentation

182 CHAPTER 9. IMAGE BUFFERS

const void *deep pixel ptr (int x, int y, int z, int c, int s=0) const

Returns a pointer to the raw pixel data pixel (x,y,z), channel c, sample s. This will re-
turn NULL if the pixel coordinates or channel number are out of range, if the pixel/channel
has no deep samples, or if the image is not deep. Use with caution — these pointers may
be invalidated by calls that adjust the number of samples in any pixel.

DeepData& deepdata ()
const DeepData& deepdata () const

Returns a reference to the underlying DeepData for a deep image.

9.6 Miscellaneous

void error (const char *format, ...) const

This can be used to register an error associated with this ImageBuf.

bool has error (void) const

Returns true if the ImageBuf has had an error and has an error message to retrieve via
geterror().

std::string geterror (void) const

Return the text of all error messages issued since geterror() was called (or an empty
string if no errors are pending). This also clears the error message for next time.

void *localpixels ();
const void *localpixels () const;

Returns a raw pointer to the “local” pixel memory, if they are fully in RAM and not
backed by an ImageCache (in which case, nullptr will be returned). You can also test
it like a bool to find out if pixels are local.

const void *pixeladdr (int x, int y, int z=0, int ch=0) const
void *pixeladdr (int x, int y, int z=0, int ch=0)

Return the address where pixel (x,y,z), channel ch is stored in the local image buffer
memory. Use with extreme caution! Will return nullptr if the pixel values aren’t local
(for example, if backed by an ImageCache).

int pixelindex (int x, int y, int z, bool check range=false) const

Return the index of pixel (x,y,z). If check range is true, return -1 for an invalid coor-
dinate that is not within the data window.

OpenImageIO Programmer’s Documentation

9.7. ITERATORS – THE FAST WAY OF ACCESSING INDIVIDUAL PIXELS 183

static WrapMode WrapMode from string (string view name)

Return the WrapMode corresponding to the name ("default", "black", "clamp", "periodic",
"mirror"). For an unknown name, this will return WrapDefault.

9.7 Iterators – the fast way of accessing individual pixels

Sometimes you need to visit every pixel in an ImageBuf (or at least, every pixel in a large
region). Using the getpixel and setpixel for this purpose is simple but very slow. But
ImageBuf provides templated Iterator and ConstIterator types that are very inexpensive
and hide all the details of local versus cached storage.

An Iterator is associated with a particular ImageBuf. The Iterator has a current pixel
coordinate that it is visiting, and an iteration range that describes a rectangular region of pixels
that it will visits as it advances. It always starts at the upper left corner of the iteration region.
We say that the iterator is done after it has visited every pixel in its iteration range. We say that
a pixel coordinate exists if it is within the pixel data window of the ImageBuf. We say that a
pixel coordinate is valid if it is within the iteration range of the iterator.

The ImageBuf::ConstIterator is identical to the Iterator, except that ConstIterator
may be used on a const ImageBuf and may not be used to alter the contents of the ImageBuf.
For simplicity, the remainder of this section will only discuss the Iterator.

The Iterator<BUFT,USERT> is templated based on two types: BUFT the type of the data
stored in the ImageBuf, and USERT type type of the data that you want to manipulate with your
code. USERT defaults to float, since usually you will want to do all your pixel math with
float. We will thus use Iterator<T> synonymously with Iterator<T,float>.

For the remainder of this section, we will assume that you have a float-based ImageBuf,
for example, if it were set up like this:

ImageBuf buf ("myfile.exr");
buf.read (0, 0, true, TypeDesc::FLOAT);

Iterator<BUFT> (ImageBuf &buf, WrapMode wrap=WrapDefault)

Initialize an iterator that will visit every pixel in the data window of buf, and start it out
pointing to the upper left corner of the data window. The wrap describes what values will
be retrieved if the iterator is positioned outside the data window of the buffer.

Iterator<BUFT> (ImageBuf &buf, const ROI &roi, WrapMode wrap=WrapDefault)

Initialize an iterator that will visit every pixel of buf within the region described by roi,
and start it out pointing to pixel (roi.xbegin, roi.ybegin, roi.zbegin). The wrap
describes what values will be retrieved if the iterator is positioned outside the data window
of the buffer.

OpenImageIO Programmer’s Documentation

184 CHAPTER 9. IMAGE BUFFERS

Iterator<BUFT> (ImageBuf &buf, int x, int y, int z, WrapMode wrap=WrapDefault)

Initialize an iterator that will visit every pixel in the data window of buf, and start it
out pointing to pixel (x, y, z). The wrap describes what values will be retrieved if the
iterator is positioned outside the data window of the buffer.

Iterator::operator++ ()

The ++ operator advances the iterator to the next pixel in its iteration range. (Both prefix
and postfix increment operator are supported.)

bool Iterator::done () const

Returns true if the iterator has completed its visit of all pixels in its iteration range.

ROI Iterator::range () const

Returns the iteration range of the iterator, expressed as an ROI.

int Iterator::x () const
int Iterator::y () const
int Iterator::z () const

Returns the x, y, and z pixel coordinates, respectively, of the pixel that the iterator is
currently visiting.

bool Iterator::valid () const

Returns true if the iterator’s current pixel coordinates are within its iteration range.

bool Iterator::valid (int x, int y, int z=0) const

Returns true if pixel coordinate (x, y, z) are within the iterator’s iteration range (re-
gardless of where the iterator itself is currently pointing).

bool Iterator::exists () const

Returns true if the iterator’s current pixel coordinates are within the data window of the
ImageBuf.

bool Iterator::exists (int x, int y, int z=0) const

Returns true if pixel coordinate (x, y, z) are within the pixel data window of the
ImageBuf (regardless of where the iterator itself is currently pointing).

OpenImageIO Programmer’s Documentation

9.7. ITERATORS – THE FAST WAY OF ACCESSING INDIVIDUAL PIXELS 185

USERT& Iterator::operator[] (int i)

The value of channel i of the current pixel. (The wrap mode, set up when the iterator was
constructed, determines what value is returned if the iterator points outside the pixel data
window of its buffer.)

int Iterator::deep samples () const

For deep images only, retrieves the number of deep samples for the current pixel.

void Iterator::set deep samples ()

For deep images only (and non-const ImageBuf), set the number of deep samples for the
current pixel. This only is useful if the ImageBuf has not yet had the deep alloc()
method called.

USERT Iterator::deep value (int c, int s) const
uint32 t Iterator::deep value int (int c, int s) const

For deep images only, returns the value of channel c, sample number s, at the current
pixel.

void Iterator::set deep value (int c, int s, float value)
void Iterator::set deep value (int c, int s, uint32 t value)

For deep images only (and non-cconst ImageBuf, sets the value of channel c, sample
number s, at the current pixel. This only is useful if the ImageBuf has already had the
deep alloc() method called.

Example: Visiting all pixels to compute an average color

void print_channel_averages (const std::string &filename)
{

// Set up the ImageBuf and read the file
ImageBuf buf (filename);
bool ok = buf.read (0, 0, true, TypeDesc::FLOAT); // Force a float buffer
if (! ok)

return;

// Initialize a vector to contain the running total
int nc = buf.nchannels();
std::vector<float> total (n, 0.0f);

// Iterate over all pixels of the image, summing channels separately
for (ImageBuf::ConstIterator<float> it (buf); ! it.done(); ++it)

for (int c = 0; c < nc; ++c)
total[c] += it[c];

// Print the averages

OpenImageIO Programmer’s Documentation

186 CHAPTER 9. IMAGE BUFFERS

imagesize_t npixels = buf.spec().image_pixels();
for (int c = 0; c < nc; ++c)

std::cout << "Channel " << c << " avg = " (total[c] / npixels) << "\n";
}

Example: Set all pixels in a region to black

bool make_black (ImageBuf &buf, ROI region)
{

if (buf.spec().format != TypeDesc::FLOAT)
return false; // Assume it’s a float buffer

// Clamp the region’s channel range to the channels in the image
roi.chend = std::min (roi.chend, buf.nchannels);

// Iterate over all pixels in the region...
for (ImageBuf::Iterator<float> it (buf, region); ! it.done(); ++it) {

if (! it.exists()) // Make sure the iterator is pointing
continue; // to a pixel in the data window

for (int c = roi.chbegin; c < roi.chend; ++c)
it[c] = 0.0f; // clear the value

}
return true;

}

9.8 Dealing with buffer data types

The previous section on iterators presented examples and discussion based on the assumption
that the ImageBuf was guaranteed to store float data and that you wanted all math to also
be done as float computations. Here we will explain how to deal with buffers and files that
contain different data types.

Strategy 1: Only have float data in your ImageBuf

When creating your own buffers, make sure they are float:

ImageSpec spec (640, 480, 3, TypeDesc::FLOAT); // <-- float buffer
ImageBuf buf ("mybuf", spec);

When using ImageCache-backed buffers, force the ImageCache to convert everything to float:

// Just do this once, to set up the cache:
ImageCache *cache = ImageCache::create (true /* shared cache */);
cache->attribute ("forcefloat", 1);
...
ImageBuf buf ("myfile.exr"); // Backed by the shared cache

OpenImageIO Programmer’s Documentation

9.8. DEALING WITH BUFFER DATA TYPES 187

Or force the read to convert to float in the buffer if it’s not a native type that would automati-
cally stored as a float internally to the ImageCache:1

ImageBuf buf ("myfile.exr"); // Backed by the shared cache
buf.read (0, 0, false /* don’t force read to local mem */,

TypeDesc::FLOAT /* but do force conversion to float*/);

Or force a read into local memory unconditionally (rather than relying on the ImageCache), and
convert to float:

ImageBuf buf ("myfile.exr");
buf.read (0, 0, true /*force read*/,

TypeDesc::FLOAT /* force conversion */);

Strategy 2: Template your iterating functions based on buffer type

Consider the following alternate version of the make black function from Section 9.7:

template<type BUFT>
static bool make_black_impl (ImageBuf &buf, ROI region)
{

// Clamp the region’s channel range to the channels in the image
roi.chend = std::min (roi.chend, buf.nchannels);

// Iterate over all pixels in the region...
for (ImageBuf::Iterator<BUFT> it (buf, region); ! it.done(); ++it) {

if (! it.exists()) // Make sure the iterator is pointing
continue; // to a pixel in the data window

for (int c = roi.chbegin; c < roi.chend; ++c)
it[c] = 0.0f; // clear the value

}
return true;

}

bool make_black (ImageBuf &buf, ROI region)
{

if (buf.spec().format == TypeDesc::FLOAT)
return make_black_impl<float> (buf, region);

else if (buf.spec().format == TypeDesc::HALF)
return make_black_impl<half> (buf, region);

else if (buf.spec().format == TypeDesc::UINT8)
return make_black_impl<unsigned char> (buf, region);

else if (buf.spec().format == TypeDesc::UINT16)
return make_black_impl<unsigned short> (buf, region);

else {
buf.error ("Unsupported pixel data format %s", buf.spec().format);
retrn false;

}
}

1ImageCache only supports a limited set of types internally, currently only FLOAT and UINT8, and all other
data types are converted to these automatically as they are read into the cache.

OpenImageIO Programmer’s Documentation

188 CHAPTER 9. IMAGE BUFFERS

In this example, we make an implementation that is templated on the buffer type, and then a
wrapper that calls the appropriate template specialization for each of 4 common types (and logs
an error in the buffer for any other types it encounters).

In fact, imagebufalgo util.h provides a macro to do this (and several variants, which
will be discussed in more detail in the next chapter). You could rewrite the example even more
simply:

#include <OpenImageIO/imagebufalgo_util.h>

template<type BUFT>
static bool make_black_impl (ImageBuf &buf, ROI region)
{

... same as before ...
}

bool make_black (ImageBuf &buf, ROI region)
{

bool ok;
OIIO_DISPATCH_COMMON_TYPES (ok, "make_black", make_black_impl,

buf.spec().format, buf, region);
return ok;

}

This other type-dispatching helper macros will be discussed in more detail in Chapter 10.

OpenImageIO Programmer’s Documentation

10 Image Processing

ImageBufAlgo is a set of image processing functions that operate on ImageBuf’s. The func-
tions are declared in the header file OpenImageIO/imagebufalgo.h and are declared in the
namespace ImageBufAlgo.

10.1 ImageBufAlgo common principles

This section explains the general rules common to all ImageBufAlgo functions. Only excep-
tions to these rules will be explained in the subsequent listings of all the individual ImageBufAlgo
functions.

Return values and error messages

Most ImageBufAlgo functions that produce image data come in two forms:

1. Return an ImageBuf.

The return value is a new ImageBuf containing the result image. In this case, an entirely
new image will be created to hold the result. In case of error, the result image returned
can have any error conditions checked with has error() and geterror().

// Method 1: Return an image result
ImageBuf fg ("fg.exr"), bg ("bg.exr");
ImageBuf dst = ImageBufAlgo::over (fg, bg);
if (dst.has_error())

std::cout << "error: " << dst.geterror() << "\n";

2. Pass a destination ImageBuf reference as the first parameter.

The function is passed a destination ImageBuf where the results will be stored, and the
return value is a bool that is true if the function succeeds or false if the function fails.
Upon failure, the destination ImageBuf (the one that is being altered) will have an error
message set.

// Method 2: Write into an existing image
ImageBuf fg ("fg.exr"), bg ("bg.exr");
ImageBuf dst; // will be the output image
bool ok = ImageBufAlgo::over (dst, fg, bg);
if (! ok)

std::cout << "error: " << dst.geterror() << "\n";

189

190 CHAPTER 10. IMAGE PROCESSING

The first option (return an ImageBuf directly) is a more compact and intuitive notation
that is natural for most simple uses. But the second option (pass an ImageBuf& referring to an
existing destination) offers additional flexibility, including more careful control over allocations,
the ability to partially overwrite regions of an existing image, and the ability for the destination
image to also be one of the input images (for example, add(A,A,B) adds B into existing image
A, with no third image allocated at all).

For a small minority of ImageBufAlgo functions, there are only input images, and no image
outputs (e.g., isMonochrome()). In such cases, the error message should be retrieved from the
first input image.

Region of interest

Most ImageBufAlgo functions take an optional ROI parameter that restricts the operation to a
range in x, y, z, and channels. The default-constructed ROI (also known as ROI::All()) means
no region restriction.

For ImageBufAlgo functions that write into a destination ImageBuf parameter and it is
already initialized (i.e. allocated with a particular size and data type), the operation will be
performed on the pixels in the destination that overlap the ROI, leaving pixels in the destination
which are outside the ROI unaltered.

For ImageBufAlgo functions that return an ImageBuf directly, or if their dst parameter is
an uninitialized ImageBuf, the ROI (if set) determines the size of the result image. If the ROI
is the default All, the result image size will be the union of the pixel data windows of the input
images and have a data type determind by the data types of the input images.

Most ImageBufAlgo functions also respect the chbegin and chend members of the ROI,
thus restricting the channel range on which the operation is performed. The default ROI con-
structor sets up the ROI to specify that the operation should be performed on all channels of the
input image(s).

Constant and per-channel values

Many ImageBufAlgo functions take per-channel constant-valued arguments (for example, a fill
color). These parameters are passed as cspan<float>. These are generally expected to have
length equal to the number of channels. But you may also pass a single float which will be used
as the value for all channels. (More generally, what is happening is that the last value supplied
is replicated for any missing channel.)

Some ImageBufAlgo functions have parameters of type Image or Const, which may
take either an ImageBuf reference, or a per-channel constant, or a single constant to be used for
all channels.

Multithreading

All ImageBufAlgo functions take an optional nthreads parameter that signifies the maximum
number of threads to use to parallelize the operation. The default value for nthreads is 0, which
signifies that the number of thread should be the OIIO global default set by OIIO::attribute()
(see Section 2.8), which itself defaults to be the detected level of hardware concurrency (number
of cores available).

OpenImageIO Programmer’s Documentation

10.1. IMAGEBUFALGO COMMON PRINCIPLES 191

Generally you can ignore this parameter (or pass 0), meaning to use all the cores available
in order to perform the computation as quickly as possible. The main reason to explicitly pass
a different number (generally 1) is if the application is multithreaded at a high level, and the
thread calling the ImageBufAlgo function just wants to continue doing the computation without
spawning additional threads, which might tend to crowd out the other application threads.

OpenImageIO Programmer’s Documentation

192 CHAPTER 10. IMAGE PROCESSING

10.2 Pattern generation

For the ImageBufAlgo functions in this section, there is no “source” image. Therefore, either
an initialized dst must be supplied (to give a pre- allocated size and data type of the image),
or else it is strictly necessary to supply an ROI parameter to specify the size of the new image
(the data type in this case will always be float). It is an error if one of the pattern generation
ImageBufAlgo functions is neither supplied a pre-allocated dst nor a non-default ROI.

ImageBuf zero (ROI roi, int nthreads=0)

bool zero (ImageBuf &dst, ROI roi=ROI::All(), int nthreads=0)

Create an all-black float image of size and channels as described by the ROI. If dst is
passed and is alredy initialized, keep its shape and data type, and just zero out the pixels
in the ROI.

Examples:

// Create a new 3-channel, 512x512 float image filled with 0.0 values.
ImageBuf zero = ImageBufAlgo::zero (ROI(0,512,0,512,0,1,0,3));

// Zero out an existing buffer, keeping it the same size and data type
ImageBuf A = ...;
...
ImageBufAlgo::zero (A);

// Zero out a rectangular region of an existing buffer
ImageBufAlgo::zero (A, ROI (0, 100, 0, 100));

// Zero out just the green channel, leave everything else the same
ROI roi = A.roi ();
roi.chbegin = 1; // green
roi.chend = 2; // one past the end of the channel region
ImageBufAlgo::zero (A, roi);

ImageBuf fill (cspan<float> values, ROI roi, int nthreads=0)
ImageBuf fill (cspan<float> top, cspan<float> bottom, ROI roi, int nthreads=0)
ImageBuf fill (cspan<float> topleft, cspan<float> topright,

cspan<float> bottomleft, cspan<float> bottomright,
ROI roi, int nthreads=0)

bool fill (ImageBuf &dst, cspan<float> values,
ROI roi=ROI::All(), int nthreads=0)

bool fill (ImageBuf &dst, cspan<float> top, cspan<float> bottom,
ROI roi=ROI::All(), int nthreads=0)

bool fill (ImageBuf &dst, cspan<float> topleft, cspan<float> topright,
cspan<float> bottomleft, cspan<float> bottomright,
ROI roi=ROI::All(), int nthreads=0)

OpenImageIO Programmer’s Documentation

10.2. PATTERN GENERATION 193

Fill an image region with given channel values, either returning a new image or altering
the existing dst image within the ROI. Note that the values arrays start with channel 0,
even if the ROI indicates that a later channel is the first to be changed.

Three varieties of fill() exist: (a) a single set of channel values that will apply to the
whole ROI, (b) two sets of values that will create a linearly interpolated gradient from top
to bottom of the ROI, (c) four sets of values that will be bilnearly interpolated across all
four corners of the ROI.

Examples:

// Create a new 640x480 RGB image, with a top-to-bottom gradient
// from red to pink
float pink[3] = { 1, 0.7, 0.7 };
float red[3] = { 1, 0, 0 };
ImageBuf A = ImageBufAlgo::fill (red, pink, ROI(0, 640, 0, 480, 0, 1, 0, 3));

// Draw a filled red rectangle overtop existing image A.
ImageBufAlgo::fill (A, red, ROI(50,100, 75, 175));

ImageBuf checker (float width, float height, float depth,
cspan<float> color1, cspan<float> color2,
int xoffset, int yoffset, int zoffset,
ROI roi, int nthreads=0)

bool checker (ImageBuf &dst, float width, float height, float depth,
cspan<float> color1, cspan<float> color2,
int xoffset=0, int yoffset=0, int zoffset=0,
ROI roi=ROI::All(), int nthreads=0)

Create a new image, or set the pixels in the destination image within the ROI, to a checker-
board pattern with origin given by the offset values, checker size given by the width,
height, depth values, and alternting between color1[] and color2[]. The colors
must point to arrays long enough to contain values for all channels in the image.

Examples:

// Create a new 640x480 RGB image, fill it with a two-toned gray
// checkerboard, the checkers being 64x64 pixels each.
ImageBuf A (ImageSpec(640, 480, 3, TypeDesc::FLOAT);
float dark[3] = { 0.1, 0.1, 0.1 };
float light[3] = { 0.4, 0.4, 0.4 };
ImageBufAlgo::checker (A, 64, 64, 1, dark, light, 0, 0, 0);

OpenImageIO Programmer’s Documentation

194 CHAPTER 10. IMAGE PROCESSING

ImageBuf noise (string view noisetype, float A = 0.0f, float B = 0.1f,
bool mono = false, int seed = 0, ROI roi=ROI::All(), int nthreads=0)

bool noise (ImageBuf &dst, string view noisetype,
float A = 0.0f, float B = 0.1f, bool mono = false,
int seed = 0, ROI roi=ROI::All(), int nthreads=0)

Return an image of pseudorandom noise, or add pseudorandom noise to the specified
region of existing region dst.

For noise type "uniform", the noise is uniformly distributed on the range [A,B). For
noise "gaussian", the noise will have a normal distribution with mean A and standard
deviation B. For noise "salt", the value A will be stored in a random set of pixels whose
proportion (of the overall image) is B. For all noise types, choosing different seed values
will result in a different pattern. If the mono flag is true, a single noise value will be
applied to all channels specified by roi, but if mono is false, a separate noise value will
be computed for each channel in the region.

Examples:
// Create a new 256x256 field of grayscale uniformly distributed noise on [0,1)
ImageBuf A = ImageBufAlgo::noise ("uniform", 0.0f /*min*/, 1.0f /*max*/,

true /*mono*/, 1 /*seed*/, ROI(0,256,0,256,0,1,0,3));

// Add color Gaussian noise to an existing image
ImageBuf B ("tahoe.jpg");
ImageBufAlgo::noise (B, "gaussian", 0.0f /*mean*/, 0.1f /*stddev*/,

false /*mono*/, 1 /*seed*/);

// Use salt and pepper noise to make occasional random dropouts
ImageBuf C ("tahoe.jpg");
ImageBufAlgo::noise (C, "salt", 0.0f /*value*/, 0.01f /*portion*/,

true /*mono*/, 1 /*seed*/);

OpenImageIO Programmer’s Documentation

10.2. PATTERN GENERATION 195

bool render point (ImageBuf &dst, int x, int y, cspan<float> color,
ROI roi=ROI.All(), int nthreads=0)

Render a point into the destination image, doing an “over” of color (if it includes an
alpha channel). The color value should have at least as many entires as the ROI (which
will default to being the entirety of dst). No pixels or channels outside the ROI will be
modified.

Examples:
ImageBuf A (ImageSpec (640, 480, 4, TypeDesc::FLOAT));
float red[4] = { 1, 0, 0, 1 };
ImageBufAlgo::render_point (A, 50, 100, red);

bool render line (ImageBuf &dst, int x1, int y1, int x2, int y2,
cspan<float> color, bool skip first point=false,
ROI roi=ROI.All(), int nthreads=0)

Render a line from pixel (x1,y1) to (x2,y2) into dst, doing an “over” of the color (if it
includes an alpha channel) onto the existing data in dst. The color should include as
many values as roi.chend-1. The ROI can be used to limit the pixel area or channels
that are modified, and default to the entirety of dst. If skip first point is true, the
first point (x1, y1) will not be drawn (this can be helpful when drawing poly-lines, to
avoid double-rendering of the vertex positions).

Examples:
ImageBuf A (ImageSpec (640, 480, 4, TypeDesc::FLOAT));
float red[4] = { 1, 0, 0, 1 };
ImageBufAlgo::render_line (A, 10, 60, 250, 20, red);
ImageBufAlgo::render_line (A, 250, 20, 100, 190, red, true);

bool render box (ImageBuf &dst, int x1, int y1, int x2, int y2,
cspan<float> color, bool fill=false,
roi=ROI.All(), int nthreads=0)

Render a filled or unfilled box with corners at pixels (x1,y1) and (x2,y2) into dst, doing
an “over” of the color (if it includes an alpha channel) onto the existing data in dst. The
color must include as many values as roi.chend-1. The ROI can be used to limit the
pixel area or channels that are modified, and default to the entirety of dst. If fill is
true, the box will be completely filled in, otherwise only its outlien will be drawn.

OpenImageIO Programmer’s Documentation

196 CHAPTER 10. IMAGE PROCESSING

Examples:
ImageBuf A (ImageSpec (640, 480, 4, TypeDesc::FLOAT));
float cyan[4] = { 1, 0, 0, 1 };
ImageBufAlgo::render_box (A, 150, 100, 240, 180, cyan);
float yellow_transparent[4] = { 0.5, 0.5, 0, 0.5 };
ImageBufAlgo::render_box (A, 100, 50, 180, 140, yellow_transparent, true);

bool render text (ImageBuf &dst, int x, int y, string view text,
int fontsize=16, string view fontname="",
cspan<float> textcolor = 1.0,
TextAlignX alignx = TextAlignX::Left,
TextAlignY aligny = TextAlignX::BaseLine,
int shadow = 0, ROI roi = ROI::All(), int nthreads =0)

enum class TextAlignX { Left, Right, Center };
enum class TextAlignY { Baseline, Top, Bottom, Center };

Render a text string (encoded as UTF-8) into image dst. If the dst image is not yet
initiailzed, it will be initialized to be a black background exactly large enought to contain
the rasterized text. If dst is already initialized, the text will be rendered into the existing
image by essentially doing an “over” of the character into the existing pixel data.

The font is given by fontname (if not a full pathname to a font file, it will search for a
matching font, defaulting to some reasonable system font if not supplied at all), and with
a nominal height of fontsize (in pixels).

The position is given by coordinates (x,y), with the default behavior to align the left
edge of the character baseline to (x,y). Optionally, alignx and aligny can override the
alignment behavior, with horizontal alignment choices of Left, Right, and Center, and
vertical alignment choices of Baseline, Top, Bottom, or Center.

The characters will be drawn in opaque white (1.0,1.0,...) in all channels, unless textcolor
is supplied. If shadow is nonzero, a “drop shadow” of that radius will be used to make
the text look more clear by dilating the alpha channel of the composite (makes a black
halo around the characters).

Examples:
ImageBufAlgo::render_text (ImgA, 50, 100, "Hello, world");

OpenImageIO Programmer’s Documentation

10.2. PATTERN GENERATION 197

float red[] = { 1, 0, 0, 1 };
ImageBufAlgo::render_text (ImgA, 100, 200, "Go Big Red!",

60, "Arial Bold", red);

float white[] = { 1, 1, 1, 1 };
ImageBufAlgo::render_text (ImgB, 320, 240, "Centered",

60, "Arial Bold", white,
TextAlignX::Center, TextAlignY::Center);

ROI text size (string view text, int fontsize=16, string view fontname="")

The helper function text size() merely computes the dimensions of the text, returning
it as an ROI relative to the left side of the baseline of the first character. Only the x and y
dimensions of the ROI will be used. The x dimension runs from left to right, and y runs
from top to bottom (image coordinates). For a failure (such as an invalid font name), the
ROI will return false if you call its defined() method.

// Render text centered in the image, using text_size to find out
// the size we will need and adjusting the coordinates.
ImageBuf A (ImageSpec (640, 480, 4, TypeDesc::FLOAT));
ROI Aroi = A.roi();
ROI size = ImageBufAlgo::text_size ("Centered", 48, "Courier New");
if (size.defined()) {

int x = Aroi.xbegin + Aroi.width()/2 - (size.xbegin + size.width()/2);
int y = Aroi.ybegin + Aroi.height()/2 - (size.ybegin + size.height()/2);
ImageBufAlgo::render_text (A, x, y, "Centered", 48, "Courier New");

}

OpenImageIO Programmer’s Documentation

198 CHAPTER 10. IMAGE PROCESSING

10.3 Image transformations and data movement

ImageBuf channels (const ImageBuf &src, int nchannels,
cspan<int> channelorder, cspan<float> channelvalues={},
cspan<std::string> newchannelnames={},
bool shuffle channel names=false, int nthreads=0)

bool channels (ImageBuf &dst, const ImageBuf &src, int nchannels,
cspan<int> channelorder, cspan<float> channelvalues={},
cspan<std::string> newchannelnames={},
bool shuffle channel names=false, int nthreads=0)

Generic channel shuffling: return (or store in dst) a copy of src, but with channels
in the order specified by channelorder[0..nchannels-1]. For any channel in which
channelorder[i]< 0, it will just make dst channel i be a constant value set to channelvalues[i]
(if channelvalues is not empty) or 0.0 (if channelvalues is empty). In-place opera-
tion is allowed (i.e., dst and src the same image, but an extra copy will occur).

If channelorder is empty, it will be interpreted as {0, 1, ..., nchannels-1}, mean-
ing that it’s only renaming channels, not reordering them.

If newchannelnames is not empty, it points to an array of new channel names. Channels
for which newchannelnames[i] is the empty string (or all channels, if newchannelnames
is empty) will be named as follows: If shuffle channel names is false, the result-
ing dst image will have default channel names in the usual order ("R", "G", etc.), but
if shuffle channel names is true, the names will be taken from the corresponding
channels of the source image – be careful with this, shuffling both channel ordering and
their names could result in no semantic change at all, if you catch the drift.

Examples:
// Copy the first 3 channels of an RGBA, drop the alpha
ImageBuf RGBA (...); // assume it’s initialized, 4 chans
ImageBuf RGB = ImageBufAlgo::channels (RGBA, 3, {} /*default ordering*/);

// Copy just the alpha channel, making a 1-channel image
ImageBuf Alpha = ImageBufAlgo::channels (RGBA, 1, 3 /*alpha_channel*/);

// Swap the R and B channels into an existing image
ImageBuf BRGA;
int channelorder[] = { 2 /*B*/, 1 /*G*/, 0 /*R*/, 3 /*A*/ };
ImageBufAlgo::channels (BRGA, RGBA, 4, channelorder);

// Add an alpha channel with value 1.0 everywhere to an RGB image,
// keep the other channels with their old ordering, values, and
// names.
int channelorder[] = { 0, 1, 2, -1 /*use a float value*/ };
float channelvalues[] = { 0 /*ignore*/, 0 /*ignore*/, 0 /*ignore*/, 1.0 };
std::string channelnames[] = { "", "", "", "A" };
ImageBuf RGBA = ImageBufAlgo::channels (RGB, 4, channelorder,

channelvalues, channelnames);

OpenImageIO Programmer’s Documentation

10.3. IMAGE TRANSFORMATIONS AND DATA MOVEMENT 199

ImageBuf channel append (const ImageBuf &A, const ImageBuf &B,
ROI roi=ROI::All(), int nthreads=0)

bool channel append (ImageBuf &dst, const ImageBuf &A, const ImageBuf &B,
ROI roi=ROI::All(), int nthreads=0)

Append the channels of A and B together into dst over the region of interest. If the region
passed is uninitialized (the default), it will be interpreted as being the union of the pixel
windows of A and B (and all channels of both images). If dst is not already initialized, it
will be resized to be big enough for the region.

Examples:

ImageBuf RGBA (...); // assume initialized, 4 channels
ImageBuf Z (...); // assume initialized, 1 channel
ImageBuf RGBAZ = ImageBufAlgo::channel_append (RGBA, Z);

ImageBuf copy (const ImageBuf &src, TypeDesc convert=TypeUnknown,
ROI roi={}, int nthreads=0)

bool copy (ImageBuf &dst, const ImageBuf &src, TypeDesc convert=TypeUnknown,
ROI roi={}, int nthreads=0)

Return (or copy into dst at the corresponding locations) the specified region of pixels of
src. If dst is not already initialized, it will be set to the same size as roi (by default all
of src, optionally with the pixel type overridden by convert (if it is not UNKNOWN).

Examples:

// Set B to be A, but converted to float
ImageBuf A (...); // Assume initialized
ImageBuf B = ImageBufAlgo::copy (A, TypeDesc::FLOAT);

ImageBuf crop (const ImageBuf &src, ROI roi={}, int nthreads=0)

bool crop (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

Reset dst to be the specified region of src. Pixels from src which are outside roi will
not be copied, and new black pixels will be added for regions of roi which were outside
the data window of src.

Note that the crop operation does not actually move the pixels on the image plane or
adjust the full/display window; it merely restricts which pixels are copied from src to
dst. (Note the difference compared to cut()).

Examples:

// Set B to be the upper left 200x100 region of A
ImageBuf A (...); // Assume initialized
ImageBuf B = ImageBufAlgo::crop (A, ROI(0,200,0,100));

OpenImageIO Programmer’s Documentation

200 CHAPTER 10. IMAGE PROCESSING

ImageBuf cut (const ImageBuf &src, ROI roi={}, int nthreads=0)

bool cut (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

Reset dst to be the specified region of src, but repositioned at the image plane origin
and with the full/display window set to exactly cover the new pixel window. (Note the
difference compared to crop()).

Examples:

// Set B to be the 100x100 region of A with origin (50,200).
ImageBuf A (...); // Assume initialized
ImageBuf B = ImageBufAlgo::cut (A, ROI(50,250,200,300));
// Note: B will have origin 0,0, NOT (50,200).

bool paste (ImageBuf &dst, int xbegin, int ybegin, int zbegin, int chbegin,
const ImageBuf &src, ROI srcroi=ROI::All(), int nthreads=0)

Copy into dst, beginning at (xbegin, ybegin, zbegin), the pixels of src described
by srcroi. If srcroi is ROI::All(), the entirety of src will be used. It will copy into
channels [chbegin...], as many channels as are described by srcroi.

Examples:

// Paste small.exr on top of big.exr at offset (100,100)
ImageBuf Big ("big.exr");
ImageBuf Small ("small.exr");
ImageBufAlgo::paste (Big, 100, 100, 0, 0, Small);

ImageBuf rotate90 (const ImageBuf &src, ROI roi={}, int nthreads=0)
ImageBuf rotate180 (const ImageBuf &src, ROI roi={}, int nthreads=0)
ImageBuf rotate270 (const ImageBuf &src, ROI roi={}, int nthreads=0)

bool rotate90 (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)
bool rotate180 (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)
bool rotate270 (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

Return (or copy into dst) a copy of the image pixels of src, rotated clockwise by 90,
180, or 270 degrees.

Examples:

ImageBuf A ("grid.jpg");
ImageBuf R90 = ImageBufAlgo::rotate90 (A);
ImageBuf R170 = ImageBufAlgo::rotate180 (A);
ImageBuf R270 = ImageBufAlgo::rotate270 (A);

OpenImageIO Programmer’s Documentation

10.3. IMAGE TRANSFORMATIONS AND DATA MOVEMENT 201

original rotated 90 rotated 180 rotated 270

ImageBuf flip (const ImageBuf &src, ROI roi={}, int nthreads=0)
ImageBuf flop (const ImageBuf &src, ROI roi={}, int nthreads=0)
ImageBuf transpose (const ImageBuf &src, ROI roi={}, int nthreads=0)

bool flip (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)
bool flop (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)
bool transpose (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

Return (or copy into dst) a subregion of src, but with the scanlines exchanged vertically
(flip), or columns exchanged horizontally (flop), or transposed across the diagonal by
swapping rows for columns (transpose) within the display/full window.

Examples:
ImageBuf A ("grid.jpg");
ImageBuf B;
B = ImageBufAlgo::flip (A);
B = ImageBufAlgo::flop (A);
B = ImageBufAlgo::transpose (A);

original flip flip transpose

ImageBuf reorient (const ImageBuf &src, int nthreads=0)

bool reorient (ImageBuf &dst, const ImageBuf &src, int nthreads=0)

Return (or store into dst) a copy of src, but with whatever seties of rotations, flips,
or flops are necessary to transform the pixels into the configuration suggested by the
"Orientation" metadata of the image (and the "Orientation" metadata is then set to
1, ordinary orientation).

Examples:
ImageBuf A ("tahoe.jpg");
A = ImageBufAlgo::reorient (A);

OpenImageIO Programmer’s Documentation

202 CHAPTER 10. IMAGE PROCESSING

ImageBuf circular shift (const ImageBuf &src,
int xshift, int yshift, int zshift=0, ROI roi={}, int nthreads=0)

bool circular shift (ImageBuf &dst, const ImageBuf &src,
int xshift, int yshift, int zshift=0, ROI roi={}, int nthreads=0)

Copy src (or a subregion of src to the pixels of dst, but circularly shifting by the given
amount. To clarify, the circular shift of [0,1,2,3,4,5] by +2 is [4,5,0,1,2,3].

Examples:
ImageBuf A ("grid.jpg");
ImageBuf B = ImageBufAlgo::circular_shift (A, 70, 30);

→

ImageBuf rotate (const ImageBuf &src, float angle,
string view filtername="", float filtersize=0,
bool recompute roi = false, ROI roi={}, int nthreads=0)

ImageBuf rotate (const ImageBuf &src, float angle,
Filter2D *filter,
bool recompute roi = false, ROI roi={}, int nthreads=0)

ImageBuf rotate (const ImageBuf &src, float angle,
float center x, float center y,
string view filtername="", float filtersize=0,
bool recompute roi = false, ROI roi={}, int nthreads=0)

ImageBuf rotate (const ImageBuf &src, float angle,
float center x, float center y, Filter2D *filter,
bool recompute roi = false, ROI roi={}, int nthreads=0)

bool rotate (ImageBuf &dst, const ImageBuf &src, float angle,
string view filtername="", float filtersize=0,
bool recompute roi = false, ROI roi={}, int nthreads=0)

bool rotate (ImageBuf &dst, const ImageBuf &src, float angle,
Filter2D *filter,
bool recompute roi = false, ROI roi={}, int nthreads=0)

bool rotate (ImageBuf &dst, const ImageBuf &src, float angle,
float center x, float center y,
string view filtername="", float filtersize=0,
bool recompute roi = false, ROI roi={}, int nthreads=0)

bool rotate (ImageBuf &dst, const ImageBuf &src, float angle,

OpenImageIO Programmer’s Documentation

10.3. IMAGE TRANSFORMATIONS AND DATA MOVEMENT 203

float center x, float center y, Filter2D *filter,
bool recompute roi = false, ROI roi={}, int nthreads=0)

Rotate the src image by the angle (in radians, with positive angles clockwise). When
center x and center y are supplied, they denote the center of rotation; in their ab-
sence, the rotation will be about the center of the image’s display window.

Only the pixels (and channels) of dst that are specified by roi will be copied from the
rotated src; the default roi is to alter all the pixels in dst. If dst is uninitialized, it will
be resized to be an ImageBuf large enough to hold the rotated image if recompute roi
is true, or will have the same ROI as src if recompute roi is false. It is an error to
pass both an uninitialied dst and an undefined roi.

The caller may explicitly pass a reconstruction filter, or specify one by name and size, or
if the name is the empty string rotate() will choose a reasonable high-quality default if
NULL is passed. The filter is used to weight the src pixels falling underneath it for each
dst pixel; the filter’s size is expressed in pixel units of the dst image.

Examples:

ImageBuf Src ("tahoe.exr");
ImageBuf Dst = ImageBufAlgo::rotate (Src, 45.0);

→

ImageBuf warp (const ImageBuf &src, const Imath::M33f &M,
string view filtername="", float filtersize=0,
bool recompute roi = false,
ImageBuf::WrapMode wrap = ImageBuf::WrapDefault,
ROI roi={}, int nthreads=0)

ImageBuf warp (const ImageBuf &src, const Imath::M33f &M,
Filter2D *filter, bool recompute roi = false,
ImageBuf::WrapMode wrap = ImageBuf::WrapDefault,
ROI roi={}, int nthreads=0)

bool warp (ImageBuf &dst, const ImageBuf &src, const Imath::M33f &M,
string view filtername="", float filtersize=0,
bool recompute roi = false,
ImageBuf::WrapMode wrap = ImageBuf::WrapDefault,
ROI roi={}, int nthreads=0)

bool warp (ImageBuf &dst, const ImageBuf &src, const Imath::M33f &M,
Filter2D *filter, bool recompute roi = false,

OpenImageIO Programmer’s Documentation

204 CHAPTER 10. IMAGE PROCESSING

ImageBuf::WrapMode wrap = ImageBuf::WrapDefault,
ROI roi={}, int nthreads=0)

Warp the src image using the supplied 3x3 transformation matrix M.

Only the pixels (and channels) of dst that are specified by roi will be copied from the
warped src; the default roi is to alter all the pixels in dst. If dst is uninitialized, it will
be resized to be an ImageBuf large enough to hold the warped image if recompute roi
is true, or will have the same ROI as src if recompute roi is false. It is an error to
pass both an uninitialied dst and an undefined roi.

The caller may explicitly pass a reconstruction filter, or specify one by name and size, or
if the name is the empty string resize() will choose a reasonable high-quality default if
NULL is passed. The filter is used to weight the src pixels falling underneath it for each
dst pixel; the filter’s size is expressed in pixel units of the dst image.

Examples:

Imath::M33f M (0.7071068, 0.7071068, 0,
-0.7071068, 0.7071068, 0,
20, -8.284271, 1);

ImageBuf Src ("tahoe.exr");
ImageBuf Dst = ImageBufAlgo::warp (dst, src, M, "lanczos3");

ImageBuf resize (const ImageBuf &src, string view filtername="",
float filtersize=0, ROI roi={}, int nthreads=0)

ImageBuf resize (const ImageBuf &src, Filter2D *filter,
ROI roi={}, int nthreads=0)

bool resize (ImageBuf &dst, const ImageBuf &src, string view filtername="",
float filtersize=0, ROI roi={}, int nthreads=0)

bool resize (ImageBuf &dst, const ImageBuf &src, Filter2D *filter,
ROI roi={}, int nthreads=0)

Set dst, over the region of interest, to be a resized version of the corresponding portion
of src (mapping such that the “full” image window of each correspond to each other,
regardless of resolution). If dst is not yet initialized, it will be sized according to roi.

The caller may explicitly pass a reconstruction filter, or specify one by name and size, or
if the name is the empty string resize() will choose a reasonable high-quality default if
NULL is passed. The filter is used to weight the src pixels falling underneath it for each
dst pixel; the filter’s size is expressed in pixel units of the dst image.

Examples:

// Resize the image to 640x480, using the default filter
ImageBuf Src ("tahoe.exr");
ROI roi (0, 640, 0, 480, 0, 1, /*chans:*/ 0, Src.nchannels());
ImageBuf Dst = ImageBufAlgo::resize (Src, "", 0, roi);

OpenImageIO Programmer’s Documentation

10.3. IMAGE TRANSFORMATIONS AND DATA MOVEMENT 205

ImageBuf resample (const ImageBuf &src,
bool interpolate = true, ROI roi={}, int nthreads=0)

bool resample (ImageBuf &dst, const ImageBuf &src,
bool interpolate = true, ROI roi={}, int nthreads=0)

Set dst, over the region of interest, to be a resized version of the corresponding portion
of src (mapping such that the “full” image window of each correspond to each other,
regardless of resolution). If dst is not yet initialized, it will be sized according to roi.

Unlike ImageBufAlgo::resize(), resample() does not take a filter; it just samples
either with a bilinear interpolation (if interpolate is true, the default) or uses the sin-
gle “closest” pixel (if interpolate is false). This makes it a lot faster than a proper
resize(), though obviously with lower quality (aliasing when downsizing, pixel repli-
cation when upsizing).

For “deep” images, this function returns copies the closest source pixel needed, rather
than attempting to interpolate deep pixels (regardless of the value of interpolate).

Examples:
// Resample quickly to 320x240, using the default filter
ImageBuf Src ("tahoe.exr");
ROI roi (0, 320, 0, 240, 0, 1, /*chans:*/ 0, Src.nchannels());
ImageBuf Dst = ImageBufAlgo::resample (Src, false, roi);

ImageBuf fit (const ImageBuf &src, string view filtername="",
float filtersize=0, bool exact=false, ROI roi={}, int nthreads=0)

ImageBuf fit (const ImageBuf &src, Filter2D *filter,
bool exact=false, ROI roi={}, int nthreads=0)

bool fit (ImageBuf &dst, const ImageBuf &src, string view filtername="",
float filtersize=0, bool exact=false, ROI roi={}, int nthreads=0)

bool fit (ImageBuf &dst, const ImageBuf &src, Filter2D *filter,
bool exact=false, ROI roi={}, int nthreads=0)

NEW!Fit src into dst (to a size specified by roi, if dst is not initialized), resizing but pre-
serving its original aspect ratio. Thus, it will resize so be the largest size with the same
aspect ratio that can fix inside the region, but will not stretch to completely fill it in both
dimensions.

If exact is true, will result in an exact match on aspect ratio and centering (partial pixel
shift if necessary), whereas if exact is false, it will only preserve aspect ratio and center-
ing to the precision of a whole pixel.

The caller may explicitly pass a reconstruction filter, or specify one by name and size,
or if the name is the empty string fit() will choose a reasonable high-quality default if
NULL is passed. The filter is used to weight the src pixels falling underneath it for each
dst pixel; the filter’s size is expressed in pixel units of the dst image.

Examples:
// Resize to fit into a max of 640x480, preserving the aspect ratio

OpenImageIO Programmer’s Documentation

206 CHAPTER 10. IMAGE PROCESSING

ImageBuf Src ("tahoe.exr");
ROI roi (0, 640, 0, 480, 0, 1, /*chans:*/ 0, Src.nchannels());
ImageBuf Dst = ImageBufAlgo::fit (Src, "", 0, true, roi);

10.4 Image arithmetic

ImageBuf add (Image or Const A, Image or Const B, ROI roi={}, int nthreads=0)

bool add (ImageBuf &dst, Image or Const A, Image or Const B,
ROI roi={}, int nthreads=0)

Compute per-pixel sum A + B, returning the result image or storing the result into exist-
ing image dst.

A and B may each either be an ImageBuf&, or a cspan<float> giving a per-channel
constant, or a single constant used for all channels. (But at least one must be an image.)

Examples:

// Add images A and B, assign to Sum
ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBuf Sum = ImageBufAlgo::add (Sum, A, B);

// Add 0.2 to channels 0-2 of A
ImageBuf A ("a.exr");
ROI roi = get_roi (A.spec());
roi.chbegin = 0; roi.chend = 3;
ImageBuf Sum = ImageBufAlgo::add (Sum, A, 0.2f, roi);

ImageBuf sub (Image or Const A, Image or Const B, ROI roi={}, int nthreads=0)

bool sub (ImageBuf &dst, Image or Const A, Image or Const B,
ROI roi={}, int nthreads=0)

Compute per-pixel signed difference A - B, returning the result image or storing the
result into existing image dst.

A and B may each either be an ImageBuf&, or a cspan<float> giving a per-channel
constant, or a single constant used for all channels. (But at least one must be an image.)

Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBuf Diff = ImageBufAlgo::sub (A, B);

OpenImageIO Programmer’s Documentation

10.4. IMAGE ARITHMETIC 207

ImageBuf absdiff (Image or Const A, Image or Const B, ROI roi={}, int nthreads=0)

bool absdiff (ImageBuf &dst, Image or Const A, Image or Const B,
ROI roi={}, int nthreads=0)

Compute per-pixel absolute difference abs(A - B), returning the result image or storing
the result into existing image dst.

A and B may each either be an ImageBuf&, or a cspan<float> giving a per-channel
constant, or a single constant used for all channels. (But at least one must be an image.)

Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBuf Diff = ImageBufAlgo::absdiff (A, B);

ImageBuf abs (const ImageBuf &A, ROI roi={}, int nthreads=0)

bool abs (ImageBuf &dst, const ImageBuf &A, ROI roi={}, int nthreads=0)

Compute per-pixel absolute value abs(A), returning the result image or storing the result
into existing image dst.

Examples:

ImageBuf A ("a.exr");
ImageBuf Abs = ImageBufAlgo::abs (A);

ImageBuf mul (Image or Const A, Image or Const B, ROI roi={}, int nthreads=0)

bool mul (ImageBuf &dst, Image or Const A, Image or Const B,
ROI roi={}, int nthreads=0)

Compute per-pixel product A * B, returning the result image or storing the result into
existing image dst.

A and B may each either be an ImageBuf&, or a cspan<float> giving a per-channel
constant, or a single constant used for all channels. (But at least one must be an image.)

Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBuf Product = ImageBufAlgo::mul (Product, A, B);

// Reduce intensity of A’s channels 0-2 by 50%
ROI roi = get_roi (A.spec());
roi.chbegin = 0; roi.chend = 3;
ImageBufAlgo::mul (A, A, 0.5f, roi);

OpenImageIO Programmer’s Documentation

208 CHAPTER 10. IMAGE PROCESSING

ImageBuf div (Image or Const A, Image or Const B, ROI roi={}, int nthreads=0)

bool div (ImageBuf &dst, Image or Const A, Image or Const B,
ROI roi={}, int nthreads=0)

Compute per-pixel division A / B, returning the result image or storing the result into
existing image dst. Division by zero is definied to result in zero.

A and B may each either be an ImageBuf&, or a cspan<float> giving a per-channel
constant, or a single constant used for all channels. (But at least one must be an image.)

Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBuf Result = ImageBufAlgo::div (Result, A, B);

// Reduce intensity of A’s channels 0-2 by 50%
ROI roi = get_roi (A.spec());
roi.chbegin = 0; roi.chend = 3;
ImageBufAlgo::div (A, A, 2.0f, roi);

ImageBuf mad (Image or Const A, Image or Const B,
Image or Const C, ROI roi={}, int nthreads=0)

bool mad (ImageBuf &dst, Image or Const A, Image or Const B,
Image or Const C, ROI roi={}, int nthreads=0)

Compute per-pixel multiply-and-add, A * B + C, returning the result image or storing
the result into existing image dst.

A, B, and C may each either be an ImageBuf&, or a cspan<float> giving a per-channel
constant, or a single constant used for all channels. (But at least one must be an image.)

Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBuf C ("c.exr");
ImageBuf Result = ImageBufAlgo::mad (A, B, C);

// Compute the "inverse" A, which is 1.0-A, as A*(-1) + 1
// Do this in-place, and only for the first 3 channels (leave any
// alpha channel, if present, as it is).
ROI roi = get_roi (A.spec());
roi.chbegin = 0; roi.chend = 3;
ImageBufAlgo::mad (A, A, -1.0, 1.0, roi);

OpenImageIO Programmer’s Documentation

10.4. IMAGE ARITHMETIC 209

ImageBuf invert (const ImageBuf &A, ROI roi={}, int nthreads=0)

bool invert (ImageBuf &dst, const ImageBuf &A, ROI roi={}, int nthreads=0)

Compute per-pixel inverse, 1.0 - A, returning the result image or storing the result into
existing image dst.

Examples:
ImageBuf A ("a.exr");
ImageBuf Inverse = ImageBufAlgo::invert (Inverse, A);

// In this example, we are careful to deal with alpha in an RGBA image.
// First we copy A to Inverse, un-premultiply the color values by alpha,
// invert just the color channels in-place, and then re-premultiply the
// colors by alpha.
roi = A.roi();
roi.chend = 3; // Restrict roi to only R,G,B
ImageBuf Inverse = ImageBufAlgo::unpremult (A);
ImageBufAlgo::invert (Inverse, Inverse, roi);
ImageBufAlgo::premult (Inverse, Inverse);

ImageBuf pow (const ImageBuf &A, cspan<float> B, ROI roi={}, int nthreads=0))

bool pow (ImageBuf &dst, const ImageBuf &A, cspan<float> B,
ROI roi={}, int nthreads=0)

Compute per-pixel power AB, returning the result image or storing the result into existing
image dst.

A is always an image, and B may either be a cspan<float> giving a per-channel constant,
or a single constant used for all channels.

Examples:
// Gamma-correct by 2.2 channels 0-2 of the image, in-place
ROI roi = get_roi (A.spec());
roi.chbegin = 0; roi.chend = 3;
ImageBufAlgo::pow (A, A, 1.0f/2.2f, roi);

ImagBuf channel sum (const ImageBuf &src,
cspan<float> weights=1.0f, ROI roi={}, int nthreads=0)

bool channel sum (ImageBuf &dst, const ImageBuf &src,
cspan<float> weights=1.0f, ROI roi={}, int nthreads=0)

Converts a multi-channel image into a 1-channel image via a weighted sum of channels.
For each pixel of src within the designated ROI (defaulting to all of src, if not de-
fined), sum the channels designated by roi and store the result in channel 0 of dst. The
weights, if not supplied, default to 1.0 for each channel.

Examples:

OpenImageIO Programmer’s Documentation

210 CHAPTER 10. IMAGE PROCESSING

// Compute luminance via a weighted sum of R,G,B
// (assuming Rec709 primaries and a linear scale)
float luma_weights[3] = { .2126, .7152, .0722, 0.0 };
ImageBuf A ("a.exr");
ImageBuf lum = ImageBufAlgo::channel_sum (A, luma_weights);

ImageBuf contrast remap (const ImageBuf &src,
cspan<float> black=0.0f, cspan<float> white=1.0f,
cspan<float> min=0.0f, cspan<float> max=1.0f,
cspan<float> scontrast=1.0f, cspan<float> sthresh=0.5f,
ROI roi={}, int nthreads=0)

bool contrast remap (ImageBuf &dst, const ImageBuf &src,
cspan<float> black=0.0f, cspan<float> white=1.0f,
cspan<float> min=0.0f, cspan<float> max=1.0f,
cspan<float> scontrast=1.0f, cspan<float> sthresh=0.5f,
ROI roi={}, int nthreads=0)

NEW! Return (or copy into dst) pixel values that are a contrast-remap of the corresponding
values of the src image, transforming pixel value domain [black, white] to range [min,
max], either linearly or with optional application of a smooth sigmoidal remapping (if
scontrast != 1.0).

The following steps are performed, in order:

Linearly rescale black to 0.0 and white to 1.0.

1.2. Optionally raise to power 1/gamma (only if gamma is not 1.0).

3. Apply a sigmoidal remapping (only if scontrast > 1) where a larger scontrast
value makes a steeper slope, and the steepest part is at value sthresh (relative to
the new remapped value after steps 1 & 2; the default is 0.5).

4. Rescale the range of that result: 0.0 to min and 1.0 to max.

Values outside of the [black,white] range will be extrapolated to outside [min,max], so it
may be prudent to apply a clamp() to the results.

The black, white, min, max, scontrast, sthresh parameters may each either be a single
float value for all channels, or a span giving per-channel values.

You can use this function for a simple linear contrast remapping of [black, white] to [min,
max] if you use the default values for sthresh. Or just a simple sigmoidal contrast stretch
within the [0,1] range if you leave all other parameters at their defaults, or a combination
of these effects. Note that if black == white, the result will be a simple binary thresholding
where values ¡ black map to min and values ¿= bkack map to max.

Examples:

ImageBuf A ("tahoe.tif");

// Simple linear remap that stretches input 0.1 to black, and input
// 0.75 to white.

OpenImageIO Programmer’s Documentation

10.4. IMAGE ARITHMETIC 211

ImageBuf linstretch = ImageBufAlgo::contrast_remap (A, 0.1f, 0.75f);

// Remapping 0->1 and 1->0 inverts the colors of the image,
// equivalent to ImageBufAlgo::invert().
ImageBuf inverse = ImageBufAlgo::contrast_remap (A, 1.0f, 0.0f);

// Use a sigmoid curve to add contrast but without any hard cutoffs.
// Use a contrast parameter of 5.0.
ImageBuf sigmoid = ImageBufAlgo::contrast_remap (a, 0.0f, 1.0f,

0.0f, 1.0f, 5.0f);

original linstretch inverse sigmoid

ImageBuf color map (const ImageBuf &src, int srcchannel,
int nknots, int channels, cspan<float> knots,
ROI roi={}, int nthreads=0)

ImageBuf color map (const ImageBuf &src, int srcchannel,
string view mapname, ROI roi={}, int nthreads=0)

bool color map (ImageBuf &dst, const ImageBuf &src, int srcchannel,
int nknots, int channels, cspan<float> knots,
ROI roi={}, int nthreads=0)

bool color map (ImageBuf &dst, const ImageBuf &src, int srcchannel,
string view mapname, ROI roi={}, int nthreads=0)

Return (or copy into dst) pixel values determined by looking up a color map using values
of the src image, using either the channel specified by srcchannel, or the luminance of
src’s RGB if srcchannel is -1. This happens for all pixels within the ROI (which
defaults to all of src), and if dst is not already initialized, it will be initialized to the ROI
and with color channels equal to channels.

In the first variant, the values linearly-interpolated color map are given by knots[nknots*channels].
An input value of 0.0 corresponds to knots[0..channels-1], an input value of 1.0 cor-
responds to knots[(nknots-1)*channels..knots.size()-1].

In the second variant, just the name of a color map is specified. Recognized map names
include: "inferno", "viridis", "magma", "plasma", all of which are perceptually uni-
form, strictly increasing in luminance, look good when converted to grayscale, and work
for people with all types of colorblindness. Also supported are the following color maps
that do not have those desirable qualities (and are this not recommended): "blue-red",
"spectrum", and "heat". In all cases, the implied channels is 3.

Examples:
// Use luminance of a.exr (assuming Rec709 primaries and a linear
// scale) and map to a color spectrum:

OpenImageIO Programmer’s Documentation

212 CHAPTER 10. IMAGE PROCESSING

ImageBuf A ("a.exr");
ImageBuf B = ImageBufAlgo::color_map (A, -1, "inferno");

float mymap[] = { 0.25, 0.25, 0.25, 0, 0.5, 0, 1, 0, 0 };
B = ImageBufAlgo::color_map (A, -1 /* use luminance */,

3 /* num knots */, 3 /* channels */,
mymap);

original inferno viridis spectrum custom values

ImageBuf clamp (const ImageBuf &src,
cspan<float> min = {}, cspan<float> max = {},
bool clampalpha01 = false, ROI roi={}, int nthreads=0)

bool clamp (ImageBuf &dst, const ImageBuf &src,
cspan<float> min = {}, cspan<float> max = {},
bool clampalpha01 = false, ROI roi={}, int nthreads=0)

Return (or copy into dst) pixels of src with pixel values clamped between the min and
max values. The min and max may either be a single float (applied to all channels) or a
per-channel value. If either is empty, no clamping will be performed in that direction. If
clampalpha01 is true, then any alpha channel is clamped to the 0–1 range (in addition
to its otherwise-specified min/max).

Examples:

// Clamp image buffer A in-place to the [0,1] range for all pixels.
ImageBufAlgo::clamp (A, A, 0.0f, 1.0f);

// Just clamp alpha to [0,1] in-place
ImageBufAlgo::clamp (A, A, -std::numeric_limits<float>::max(),

std::numeric_limits<float>::max(), true);

// Clamp R & G to [0,0.5], leave other channels alone
std::vector<float> min (A.nchannels(), -std::numeric_limits<float>::max());
std::vector<float> max (A.nchannels(), std::numeric_limits<float>::max());
min[0] = 0.0f; max[0] = 0.5f;
min[1] = 0.0f; max[1] = 0.5f;
ImageBufAlgo::clamp (A, A, &min[0], &max[0], false);

OpenImageIO Programmer’s Documentation

10.4. IMAGE ARITHMETIC 213

ImageBuf rangecompress (const ImageBuf &src, bool useluma = false,
ROI roi={}, int nthreads=0)

bool rangecompress (ImageBuf &dst, const ImageBuf &src, bool useluma = false,
ROI roi={}, int nthreads=0)

ImageBuf rangeexpand (const ImageBuf &src, bool useluma = false,
ROI roi={}, int nthreads=0)

bool rangeexpand (ImageBuf &dst, const ImageBuf &src, bool useluma = false,
ROI roi={}, int nthreads=0)

The rangecompress() function returns (or copy into dst) all pixels and color channels of
src within region roi (defaulting to all the defined pixels of dst), rescaling their range
with a logarithmic transformation. Alpha and z channels are not transformed.

The rangeexpand() function performs the inverse transformation (logarithmic back into
linear).

If useluma is true, the luma of the first three channels (presumed to be R, G, and B) are
used to compute a single scale factor for all color channels, rather than scaling all channels
individually (which could result in a big color shift when performing rangecompress and
rangeexpand).

The purpose of these function is as follows: Some image operations (such as resizing
with a “good” filter that contains negative lobes) can have objectionable artifacts when
applied to images with very high-contrast regions involving extra bright pixels (such as
highlights in HDR captured or rendered images). By compressing the range pixel values,
then performing the operation, then expanding the range of the result again, the result can
be much more pleasing (even if not exactly correct).

Examples:

// Resize the image to 640x480, using a Lanczos3 filter, which
// has negative lobes. To prevent those negative lobes from
// producing ringing or negative pixel values for HDR data,
// do range compression, then resize, then re-expand the range.

// 1. Read the original image
ImageBuf Src ("tahoeHDR.exr");

// 2. Range compress to a logarithmic scale
ImageBuf Compressed = ImageBufAlgo::rangecompress (Src);

// 3. Now do the resize
ImageBuf Dst = ImageBufAlgo::resize (Comrpessed, "lanczos3", 6.0,

ROI(0, 640, 0, 480));

// 4. Expand range to be linear again (operate in-place)
ImageBufAlgo::rangeexpand (Dst, Dst);

OpenImageIO Programmer’s Documentation

214 CHAPTER 10. IMAGE PROCESSING

ImageBuf over (const ImageBuf &A, const ImageBuf &B,
ROI roi={}, int nthreads=0)

bool over (ImageBuf &dst, const ImageBuf &A, const ImageBuf &B,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the composite of images A and B using the Porter-Duff “over”
compositing operation. Image A is the “foreground,” and B is the “background.” Images
A and B must have the same number of channels and must both have an alpha channel.

Examples:

ImageBuf A ("fg.exr");
ImageBuf B ("bg.exr");
ImageBuf Composite = ImageBufAlgo::over (A, B);

ImageBuf zover (const ImageBuf &A, const ImageBuf &B,
bool z zeroisinf = false, ROI roi={}, int nthreads=0)

bool zover (ImageBuf &dst, const ImageBuf &A, const ImageBuf &B,
bool z zeroisinf = false, ROI roi={}, int nthreads=0)

Composite similar to ImageBufAlgo::over(), but inputs A and B must have designated
‘z’ channels, and on a pixel-by-pixel basis, the z values will determine which of A or
B will be considered the foreground or background (lower z is foreground). If z -
zeroisinf is true, then z = 0 values will be treated as if they are infinitely far away.

Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBuf Composite = ImageBufAlgo::zover (Composite, A, B);

10.5 Image comparison and statistics

bool computePixelStats (PixelStats &stats, const ImageBuf &src,
ROI roi={}, int nthreads=0)

Compute statistics about the ROI of the image src, storing results in stats (each of
the vectors within stats will be automatically resized to the number of channels in the
image). A return value of true indicates success, false indicates that it was not possible
to complete the operation. The PixelStats structure is defined as follows:

struct PixelStats {
std::vector<float> min;
std::vector<float> max;
std::vector<float> avg;
std::vector<float> stddev;
std::vector<imagesize_t> nancount;
std::vector<imagesize_t> infcount;

OpenImageIO Programmer’s Documentation

10.5. IMAGE COMPARISON AND STATISTICS 215

std::vector<imagesize_t> finitecount;
std::vector<double> sum, sum2; // for intermediate calculation

};

Examples:

ImageBuf A ("a.exr");
ImageBufAlgo::PixelStats stats;
ImageBufAlgo::computePixelStats (stats, A);
for (int c = 0; c < A.nchannels(); ++c) {

std::cout << "Channel " << c << ":\n";
std::cout << " min = " << stats.min[c] << "\n";
std::cout << " max = " << stats.max[c] << "\n";
std::cout << " average = " << stats.avg[c] << "\n";
std::cout << " standard deviation = " << stats.stddev[c] << "\n";
std::cout << " # NaN values = " << stats.nancount[c] << "\n";
std::cout << " # Inf values = " << stats.infcount[c] << "\n";
std::cout << " # finite values = " << stats.finitecount[c] << "\n";

}

bool compare (const ImageBuf &A, const ImageBuf &B,
float failthresh, float warnthresh, CompareResults &result,
ROI roi={}, int nthreads=0)

Numerically compare two images. The difference threshold (for any individual color
channel in any pixel) for a “failure” is failthresh, and for a “warning” is warnthresh.
The results are stored in result. If roi is defined, pixels will be compared for the pixel
and channel range that is specified. If roi is not defined, the comparison will be for all
channels, on the union of the defined pixel windows of the two images (for either image,
undefined pixels will be assumed to be black). The CompareResults structure is defined
as follows:

struct CompareResults {
double meanerror, rms_error, PSNR, maxerror;
int maxx, maxy, maxz, maxc;
imagesize_t nwarn, nfail;

};

Examples:

ImageBuf A ("a.exr");
ImageBuf B ("b.exr");
ImageBufAlgo::CompareResults comp;
ImageBufAlgo::compare (A, B, 1.0f/255.0f, 0.0f, comp);
if (comp.nwarn == 0 && comp.nfail == 0) {

std::cout << "Images match within tolerance\n";
} else {

std::cout << "Image differed: " << comp.nfail << " failures, "
<< comp.nwarn << " warnings.\n";

std::cout << "Average error was " << comp.meanerror << "\n";
std::cout << "RMS error was " << comp.rms_error << "\n";

OpenImageIO Programmer’s Documentation

216 CHAPTER 10. IMAGE PROCESSING

std::cout << "PSNR was " << comp.PSNR << "\n";
std::cout << "largest error was " << comp.maxerror

<< " on pixel (" << comp.maxx << "," << comp.maxy
<< "," << comp.maxz << "), channel " << comp.maxc << "\n";

}

bool isConstantColor (const ImageBuf &src, span<float> color={},
float threshold=0.0f, ROI roi={}, int nthreads=0)

If all pixels of src within the ROI have the same values, (for the subset of channels
described by roi), within tolerance of threshold, return true and store the values in
color[roi.chbegin...roi.chend-1]. Otherwise, return false.

Examples:

ImageBuf A ("a.exr");
std::vector<float> color (A.nchannels());
if (ImageBufAlgo::isConstantColor (A, color)) {

std::cout << "The image has the same value in all pixels: ";
for (int c = 0; c < A.nchannels(); ++c)

std::cout << (c ? " " : "") << color[c];
std::cout << "\n";

} else {
std::cout << "The image is not a solid color.\n";

}

bool isConstantChannel (const ImageBuf &src, int channel, float val,
float threshold=0.0f, ROI roi={}, int nthreads=0)

Returns true if all pixels of src within the ROI have the given channel value val (within
threshold).

Examples:

ImageBuf A ("a.exr");
int alpha = A.spec().alpha_channel;
if (alpha < 0)

std::cout << "The image does not have an alpha channel\n";
else if (ImageBufAlgo::isConstantChannel (A, alpha, 1.0f))

std::cout << "The image has alpha = 1.0 everywhere\n";
else

std::cout << "The image has alpha < 1 in at least one pixel\n";

OpenImageIO Programmer’s Documentation

10.5. IMAGE COMPARISON AND STATISTICS 217

bool isMonochrome (const ImageBuf &src, float threshold=0.0f,
ROI roi={}, int nthreads=0)

Returns true if the image is monochrome within the ROI, that is, for all pixels within
the region, do all channels [roi.chbegin, roi.chend) have the same value (within
tolerance threshold? If roi is not defined (the default), it will be understood to be all of
the defined pixels and channels of source.

Examples:
ImageBuf A ("a.exr");
ROI roi = get_roi (A.spec());
roi.chend = std::min (3, roi.chend); // only test RGB, not alpha
if (ImageBufAlgo::isMonochrome (A, roi))

std::cout << "a.exr is really grayscale\n";

bool color count (const ImageBuf &src, imagesize t *count,
int ncolors, cspan<float> color, cspan<float> eps={},
ROI roi={}, int nthreads=0)

Count how many pixels in the image (within the ROI) match a list of colors. The colors
to match are in:

colors[0 ... nchans-1]
colors[nchans ... 2*nchans-1]
...
colors[(ncolors-1)*nchans ... (ncolors*nchans)-1]

and so on, a total of ncolors consecutively stored colors of nchans channels each
(nchans is the number of channels in the image, itself, it is not passed as a parameter).

The values in eps[0..nchans-1] are the error tolerances for a match, for each channel.
Setting eps[c] to numeric limits<float>::max() will effectively make it ignore the
channel. The default eps is 0.001 for all channels (requires exact matches for 8 bit im-
ages, but allows a wee bit of imprecision for float images).

Examples:
ImageBuf A ("a.exr");
int n = A.nchannels();

// Try to match two colors: pure red and green
std::vector<float> colors (2*n, numeric_limits<float>::max());
colors[0] = 1.0f; colors[1] = 0.0f; colors[2] = 0.0f;
colors[n+0] = 0.0f; colors[n+1] = 1.0f; colors[n+2] = 0.0f;

const int ncolors = 2;
imagesize_t count[ncolors];
ImageBufAlgo::color_count (A, count, ncolors);
std::cout << "Number of red pixels : " << count[0] << "\n";
std::cout << "Number of green pixels : " << count[1] << "\n";

OpenImageIO Programmer’s Documentation

218 CHAPTER 10. IMAGE PROCESSING

bool color range check (const ImageBuf &src, imagesize t *lowcount,
imagesize t *highcount, imagesize t *inrangecount,
cspan<float> low, cspan<float> high,
ROI roi={}, int nthreads=0)

Count how many pixels in the image (within the ROI) are outside the value range de-
scribed by low[roi.chbegin..roi.chend-1] and high[roi.chbegin..roi.chend-1]
as the low and high acceptable values for each color channel.

The number of pixels containing values that fall below the lower bound will be stored in
*lowcount, the number of pixels containing values that fall above the upper bound will
be stored in *highcount, and the number of pixels for which all channels fell within the
bounds will be stored in *inrangecount. Any of these may be NULL, which simply
means that the counts need not be collected or stored.

Examples:

ImageBuf A ("a.exr");
ROI roi = get_roi (A.spec());
roi.chend = std::min (roi.chend, 4); // only compare RGBA

float low[] = {0, 0, 0, 0};
float high[] = {1, 1, 1, 1};

imagesize_t lowcount, highcount, inrangecount;
ImageBufAlgo::color_range_check (A, &lowcount, &highcount, &inrangecount,

low, high, roi);
std::cout << lowcount << " pixels had components < 0\n";
std::cout << highcount << " pixels had components > 1\n";
std::cout << inrangecount << " pixels were fully within [0,1] range\n";

ROI nonzero region (const ImageBuf &src, ROI roi={}, int nthreads=0)

Find the minimal rectangular region within roi (which defaults to the entire pixel data
window of src) that consists of nonzero pixel values. In other words, gives the region
that is a “shrink-wraps” of src to exclude black border pixels. Note that if the entire
image was black, the ROI returned will contain no pixels.

For “deep” images, this function returns the smallest ROI that contains all pixels that
contain depth samples, and excludes the border pixels that contain no depth samples at
all.

Examples:

ImageBuf A ("a.exr");
ROI shrunk = ImageBufAlgo::nonzero_region (A);
if (shrunk.undefined())

std::cout << "All pixels were empty\n";
else

std::cout << "Non-empty region was " << shrunk << "\n";

OpenImageIO Programmer’s Documentation

10.6. CONVOLUTIONS 219

std::string computePixelHashSHA1 (const ImageBuf &src,
string view extrainfo = "",
ROI roi={}, int blocksize=0, int nthreads=0)

Compute the SHA-1 byte hash for all the pixels in the specifed region of the image. If
blocksize > 0, the function will compute separate SHA-1 hashes of each blocksize
batch of scanlines, then return a hash of the individual hashes. This is just as strong a
hash, but will NOT match a single hash of the entire image (blocksize == 0). But by
breaking up the hash into independent blocks, we can parallelize across multiple threads,
given by nthreads. The extrainfo provides additional text that will be incorporated
into the hash.

Examples:

ImageBuf A ("a.exr");
std::string hash;
hash = ImageBufAlgo::computePixelHashSHA1 (A, "", ROI::All(), 64);

std::vector<imagesize t> histogram (const ImageBuf &src,
int channel=0, int bins=256,
float min=0.0f, float max=1.0f, bool ignore empty=false,
ROI roi={}, int nthreads=0)

Computes a histogram of the given channel of image src, within the ROI, returning a
vector of length bins containing count of pixels whose value was in each of the equally-
sized range bins between min and max. If ignore empty is true, pixels that are empty
(all channels 0 including alpha) will not be counted in the total.

Examples:

ImageBuf Src ("tahoe.exr");
const int bins = 4;
std::vector<imagesize_t> hist =

ImageBufAlgo::histogram (Src, 0, bins, 0.0f, 1.0f);
std::cout << "Channel 0 of the image had:\n";
float binsize = (max-min)/nbins;
for (int i = 0; i < nbins; ++i)

hist[i] << " pixels that are >= " << (min+i*binsize) << " and "
<< (i == nbins-1 ? " <= " : " < ")
<< (min+(i+1)*binsize) << "\n";

10.6 Convolutions

OpenImageIO Programmer’s Documentation

220 CHAPTER 10. IMAGE PROCESSING

ImageBuf make kernel (string view name,
float width, float height, float depth = 1.0f,
bool normalize = true)

Make a 1-channel float image of the named kernel. The size of the image will be big
enough to contain the kernel given its size (width × height) and rounded up to odd
resolution so that the center of the kernel can be at the center of the middle pixel. The
kernel image will be offset so that its center is at the (0,0) coordinate. If normalize is
true, the values will be normalized so that they sum to 1.0.

If depth > 1, a volumetric kernel will be created. Use with caution!

Kernel names can be: "gaussian", "sharp-gaussian", "box", "triangle", "mitchell",
"blackman-harris", "b-spline", "catmull-rom", "lanczos3", "cubic", "keys",
"simon", "rifman", "disk", "binomial", "laplacian". Note that "catmull-rom"
and "lanczos3" are fixed-size kernels that don’t scale with the width, and are therefore
probably less useful in most cases.

Examples:

ImageBuf K = ImageBufAlgo::make_kernel ("gaussian", 5.0f, 5.0f);

ImageBuf convolve (const ImageBuf &src, const ImageBuf &kernel,
bool normalize = true, ROI roi={}, int nthreads=0)

bool convolve (ImageBuf &dst, const ImageBuf &src, const ImageBuf &kernel,
bool normalize = true, ROI roi={}, int nthreads=0)

Return (or store into the ROI of dst) the convolution of src and a kernel. If roi is not
defined, it defaults to the full size of dst (or src, if dst was uninitialized). If dst is
uninitialized, it will be allocated to be the size specified by roi. If normalized is true,
the kernel will be normalized for the convolution, otherwise the original values will be
used.

Examples:

// Blur an image with a 5x5 Gaussian kernel
ImageBuf Src ("tahoe.exr");
ImageBuf K = ImageBufAlgo::make_kernel ("gaussian", 5.0f, 5.0f);
ImageBuf Blurred = ImageBufAlgo::convolve (Src, K);

original blurred

OpenImageIO Programmer’s Documentation

10.6. CONVOLUTIONS 221

bool laplacian (ImageBuf &dst, const ImageBuf &src,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the Laplacian of the corresponding region of src. The Lapla-
cian is the generalized second derivative of the image,

∂2s
∂x2 +

∂2s
∂y2

which is approximated by convolving the image with a discrete 3×3 Laplacian kernel, 0 1 0
1 −4 1
0 1 0

Example:

ImageBuf src ("tahoe.exr");
ImageBuf lap = ImageBufAlgo::laplacian (src);

original Laplacian image

ImageBuf fft (const ImageBuf &src, ROI roi={}, int nthreads=0)
bool fft (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

ImageBuf ifft (const ImageBuf &src, ROI roi={}, int nthreads=0)
bool ifft (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

The fft() function takes the discrete Fourier transform (DFT) of the section of src
denoted by roi, returning it or storing it in dst. If roi is not defined, it will be all of
src’s pixels. Only one channel of src may be transformed at a time, so it will be the
first channel described by roi (or, again, channel 0 if roi is undefined). If not already
in the correct format, dst will be re-allocated to be a 2-channel float buffer of size
roi.width() × roi.height, with channel 0 being the “real” part and channel 1 being
the the “imaginary” part. The values returned are actually the unitary DFT, meaning that
it is scaled by 1/

√
npixels.

The ifft is the inverse discrete Fourier transform, taking a 2-channel complex (real and
imaginary) frequency domain image and transforming to a single-channel spatial domain
image.

Examples:

OpenImageIO Programmer’s Documentation

222 CHAPTER 10. IMAGE PROCESSING

ImageBuf Src ("tahoe.exr");

// Take the DFT of the first channel of Src
ImageBuf Freq = ImageBufAlgo::fft (Src);

// At this point, Freq is a 2-channel float image (real, imag)
// Convert it back from frequency domain to a spatial image
ImageBuf Spatial = ImageBufAlgo::ifft (Freq);

ImageBuf complex to polar (const ImageBuf &src, ROI roi={}, int nthreads=0)
bool complex to polar (ImageBuf &dst, const ImageBuf &src,

ROI roi={}, int nthreads=0)

ImageBuf polar to complex (const ImageBuf &src, ROI roi={}, int nthreads=0)
bool polar to complex (ImageBuf &dst, const ImageBuf &src,

ROI roi={}, int nthreads=0)

The polar to complex() function transforms a 2-channel image whose channels are
interpreted as complex values (real and imaginary components) into the equivalent values
expressed in polar form of amplitude and phase (with phase between 0 and 2π).

The complex to polar() function performs the reverse transformation, converting
from polar values (amplitude and phase) to complex (real and imaginary).

In either case, the section of src denoted by roi is transformed, storing the result in dst.
If roi is not defined, it will be all of src’s pixels. Only the first two channels of src will
be transformed.

Examples:

// Suppose we have a set of frequency space values expressed as
// amplitudes and phase...
ImageBuf Polar ("polar.exr");

// Convert to complex representation
ImageBuf Complex = ImageBufAlgo::complex_to_polar (Polar);

// Now, it’s safe to take an IFFT of the complex image.
// Convert it back from frequency domain to a spatial image.
ImageBuf Spatial = ImageBufAlgo::ifft (Complex);

10.7 Image Enhancement / Restoration

OpenImageIO Programmer’s Documentation

10.7. IMAGE ENHANCEMENT / RESTORATION 223

ImageBuf fixNonFinite (const ImageBuf &src,
NonFiniteFixMode mode = NONFINITE BOX3,
int *pixelsFixed = nullptr,
ROI roi={}, int nthreads=0)

bool fixNonFinite (ImageBuf &dst, const ImageBuf &src,
NonFiniteFixMode mode = NONFINITE BOX3,
int *pixelsFixed = nullptr,
ROI roi={}, int nthreads=0)

Copy pixel values from src to dst (within the pixel and channel range designated by
roi), and repair any non-finite (NaN or Inf) pixels. If pixelsFound is not NULL, store in
it the number of pixels that contained non-finite value.

How the non-finite values are repaired is specified by one of the following modes:

NONFINITE NONE do not alter the pixels (but do count the number of nonfinite pixels
in *pixelsFixed, if non-NULL).

NONFINITE BLACK change non-finite values to 0.
NONFINITE BOX3 replace non-finite values by the average of any finite pixels within a

3x3 window.
NONFINITE ERROR do not alter non-finite values when copying, but return false and

set an error if any non-finite values are found.

This works on all pixel data types, though it’s just a copy for images with pixel data types
that cannot represent NaN or Inf values.

Examples:
ImageBuf Src ("tahoe.exr");
int pixelsFixed = 0;
ImageBufAlgo::fixNonFinite (Src, Src, ImageBufAlgo::NONFINITE_BOX3,

&pixelsFixed);
std::cout << "Repaired " << pixelsFixed << " non-finite pixels\n";

ImageBuf fillholes pushpull (const ImageBuf &src,
ROI roi={}, int nthreads=0)

bool fillholes pushpull (ImageBuf &dst, const ImageBuf &src,
ROI roi={}, int nthreads=0)

Copy the specified ROI of src to dst and fill any holes (pixels where alpha < 1) with
plausible values using a push-pull technique. The src image must have an alpha channel.
The dst image will end up with a copy of src, but will have an alpha of 1.0 everywhere
within roi, and any place where the alpha of src was ¡ 1, dst will have a pixel color that
is a plausible “filling” of the original alpha hole.

Examples:
ImageBuf Src ("holes.exr");
ImageBuf Filled = ImageBufAlgo::fillholes_pushpull (Src);

OpenImageIO Programmer’s Documentation

224 CHAPTER 10. IMAGE PROCESSING

ImageBuf median filter (const ImageBuf &src,
int width = 3, int height = -1,
ROI roi={}, int nthreads=0)

bool median filter (ImageBuf &dst, const ImageBuf &src,
int width = 3, int height = -1,
ROI roi={}, int nthreads=0)

Replace the given ROI of dst with a median-filtered version of the corresponding re-
gion of src. The median filter replaces each pixel with the median value underneath
the width× height window surrounding it. If the height is < 1, it will be set to width,
making a square window. The median filter tends to smooth out noise and small high
frequency details that are smaller than the window size, while preserving the sharpness
of long edges.

Examples:

ImageBuf Noisy ("tahoe.exr");
ImageBuf Clean = ImageBufAlgo::median_filter (Noisy, 3, 3);

original with dropouts median filtered

ImageBuf dilate (const ImageBuf &src, int width=3, int height=-1,
ROI roi={}, int nthreads=0)

bool dilate (ImageBuf &dst, const ImageBuf &src, int width=3, int height=-1,
ROI roi={}, int nthreads=0)

ImageBuf erode (const ImageBuf &src, int width=3, int height=-1,
ROI roi={}, int nthreads=0)

bool erode (ImageBuf &dst, const ImageBuf &src, int width=3, int height=-1,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the dilated or eroded version of the corresponding region of
src. The dilate operation replaces each pixel with the maximum value underneath the
width× height window surrounding it, and the erode operation does the same for the
minimum value under the window. If the height is < 1, it will be set to width, making a
square window.

Dilation makes bright features wider and more prominent, dark features thinner, and re-
moves small isolated dark spots. Erosion makes dark features wider, bright features thin-
ner, and removes small isolated bright spots.

Dilation and erosion are basic morphological filters, and more complex ones are often
constructed from them:

OpenImageIO Programmer’s Documentation

10.7. IMAGE ENHANCEMENT / RESTORATION 225

•• “open” is erode followed by dilate, and it keeps the overall shape while removing
small bright regions;

• “close” is dilate followed by erode, and it keeps the overall shape while removing
small dark regions;

• “morphological gradient” is dilate minus erode, which gives a bright perimeter
edge;

• “tophat” is the original source minus the “open”, which isolates local peaks;

• “bottomhat” is the “close” minus the original source, which isolates dark holes.

Examples:

ImageBuf Source ("source.tif");

ImageBuf Dilated = ImageBufAlgo::dilate (Source, 3, 3);
ImageBuf Eroded = ImageBufAlgo::erode (Source, 3, 3);

// Morphological "open" is dilate(erode((source))
ImageBuf Opened = ImageBufAlgo::dilate (Eroded, 3, 3);
// Morphological "close" is erode(dilate(source))
ImageBuf Closed = ImageBufAlgo::erode (Dilated, 3, 3);
// Morphological "gradient" is dilate minus erode
ImageBuf Gradient = ImageBufAlgo::sub (Dilated, Eroded);
// Tophat filter is source minus open
ImageBuf Tophad = ImageBufAlgo::sub (Source, Opened);
// Bottomhat filter is close minus source
ImageBuf Bottomhat = ImageBufAlgo::sub (Close, Source);

original dilate erode open

close gradient tophat bottomhat

OpenImageIO Programmer’s Documentation

226 CHAPTER 10. IMAGE PROCESSING

ImageBuf unsharp mask (const ImageBuf &src,
string view kernel = "gaussian", float width = 3.0f,
float contrast = 1.0f, float threshold = 0.0f,
ROI roi={}, int nthreads=0)

bool unsharp mask (ImageBuf &dst, const ImageBuf &src,
string view kernel = "gaussian", float width = 3.0f,
float contrast = 1.0f, float threshold = 0.0f,
ROI roi={}, int nthreads=0)

Return (or copy into dst) a sharpened version of the corresponding region of src using
the “unsharp mask” technique. Unsharp masking basically works by first blurring the
image (low pass filter), subtracting this from the original image, then adding the residual
back to the original to emphasize the edges. Roughly speaking,

dst = src + contrast * thresh(src - blur(src))

The specific blur can be selected by kernel name and width (for example, "gaussian" is
typical). As a special case, "median" is also accepted as the kernel name, in which case
a median filter is performed rather than a blurring convolution (Gaussian and other blurs
sometimes over-sharpen edges, whereas using the median filter will sharpen compact
high-frequency details while not over-sharpening long edges).

The contrast is a multiplier on the overall sharpening effect. The thresholding step
causes all differences less than threshold to be squashed to zero, which can be useful
for suppressing sharpening of low-contrast details (like noise) but allow sharpening of
higher-contrast edges.

Examples:
ImageBuf Blurry ("tahoe.exr");
ImageBuf Sharp = ImageBufAlgo::unsharp_mask (Blurry, "gaussian", 5.0f);

10.8 Color manipulation

ImageBuf colorconvert (const ImageBuf &src,
string view fromspace, string view tospace, bool unpremult=true,
string view context key="", string view context value="",
ColorConfig *colorconfig=nullptr,
ROI roi={}, int nthreads=0)

bool colorconvert (ImageBuf &dst, const ImageBuf &src,
string view fromspace, string view tospace, bool unpremult=true,
string view context key="", string view context value="",
ColorConfig *colorconfig=nullptr,
ROI roi={}, int nthreads=0)

ImageBuf colorconvert (const ImageBuf &src,
const ColorProcessor *processor, bool unpremult=true,

OpenImageIO Programmer’s Documentation

10.8. COLOR MANIPULATION 227

ROI roi={}, int nthreads=0)
bool colorconvert (ImageBuf &dst, const ImageBuf &src,

const ColorProcessor *processor, bool unpremult=true,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the pixels of src within the ROI, applying a color transform to
the pixel values.

If unpremult is true and the image has an alpha channel, unpremultiply (divide color
channels by alpha) before color conversion, then premultiply again after the color con-
version.

The first form of this function specifies the “fromspace” and “tospace” color spaces by
name. An optional ColorConfig is specified, but nullptr is passed, the default OCIO
color configuration found by examining the $OCIO environment variable will be used
instead.

The second form is directly passed a ColorProcessor, which is is a special object cre-
ated by a ColorConfig (see OpenImageIO/color.h for details).

The context key and context value may optionally be used to establish a context
(for example, a shot-specific transform).

If OIIO was built with OpenColorIO support enabled, then the transformation may be
between any two spaces supported by the active OCIO configuration, or may be a “look”
transformation created by ColorConfig::createLookTransform. If OIIO was not built
with OpenColorIO support enabled, then the only transformations available are from
"sRGB" to "linear" and vice versa.

Examples:

#include <OpenImageIO/imagebufalgo.h>
#include <OpenImageIO/color.h>
using namespace OIIO;

ImageBuf Src ("tahoe.jpg");
ColorConfig cc;
ColorProcessor *processor = cc.createColorProcessor ("vd8", "lnf");
ImageBuf dst = ImageBufAlgo::colorconvert (Src, processor, true);
ColorProcessor::deleteColorProcessor (processor);

// Equivalent, though possibly less efficient if you will be
// converting many images using the same transformation:
ImageBuf Src ("tahoe.jpg");
ImageBuf Dst = ImageBufAlgo::colorconvert (Src, "vd8", "lnf", true);

OpenImageIO Programmer’s Documentation

228 CHAPTER 10. IMAGE PROCESSING

ImageBuf ociolook (const ImageBuf &src,
string view looks, string view fromspace, string view tospace,
bool inverse=false, bool unpremult=true,
string view context key="", string view context value="",
ColorConfig *colorconfig=NULL,
ROI roi={}, int nthreads=0)

bool ociolook (ImageBuf &dst, const ImageBuf &src,
string view looks, string view fromspace, string view tospace,
bool inverse=false, bool unpremult=true,
string view context key="", string view context value="",
ColorConfig *colorconfig=NULL,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the pixels of src within the ROI, applying an OpenColorIO
“look” transform to the pixel values. The context key and context value may op-
tionally be used to establish a context (for example, a shot-specific transform).

If inverse is true, it will reverse the color transformation and look application.

If unpremult is true and the image has an alpha channel, unpremultiply (divide color
channels by alpha) before color conversion, then premultiply again after the color con-
version.

An optional ColorConfig is specified, but NULL is passed, the default OCIO color con-
figuration found by examining the $OCIO environment variable will be used instead.

Examples:
ImageBuf Src ("tahoe.jpg");
ImageBuf Dst = ImageBufAlgo::ociolook (Src, "look", "vd8", "lnf",

true, false, "SHOT", "pe0012");

ImageBuf ociodisplay (const ImageBuf &src, string view display,
string view view, string view fromspace="", string view looks="",
bool unpremult=true, string view key="", string view value="",
ColorConfig *colorconfig=nullptr,
ROI roi={}, int nthreads=0)

bool ociodisplay (ImageBuf &dst, const ImageBuf &src, string view display,
string view view, string view fromspace="", string view looks="",
bool unpremult=true, string view key="", string view value="",
ColorConfig *colorconfig=nullptr,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the pixels of src within the ROI, applying an OpenColorIO
“display” transform to the pixel values.

If fromspace is not supplied, it will assume that the source color space is whatever is
indicated by the source image’s metadata or filename, and if that cannot be deduced, it
will be assumed to be scene linear. If looks is empty, use no look. The key and value
may optionally be used to establish a context (for example, a shot-specific transform).

OpenImageIO Programmer’s Documentation

10.8. COLOR MANIPULATION 229

If inverse is true, it will reverse the color transformation and look application.

If unpremult is true and the image has an alpha channel, unpremultiply (divide color
channels by alpha) before color conversion, then premultiply again after the color con-
version.

An optional ColorConfig is specified, but nullptr is passed, the default OCIO color
configuration found by examining the $OCIO environment variable will be used instead.

Examples:
ImageBuf Src ("tahoe.exr");
ImageBuf Dst = ImageBufAlgo::ociodisplay (Src, "sRGB", "Film", "lnf",

"", true, "SHOT", "pe0012");

ImageBuf ociofiletransform (const ImageBuf &src,
string view name, bool inverse=false, bool unpremult=true,
ColorConfig *colorconfig=nullptr,
ROI roi={}, int nthreads=0)

bool ociofiletransform (ImageBuf &dst, const ImageBuf &src,
string view name, bool inverse=false, bool unpremult=true,
ColorConfig *colorconfig=nullptr,
ROI roi={}, int nthreads=0)

Return (or copy into dst) the pixels of src within the ROI, applying an OpenColorIO
“file” transform to the pixel values. If inverse is true, it will reverse the color transfor-
mation and look application.

If unpremult is true and the image has an alpha channel, unpremultiply (divide color
channels by alpha) before color conversion, then premultiply again after the color con-
version.

An optional ColorConfig is specified, but nullptr is passed, the default OCIO color
configuration found by examining the $OCIO environment variable will be used instead.

Examples:
ImageBuf Src ("tahoe.jpg");
ImageBuf Dst = ImageBufAlgo::ociofiletransform (Src, "footransform.csp");

ImageBuf unpremult (const ImageBuf &src, ROI roi={}, int nthreads=0)
bool unpremult (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

ImageBuf premult (const ImageBuf &src, ROI roi={}, int nthreads=0)
bool premult (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

The unpremult operation returns (or copies into dst) the pixels of src within the ROI,
and in the process divides all color channels (those not alpha or z) by the alpha value,
to “un-premultiply” them. This presumes that the image starts of as “associated alpha”
a.k.a. “premultipled.”

OpenImageIO Programmer’s Documentation

230 CHAPTER 10. IMAGE PROCESSING

The premult operation returns (or copies into dst) the pixels of src within the ROI, and
in the process multiplies all color channels (those not alpha or z) by the alpha value, to
“premultiply” them. This presumes that the image starts of as “unassociated alpha” a.k.a.
“non-premultipled.”

Both operations are simply a copy if there is no identified alpha channel (and a no-op if
dst and src are the same image).

Examples:

// Convert in-place from associated alpha to unassociated alpha
ImageBuf A ("a.exr");
ImageBufAlgo::unpremult (A, A);

// Convert in-place from unassociated alpha to associated alpha
ImageBufAlgo::premult (A, A);

10.9 Import / export

bool make texture (MakeTextureMode mode, const ImageBuf &input,
string view outputfilename, const ImageSpec &config,
std::ostream *outstream = nullptr)

bool make texture (MakeTextureMode mode, string view filename,
string view outputfilename, const ImageSpec &config,
std::ostream *outstream = nullptr)

Turn an image file (either an existing ImageBuf or specified by filename) into a tiled,
MIP-mapped, texture file and write to the file named by (outputfilename). The mode
describes what type of texture file we are creating and may be one of the following:

MakeTxTexture Ordinary 2D texture
MakeTxEnvLatl Latitude-longitude environment map
MakeTxEnvLatlFromLightProbe Latitude-longitude environment map constructed

from a “light probe” image.
MakeTxBumpWithSlopes Bump/displacement map with extra slope data

channels (6 channels total, containing both the
height and 1st and 2nd moments of slope dis-
tributions) for bump-to-roughness conversion in
shaders.

If the outstream pointer is not NULL, it should point to a stream (for example, &std::out,
or a pointer to a local std::stringstream to capture output), which is where console
output and error messages will be deposited.

The config is an ImageSpec that contains all the information and special instructions for
making the texture. Anything set in config (format, tile size, or named metadata) will
take precedence over whatever is specified by the input file itself. Additionally, named
metadata that starts with "maketx:" will not be output to the file itself, but may contain

OpenImageIO Programmer’s Documentation

10.9. IMPORT / EXPORT 231

instructions controlling how the texture is created. The full list of supported configuration
options is:

Named fields:
format Data format of the texture file (default: UNKNOWN = same for-

mat as the input)
tile width

Preferred tile size (default: 64x64x1)tile height
tile depth

Metadata in config.extra attribs:

compression string Default: ”zip”
fovcot float Default: aspect ratio of the image resolution
planarconfig string Default: ”separate”
worldtocamera matrix World-to-camera matrix of the view.
worldtoscreen matrix World-to-screen space matrix of the view.
wrapmodes string Default: ”black,black”
maketx:verbose int How much detail should go to outstream (0).
maketx:stats int If nonzero, print stats to outstream (0).
maketx:resize int If nonzero, resize to power of 2. (0)
maketx:nomipmap int If nonzero, only output the top MIP level (0).
maketx:updatemode int If nonzero, write new output only if the output file

doesn’t already exist, or is older than the input file,
or was created with different command-line argu-
ments. (0)

maketx:constant color detect

int If nonzero, detect images that are entirely one
color, and change them to be low resolution (de-
fault: 0).

maketx:monochrome detect

int If nonzero, change RGB images which have
R==G==B everywhere to single-channel
grayscale (default: 0).

maketx:opaque detect int If nonzero, drop the alpha channel if alpha is 1.0
in all pixels (default: 0).

maketx:unpremult int If nonzero, unpremultiply color by alpha before
color conversion, then multiply by alpha after
color conversion (default: 0).

maketx:incolorspace string

maketx:outcolorspace string These two together will apply a color conversion
(with OpenColorIO, if compiled). Default: ""

maketx:colorconfig string Specifies a custom OpenColorIO color config file.
Default: ""

maketx:checknan int If nonzero, will consider it an error if the input
image has any NaN pixels. (0)

OpenImageIO Programmer’s Documentation

232 CHAPTER 10. IMAGE PROCESSING

maketx:fixnan string If set to ”black” or ”box3”, will attempt to repair
any NaN pixels found in the input image (default:
”none”).

maketx:set full to pixels

int If nonzero, doctors the full/display window of the
texture to be identical to the pixel/data window
and reset the origin to 0,0 (default: 0).

maketx:filtername string If set, will specify the name of a high-quality filter
to use when resampling for MIPmap levels. De-
fault: "", use bilinear resampling.

maketx:highlightcomp int If nonzero, performs highlight compensation –
range compression and expansion around the re-
size, plus clamping negative plxel values to zero.
This reduces ringing when using filters with neg-
ative lobes.

maketx:nchannels int If nonzero, will specify how many channels the
output texture should have, padding with 0 values
or dropping channels, if it doesn’t the number of
channels in the input. (default: 0, meaning keep
all input channels)

maketx:channelnames string If set, overrides the channel names of the output
image (comma-separated).

maketx:fileformatname string If set, will specify the output file format. (default:
"", meaning infer the format from the output file-
name)

maketx:prman metadata

int If set, output some metadata that PRMan will
need for its textures. (0)

maketx:oiio options int (Deprecated; all are handled by default)
maketx:prman options

int If nonzero, override a whole bunch of settings as
needed to make textures that are compatible with
PRMan. (0)

maketx:mipimages string Semicolon-separated list of alternate images to be
used for individual MIPmap levels, rather than
simply downsizing. (default: "")

maketx:full command line

string The command or program used to generate this
call, will be embedded in the metadata. (default:
"")

maketx:ignore unassoc

int If nonzero, will disbelieve any evidence that the
input image is unassociated alpha. (0)

maketx:read local MB

OpenImageIO Programmer’s Documentation

10.9. IMPORT / EXPORT 233

int If nonzero, will read the full input file locally if it
is smaller than this threshold. Zero causes the sys-
tem to make a good guess at a reasonable thresh-
old (e.g. 1 GB). (0)

maketx:forcefloat int Forces a conversion through float data for the sake
of ImageBuf math. (1)

maketx:hash int Compute the sha1 hash of the file in parallel. (1)
maketx:allow pixel shift

int Allow up to a half pixel shift per mipmap level.
The fastest path may result in a slight shift in the
image, accumulated for each mip level with an
odd resolution. (0)

maketx:bumpformat string For the MakeTxBumpWithSlopes mode, chooses
whether to assume the map is a height map
("height"), a normal map ("normal"), or auto-
matically determine it from the number of chan-
nels ("auto", the default).

Examples:

// This command line:
// maketx in.exr --hicomp --filter lanczos3 --opaque-detect \
// -o texture.exr
// is equivalent to:

ImageBuf Input ("in.exr");
ImageSpec config;
config.attribute ("maketx:highlightcomp", 1);
config.attribute ("maketx:filtername", "lanczos3");
config.attribute ("maketx:opaquedetect", 1);
stringstream s;
bool ok = ImageBufAlgo::make_texture (ImageBufAlgo::MakeTxTexture,

Input, "texture.exr", config, &s);
if (! ok)

std::cout << "make_texture error: " << s.str() << "\n";

ImageBuf from OpenCV (const cv::Mat& mat, TypeDesc convert=TypeUnknown,
ROI roi={}, int nthreads=0)

Convert an OpenCV cv::Mat into an ImageBuf, copying the pixels (optionally convert-
ing to the pixel data type specified by convert, if not UNKNOWN, which means to preserve
the original data type if possible). Return true if ok, false if it couldn’t figure out how
to make the conversion from Mat to ImageBuf. If OpenImageIO was compiled without
OpenCV support, this function will return an empty image with error message set.

OpenImageIO Programmer’s Documentation

234 CHAPTER 10. IMAGE PROCESSING

bool to OpenCV (cv::Mat& dst, const ImageBuf& src,
ROI roi={}, int nthreads=0)

Construct an OpenCV cv::Mat containing the contents of ImageBuf src, and return true.
If it is not possible, or if OpenImageIO was compiled without OpenCV support, then
return false. Note that OpenCV only supports up to 4 channels, so images with more than
4 channels will be truncated in the conversion.

ImageBuf capture image (int cameranum, TypeDesc convert=TypeUnknown)

Capture a still image from a designated camera. If able to do so, store the image in dst
and return true. If there is no such device, or support for camera capture is not available
(such as if OpenCV support was not enabled at compile time), return false and do not
alter dst.

Examples:
ImageBuf WebcamImage = ImageBufAlgo::capture_image (0, TypeDesc::UINT8);
WebcamImage.write ("webcam.jpg");

10.10 Deep images

A number of ImageBufAlgo functions are designed to work with “deep” images. These are
detailed below. In general, ImageBufAlgo functions not listed in this section should not be
expected to work with deep images.

10.10.1 Functions specific to deep images

ImageBuf deepen (const ImageBuf &src, float zvalue,
ROI roi={}, int nthreads=0)

bool deepen (ImageBuf &dst, const ImageBuf &src, float zvalue,
ROI roi={}, int nthreads=0)

Return (or copy into dst) pixels from regular (not “deep”) image src. Turning a flat
image image into a deep one means:

If the src image has a "Z" channel: if the source pixel’s Z channel value is not infinite,
the corresponding pixel of dst will get a single depth sample that copies the data from
the soruce pixel; otherwise, dst will get an empty pixel. In other words, infinitely far
pixels will not turn into deep samples.

If the src image lacks a "Z" channel: if any of the source pixel’s channel values are
nonzero, the corresponding pixel of dst will get a single depth sample that copies the
data from the source pixel and uses the zvalue parameter for the depth; otherwise, if all
source channels in that pixel are zero, the destination pixel will get no depth samples.

If src is already a deep image, it will just copy pixel values from src.

Examples:

OpenImageIO Programmer’s Documentation

10.10. DEEP IMAGES 235

ImageBuf Flat ("RGBAZ.exr");
ImageBuf Deep = ImageBufAlgo::deepen (Flat);

ImageBuf flatten (const ImageBuf &src, ROI roi={}, int nthreads=0)

bool flatten (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

Return (or copy into dst) the “flattened” composite of deep image src. That is, it con-
verts a deep image to a simple flat image by compositing the depth samples within each
pixel to yield a single “flat” value per pixel. If src is not deep, it just copies the pixels
without alteration.

Examples:

ImageBuf Deep ("deepalpha.exr");
ImageBuf Flat = ImageBufAlgo::flatten (Deep);

ImageBuf deep merge (const ImageBuf &A, const ImageBuf &B,
bool occlusion cull=true, ROI roi={}, int nthreads=0)

bool deep merge (ImageBuf &dst, const ImageBuf &A, const ImageBuf &B,
bool occlusion cull=true, ROI roi={}, int nthreads=0)

Merge the samples of two deep images A and B into deep result dst. If occlusion cull
is true, samples beyond the first opaque sample will be discarded, otherwise they will be
kept.

Examples:

ImageBuf DeepA ("hardsurf.exr");
ImageBuf DeepB ("volume.exr");
ImageBuf Merged = ImageBufAlgo::deep_merge (DeepA, DeepB);

ImageBuf deep holdout (const ImageBuf &src, const ImageBuf &holdout,
ROI roi={}, int nthreads=0)

bool deep holdout (ImageBuf &dst, const ImageBuf &src,
const ImageBuf &holdout, ROI roi={}, int nthreads=0)

Merge the deep pixels of two images, using holdout as a deep holdout mask against src.

Examples:

ImageBuf Src ("image.exr");
ImageBuf Holdout ("holdout.exr");
ImageBuf Merged = ImageBufAlgo::deep_holdout (Src, Holdout);

OpenImageIO Programmer’s Documentation

236 CHAPTER 10. IMAGE PROCESSING

10.10.2 General functions that also work for deep images

ImageBuf channels (const ImageBuf &src, int nchannels,
cspan<int> channelorder, cspan<float> channelvalues=NULL,
cspan<std::string> newchannelnames={},
bool shuffle channel names=false)

bool channels (ImageBuf &dst, const ImageBuf &src, int nchannels,
cspan<int> channelorder, cspan<float> channelvalues=NULL,
cspan<std::string> newchannelnames={},
bool shuffle channel names=false)

Reorder, rename, remove, or add channels to a deep image. See Section 10.3

bool compare (const ImageBuf &A, const ImageBuf &B,
float failthresh, float warnthresh, CompareResults &result,
ROI roi={}, int nthreads=0)

Numerically compare two images.

bool computePixelStats (PixelStats &stats, const ImageBuf &src,
ROI roi={}, int nthreads=0)

Compute per-channel statistics about the image. See Section 10.5

ImageBuf crop (const ImageBuf &src, ROI roi={}, int nthreads=0)
bool crop (ImageBuf &dst, const ImageBuf &src, ROI roi={}, int nthreads=0)

Crop the specified region of src, discarding samples outside the ROI.

ROI nonzero region (const ImageBuf &src, ROI roi={}, int nthreads=0)

For “deep” images, this function returns the smallest ROI that contains all pixels that
contain depth samples, and excludes the border pixels that contain no depth samples at
all.

ImageBuf add (const ImageBuf &A, cspan<float> B, ROI roi={}, int nthreads=0)
bool add (ImageBuf &dst, const ImageBuf &A, cspan<float> B,

ROI roi={}, int nthreads=0)
ImageBuf sub (const ImageBuf &A, cspan<float> B, ROI roi={}, int nthreads=0)
bool sub (ImageBuf &dst, const ImageBuf &A, cspan<float> B,

ROI roi={}, int nthreads=0)

ImageBuf mul (const ImageBuf &A, cspan<float> B, ROI roi={}, int nthreads=0)
bool mul (ImageBuf &dst, const ImageBuf &A, cspan<float> B,

ROI roi={}, int nthreads=0)
ImageBuf div (const ImageBuf &A, cspan<float> B, ROI roi={}, int nthreads=0)
bool div (ImageBuf &dst, const ImageBuf &A, cspan<float> B,

ROI roi={}, int nthreads=0)

OpenImageIO Programmer’s Documentation

10.10. DEEP IMAGES 237

Add, subtract, multiply, or divide all the samples in a deep image A by per-channel values
B[].

ImageBuf fixNonFinite (const ImageBuf &src,
NonFiniteFixMode mode = NONFINITE BOX3,
int *pixelsFixed = nullptr, ROI roi={}, int nthreads=0)

bool fixNonFinite (ImageBuf &dst, const ImageBuf &src,
NonFiniteFixMode mode = NONFINITE BOX3,
int *pixelsFixed = nullptr, ROI roi={}, int nthreads=0)

Repair nonfinite (NaN or Inf) values, setting them to 0.0.

ImageBuf resample (const ImageBuf &src, bool interpolate = true,
ROI roi={}, int nthreads=0)

bool resample (ImageBuf &dst, const ImageBuf &src, bool interpolate = true,
ROI roi={}, int nthreads=0)

Compute a resized version of the corresponding portion of src (mapping such that the
“full” image window of each correspond to each other, regardless of resolution), for each
pixel merely copying the closest deep pixel of the source image (no true interpolation is
done for deep images).

OpenImageIO Programmer’s Documentation

238 CHAPTER 10. IMAGE PROCESSING

OpenImageIO Programmer’s Documentation

11 Python Bindings

11.1 Overview

OpenImageIO provides Python language bindings for much of its functionality.

You must ensure that the environment variable PYTHONPATH includes the python subdirec-
tory of the OpenImageIO installation.

A Python program must import the OpenImageIO package:

import OpenImageIO

In most of our examples below, we assume that for the sake of brevity, we will alias the package
name as follows:

import OpenImageIO as oiio
from OpenImageIO import ImageInput, ImageOutput
from OpenImageIO import ImageBuf, ImageSpec, ImageBufAlgo

11.2 TypeDesc

The TypeDesc class that describes data types of pixels and metadata, described in detail in
Section 2.1, is replicated for Python.

BASETYPE

The BASETYPE enum corresponds to the C++ TypeDesc::BASETYPE and contains the
following values:
UNKNOWN NONE UINT8 INT8 UINT16 INT16 UINT32 INT32 UINT64 INT64
HALF FLOAT DOUBLE STRING PTR
These names are also exported to the OpenImageIO namespace.

AGGREGATE

The AGGREGATE enum corresponds to the C++ TypeDesc::AGGREGATE and contains the
following values:
SCALAR VEC2 VEC3 VEC4 MATRIX33 MATRIX44
These names are also exported to the OpenImageIO namespace.

239

240 CHAPTER 11. PYTHON BINDINGS

VECSEMANTICS

The VECSEMANTICS enum corresponds to the C++ TypeDesc::VECSEMANTICS and con-
tains the following values:
NOSEMANTICS COLOR POINT VECTOR NORMAL TIMECODE KEYCODE RATIONAL
These names are also exported to the OpenImageIO namespace.

TypeDesc.TypeDesc (typename=’unknown’)

Construct a TypeDesc object the easy way: from a string description. If the type name is
omitted, it will default to UNKNOWN.

Examples:

import OpenImageIO as oiio

make a default (UNKNOWN) TypeDesc
t = TypeDesc()

make a TypeDesc describing an unsigned 8 bit int
t = TypeDesc("uint8")

make a TypeDesc describing an array of 14 ’float’ values
t = TypeDesc("float[14]")

make a TypeDesc describing 3-vector with point semantics
t = TypeDesc("point")

TypeDesc.TypeDesc (basetype=oiio.UNKNOWN, aggregate=oiio.SCALAR,
vecsemantics=NOSEMANTICS, arraylen=0)

Construct a TypeDesc object the hard way: from individual enum tokens describing the
base type, aggregate class, semantic hints, and array length.

Examples:

import OpenImageIO as oiio

make a default (UNKNOWN) TypeDesc
t = TypeDesc()

make a TypeDesc describing an unsigned 8 bit int
t = TypeDesc(oiio.UINT8)

make a TypeDesc describing an array of 14 ’float’ values
t = TypeDesc(oiio.FLOAT, oiio.SCALAR, oiio.NOSEMANTICS, 14)

make a TypeDesc describing a float point
t = TypeDesc(oiio.FLOAT, oiio.VEC3, oiio.POINT)

OpenImageIO Programmer’s Documentation

11.2. TYPEDESC 241

TypeUnknown TypeString
TypeFloat TypeHalf
TypeInt TypeUInt TypeInt16 TypeUInt16
TypeColor TypePoint TypeVector TypeNormal TypeFloat4
TypeMatrix TypeMatrix33
TypeTimeCode TypeKeyCode
TypeRational

Pre-constructed TypeDesc objects for some common types, available in the outer Open-
ImageIO scope.

Example:

t = TypeFloat

string str (TypeDesc)

Returns a string that describes the TypeDesc.

Example:

print str(TypeDesc(oiio.UINT16))

> int16

TypeDesc.basetype
TypeDesc.aggregate
TypeDesc.vecsemantics
TypeDesc.arraylen

Access to the raw fields in the TypeDesc.

Example:

t = TypeDesc(...)
if t.basetype == oiio.FLOAT :

print "It’s made of floats"

int TypeDesc.size ()
int TypeDesc.basesize ()
TypeDesc TypeDesc.elementtype ()
int TypeDesc.numelements ()
int TypeDesc.elementsize ()

The size() is the size in bytes, of the type described. The basesize() is the size in
bytes of the basetype.

The elementtype() is the type of each array element, if it is an array, or just the full type
if it is not an array. The elementsize() is the size, in bytes, of the elementtype (thus,

OpenImageIO Programmer’s Documentation

242 CHAPTER 11. PYTHON BINDINGS

returning the same value as size() if the type is not an array). The numelements()
method returns arraylen if it is an array, or 1 if it is not an array.

Example:

t = TypeDesc("point[2]")
print "size =", t.size()
print "elementtype =", t.elementtype()
print "elementsize =", t.elementsize()

> size = 24
> elementtype = point
> elementsize = 12

bool typedesc == typedesc
bool typedesc != typedesc
bool TypeDesc.equivalent (typedesc)

Test for equality or inequality. The equivalent() method is more forgiving than ==, in
that it considers POINT, VECTOR, and NORMAL vector semantics to not constitute a differ-
ence from one another.

Example:

f = TypeDesc("float")
p = TypeDesc("point")
v = TypeDesc("vector")
print "float==point?", (f == p)
print "vector==point?", (v == p)
print "float.equivalent(point)?", f.equivalent(p)
print "vector.equivalent(point)?", v.equivalent(p)

> float==point? False
> vector==point? False
> float.equivalent(point)? False
> vector.equivalent(point)? True

11.3 ROI

The ROI class that describes an image extent or region of interest, explained in deail in Sec-
tion 2.5, is replicated for Python.

OpenImageIO Programmer’s Documentation

11.3. ROI 243

ROI ()
ROI (xbegin, xend, ybegin, yend)
ROI (xbegin, xend, ybegin, yend, zbegin, zend)
ROI (xbegin, xend, ybegin, yend, zbegin, zend, chbegin, chend)

Construct an ROI with the given bounds. The constructor with no arguments makes an
ROI that is “undefined.”

Example:

import OpenImageIO as oiio
...
roi = ROI (0, 640, 0, 480, 0, 1, 0, 4) # video res RGBA

int ROI.xbegin
int ROI.xend
int ROI.ybegin
int ROI.yend
int ROI.zbegin
int ROI.zend
int ROI.chbegin
int ROI.chend

The basic fields of the ROI.

ROI ROI.All

A pre-constructed undefined ROI.

bool ROI.defined

True if the ROI is defined, False if the ROI is undefined.

int ROI.width
int ROI.height
int ROI.depth
int ROI.nchannels

The number of pixels in each dimension, and the number of channels, as described by the
ROI.

int ROI.npixels

The total number of pixels in the region described by the ROI.

int ROI.contains (x, y, z=0, ch=0)

NEW!Returns True if the ROI contains the coordinate.

OpenImageIO Programmer’s Documentation

244 CHAPTER 11. PYTHON BINDINGS

int ROI.contains (other)

NEW! Returns True if the ROI other is entirel contained within this ROI.

ROI get roi (imagespec)
ROI get roi full (imagespec)

Returns the ROI corresponding to the pixel data window of the given ImageSpec, or the
display/full window, respectively.

Example:

spec = ImageSpec(...)
roi = oiio.get_roi(spec)

set roi (imagespec, roi)
set roi full (imagespec, roi)

Alter the ImageSpec’s resolution and offset to match the passed ROI.

Example:

spec is an ImageSpec
The following sets the full (display) window to be equal to the
pixel data window:
oiio.set_roi_full (spec, oiio.get_roi(spec))

11.4 ImageSpec

The ImageSpec class that describes an image, explained in deail in Section 2.6, is replicated for
Python.

ImageSpec ()
ImageSpec (typedesc)
ImageSpec (xres, yres, nchannels, typedesc)
ImageSpec (roi, typedesc)

Constructors of an ImageSpec. These correspond directly to the constructors in the C++
bindings.

Example:

import OpenImageIO as oiio
...

default ctr
s = ImageSpec()

construct with known pixel type, unknown resolution
s = ImageSpec(oiio.UINT8)

OpenImageIO Programmer’s Documentation

11.4. IMAGESPEC 245

construct with known resolution, channels, pixel data type
s = ImageSpec(640, 480, 4, "half")

construct from an ROI
s = ImageSpec (ROI(0,640,0,480,0,1,0,3), TypeFloat)

ImageSpec.width, ImageSpec.height, ImageSpec.depth
ImageSpec.x, ImageSpec.y, ImageSpec.z

Resolution and offset of the image data (int values).
Example:

s = ImageSpec (...)
print "Data window is ({},{})-({},{})".format (s.x, s.x+s.width-1,

s.y, s.y+s.height-1)

ImageSpec.full width, ImageSpec.full height, ImageSpec.full depth
ImageSpec.full x, ImageSpec.full y, ImageSpec.full z

Resolution and offset of the “full” display window (int values).

ImageSpec.tile width, ImageSpec.tile height, ImageSpec.tile depth

For tiled images, the resolution of the tiles (int values). Will be 0 for untiled images.

typedesc ImageSpec.format

A TypeDesc describing the pixel data.

int ImageSpec.nchannels

An int giving the number of color channels in the image.

ImageSpec.channelnames

A tuple of strings containing the names of each color channel.

ImageSpec.channelformats

If all color channels have the same format, that will be ImageSpec.format, and channelformats
will be None. However, if there are different formats per channel, they will be stored in
channelformats as a tuple of TypeDesc objects.
Example:

if spec.channelformats == None:
print "All color channels are", str(spec.format)

else:
print "Channel formats: "
for t in spec.channelformats:

print "\t", t

OpenImageIO Programmer’s Documentation

246 CHAPTER 11. PYTHON BINDINGS

ImageSpec.alpha channel
ImageSpec.z channel

The channel index containing the alpha or depth channel, respectively, or -1 if either one
does not exist or cannot be identified.

ImageSpec.deep

Hold True if the image is a deep (multiple samples per pixel) image, of False if it is an
ordinary image.

ImageSpec.extra attribs

Direct access to the extra attribs named metadata, appropriate for iterating over the
entire list rather than searching for a particular named value.

len(extra attribs)

Returns the number of extra attributes.

extra attribs[i].name

The name of the indexed attribute.

extra attribs[i].type

The type of the indexed attribute, as a TypeDesc.

extra attribs[i].value

The value of the indexed attribute.

Example:

s = ImageSpec(...)
...
print "extra_attribs size is", len(s.extra_attribs)
for i in range(len(s.extra_attribs)) :

print i, s.extra_attribs[i].name, str(s.extra_attribs[i].type), " :"
print "\t", s.extra_attribs[i].value

print

Imagespec.roi

NEW! The ROI describing the pixel data window.

ImageSpec.roi full

NEW! The ROI describing the “display window” (or “full size”).

OpenImageIO Programmer’s Documentation

11.4. IMAGESPEC 247

ImageSpec.set format (typedesc)

Given a TypeDesc, sets the format field and clear any per-channel formats in channelformats.

Example:

s = ImageSpec ()
s.set_format (TypeDesc("uint8"))

ImageSpec.default channel names ()

Sets channel names to the default names given the value of the nchannels field.

int ImageSpec.channelindex (name)

Return (as an int) the index of the channel with the given name, or -1 if it does not exist.

ImageSpec.channel bytes ()
ImageSpec.channel bytes (channel, native=False)

Returns the size of a single channel value, in bytes (as an int). (Analogous to the C++
member functions, see Section 2.6.2 for details.)

ImageSpec.pixel bytes ()
ImageSpec.pixel bytes (native=False)
ImageSpec.pixel bytes (chbegin, chend, native=False)

Returns the size of a pixel, in bytes (as an int). (Analogous to the C++ member functions,
see Section 2.6.2 for details.)

ImageSpec.scanline bytes (native=False)
ImageSpec.tile bytes (native=False)
ImageSpec.image bytes (native=False)

Returns the size of a scanline, tile, or the full image, in bytes (as an int). (Analogous to
the C++ member functions, see Section 2.6.2 for details.)

ImageSpec.tile pixels ()
ImageSpec.image pixels ()

Returns the number of pixels in a tile or the full image, respectively (as an int). (Analo-
gous to the C++ member functions, see Section 2.6.2 for details.)

ImageSpec.erase attribute (name, searchtype=TypeUnknown,
casesensitive=False)

Remove any specified attributes matching the regular expression name from the list of
extra attribs.

OpenImageIO Programmer’s Documentation

248 CHAPTER 11. PYTHON BINDINGS

ImageSpec.attribute (name, int)
ImageSpec.attribute (name, float)
ImageSpec.attribute (name, string)
ImageSpec.attribute (name, typedesc, data)

Sets a metadata value in the extra attribs. If the metadata item is a single int, float,
or string, you can pass it directly. For other types, you must pass the TypeDesc and then
the data (for aggregate types or arrays, pass multiple values as a tuple).
Example:

s = ImageSpec (...)
s.attribute ("foo_str", "blah")
s.attribute ("foo_int", 14)
s.attribute ("foo_float", 3.14)
s.attribute ("foo_vector", TypeDesc.TypeVector, (1, 0, 11))
s.attribute ("foo_matrix", TypeDesc.TypeMatrix,

(1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 2, 3, 1))

ImageSpec.getattribute (name)
ImageSpec.getattribute (name, typedesc)

Retrieves a named metadata value from extra attribs. The generic getattribute()
function returns it regardless of type, or None if the attribute does not exist. The typed
variety will only succeed if the attribute is actually of that type specified.
Example:

foo = s.getattribute ("foo") # None if not found
foo = s.getattribute ("foo", oiio.FLOAT) # None if not found AND float

ImageSpec.get int attribute (name, defaultval=0)
ImageSpec.get float attribute (name, defaultval=0.0)
ImageSpec.get string attribute (name, defaultval="")

Retrieves a named metadata value from extra attribs, if it is found and is of the given
type; returns the default value (or a passed value) if not found.
Example:

If "foo" is not found, or if it’s not an int, return 0
foo = s.get_int_attribute ("foo")

If "foo" is not found, or if it’s not a string, return "blah"
foo = s.get_string_attribute ("foo", "blah")

ImageSpec.serialize (format="text", verbose="Detailed")

NEW! Return a string containing the serialization of the ImageSpec. The format may be either
"text" or "XML". The verbosemay be one of "brief", "detailed", or "detailedhuman".

OpenImageIO Programmer’s Documentation

11.4. IMAGESPEC 249

ImageSpec.to xml ()

NEW!Equivalent to serialize ("xml", "detailedhuman").

ImageSpec.from xml (xml)

NEW!Initializes the ImageSpec from the information in the string xml containing an XML-
serialized ImageSpec.

ImageSpec.channel name (chan)

NEW!Returns a string containing the name of the channel with index chan.

ImageSpec.channelindex (name)

NEW!Return the integer index of the channel with the given name, or -1 if the name is not a
name of one of the channels.

ImageSpec.channelformat (chan)

NEW!Returns a TypeDesc of the channel with index chan.

ImageSpec.get channelformats ()

NEW!Returns a tuple containing all the channel formats.

ImageSpec.valid tile range (xbegin, xend, ybegin, yend, zbegin, zend)

NEW!Returns True if the given tile range exactly covers a set of tiles, or False if it isn’t (or if
the image is not tiled).

ImageSpec.copy dimensions (other)

NEW!Copies from ImageSpecother only the fields describing the size and data types, but not
the arbitrary named metadata or channel names.

ImageSpec.undefined()

NEW!Returns True for a newly initialized (undefined) ImageSpec.

OpenImageIO Programmer’s Documentation

250 CHAPTER 11. PYTHON BINDINGS

Example: Header info

Here is an illustrative example of the use of ImageSpec, a working Python function that opens
a file and prints all the relevant header information:

#!/usr/bin/env python
import OpenImageIO as oiio

Print the contents of an ImageSpec
def print_imagespec (spec, subimage=0, mip=0) :

if spec.depth <= 1 :
print (" resolution %dx%d%+d%+d" % (spec.width, spec.height, spec.x, spec.y))

else :
print (" resolution %dx%d%x%d+d%+d%+d" %

(spec.width, spec.height, spec.depth, spec.x, spec.y, spec.z))
if (spec.width != spec.full_width or spec.height != spec.full_height

or spec.depth != spec.full_depth) :
if spec.full_depth <= 1 :

print (" full res %dx%d%+d%+d" %
(spec.full_width, spec.full_height, spec.full_x, spec.full_y))

else :
print (" full res %dx%d%x%d+d%+d%+d" %

(spec.full_width, spec.full_height, spec.full_depth,
spec.full_x, spec.full_y, spec.full_z))

if spec.tile_width :
print (" tile size %dx%dx%d" %

(spec.tile_width, spec.tile_height, spec.tile_depth))
else :

print " untiled"
if mip >= 1 :

return
print " " + str(spec.nchannels), "channels:", spec.channelnames
print " format = ", str(spec.format)
if len(spec.channelformats) > 0 :

print " channelformats = ", spec.channelformats
print " alpha channel = ", spec.alpha_channel
print " z channel = ", spec.z_channel
print " deep = ", spec.deep
for i in spec.extra_attribs) :

if type(i.value) == str :
print " ", i.name, "= \"" + i.value + "\""

else :
print " ", i.name, "=", i.value

def poor_mans_iinfo (filename) :
input = ImageInput.open (filename)
if not input :

print ’Could not open "’ + filename + ’"’
print "\tError: ", oiio.geterror()
return

print ’Opened "’ + filename + ’" as a ’ + input.format_name()
sub = 0
mip = 0
while True :

if sub > 0 or mip > 0 :
print "Subimage", sub, "MIP level", mip, ":"

print_imagespec (input.spec(), mip=mip)
mip = mip + 1
if input.seek_subimage (sub, mip) :

continue # proceed to next MIP level
else :

sub = sub + 1
mip = 0
if input.seek_subimage (sub, mip) :

continue # proceed to next subimage
break # no more MIP levels or subimages

input.close ()

OpenImageIO Programmer’s Documentation

11.5. DEEPDATA 251

11.5 DeepData

The DeepData class describing “deep” image data (multiple depth sample per pixel), which is
explained in deail in Section 4.2.7, is replicated for Python.

DeepData ()

Constructs a DeepData object. It needs to have its init() and alloc() methods called
before it can hold any meaningful data.

DeepData.init (npixels, nchannels, channeltypes, channelnames)

Initializes this DeepData to hold npixels total pixels, with nchannels color channels.
The data types of the channels are described by channeltypes, a tuple of TypeDesc val-
ues (one per channel), and the names are provided in a tuple of strings channelnames.
After calling init, you still need to set the number of samples for each pixel (using
set nsamples) and then call alloc() to actually allocate the sample memory.

bool DeepData.initialized ()

Returns True if the DeepData is initialized at all.

bool DeepData.allocated ()

Returns True if the DeepData has already had pixel memory allocated.

DeepData.pixels

This int field constains the total number of pixels in this collection of deep data.

DeepData.channels

This int field constains the number of channels.

int DeepData.A channel
int DeepData.AR channel
int DeepData.AG channel
int DeepData.AB channel
int DeepData.Z channel
int DeepData.Zback channel

The channel index of certain named channels, or -1 if they don’t exist. For AR channel,
AG channel, AB channel, if they don’t exist, they will contain the value of A channel,
and Zback channel will contain the value of Z channel if there is no actual Zback.

string DeepData.channelname (c)

Retrieve the name of channel c.

OpenImageIO Programmer’s Documentation

252 CHAPTER 11. PYTHON BINDINGS

TypeDesc DeepData.channeltype (c)

Retrieve the data type of channel c.

int DeepData.channelsize (c)

Retrieve the size (in bytes) of one datum of channel c.

int DeepData.samplesize ()

Retrieve the packed size (in bytes) of all channels of one sample.

DeepData.set samples (pixel, nsamples)
int DeepData.samples (pixel)

Set or get the number of samples for a given pixel (specified by integer index).

DeepData.insert samples (pixel, samplepos, n)
int DeepData.erase samples (pixel, samplepos, n)

Insert or erase n samples starting at the given position of an indexed pixel.

DeepData.set deep value (pixel, channel, sample, value)
DeepData.set deep value uint (pixel, channel, sample, value)

Set specific float or unsigned int value of a given pixel, channel, and sample index.

DeepData.deep value (pixel, channel, sample, value)
int DeepData.deep value uint (pixel, channel, sample)

Retrieve the specific value of a given pixel, channel, and sample index (for float or uint
channels, respectively).

DeepData.copy deep sample (pixel, sample, src, srcpixel, srcsample)

Copy a deep sample from DeepDatasrc into this DeepData.

DeepData.copy deep pixel (pixel, src, srcpixel)

Copy a deep pixel from DeepDatasrc into this DeepData.

bool DeepData.split (pixel, depth)

Split any samples of the pixel that cross depth. Return True if any splits occurred, False
if the pixel was unmodified.

DeepData.sort (pixel)

Sort the samples of the pixel by their Z depth.

OpenImageIO Programmer’s Documentation

11.6. IMAGEINPUT 253

DeepData.merge overlaps (pixel)

Merge any adjacent samples in the pixel that exactly overlap in z range. This is only
useful if the pixel has previously been split at all sample starts and ends, and sorted by
depth.

DeepData.merge deep pixels (pixel, src, srcpixel)

Merge the samples of src’s pixel into this DeepData’s pixel.

DeepData.occlusion cull (pixel)

Eliminate any samples beyond an opaque sample.

float DeepData.opaque z (pixel)

For the given pixel index. return the z value at which the pixel reaches full opacity.

11.6 ImageInput

See Chapter 4 for detailed explanations of the C++ ImageInput class APIs. The Python APIs
are very similar. The biggest difference is that in C++, the various read * functions write
the pixel values into an already-allocated array that belongs to the caller, whereas the Python
versions allocate and return an array holding the pixel values (or None if the read failed).

ImageInput.open (filename)
ImageInput.open (filename, config imagespec)

Creates an ImageInput object and opens the named file. Returns the open ImageInput
upon success, or None if it failed to open the file (after which, OpenImageIO.geterror()
will contain an error message). In the second form, the optional ImageSpec argument
config contains attributes that may set certain options when opening the file.
Example:

input = ImageInput.open ("tahoe.jpg")
if input == None :

print "Error:", oiio.geterror()
return

bool ImageInput.close ()

Closes an open image file, returning True if successful, False otherwise.
Example:

input = ImageInput.open (filename)
...
input.close ()

OpenImageIO Programmer’s Documentation

254 CHAPTER 11. PYTHON BINDINGS

str ImageInput.format name ()

Returns the format name of the open file.
Example:

input = ImageInput.open (filename)
if input :

print filename, "was a", input.format_name(), "file."
input.close ()

ImageSpec ImageInput.spec ()

Returns the ImageSpec corresponding to the currently open subimage and MIP level of
the file.
Example:

input = ImageInput.open (filename)
spec = input.spec()
print "resolution ", spec.width, "x", spec.height

ImageSpec ImageInput.spec (subimage, miplevel=0)
ImageSpec ImageInput.spec dimensions (subimage, miplevel=0)

NEW! Returns a copy of the ImageSpec corresponding to the designated subimage and MIP
level. Note that spec() copies the entire ImageSpec including all metadata, whereas
spec dimensions() only copies the dimension fields and not any of the arbitrary named
metadata (and is thus much less expensive).

int ImageInput.current subimage ()
int ImageInput.current miplevel ()

Returns the current subimage and/or MIP level of the file.

bool ImageInput.seek subimage (subimage, miplevel)

Repositions the file pointer to the given subimage and MIP level within the file (starting
with 0). This function returns True upon success, False upon failure (which may include
the file not having the specified subimage or MIP level).
Example:

input = ImageInput.open (filename)
mip = 0
while True :

ok = input.seek_subimage (0, mip)
if not ok :

break
spec = input.spec()
print "MIP level", mip, "is", spec.width, "x", spec.height

OpenImageIO Programmer’s Documentation

11.6. IMAGEINPUT 255

ImageInput.read image (format="float")
ImageInput.read image (chbegin, chend, format="float")
ImageInput.read image (subimage, miplevel, chbegin, chend, format="float")

Read the entire image and return the pixels as a NumPy array of values of the given type
(described by a TypeDesc or a string, float by default). If the type is TypeUnknown, the
pixels will be returned in the native format of the file. If an error occurs, None will be
returned.

For a normal (2D) image, the array returned will be 3D indexed as [y][x][channel].
For 3D volumetric images, the array returned will be 4D with shape indexed as [z][y][x][channel].

Example:

input = ImageInput.open (filename)
spec = input.spec ()
pixels = input.read_image ()
print "The first pixel is", pixels[0][0]
print "The second pixel is", pixels[0][1]
input.close ()

ndarray ImageInput.read scanline (y, z, format="float")

Read scanline number y from depth plane z from the open file, returning the pixels as a
NumPy array of values of the given type (described by a TypeDesc or a string, float by
default). If the type is TypeUnknown, the pixels will be returned in the native format of
the file. If an error occurs, None will be returned.

The pixel array returned be 2D, indexed as [x][channel].

Example:

input = ImageInput.open (filename)
spec = input.spec ()
if spec.tile_width == 0 :

for y in range(spec.y, spec.y+spec.height) :
pixels = input.read_scanline (y, spec.z, "float")
process the scanline

else :
print "It’s a tiled file"

input.close ()

OpenImageIO Programmer’s Documentation

256 CHAPTER 11. PYTHON BINDINGS

ndarray ImageInput.read tile (x, y, z, format="float")

Read the tile whose upper left corner is pixel (x,y,z) from the open file, returning the
pixels as a NumPy array of values of the given type (described by a TypeDesc or a string,
float by default). If the type is TypeUnknown, the pixels will be returned in the native
format of the file. If an error occurs, None will be returned.

For a normal (2D) image, the array of tile pixels returned will be 3D indexed as [y][x][channel].
For 3D volumetric images, the array returned will be 4D with shape indexed as [z][y][x][channel].
Example:

input = ImageInput.open (filename)
spec = input.spec ()
if spec.tile_width > 0 :

for z in range(spec.z, spec.z+spec.depth, spec.tile_depth) :
for y in range(spec.y, spec.y+spec.height, spec.tile_height) :

for x in range(spec.x, spec.x+spec.width, spec.tile_width) :
pixels = input.read_tile (x, y, z, oiio.FLOAT)
process the tile

else :
print "It’s a scanline file"

input.close ()

ndarray ImageInput.read scanlines (subimage, miplevel,
ybegin, yend, z, chbegin, chend, format="float")

ndarray ImageInput.read scanlines (ybegin, yend, z, chbegin, chend,
format="float")

ndarray ImageInput.read tiles (xbegin, xend, ybegin, yend, zbegin, zend,
chbegin, chend, format="float")

ndarray ImageInput.read tiles (subimage, miplevel,
xbegin, xend, ybegin, yend, zbegin, zend, format="float")

Similar to the C++ routines, these functions read multiple scanlines or tiles at once, which
in some cases may be more efficient than reading each scanline or tile separately. Addi-
tionally, they allow you to read only a subset of channels.

For normal 2D images, both read scanlines and read tiles will return a 3D array
indexed as [z][y][x][channel].

For 3D volumetric images, both read scanlines will return a 3D array indexed as
[y][x][channel], and read tiles will return a 4D array indexed as [z][y][x][channel],
Example:

input = ImageInput.open (filename)
spec = input.spec ()

Read the whole image, the equivalent of
pixels = input.read_image (type)
but do it using read_scanlines or read_tiles:
if spec.tile_width == 0 :

OpenImageIO Programmer’s Documentation

11.6. IMAGEINPUT 257

pixels = input.read_scanlines (spec.y, spec.y+spec.height, 0,
0, spec.nchannels)

else :
pixels = input.read_tiles (spec.x, spec.x+spec.width,

spec.y, spec.y+spec.height,
spec.z, spec.z+spec.depth,
0, spec.nchannels)

DeepData ImageInput.read native deep scanlines (subimage, miplevel,
ybegin, yend, z, chbegin, chend)

DeepData ImageInput.read native deep tiles (subimage, miplevel,
xbegin, xend, ybegin, yend, zbegin, zend, chbegin,

chend)
DeepData ImageInput.read native deep image (subimage=0, miplevel=0)

NEW!Read a collection of scanlines, tiles, or an entire image of “deep” pixel data from the
specified subimage and MIP level. The begin/end coordinates are all integer values. The
value returned will be a DeepData if the read succeeds, or None if the read fails.

These methods are guaranteed to be thread-safe against simultaneous calls to any of the
other other read native calls that take an explicit subimage/miplevel.

str ImageInput.geterror ()

Retrieves the error message from the latest failed operation on an ImageInput.

Example:

input = ImageInput.open (filename)
if not input :

print "Open error:", oiio.geterror()
N.B. error on open must be retrieved with the global geterror(),
since there is no ImageInput object!

else :
pixels = input.read_image (oiio.FLOAT)
if not pixels :

print "Read_image error:", input.geterror()
input.close ()

OpenImageIO Programmer’s Documentation

258 CHAPTER 11. PYTHON BINDINGS

Example: Reading pixel values from a file to find min/max

#!/usr/bin/env python
import OpenImageIO as oiio

def find_min_max (filename) :
input = ImageInput.open (filename)
if not input :

print ’Could not open "’ + filename + ’"’
print "\tError: ", oiio.geterror()
return

spec = input.spec()
nchans = spec.nchannels
pixels = input.read_image()
if not pixels :

print "Could not read:", input.geterror()
return

input.close() # we’re done with the file at this point
minval = pixels[0][0] # initialize to the first pixel value
maxval = pixels[0][0]
for y in range(spec.height) :

for x in range(spec.width) :
p = pixels[y][x]
for c in range(nchans) :

if p[c] < minval[c] :
minval[c] = p[c]

if p[c] > maxval[c] :
maxval[c] = p[c]

print "Min values per channel were", minval
print "Max values per channel were", maxval

OpenImageIO Programmer’s Documentation

11.7. IMAGEOUTPUT 259

11.7 ImageOutput

See Chapter 3 for detailed explanations of the C++ ImageOutput class APIs. The Python APIs
are very similar.

ImageOutput ImageOutput.create (fileformat, plugin searchpath="")

Create a new ImageOutput capable of writing the named file format (which may also
be a file name, with the type deduced from the extension). There is an optional pa-
rameter giving an colon-separated search path for finding ImageOutput plugins. The
function returns an ImageOutput object, or None upon error (in which case, OpenIm-
ageIO.geterror() may be used to retrieve the error message).

Example:

import OpenImageIO as oiio
output = ImageOutput.create ("myfile.tif")
if not output :

print "Error:", oiio.geterror()

str ImageOutput.format name ()

The file format name of a created ImageOutput.

Example:

output = ImageOutput.create (filename)
if output :

print "Created output", filename, "as a", output.format_name()

int ImageOutput.supports (feature)

For a created ImageOutput, returns True if the file format supports the named feature
(such as "tiles", "mipmap", etc., see Section 3.3 for the full list), or False if this file
format does not support the feature.

Example:

output = ImageOutput.create (filename)
if output :

print output.format_name(), "supports..."
print "tiles?", output.supports("tiles")
print "multi-image?", output.supports("multiimage")
print "MIP maps?", output.supports("mipmap")
print "per-channel formats?", output.supports("channelformats")

OpenImageIO Programmer’s Documentation

260 CHAPTER 11. PYTHON BINDINGS

bool ImageOutput.open (filename, spec, mode="Create")

Opens the named output file, with an ImageSpec describing the image to be output. The
mode may be one of "create", "AppendSubimage", or "AppendMIPLevel". See Sec-
tion 3.3 for details. Returns True upon success, False upon failure (error messages
retrieved via ImageOutput.geterror().)

Example:

output = ImageOutput.create (filename)
if not output :

print "Error:", oiio.geterror()
spec = ImageSpec (640, 480, 3, "uint8")
ok = output.open (filename, spec)
if not ok :

print "Could not open", filename, ":", output.geterror()

bool ImageOutput.open (filename, (imagespec, ...))

This variety of open() is used specifically for multi-subimage files. A tuple of ImageSpec
objects is passed, one for each subimage that will be written to the file. After each
subimage is written, then a regular call to open(name, newspec, AppendSubimage)
moves on to the next subimage.

bool ImageOutput.close ()

Closes an open output.

ImageSpec ImageOutput.spec ()

Retrieves the ImageSpec of the currently-open output image.

bool ImageOutput.write image (pixels)

Write the currently opened image all at once. The pixels parameter should be a Numpy
ndarray containing data elements indexed as [y][x][channel] for normal 2D images,
or for 3D volumetric images, as [z][y][x][channel], in other words, exactly matching
the shape of array returned by ImageInput.read image. (It will also work fine if the
array is 1D “flattened” version, as long as it contains the correct total number of values.)
The data type is deduced from the contents of the array itself. Returns True upon success,
False upon failure.

Example:

This example reads a scanline file, then converts it to tiled
and writes to the same name.

input = ImageInput.open (filename)
spec = input.spec ()
pixels = input.read_image ()
input.close ()

OpenImageIO Programmer’s Documentation

11.7. IMAGEOUTPUT 261

output = ImageOutput.create (filename)
if output.supports("tiles") :

spec.tile_width = 64
spec.tile_height = 64
output.open (filename, spec)
output.write_image (pixels)
output.close ()

bool ImageOutput.write scanline (y, z, pixels)
bool ImageOutput.write scanlines (ybegin, yend, z, pixels)

Write one or many scanlines to the currently open file. Returns True upon success, False
upon failure.

The pixels parameter should be a Numpy ndarray containing data elements indexed as
[x][channel] for write scanline or as [y][x][channels for write scanlines,
exactly matching the shape returned by ImageInput.read scanline or ImageInput.read -
scanlines. (It will also work fine if the array is 1D “flattened” version, as long as it
contains the correct total number of values.)
Example:

Copy a TIFF image to JPEG by copying scanline by scanline.
input = ImageInput.open ("in.tif")
spec = input.spec ()
output = ImageOutput.create ("out.jpg")
output.open (filename, spec)
for z in range(spec.z, spec.z+spec.depth) :

for y in range(spec.y, spec.y+spec.height) :
pixels = input.read_scanline (y, z)
output.write_scanline (y, z, pixels)

output.close ()
input.close ()

The same example, but copying a whole "plane" of scanlines at a time:
...
for z in range(spec.z, spec.z+spec.depth) :

pixels = input.read_scanlines (spec.y, spec.y+spec.height, z)
output.write_scanlines (spec.y, spec.y+spec.height, z, pixels)

...

bool ImageOutput.write tile (x, y, z, pixels)
bool ImageOutput.write tiles (xbegin, xend, ybegin, yend, zbegin, zend, pixels)

Write one or many tiles to the currently open file. Returns True upon success, False
upon failure.

The pixels parameter should be a Numpy ndarray containing data elements indexed
as [y][x][channel] for normal 2D images, or as [z][y][x][channels 3D volumetric

OpenImageIO Programmer’s Documentation

262 CHAPTER 11. PYTHON BINDINGS

images, exactly matching the shape returned by ImageInput.read tile or ImageInput.read -
tiles. (It will also work fine if the array is 1D “flattened” version, as long as it contains
the correct total number of values.)
Example:

input = ImageInput.open (in_filename)
spec = input.spec ()
output = ImageOutput.create (out_filename)
output.open (out_filename, spec)
for z in range(spec.z, spec.z+spec.depth, spec.tile_depth) :

for y in range(spec.y, spec.y+spec.height, spec.tile_height) :
for x in range(spec.x, spec.x+spec.width, spec.tile_width) :

pixels = input.read_tile (x, y, z)
output.write_tile (x, y, z, pixels)

output.close ()
input.close ()

The same example, but copying a whole row of of tiles at a time:
...
for z in range(spec.z, spec.z+spec.depth, spec.tile_depth) :

for y in range(spec.y, spec.y+spec.height, spec.tile_height) :
pixels = input.read_tiles (spec.x, spec.x+spec.width,

y, y+tile_width, z, z+tile_width)
output.write_tiles (spec.x, spec.x+spec.width,

y, y+tile_width, z, z+tile_width, pixels)
...

bool ImageOutput.write deep scanlines (ybegin, yend, z, deepdata)
bool ImageOutput.write deep tiles (xbegin, xend, ybegin, yend,

zbegin, zend, deepdata)
bool ImageOutput.write deep image (deepdata)

Write a collection of scanlines, tiles, or an entire image of “deep” pixel data. The be-
gin/end coordinates are all integer values, and deepdata should be a DeepData.

bool ImageOutput.copy image (imageinput)

Copy the current image of the open input to the open output. (The reason this may
be preferred in some circumstances is that, if input and output were the same kind of
input file format, they may have a special efficient technique to copy pixels unaltered, for
example by avoiding the decompression/recompression round trip.)
Example:

input = ImageInput.open (in_filename)
spec = input.spec ()
output = ImageOutput.create (out_filename)
output.open (filename, spec)
output.copy_image (input)
output.close ()
input.close ()

OpenImageIO Programmer’s Documentation

11.8. IMAGEBUF 263

str ImageOuput.geterror ()

Retrieves the error message from the latest failed operation on an open file.

Example:

output = ImageOutput.create (filename)
if not output :

print "Create error:", oiio.geterror()
N.B. error on create must be retrieved with the global geterror(),
since there is no ImageOutput object!

else :
ok = output.open (filename, spec)
if not ok :

print "Open error:", output.geterror()
ok = output.write_image (pixels)
if not ok :

print "Write error:", output.geterror()
output.close ()

11.8 ImageBuf

See Chapter 9 for detailed explanations of the C++ ImageBuf class APIs. The Python APIs are
very similar.

ImageBuf ImageBuf ()

Construct a new, empty ImageBuf. The ImageBuf is uninitialized and is awaiting a call
to reset() or copy() before it is useful.

ImageBuf ImageBuf (filename)
ImageBuf ImageBuf (filename, subimage, miplevel)

Construct a read-only ImageBuf that will read from the named file. Optionally, a specific
subimage or MIP level may be specified (defaulting to 0).

Example:

import OpenImageIO as oiio
...
buf = ImageBuf ("grid.tif")

ImageBuf ImageBuf (imagespec)

Construct a writeable ImageBuf of the dimensions and data format specified by an ImageSpec.

Example:

spec = ImageSpec (640, 480, 3, "float")
buf = ImageBuf (spec)

OpenImageIO Programmer’s Documentation

264 CHAPTER 11. PYTHON BINDINGS

ImageBuf.clear ()

Return the ImageBuf to its pristine, uninitialized state.

Example:

buf = ImageBuf (...)

The following two commands are equivalent:
buf = ImageBuf() # 1 - assign a new blank ImageBuf
buf.clear() # 2 - clear the existing ImageBuf

ImageBuf.reset (filename, subimage=0, miplevel=0, config=ImageSpec())

Restore the ImageBuf to a newly-constructed state, to read from a filename (optionally
specifying a subimage, MIP level, and/or a “configuration” ImageSpec).

ImageBuf.reset (imagespec)

Restore the ImageBuf to the newly-constructed state of a blank, writeable ImageBuf
specified by an ImageSpec.

bool ImageBuf.read (subimage=0, miplevel=0, force=False, convert=oiio.UNKNOWN)
bool ImageBuf.read (subimage, miplevel, chbegin, chend, force, convert)

Explicitly read the image from the file (of a file-reading ImageBuf), optionally specifying
a particular subimage, MIP level, and channel range. If force is True, will force an
allocation of memory and a full read (versus the default of relying on an underlying
ImageCache). If convert is not the default of UNKNOWN, it will force the ImageBuf to
convert the image to the specified data format (versus keeping it in the native format or
relying on the ImageCache to make a data formatting decision).

Note that a call to read() is not necessary — any ImageBuf API call that accesses pixel
values will trigger a file read if it has not yet been done. An explicit read() is generally
only needed to change the subimage or miplevel, or to force an in-buffer read or format
conversion.

The read() method will return True for success, or False if the read could not be per-
formed (in which case, a geterror() call will retrieve the specific error message).

Example:

buf = ImageBuf ("mytexture.exr")
buf.read (0, 2, True)
That forces an allocation and read of MIP level 2

OpenImageIO Programmer’s Documentation

11.8. IMAGEBUF 265

bool ImageBuf.init spec (filename, subimage=0, miplevel=0)

Explicitly read just the header from a file-reading ImageBuf (if the header has not yet
been read), optionally specifying a particular subimage and MIP level. The init -
spec() method will return True for success, or False if the read could not be performed
(in which case, a geterror() call will retrieve the specific error message).

Note that a call to init spec() is not necessary — any ImageBuf API call that accesses
the spec will read it automatically it has not yet been done.

bool ImageBuf.write (filename, dtype="", fileformat="")

Write the contents of the ImageBuf to the named file. Optionally, dtype can override
the pixel data type (by default, the pixel data type of the buffer), and fileformat can
specify a particular file format to use (by default, it will infer it from the extension of the
file name).

Example:

No-frills conversion of a TIFF file to JPEG
buf = ImageBuf ("in.tif")
buf.write ("out.jpg")

Convert to uint16 TIFF
buf = ImageBuf ("in.exr")
buf.write ("out.tif", "uint16")

bool ImageBuf.make writeable (keep cache type = false)

Force the ImageBuf to be writeable. That means that if it was previously backed by an
ImageCache (storage was IMAGECACHE), it will force a full read so that the whole image
is in local memory.

bool ImageBuf.set write format (format=oiio.UNKNOWN)
bool ImageBuf.set write tiles (width=0, height=0, depth=0)

Override the data format or tile size in a subsequent call to write().

Example:

Conversion to a tiled unsigned 16 bit integer file
buf = ImageBuf ("in.tif")
buf.set_write_format ("uint16")
buf.set_write_tiles (64, 64)
buf.write ("out.tif")

OpenImageIO Programmer’s Documentation

266 CHAPTER 11. PYTHON BINDINGS

ImageSpec ImageBuf.spec()
ImageSpec ImageBuf.nativespec()

ImageBuf.spec() returns the ImageSpec that describes the contents of the ImageBuf.
ImageBuf.nativespec() returns an ImageSpec that describes the contents of the file
that the ImageBuf was read from (this may differ from ImageBuf.spec() due to format
conversions, or any changes made to the ImageBuf after the file was read, such as adding
metadata).

Handy rule of thumb: spec() describes the buffer, nativespec() describes the original
file it came from.
Example:

buf = ImageBuf ("in.tif")
print "Resolution is", buf.spec().width, "x", buf.spec().height

ImageSpec ImageBuf.specmod()

ImageBuf.specmod() provides writeable access to the ImageSpec that describes the
contents of the ImageBuf. Be very careful! It is safe to modify certain metadata, but if
you change the data format or resolution fields, you will get the chaos you deserve.
Example:

Read an image, add a caption metadata, write it back out in place
buf = ImageBuf ("file.tif")
buf.specmod().attribute ("ImageDescription", "my photo")
buf.write ("file.tif")

str ImageBuf.name
str ImageBuf.file format name

The file name and name of the file format of the image.

int ImageBuf.subimage
int ImageBuf.miplevel
int ImageBuf.nsubimages
int ImageBuf.nmiplevels

Several fields giving information about the current subimage and MIP level, and the total
numbers thereof in the file.

int ImageBuf.xbegin
int ImageBuf.xend
int ImageBuf.ybegin
int ImageBuf.yend
int ImageBuf.zbegin
int ImageBuf.zend

The range of valid pixel data window. Remember that the end is one past the last pixel.

OpenImageIO Programmer’s Documentation

11.8. IMAGEBUF 267

int ImageBuf.xmin
int ImageBuf.xmax
int ImageBuf.ymin
int ImageBuf.ymax
int ImageBuf.zmin
int ImageBuf.zmax

The minimum and maximum (inclusive) coordinates of the pixel data window.

int ImageBuf.orientation
int ImageBuf.oriented width
int ImageBuf.oriented height
int ImageBuf.oriented x
int ImageBuf.oriented y
int ImageBuf.oriented full width
int ImageBuf.oriented full height
int ImageBuf.oriented full x
int ImageBuf.oriented full y

The orientation field gives the suggested display oriententation of the image (see Sec-
tion B.2).

The other fields are helpers that give the width, height, and origin (as well as “full” or
“display” resolution and origin), taking the intended orientation into consideration.

ROI ImageBuf.roi
ROI ImageBuf.roi full

These fields return an ROI description of the pixel data window (roi) and the full (a.k.a.
“display”) window (roi full).
Example:

buf = ImageBuf ("tahoe.jpg")
print "Resolution is", buf.roi.width, "x", buf.roi.height

ImageBuf.set origin (x, y, z=0)

NEW!Changes the “origin” of the data pixel data window to the specified coordinates.
Example:

Shift the pixel data so the upper left is at pixel (10, 10)
buf.set_origin (10, 10)

ImageBuf.set full (roi)

Changes the “full” (a.k.a. “display”) window to the specified ROI.
Example:

newroi = ROI (0, 1024, 0, 768)
buf.set_full (newroi)

OpenImageIO Programmer’s Documentation

268 CHAPTER 11. PYTHON BINDINGS

bool ImageBuf.pixels valid

Will be True if the file has already been read and the pixels are valid. (It is always True
for writeable ImageBuf’s.) There should be few good reasons to access these, since the
spec and pixels will be automatically be read when they are needed.

TypeDesc ImageBuf.pixeltype

Returns the description of the data type of the pixels stored within the ImageBuf.

ImageBuf.copy metadata (other imagebuf)

Replaces the metadata (all ImageSpec items, except for the data format and pixel data
window size) with the corresponding metadata from the other ImageBuf.

ImageBuf.copy pixels (other imagebuf)

Replace the pixels in this ImageBuf with the values from the other ImageBuf.

ImageBuf ImageBuf.copy (format=TypeUnknown)

Return a full copy of this ImageBuf (with optional data format conversion, if format is
supplied).
Example:

A = ImageBuf("A.tif")

Make a separate, duplicate copy of A
B = A.copy()

Make another copy of A, but converting to float pixels
C = A.copy ("float")

ImageBuf.copy (other imagebuf, format=TypeUnknown)

Make this ImageBuf a complete copy of the other ImageBuf. If a format is provided,
this will get the specified pixel data type rather than using the same pixel format as the
source ImageBuf.
Example:

A = ImageBuf("A.tif")

Make a separate, duplicate copy of A
B = ImageBuf()
B.copy (A)

Make another copy of A, but converting to float pixels
C = ImageBuf()
C.copy (A, oiio.FLOAT)

OpenImageIO Programmer’s Documentation

11.8. IMAGEBUF 269

ImageBuf.swap (other imagebuf)

Swaps the content of this ImageBuf and the other ImageBuf.
Example:

A = ImageBuf("A.tif")
B = ImageBuf("B.tif")
A.swap (B)
Now B contains the "A.tif" image and A contains the "B.tif" image

tuple ImageBuf.getpixel (x, y, z=0, wrap="black")

Retrieves pixel (x,y,z) from the buffer and return it as a tuple of float values, one for
each color channel. The x, y, z values are int pixel coordinates. The optional wrap
parameter describes what should happen if the coordinates are outside the pixel data win-
dow (and may be: "black", "clamp", "periodic", "mirror").
Example:

buf = ImageBuf ("tahoe.jpg")
p = buf.getpixel (50, 50)
print p

> (0.37, 0.615, 0.97)

float ImageBuf.getchannel (x, y, z, channel, wrap="black")

Retrieves just a single channel value from pixel (x,y,z) from the buffer and returns it as
a float value. The optional wrap parameter describes what should happen if the coordi-
nates are outside the pixel data window (and may be: "black", "clamp", "periodic",
"mirror").
Example:

buf = ImageBuf ("tahoe.jpg")
green = buf.getchannel (50, 50, 0, 1)

tuple ImageBuf.interppixel (x, y, wrap="black")
tuple ImageBuf.interppixel bicubic (x, y, wrap="black")

Interpolates the image value (bilinearly or bicubically) at coordinates (x,y) and return it
as a tuple of float values, one for each color channel. The x, y values are continuous
float coordinates in “pixel space.” The optional wrap parameter describes what should
happen if the coordinates are outside the pixel data window (and may be: "black",
"clamp", "periodic", "mirror").
Example:

buf = ImageBuf ("tahoe.jpg")
midx = float(buf.xbegin + buf.xend) / 2.0
midy = float(buf.ybegin + buf.yend) / 2.0
p = buf.interpixel (midx, midy)
Now p is the interpolated value from right in the center of
the data window

OpenImageIO Programmer’s Documentation

270 CHAPTER 11. PYTHON BINDINGS

tuple ImageBuf.interppixel NDC (x, y, wrap="black")
tuple ImageBuf.interppixel bicubic NDC (x, y, wrap="black")

Interpolates the image value (bilinearly or bicubically) at coordinates (x,y) and return it
as a tuple of float values, one for each color channel. The x, y values are continuous,
normalized float coordinates in “NDC space,” where (0,0) is the upper left corner of
the full (a.k.a. “display”) window, and (1,1) is the lower right corner of the full/display
window. The wrap parameter describes what should happen if the coordinates are outside
the pixel data window (and may be: "black", "clamp", "periodic", "mirror").

Example:

buf = ImageBuf ("tahoe.jpg")
p = buf.interpixel_NDC (0.5, 0.5)
Now p is the interpolated value from right in the center of
the display window

ImageBuf.setpixel (x, y, pixel value)
ImageBuf.setpixel (x, y, z, pixel value)

Sets pixel (x,y,z) to be the pixel value, expressed as a tuple of floats (one for each
color channel).

Example:

buf = ImageBuf (ImageSpec (640, 480, 3, oiio.UINT8))

Set the whole image to red (the dumb slow way, but it works):
for y in range(buf.ybegin, buf.yend) :

for x in range(buf.xbegin, buf.xend) :
buf.setpixel (x, y, (1.0, 0.0, 0.0))

array ImageBuf.get pixels (format=TypeFloat, roi=ROI.All)

Retrieves the rectangle of pixels (and channels) specified by roi from the image and
returns them as an array of values with type specified by format.

As with the ImageInput read functions, the return value is a NumPy ndarray containing
data elements indexed as [y][x][channel] for normal 2D images, or for 3D volumetric
images, as [z][y][x][channel]). Returns True upon success, False upon failure.

Example:

buf = ImageBuf ("tahoe.jpg")
pixels = buf.get_pixels (oiio.FLOAT) # no ROI means the whole image

OpenImageIO Programmer’s Documentation

11.8. IMAGEBUF 271

ImageBuf.set pixels (roi, data)

Sets the rectangle of pixels (and channels) specified by roi with values in the data, which
is a NumPy ndarray of values indexed as [y][x][channel] for normal 2D images, or
for 3D volumetric images, as [z][y][x][channel]. (It will also work fine if the array
is 1D “flattened” version, as long as it contains the correct total number of values.) The
data type is deduced from the contents of the array itself.
Example:

buf = ImageBuf (...)
pixels = (....)
buf.set_pixels (ROI(), pixels)

bool ImageBuf.has error
str ImageBuf.geterror ()

The ImageBuf.has error field will be True if an error has occurred in the ImageBuf,
in which case the geterror() method will retrieve the error message (and clear it after-
wards).
Example:

buf = ImageBuf ("in.tif")
buf.read () # force a read
if buf.has_error :

print "Error reading the file:", buf.geterror()
buf.write ("out.jpg")
if buf.has_error :

print "Could not convert the file:", buf.geterror()

int ImageBuf.pixelindex (x, y, z, check range=False)

Return the index of pixel (x,y,z).

bool ImageBuf.deep

Will be True if the file contains “deep” pixel data, or False for an ordinary images.

int ImageBuf.deep samples (x, y, z=0)

Return the number of deep samples for pixel (x,y,z).

ImageBuf.set deep samples (x, y, z, nsamples)

Set the number of deep samples for pixel (x,y,z).

ImageBuf.deep insert samples (x, y, z, samplepos, nsamples)
int ImageBuf.deep erase samples (x, y, z, samplepos, nsamples)

Insert or erase nsamples samples starting at the given position of pixel (x,y,z).

OpenImageIO Programmer’s Documentation

272 CHAPTER 11. PYTHON BINDINGS

float ImageBuf.deep value (x, y, z, channel, sample)
uint ImageBuf.deep value uint (x, y, z, channel, sample)

Return the value of the given deep sample (particular pixel, channel, and sample number)
for a channel that is a float or an unsigned integer type, respectively.

ImageBuf.set deep value (x, y, z, channel, sample, value)
ImageBuf.set deep value uint (x, y, z, channel, sample, value)

Set the value of the given deep sample (particular pixel, channel, and sample number) for
a channel that is a float or an unsigned integer type, respectively.

DeepData ImageBuf.deepdata

Returns a reference to the underlying DeepData of the image.

OpenImageIO Programmer’s Documentation

11.9. IMAGEBUFALGO 273

11.9 ImageBufAlgo

The C++ ImageBufAlgo functions are described in detail in Chapter 10. They are also exposed
to Python. For the majority of ImageBufAlgo functions, their use in Python is identical to C++;
in those cases, we will keep our descriptions of the Python bindings minimal and refer you
to Chapter 10, saving the extended descriptions for those functions that differ from the C++
counterparts.

A few things about the paramters of the ImageBufAlgo function calls are identical among
the functions, so we will explain once here rather than separately for each function:

• dst is an existing ImageBuf, which will be modified (it may be an uninitialized ImageBuf,
but it must be an ImageBuf).

• src parameter is an initialized ImageBuf, which will not be modified (unless it happens
to refer to the same image as dst.

• roi, if supplied, is an ROI specifying a region of interst over which to operate. If omitted,
the region will be the entire size of the source image(s).

• nthreads is the maximum number of threads to use. If not supplied, it defaults to 0,
meaning to use as many threads as hardware cores available.

Just as with the C++ ImageBufAlgo functions, if dst is an uninitialized ImageBuf, it will
be sized to reflect the roi (which, in turn, if undefined, will be sized to be the union of the ROI’s
of the source images).

11.9.1 Pattern generation

ImageBuf ImageBufAlgo.zero (roi, nthreads=0)
bool ImageBufAlgo.zero (dst, roi=ROI.All, nthreads=0)

Zero out the destination buffer (or a specific region of it).

Example:

Initialize buf to a 640x480 3-channel FLOAT buffer of 0 values
buf = ImageBufAlgo.zero (ROI(0, 640, 0, 480, 0, 1, 0, 3))

ImageBuf ImageBufAlgo.fill (values, roi=ROI.All, nthreads=0)
ImageBuf ImageBufAlgo.fill (top, bottom, roi=ROI.All, nthreads=0)
ImageBuf ImageBufAlgo.fill (topleft, topright,

bottomleft, bottomright, roi=ROI.All, nthreads=0)

bool ImageBufAlgo.fill (dst, values, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.fill (dst, top, bottom, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.fill (dst, topleft, topright,

bottomleft, bottomright, roi=ROI.All, nthreads=0)

OpenImageIO Programmer’s Documentation

274 CHAPTER 11. PYTHON BINDINGS

Return a filled float image of size ROI, or set the the pixels of image dst within the ROI
to a color or gradient.

Three fill optins are available: (a) if one color tuple is supplied, the whole ROI will be
filled with that constant value, (b) if two color tuples are supplied, a linear gradient will
be applied from top to bottom, (c) if four color cuples are supplied, the ROI will be be
filled with values bilinearly interpolated from the four corner colors supplied.

Examples:

Draw a red rectangle into buf
buf = ImageBuf (ImageSpec(640, 480, 3, TypeDesc.FLOAT)
ImageBufAlgo.fill (buf, (1,0,0), ROI(50, 100, 75, 85))

ImageBuf ImageBufAlgo.checker (width, height, depth, color1, color2,
xoffset=0, yoffset=0, zoffset=0, roi=ROI.All, nthreads=0)

bool ImageBufAlgo.checker (dst, width, height, depth, color1, color2,
xoffset=0, yoffset=0, zoffset=0, roi=ROI.All, nthreads=0)

Return (or copy into dst) a checkerboard pattern. The colors are specified as tuples giving
the values for each color channel.

Examples:

buf = ImageBuf(ImageSpec(640, 480, 3, oiio.UINT8))
ImageBufAlgo.checker (buf, 64, 64, 1, (0.1,0.1,0.1), (0.4,0.4,0.4))

ImageBuf ImageBufAlgo.noise (noisetype, A=0.0, B=0.1,
mono=False, seed=0, roi=ROI.All, nthreads=0)

bool ImageBufAlgo.noise (dst, noisetype, A=0.0, B=0.1,
mono=False, seed=0, roi=ROI.All, nthreads=0)

Return an image of pseudorandom noise, or add pseudorandom noise to the specified
region of existing region dst.

For noise type "uniform", the noise is uniformly distributed on the range [A,B). For
noise "gaussian", the noise will have a normal distribution with mean A and standard
deviation B. For noise "salt", the value A will be stored in a random set of pixels whose
proportion (of the overall image) is B. For all noise types, choosing different seed values
will result in a different pattern. If the mono flag is true, a single noise value will be
applied to all channels specified by roi, but if mono is false, a separate noise value will
be computed for each channel in the region.

Examples:

buf = ImageBuf(ImageSpec(640, 480, 3, oiio.UINT8))
ImageBufAlgo.zero (buf)
ImageBufAlgo.noise (buf, ’uniform’, 0.25, 0.75)

OpenImageIO Programmer’s Documentation

11.9. IMAGEBUFALGO 275

bool ImageBufAlgo.render point (dst, x, y, color=(1,1,1,1))

Render a point at pixel (x,y) of dst. The color (if supplied) is a tuple giving the per-
channel colors.

Examples:

buf = ImageBuf(ImageSpec (640, 480, 4, oiio.FLOAT))
ImageBufAlgo.render_point (buf, 10, 20, (1,0,0,1))

bool ImageBufAlgo.render line (dst, x1, y1, x2, y2,
color=(1,1,1,1), skip first point=False)

Render a line from pixel (x1,y1) to (x2,y2) into dst. The color (if supplied) is a tuple
giving the per-channel colors.

Examples:

buf = ImageBuf(ImageSpec (640, 480, 4, oiio.FLOAT))
ImageBufAlgo.render_line (buf, 10, 10, 500, 20, (1,0,0,1))

bool ImageBufAlgo.render box (dst, x1, y1, x2, y2,
color=(1,1,1,1), filled=False)

Render a filled or unfilled box with corners at pixels (x1,y1) and (x2,y2) into dst. The
color (if supplied) is a tuple giving the per-channel colors.

Examples:

buf = ImageBuf(ImageSpec (640, 480, 4, oiio.FLOAT))
ImageBufAlgo.render_box (buf, 150, 100, 240, 180, (0,1,1,1))
ImageBufAlgo.render_box (buf, 100, 50, 180, 140, (0.5, 0.5, 0, 0.5), True)

bool ImageBufAlgo.render text (dst, x, y, text, fontsize=16,
fontname="", textcolor=(1,1,1,1),
alignx="left", aligny="baseline", shadow=0,
roi=ROI.All, nthreads=0

Render antialiased text into dst. The textcolor (if supplied) is a tuple giving the per-
channel colors. Choices for alignx are "left", "right", and "center", and choices
for aligny are "baseline", "top", "bottom", and "center".

Examples:

buf = ImageBuf(ImageSpec (640, 480, 4, oiio.FLOAT))
ImageBufAlgo.render_text (buf, 50, 100, "Hello, world")
ImageBufAlgo.render_text (buf, 100, 200, "Go Big Red!",

60, "Arial Bold", (1,0,0,1))

OpenImageIO Programmer’s Documentation

276 CHAPTER 11. PYTHON BINDINGS

ROI ImageBufAlgo.text size (text, fontsize=16, fontname="")

Compute the size that will be needed for the text as an ROI and return it. The size will
not be defined if an error occurred (such as not being a valid font name).

Examples:
A = ImageBuf(ImageSpec (640, 480, 4, oiio.FLOAT))
Aroi = A.roi
size = ImageBufAlgo.text_size ("Centered", 40, "Courier New")
if size.defined :

x = Aroi.xbegin + Aroi.width/2 - (size.xbegin + size.width/2)
y = Aroi.ybegin + Aroi.height/2 - (size.ybegin + size.height/2)
ImageBufAlgo.render_text (A, x, y, "Centered", 40, "Courier New")

Note: this was for illustration. An easier way to do this is:
render_text (A, x, y, "Centered", 40, "Courier New", alignx="center")

11.9.2 Image transformations and data movement

ImageBuf ImageBufAlgo.channels (src, channelorder, newchannelnames=(),
shuffle channel names=False, nthreads=0)

bool ImageBufAlgo.channels (dst, src, channelorder, newchannelnames=(),
shuffle channel names=False, nthreads=0)

Return (or store in dst) shuffled channels of src, with channels in the order specified by
the tuple channelorder. The length of channelorder specifies the number of channels
to copy. Each element in the tuple channelorder may be one of the following:

•• int : specifies the index (beginning at 0) of the channel to copy.
• str : specifies the name of the channel to copy.
• float : specifies a constant value to use for that channel.

If newchannelnames is supplied, it is a tuple of new channel names. (See the C++ version
for more full explanation.)

Examples:
Copy the first 3 channels of an RGBA, drop the alpha
RGBA = ImageBuf("rgba.tif")
RGB = ImageBufAlgo.channels (RGBA, (0,1,2))

Copy just the alpha channel, making a 1-channel image
Alpha = ImageBufAlgo.channels (RGBA, ("A",))

Swap the R and B channels
BGRA = ImageBufAlgo.channels (RGBA, (2, 1, 0, 3))

Add an alpha channel with value 1.0 everywhere to an RGB image
RGBA = ImageBufAlgo.channels (RGB, ("R", "G", "B", 1.0),

("R", "G", "B", "A"))

OpenImageIO Programmer’s Documentation

11.9. IMAGEBUFALGO 277

ImageBuf ImageBufAlgo.channel append (A, B, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.channel append (dst, A, B, roi=ROI.All, nthreads=0)

Append the channels of images A and B together into one image.

Examples:

RGBA = ImageBuf ("rgba.exr")
Z = ImageBuf ("z.exr")
RGBAZ = ImageBufAlgo.channel_append (RGBA, Z)

ImageBuf ImageBufAlgo.copy (src, convert=TypeDesc.UNKNOWN,
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.copy (dst, src, convert=TypeDesc.UNKNOWN,
roi=ROI.All, nthreads=0)

Copy the specified region of pixels of src at the same locations, optionally with the pixel
type overridden by convert (if it is not UNKNOWN).

Examples:

Copy A’s upper left 200x100 region into B
B = ImageBufAlgo.copy (A, ROI(0,200,0,100))

ImageBuf ImageBufAlgo.crop (src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.crop (dst, src, roi=ROI.All, nthreads=0)

Reset dst to be the specified region of src.

Examples:

Set B to be the upper left 200x100 region of A
A = ImageBuf ("a.tif")
B = ImageBufAlgo.crop (A, ROI(0,200,0,100))

ImageBuf ImageBufAlgo.cut (src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.cut (dst, src, roi=ROI.All, nthreads=0)

Reset dst to be the specified region of src, but moved so that the resulting new image
has its pixel data at the image plane origin.

Examples:

Set B to be the lower left 200x100 region of A, moved to the origin
A = ImageBuf ("a.tif")
B = ImageBufAlgo.cut (A, ROI(0,200,380,480))

OpenImageIO Programmer’s Documentation

278 CHAPTER 11. PYTHON BINDINGS

bool ImageBufAlgo.paste (dst, xbegin, ybegin, zbegin, chbegin,
src, ROI srcroi=ROI.All, nthreads=0)

Copy the specified region of src into dst beginning at offset (xbegin, ybegin, zbegin).

Examples:
Paste small.exr on top of big.exr at offset (100,100)
Big = ImageBuf ("big.exr")
Small = ImageBuf ("small.exr")
ImageBufAlgo.paste (Big, 100, 100, 0, 0, Small)

ImageBuf ImageBufAlgo.rotate90 (src, roi=ROI.All, nthreads=0)
ImageBuf ImageBufAlgo.rotate180 (src, roi=ROI.All, nthreads=0)
ImageBuf ImageBufAlgo.rotate270 (src, roi=ROI.All, nthreads=0)

bool ImageBufAlgo.rotate90 (dst, src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.rotate180 (dst, src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.rotate270 (dst, src, roi=ROI.All, nthreads=0)

Copy while rotating the image by a multiple of 90 degrees.

Examples:
A = ImageBuf ("tahoe.exr")
B = ImageBufAlgo.rotate90 (A)

ImageBuf ImageBufAlgo.flip (src, roi=ROI.All, nthreads=0)
ImageBuf ImageBufAlgo.flop (src, roi=ROI.All, nthreads=0)
ImageBuf ImageBufAlgo.transpose (src, roi=ROI.All, nthreads=0)

bool ImageBufAlgo.flip (dst, src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.flop (dst, src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.transpose (dst, src, roi=ROI.All, nthreads=0)

Copy while reversing orientation vertically (flip) or horizontally (flop), or diagonally
(transpose).

Examples:
A = ImageBuf ("tahoe.exr")
B = ImageBufAlgo.flip (A)

ImageBuf ImageBufAlgo.reorient (src, nthreads=0)
bool ImageBufAlgo.reorient (dst, src, nthreads=0)

Copy src, applying whatever seties of rotations, flips, or flops are necessary to transform
the pixels into the configuration suggested by the "Orientation" metadata of the image
(and the "Orientation" metadata is then set to 1, ordinary orientation).

Examples:
A = ImageBuf ("tahoe.jpg")
ImageBufAlgo.reorient (A, A)

OpenImageIO Programmer’s Documentation

11.9. IMAGEBUFALGO 279

ImageBuf ImageBufAlgo.circular shift (src, xshift, yshift, zshift=0,
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.circular shift (dst, src, xshift, yshift, zshift=0,
roi=ROI.All, nthreads=0)

Copy while circularly shifting by the given amount.

Examples:

A = ImageBuf ("tahoe.exr")
B = ImageBufAlgo.circular_shift (A, 200, 100)

ImageBuf ImageBufAlgo.rotate (src, angle, filtername="", filtersize=0.0,
recompute roi=False, roi=ROI.All, nthreads=0)

ImageBuf ImageBufAlgo.rotate (src, angle,
center x, center y, filtername="", filtersize=0.0,
recompute roi=False, roi=ROI.All, nthreads=0)

bool ImageBufAlgo.rotate (dst, src, angle, filtername="", filtersize=0.0,
recompute roi=False, roi=ROI.All, nthreads=0)

bool ImageBufAlgo.rotate (dst, src, angle,
center x, center y, filtername="", filtersize=0.0,
recompute roi=False, roi=ROI.All, nthreads=0)

Copy arotated version of the corresponding portion of src. The angle is in radians, with
positive values indicating clockwise rotation. If the filter and size are not specified, an
appropriate default will be chosen.

Examples:

Src = ImageBuf ("tahoe.exr")
Dst = ImageBufAlgo.rotate (Src, math.radians(45.0))

ImageBuf ImageBufAlgo.warp (src, M, filtername="", filtersize=0.0,
wrap="default", recompute roi=False,
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.warp (dst, src, M, filtername="", filtersize=0.0,
wrap="default", recompute roi=False,
roi=ROI.All, nthreads=0)

Compute a warped (transformed) copy of src, with the warp specified by M consisting of
9 floating-point numbers representing a 3×3 transformation matrix. If the filter and size
are not specified, an appropriate default will be chosen.

Examples:

M = (0.7071068, 0.7071068, 0, -0.7071068, 0.7071068, 0, 20, -8.284271, 1)
Src = ImageBuf ("tahoe.exr")
Dst = ImageBufAlgo.warp (Src, M)

OpenImageIO Programmer’s Documentation

280 CHAPTER 11. PYTHON BINDINGS

ImageBuf ImageBufAlgo.resize (src, filtername="", filtersize=0.0,
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.resize (dst, src, filtername="", filtersize=0.0,
roi=ROI.All, nthreads=0)

Compute a high-quality resized version of the corresponding portion of src. If the filter
and size are not specified, an appropriate default will be chosen.

Examples:

Resize the image to 640x480, using the default filter
Src = ImageBuf ("tahoe.exr")
Dst = ImageBufAlgo.resize (Src, roi=ROI(0,640,0,480,0,1,0,3))

ImageBuf ImageBufAlgo.resample (src, interpolate=True,
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.resample (dst, src, interpolate=True,
roi=ROI.All, nthreads=0)

Set dst, over the ROI, to be a low-quality (but fast) resized version of the corresponding
portion of src, either using a simple “closest pixel” choice or by bilinaerly interpolating
(depending on interpolate).

Examples:

Resample quickly to 320x240 to make a low-quality thumbnail
Src = ImageBuf ("tahoe.exr")
Dst = ImageBufAlgo.resample (Src, roi=ROI(0,640,0,480,0,1,0,3))

ImageBuf ImageBufAlgo.fit (src, filtername="", filtersize=0.0,
exact=false, roi=ROI.All, nthreads=0)

bool ImageBufAlgo.fit (dst, src, filtername="", filtersize=0.0,
exact=false, roi=ROI.All, nthreads=0)

NEW! Fit src into the roi while preserving the original aspect ratio, without stretching. If the
filter and size are not specified, an appropriate default will be chosen.

Examples:

Resize to fit into a max of 640x480, preserving the aspect ratio
Src = ImageBuf ("tahoe.exr")
Dst = ImageBufAlgo.fit (Src, roi=ROI(0,640,0,480,0,1,0,3))

11.9.3 Image arithmetic

OpenImageIO Programmer’s Documentation

11.9. IMAGEBUFALGO 281

ImageBuf ImageBufAlgo.add (A, B, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.add (dst, A, B, roi=ROI.All, nthreads=0)

Compute A + B. A and B each may be an ImageBuf, a float value (for all channels) or a
tuple giving a float for each color channel.

Examples:

Add two images
buf = ImageBufAlgo.add (ImageBuf("a.exr"), ImageBuf("b.exr"))

Add 0.2 to channels 0-2
ImageBufAlgo.add (buf, buf, (0.2,0.2,0.2,0))

ImageBuf ImageBufAlgo.sub (A, B, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.sub (dst, A, B, roi=ROI.All, nthreads=0)

Compute A - B. A and B each may be an ImageBuf, a float value (for all channels) or a
tuple giving a float for each color channel.

Examples:

buf = ImageBufAlgo.sub (ImageBuf("a.exr"), ImageBuf("b.exr"))

ImageBuf ImageBufAlgo.absdiff (A, B, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.absdiff (dst, A, B, roi=ROI.All, nthreads=0)

Compute abs(A - B). A and B each may be an ImageBuf, a float value (for all chan-
nels) or a tuple giving a float for each color channel.

Examples:

buf = ImageBufAlgo.absdiff (ImageBuf("a.exr"), ImageBuf("b.exr"))

ImageBuf ImageBufAlgo.abs (A, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.abs (dst, A, roi=ROI.All, nthreads=0)

Compute abs(A). A is an ImageBuf.

Examples:

buf = ImageBufAlgo.abs (ImageBuf("a.exr"))

OpenImageIO Programmer’s Documentation

282 CHAPTER 11. PYTHON BINDINGS

ImageBuf ImageBufAlgo.mul (A, B, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.mul (dst, A, B, roi=ROI.All, nthreads=0)

Compute A * B (channel-by-channel multiplication). A and B each may be an ImageBuf,
a float value (for all channels) or a tuple giving a float for each color channel.

Examples:

Multiply the two images
buf = ImageBufAlgo.mul (ImageBuf("a.exr"), ImageBuf("b.exr"))

Reduce intensity of buf’s channels 0-2 by 50%, in place
ImageBufAlgo.mul (buf, buf, (0.5, 0.5, 0.5, 1.0))

ImageBuf ImageBufAlgo.div (A, B, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.div (dst, A, B, roi=ROI.All, nthreads=0)

Compute A / B (channel-by-channel division), where x/0 is defined to be 0. A and B
each may be an ImageBuf, a float value (for all channels) or a tuple giving a float for
each color channel.

Examples:

Divide a.exr by b.exr
buf = ImageBufAlgo.div (ImageBuf("a.exr"), ImageBuf("b.exr"))

Reduce intensity of buf’s channels 0-2 by 50%, in place
ImageBufAlgo.div (buf, buf, (2.0, 2.0, 2.0, 1.0))

ImageBuf ImageBufAlgo.mad (A, B, C, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.mad (dst, A, B, C, roi=ROI.All, nthreads=0)

Compute A * B + C (channel-by-channel multiplication and addition). A, B, and C each
may be an ImageBuf, a float value (for all channels) or a tuple giving a float for each
color channel.

Examples:

Multiply a and b, then add c
buf = ImageBufAlgo.mad (ImageBuf("a.exr"),

(1.0f, 0.5f, 0.25f), ImageBuf("c.exr"))

ImageBuf ImageBufAlgo.invert (A, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.invert (dst, A, roi=ROI.All, nthreads=0)

Compute 1-A (channel by channel color inverse). A is an ImageBuf.

Examples:

buf = ImageBufAlgo.invert (ImageBuf("a.exr"))

OpenImageIO Programmer’s Documentation

11.9. IMAGEBUFALGO 283

ImageBuf ImageBufAlgo.pow (A, B, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.pow (dst, A, B, roi=ROI.All, nthreads=0)

Compute pow (A, B (channel-by-channel exponentiation). A is an ImageBuf, and B may
be a float (a single power for all channels) or a tuple giving a float for each color
channel.

Examples:
Linearize a 2.2 gamma-corrected image (channels 0-2 only)
img = ImageBuf ("a.exr")
buf = ImageBufAlgo.pow (img, (2.2, 2.2, 2.2, 1.0))

ImageBuf ImageBufAlgo.channel sum (src, weights=(), roi=ROI.All, nthreads=0)
bool ImageBufAlgo.channel sum (dst, src, weights=(), roi=ROI.All, nthreads=0)

Converts a multi-channel image into a 1-channel image via a weighted sum of channels.
The weights is a tuple providing the weight for each channel (if not supplied, all channels
will have weight 1.0).

Examples:
Compute luminance via a weighted sum of R,G,B
(assuming Rec709 primaries and a linear scale)
ImageBuf()
weights = (.2126, .7152, .0722)
luma = ImageBufAlgo.channel_sum (ImageBuf("a.exr"), weights)

ImageBuf ImageBufAlgo.contrast remap (src,
black=0.0, white=1.0, min=0.0, max=1.0,
sthresh=0.0, scontrast=1.0,
ROI roi={}, int nthreads=0)

bool ImageBufAlgo.contrast remap (ImageBuf &dst, src,
black=0.0, white=1.0, min=0.0, max=1.0,
sthresh=0.0, scontrast=1.0,
ROI roi={}, int nthreads=0)

NEW!Return (or copy into dst) pixel values that are a contrast-remap of the corresponding
values of the src image, transforming pixel value domain [black, white] to range [min,
max], either linearly or with optional application of a smooth sigmoidal remapping (if
scontrast != 1.0).

Examples:
A = ImageBuf(’tahoe.tif’);

Simple linear remap that stretches input 0.1 to black, and input
0.75 to white.
linstretch = ImageBufAlgo.contrast_remap (A, black=0.1, white=0.75)

OpenImageIO Programmer’s Documentation

284 CHAPTER 11. PYTHON BINDINGS

// Remapping 0->1 and 1->0 inverts the colors of the image,
// equivalent to ImageBufAlgo.invert().
inverse = ImageBufAlgo.contrast_remap (A, black=1.0, white=0.0)

// Use a sigmoid curve to add contrast but without any hard cutoffs.
// Use a contrast parameter of 5.0.
sigmoid = ImageBufAlgo.contrast_remap (a, contrast=5.0)

ImageBuf ImageBufAlgo.color map (src, srcchannel,
nknots, channels, knots, roi=ROI.All, nthreads=0)

ImageBuf ImageBufAlgo.color map (src, srcchannel,
mapname, roi=ROI.All, nthreads=0)

bool ImageBufAlgo.color map (dst, src, srcchannel,
nknots, channels, knots, roi=ROI.All, nthreads=0)

bool ImageBufAlgo.color map (dst, src, srcchannel,
mapname, roi=ROI.All, nthreads=0)

Return an image (or copy into dst) pixel values determined by applying the color map to
the values of src, using either the channel specified by srcchannel, or the luminance of
src’s RGB if srcchannel is -1.

In the first variant, the values linearly-interpolated color map are given by the tuple
knots[nknots*channels].

In the second variant, just the name of a color map is specified. Recognized map names
include: "inferno", "viridis","magma", "plasma", all of which are perceptually uni-
form, strictly increasing in luminance, look good when converted to grayscale, and work
for people with all types of colorblindness. Also supported are the following color maps
that do not have those desirable qualities (and are this not recommended): "blue-red",
"spectrum", and "heat". In all cases, the implied channels is 3.

Examples:
heatmap = ImageBufAlgo.color_map (ImageBuf("a.jpg"), -1, "inferno")

heatmap = ImageBufAlgo.color_map (ImageBuf("a.jpg"), -1, 3, 3,
(0.25, 0.25, 0.25, 0, 0.5, 0, 1, 0, 0))

ImageBuf ImageBufAlgo.clamp (src, min, max, bool clampalpha01=False,
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.clamp (dst, src, min, max, bool clampalpha01=False,
roi=ROI.All, nthreads=0)

Copy pixels while clamping between the min and max values. The min and max may
either be tuples (one min and max value per channel), or single floats (same value for
all channels). Additionally, if clampalpha01 is True, then any alpha channel is clamped
to the 0–1 range.

Examples:

OpenImageIO Programmer’s Documentation

11.9. IMAGEBUFALGO 285

Clamp image buffer A in-place to the [0,1] range for all channels.
ImageBufAlgo.clamp (A, A, 0.0, 1.0)

ImageBuf ImageBufAlgo.rangecompress (src, useluma=False,
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.rangecompress (dst, src, useluma=False,
roi=ROI.All, nthreads=0)

ImageBuf ImageBufAlgo.rangeexpand (src, useluma=False,
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.rangeexpand (dst, src, useluma=False,
roi=ROI.All, nthreads=0)

Copy from src, compressing (logarithmically) or expanding (by the inverse of the com-
pressive transformation) the range of pixel values. Alpha and z channels are copied but
not transformed.

If useluma is True, the luma of the first three channels (presumed to be R, G, and B) are
used to compute a single scale factor for all color channels, rather than scaling all channels
individually (which could result in a big color shift when performing rangecompress and
rangeexpand).

Examples:
Resize the image to 640x480, using a Lanczos3 filter, which
has negative lobes. To prevent those negative lobes from
producing ringing or negative pixel values for HDR data,
do range compression, then resize, then re-expand the range.

1. Read the original image
Src = ImageBuf ("tahoeHDR.exr")

2. Range compress to a logarithmic scale
Compressed = ImageBufAlgo.rangecompress (Src)

3. Now do the resize
roi = ROI (0, 640, 0, 480, 0, 1, 0, Compressed.nchannels)
Dst = ImageBufAlgo.resize (Compressed, "lanczos3", 6.0, roi)

4. Expand range to be linear again (operate in-place)
ImageBufAlgo.rangeexpand (Dst, Dst)

ImageBuf ImageBufAlgo.over (A, B, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.over (dst, A, B, roi=ROI.All, nthreads=0)

Composite ImageBuf A over ImageBuf B.

Examples:
Comp = ImageBufAlgo.over (ImageBuf("fg.exr"), ImageBuf("bg.exr"))

OpenImageIO Programmer’s Documentation

286 CHAPTER 11. PYTHON BINDINGS

ImageBuf ImageBufAlgo.zover (A, B, bool z zeroisinf=False,
roi=ROI.All, nthreads=0

bool ImageBufAlgo.zover (dst, A, B, bool z zeroisinf=False,
roi=ROI.All, nthreads=0)

Composite ImageBuf A and ImageBuf B using their respective Z channels to decide which
is in front on a pixel-by-pixel basis.

Examples:
Comp = ImageBufAlgo.zover (ImageBuf("fg.exr"), ImageBuf("bg.exr"))

11.9.4 Image comparison and statistics

PixelStats ImageBufAlgo.computePixelStats (src, roi=ROI.All, nthreads=0)

Compute statistics about the ROI of the image src. The PixelStats structure is defined
as contining the following data fields: min, max, avg, stddev, nancount, infcount,
finitecount, sum, sum2, each of which is a tuple with one value for each channel of the
image.

Examples:
A = ImageBuf("a.exr")
stats = ImageBufAlgo.computePixelStats (A)
print " min = ", stats.min
print " max = ", stats.max
print " average = ", stats.avg
print " standard deviation = ", stats.stddev
print " # NaN values = ", stats.nancount
print " # Inf values = ", stats.infcount
print " # finite values = ", stats.finitecount

CompareResults ImageBufAlgo.compare (A, B, failthresh, warnthresh,
roi=ROI.All, nthreads=0)

Numerically compare two ImageBuf’s, A and B. The failthresh and warnthresh sup-
ply failure and warning difference thresholds. The return value is a CompareResults
object, which is defined as a class having the following members:

meanerror, rms_error, PSNR, maxerror # error statistics
maxx, maxy, maxz, maxc # pixel of biggest difference
nwarn, nfail # number of warnings and failures
error # True if there was an error

Examples:
A = ImageBuf ("a.exr")
B = ImageBuf ("b.exr")
comp = ImageBufAlgo.compare (A, B, 1.0/255.0, 0.0)

OpenImageIO Programmer’s Documentation

11.9. IMAGEBUFALGO 287

if comp.nwarn == 0 and comp.nfail == 0 :
print "Images match within tolerance"

else :
print comp.nfail, "failures,", comp.nwarn, " warnings."
print "Average error was " , comp.meanerror
print "RMS error was" , comp.rms_error
print "PSNR was" , comp.PSNR
print "largest error was ", comp.maxerror
print " on pixel", (comp.maxx, comp.maxy, comp.maxz)
print " channel", comp.maxc

tuple ImageBufAlgo.isConstantColor (src, threshold=0.0, roi=ROI.All, nthreads=0)

If all pixels of src within the ROI have the same values (for the subset of channels de-
scribed by roi), return a tuple giving that color (one float for each channel), otherwise
return None.

Examples:

A = ImageBuf ("a.exr")
color = ImageBufAlgo.isConstantColor (A)
if color != None :

print "The image has the same value in all pixels:", color
else :

print "The image is not a solid color."

bool ImageBufAlgo.isConstantChannel (src, channel, val,
threshold=0.0, roi=ROI.All, nthreads=0)

Returns True if all pixels of src within the ROI have the given channel value val.

Examples:

A = ImageBuf ("a.exr")
alpha = A.spec.alpha_channel
if alpha < 0 :

print "The image does not have an alpha channel"
elif ImageBufAlgo.isConstantChannel (A, alpha, 1.0) :

print "The image has alpha = 1.0 everywhere"
else :

print "The image has alpha < 1 in at least one pixel"

OpenImageIO Programmer’s Documentation

288 CHAPTER 11. PYTHON BINDINGS

bool ImageBufAlgo.isMonochrome (src, threshold=0.0, roi=ROI.All, nthreads=0)

Returns True if the image is monochrome within the ROI.

Examples:
A = ImageBuf ("a.exr")
roi = A.roi
roi.chend = min (3, roi.chend) # only test RGB, not alpha
if ImageBufAlgo.isMonochrome (A, roi) :

print "a.exr is really grayscale"

std::string ImageBufAlgo.computePixelHashSHA1 (src, extrainfo = "",
roi=ROI.All, blocksize=0, nthreads=0)

Compute the SHA-1 byte hash for all the pixels in the ROI of src.

Examples:
A = ImageBuf ("a.exr")
hash = ImageBufAlgo.computePixelHashSHA1 (A, blocksize=64)

tuple histogram (src, channel=0, bins=256, min=0.0, max=1.0,
ignore empty=False, roi=ROI.All, nthreads=0)

Computes a histogram of the given channel of image src, within the ROI, returning a tuple
of length bins containing count of pixels whose value was in each of the equally-sized range
bins between min and max. If ignore empty is True, pixels that are empty (all channels 0
including alpha) will not be counted in the total.

11.9.5 Convolutions

ImageBuf ImageBufAlgo.make kernel (name, width, height,
depth=1.0, normalize=True)

Create a 1-channel float image of the named kernel and dimensions. If normalize is
True, the values will be normalized so that they sum to 1.0.

If depth > 1, a volumetric kernel will be created. Use with caution!

Kernel names can be: "gaussian", "sharp-gaussian", "box", "triangle", "mitchell",
"blackman-harris", "b-spline", "catmull-rom", "lanczos3", "cubic", "keys",
"simon", "rifman", "disk", "binomial", "laplacian". Note that "catmull-rom"
and "lanczos3" are fixed-size kernels that don’t scale with the width, and are therefore
probably less useful in most cases.

Examples:
K = ImageBufAlgo.make_kernel ("gaussian", 5.0, 5.0)

OpenImageIO Programmer’s Documentation

11.9. IMAGEBUFALGO 289

ImageBuf ImageBufAlgo.convolve (src, kernel, normalize=True,
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.convolve (dst, src, kernel, normalize=True,
roi=ROI.All, nthreads=0)

Replace the given ROI of dstwith the convolution of src and a kernel (also an ImageBuf).

Examples:

Blur an image with a 5x5 Gaussian kernel
Src = ImageBuf ("tahoe.exr")
K = ImageBufAlgo.make_kernel (K, "gaussian", 5.0, 5.0)
Blurred = ImageBufAlgo.convolve (Src, K)

ImageBuf ImageBufAlgo.laplacian (src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.laplacian (dst, src, roi=ROI.All, nthreads=0)

Replace the given ROI of dst with the Laplacian of the corresponding part of src.

Examples:

Src = ImageBuf ("tahoe.exr")
L = ImageBufAlgo.laplacian (Src)

ImageBuf ImageBufAlgo.fft (src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.fft (dst, src, roi=ROI.All, nthreads=0)

ImageBuf ImageBufAlgo.ifft (src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.ifft (dst, src, roi=ROI.All, nthreads=0)

Compute the forward or inverse discrete Fourier Transform.

Examples:

Src = ImageBuf ("tahoe.exr")

Take the DFT of the first channel of Src
Freq = ImageBufAlgo.fft (Src)

At this point, Freq is a 2-channel float image (real, imag)
Convert it back from frequency domain to a spatial iamge
Spatial = ImageBufAlgo.ifft (Freq)

OpenImageIO Programmer’s Documentation

290 CHAPTER 11. PYTHON BINDINGS

ImageBuf ImageBufAlgo.complex to polar (src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.complex to polar (dst, src, roi=ROI.All, nthreads=0)

ImageBuf ImageBufAlgo.polar to complex (src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.polar to complex (dst, src, roi=ROI.All, nthreads=0)

Transform a 2-channel image from complex (real, imaginary) representation to polar (am-
plitude, phase), or vice versa.

Examples:
Polar = ImageBuf ("polar.exr")

Complex = ImageBufAlgo.polar_to_complex (Polar)

At this point, Complex is a 2-channel complex image (real, imag)
Convert it back from frequency domain to a spatial iamge
Spatial = ImageBufAlgo.ifft (Complex)

11.9.6 Image Enhancement / Restoration

ImageBuf ImageBufAlgo.fixNonFinite (src, mode=NONFINITE BOX3,
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.fixNonFinite (dst, src, mode=NONFINITE BOX3,
roi=ROI.All, nthreads=0)

Copy pixel values from src and repair any non-finite (NaN or Inf) pixels.

How the non-finite values are repaired is specified by one of the following modes:
OpenImageIO.NONFINITE NONE,
OpenImageIO.NONFINITE BLACK
OpenImageIO.NONFINITE BOX3

Examples:
Src = ImageBuf ("tahoe.exr")
ImageBufAlgo.fixNonFinite (Src, Src, OpenImageIO.NONFINITE_BOX3)

ImageBuf ImageBufAlgo.fillholes pushpull (src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.fillholes pushpull (dst, src, roi=ROI.All, nthreads=0)

Copy the specified ROI of src and fill any holes (pixels where alpha < 1) with plausible
values using a push-pull technique. The src image must have an alpha channel. The dst
image will end up with a copy of src, but will have an alpha of 1.0 everywhere, and any
place where the alpha of src was ¡ 1, dst will have a pixel color that is a plausible “filling”
of the original alpha hole.

Examples:
Src = ImageBuf ("holes.exr")
Filled = ImageBufAlgo.fillholes_pushpull (Src)

OpenImageIO Programmer’s Documentation

11.9. IMAGEBUFALGO 291

bool ImageBufAlgo.median filter (dst, src, width=3, height=-1,
roi=ROI.All, nthreads=0)

Replace the given ROI of dst with the width×height median filter of the corresponding
region of src using the “unsharp mask” technique.

Examples:

Noisy = ImageBuf ("tahoe.exr")
Clean = ImageBuf ()
ImageBufAlgo.median_filter (Clean, Noisy, 3, 3)

ImageBuf ImageBufAlgo.dilate (src, width=3, height=-1, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.dilate (dst, src, width=3, height=-1, roi=ROI.All, nthreads=0)

ImageBuf ImageBufAlgo.erode (src, width=3, height=-1, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.erode (dst, src, width=3, height=-1, roi=ROI.All, nthreads=0)

Compute a dilated or eroded version of the corresponding region of src.

Examples:

Source = ImageBuf ("source.tif")
Dilated = ImageBufAlgo.dilate (Source, 3, 3)

ImageBuf ImageBufAlgo.unsharp mask (src, kernel="gaussian", width=3.0,
contrast=1.0, threshold=0.0, roi=ROI.All, nthreads=0)

bool ImageBufAlgo.unsharp mask (dst, src, kernel="gaussian", width=3.0,
contrast=1.0, threshold=0.0, roi=ROI.All, nthreads=0)

Compute a sharpened version of the corresponding region of src using the “unsharp
mask” technique.

Examples:

Blurry = ImageBuf ("tahoe.exr")
Sharp = ImageBufAlgo.unsharp_mask (Blurry, "gaussian", 5.0)

11.9.7 Color manipulation

OpenImageIO Programmer’s Documentation

292 CHAPTER 11. PYTHON BINDINGS

ImageBuf ImageBufAlgo.colorconvert (src, fromspace, tospace, unpremult=True,
context key="", context value="",
colorconfig="", roi=ROI.All, nthreads=0)

bool ImageBufAlgo.colorconvert (dst, src, fromspace, tospace, unpremult=True,
context key="", context value="",
colorconfig="", roi=ROI.All, nthreads=0)

Apply a color transform to the pixel values.

Examples:

Src = ImageBuf ("tahoe.jpg")
Dst = ImageBufAlgo.colorconvert (Src, "sRGB", "linear")

ImageBuf ImageBufAlgo.ociolook (src, looks, fromspace, tospace,
inverse=False, unpremult=True,
context key="", context value="", colorconfig="",
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.ociolook (dst, src, looks, fromspace, tospace,
inverse=False, unpremult=True,
context key="", context value="", colorconfig="",
roi=ROI.All, nthreads=0)

Apply an OpenColorIO “look” transform to the pixel values.

Examples:

Src = ImageBuf ("tahoe.jpg")
Dst = ImageBufAlgo.ociolook (Src, "look", "vd8", "lnf",

context_key="SHOT", context_value="pe0012")

ImageBuf ImageBufAlgo.ociodisplay (src, display, view,
fromspace="", looks="", unpremult=True,
context key="", context value="", colorconfig="",
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.ociodisplay (dst, src, display, view,
fromspace="", looks="", unpremult=True,
context key="", context value="", colorconfig="",
roi=ROI.All, nthreads=0)

Apply an OpenColorIO “display” transform to the pixel values.

Examples:

Src = ImageBuf ("tahoe.exr")
Dst = ImageBufAlgo.ociodisplay (Src, "sRGB", "Film", "lnf",

context_key="SHOT", context_value="pe0012")

OpenImageIO Programmer’s Documentation

11.9. IMAGEBUFALGO 293

ImageBuf ImageBufAlgo.ociofiletransform (src, name,
unpremult=True, invert=False, colorconfig="",
roi=ROI.All, nthreads=0)

bool ImageBufAlgo.ociofiletransform (dst, src, name,
unpremult=True, invert=False, colorconfig="",
roi=ROI.All, nthreads=0)

Apply an OpenColorIO “file” transform to the pixel values. In-place operations (dst and
src being the same image) are supported.

Examples:

Src = ImageBuf ("tahoe.exr")
Dst = ImageBufAlgo.ociofiletransform (Src, "foottransform.csp")

ImageBuf ImageBufAlgo.unpremult (src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.unpremult (dst, src, roi=ROI.All, nthreads=0)

ImageBuf ImageBufAlgo.premult (src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.premult (dst, src, roi=ROI.All, nthreads=0)

Copy pixels from src to dst, and un-premultiply (or premultiply) the colors by alpha.

Examples:

Convert in-place from associated alpha to unassociated alpha
A = ImageBuf ("a.exr")
ImageBufAlgo.unpremult (A, A)

11.9.8 Import / export

bool ImageBufAlgo.make texture (mode, input,
outputfilename, config=ImageSpec())

Turn an input image (either an ImageBuf or a string giving a filename) into a tiled, MIP-
mapped, texture file and write to the file named by (outputfilename). The mode de-
scribes what type of texture file we are creating and may be one of the following:

OpenImageIO.MakeTxTexture
OpenImageIO.MakeTxEnvLatl
OpenImageIO.MakeTxEnvLatlFromLightProbe

The config, if supplied, is an ImageSpec that contains all the information and special
instructions for making the texture. The full list of supported configuration options is
given in Section 10.9.

Examples:

This command line:
maketx in.exr --hicomp --filter lanczos3 --opaque-detect \
-o texture.exr

OpenImageIO Programmer’s Documentation

294 CHAPTER 11. PYTHON BINDINGS

is equivalent to:

Input = ImageBuf ("in.exr")
config = ImageSpec()
config.attribute ("maketx:highlightcomp", 1)
config.attribute ("maketx:filtername", "lanczos3")
config.attribute ("maketx:opaquedetect", 1)
ImageBufAlgo.make_texture (oiio.MakeTxTexture, Input,

"texture.exr", config)

ImageBuf ImageBufAlgo::capture image (cameranum, convert = OpenImageIO.UNKNOWN)

Capture a still image from a designated camera.

Examples:

WebcamImage = ImageBufAlgo.capture_image (0, OpenImageIO.UINT8)
WebcamImage.write ("webcam.jpg")

11.9.9 Functions specific to deep images

ImageBuf ImageBufAlgo.deepen (src, zvalue=1.0, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.deepen (dst, src, zvalue=1.0, roi=ROI.All, nthreads=0)

Convert a flat image to a deep one that has one depth sample per pixel (but no depth
samples for the pixels corresponding to those in the source image that have infinite "Z"
or that had 0 for all color channels and no "Z" channel).

Examples:

Deep = ImageBufAlgo.deepen (ImageBuf("az.exr"))

ImageBuf ImageBufAlgo.flatten (src, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.flatten (dst, src, roi=ROI.All, nthreads=0)

Composite the depth samples within each pixel of “deep” ImageBuf src to produce a
“flat” ImageBuf.

Examples:

Flat = ImageBufAlgo.flatten (ImageBuf("deepalpha.exr"))

OpenImageIO Programmer’s Documentation

11.9. IMAGEBUFALGO 295

ImageBuf ImageBufAlgo.deep merge (A, B, occlusion cull, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.deep merge (dst, A, B, occlusion cull, roi=ROI.All, nthreads=0)

Merge the samples of two deep images A and B into a deep result. If occlusion cull is
True, samples beyond the first opaque sample will be discarded, otherwise they will be
kept.

Examples:

DeepA = ImageBuf("hardsurf.exr")
DeepB = ImageBuf("volume.exr")
Merged = ImageBufAlgo.deep_merge (DeepA, DeepB)

ImageBuf ImageBufAlgo.deep holdout (src, holdout, roi=ROI.All, nthreads=0)
bool ImageBufAlgo.deep holdout (dst, src, holdout, roi=ROI.All, nthreads=0)

Return the pixels of src, but only copying the samples that are closer than the opaque
frontier of image holdout. That is, holdout will serve as a depth holdout mask, but no
samples from holdout will actually be copied to dst.

Examples:

Img = ImageBuf("image.exr")
Mask = ImageBuf("mask.exr")
Thresholded = ImageBufAlgo.deep_holdout (Img, Mask)

Other ImageBufAlgo methods that understand deep images

In addition to the previously described methods that are specific to deep images, the following
ImageBufAlgo methods (described in their respective sections) work with deep inputs:

ImageBufAlgo.add
ImageBufAlgo.channels
ImageBufAlgo.compare
ImageBufAlgo.computePixelStats
ImageBufAlgo.crop
ImageBufAlgo.div
ImageBufAlgo.fixNonFinite
ImageBufAlgo.mul
ImageBufAlgo.nonzero region
ImageBufAlgo.resample
ImageBufAlgo.sub

OpenImageIO Programmer’s Documentation

296 CHAPTER 11. PYTHON BINDINGS

11.10 Miscellaneous Utilities

In the main OpenImageIO module, there are a number of values and functions that are useful.
These correspond to the C++ API functions explained in Section 2.8, please refer there for
details.

int openimageio version
The OpenImageIO version number, 10000 for each major version, 100 for each minor
version, 1 for each patch. For example, OpenImageIO 1.2.3 would return a value of
10203.

str geterror ()

Retrieves the latest global error.

bool attribute (name, typedesc, value)
bool attribute (name, int value)
bool attribute (name, float value)
bool attribute (name, str value)

Sets a global attribute (see Section 2.8 for details), returning True upon success, or False
if it was not a recognized attribute.
Example:

oiio.attribute ("threads", 0)

getattribute (name, typedesc)
get int attribute (name, defaultval=0)
get float attribute (name, defaultval=0.0)
get string attribute (name, defaultval="")

Retrieves an attribute value from the named set of global OIIO options. (See Section 2.8.)
The getattribute() function returns the value regardless of type, or None if the at-
tribute does not exist. The typed variety will only succeed if the attribute is actually of
that type specified. Type varity with the type in the name also takes a default value.
Example:

formats = oiio.get_string_attribute ("format_list")

11.11 Python Recipes

This section illustrates the Python syntax for doing many common image operations from
Python scripts, but that aren’t already given as examples in the earlier function descriptions.
All example code fragments assume the following boilerplate:

#!/usr/bin/env python

import OpenImageIO as oiio
from OpenImageIO import ImageBuf, ImageSpec, ImageBufAlgo

OpenImageIO Programmer’s Documentation

11.11. PYTHON RECIPES 297

Subroutine to create a constant-colored image

Create an ImageBuf holding a n image of constant color, given the
resolution, data format (defaulting to UINT8), fill value, and image
origin.
def make_constimage (xres, yres, chans=3, format=oiio.UINT8, value=(0,0,0),

xoffset=0, yoffset=0) :
spec = ImageSpec (xres,yres,chans,format)
spec.x = xoffset
spec.y = yoffset
b = ImageBuf (spec)
oiio.ImageBufAlgo.fill (b, value)
return b

The image is returned as an ImageBuf, then up to the caller what to do with it next.

Subroutine to save an image to disk, printing errors

Save an ImageBuf to a given file name, with optional forced image format
and error handling.
def write_image (image, filename, format=oiio.UNKNOWN) :

if not image.has_error :
image.write (filename, format)

if image.has_error :
print "Error writing", filename, ":", image.geterror()

Converting between file formats

img = ImageBuf ("input.png")
write_image (img, "output.tif")

Comparing two images and writing a difference image

A = ImageBuf ("A.tif")
B = ImageBuf ("B.tif")
compresults = ImageBufAlgo.compare (A, B, 1.0e-6, 1.0e-6)
if compresults.nfail > 0 :

print "Images did not match, writing difference image diff.tif"
diff = ImageBufAlgo.absdiff (A, B)
image_write (diff, "diff.tif")

Changing the data format or bit depth

img = ImageBuf ("input.exr")
presume that it’s a "half" OpenEXR file
write it back out as a "float" file:
write_image (img, "output.exr", oiio.FLOAT)

OpenImageIO Programmer’s Documentation

298 CHAPTER 11. PYTHON BINDINGS

Changing the compression

The following command converts writes a TIFF file, specifically using LZW compression:

img = ImageBuf ("in.tif")
img.specmod().attribute ("compression", "lzw")
write_image (img, "compressed.tif")

The following command writes its results as a JPEG file at a compression quality of 50
(pretty severe compression):

img = ImageBuf ("big.jpg")
img.specmod().attribute ("quality", 50)
write_image (img, "small.jpg")

Converting between scanline and tiled images

img = ImageBuf ("scan.tif")
img.set_write_tiles (16, 16)
write_image (img, "tile.tif")

img = ImageBuf ("tile.tif")
img.set_write_tiles (0, 0)
write_image (img, "scan.tif")

Adding captions or metadata

img = ImageBuf ("foo.jpg")
Add a caption:
img.specmod().attribute ("ImageDescription", "Hawaii vacation")
Add keywords:
img.specmod().attribute ("keywords", "volcano,lava")
write_image (img, "foo.jpg")

Changing image boundaries

Change the origin of the pixel data window:

img = ImageBuf ("in.exr")
img.set_origin (256, 80)
write_image (img, "offset.exr")

Change the display window:

img = ImageBuf ("in.exr")
img.set_full (16, 1040, 16, 784)
write_image (img, "out.exr")

Change the display window to match the data window:

img = ImageBuf ("in.exr")
img.set_full (img.roi())
write_image (img, "out.exr")

OpenImageIO Programmer’s Documentation

11.11. PYTHON RECIPES 299

Cut (trim and extract) a 128x128 region whose upper left corner is at location (900,300), moving
the result to the origin (0,0) of the image plane and setting the display window to the new pixel
data window:

img = ImageBuf ("in.exr")
b = ImageBufAlgo.cut (img, oiio.ROI(900,1028,300,428))
write_image (b, "out.exr")

Extract just the named channels from a complicted many-channel image, and add an
alpha channel that is 1 everywhere

img = ImageBuf ("allmyaovs.exr")
b = ImageBufAlgo.channels (img, ("spec.R", "spec.G", "spec.B", 1.0))
write_image (b, "spec.tif")

Fade 30% of the way between two images

a = ImageBufAlgo.mul (ImageBuf("A.exr"), 0.7)
b = ImageBufAlgo.mul (ImageBuf("B.exr"), 0.3)
fade = ImageBufAlgo.add (a, b)
write_image (fade, "fade.exr")

Composite of small foreground over background, with offset

fg = ImageBuf ("fg.exr")
fg.set_origin (512, 89)
bg = ImageBuf ("bg.exr")
comp = ImageBufAlgo.over (fg, bg)
write_image (comp, "composite.exr")

OpenImageIO Programmer’s Documentation

300 CHAPTER 11. PYTHON BINDINGS

OpenImageIO Programmer’s Documentation

Part II

Image Utilities

301

12 oiiotool: the OIIO Swiss Army
Knife

12.1 Overview

The oiiotool program will read images (from any file format for which an ImageInput plugin
can be found), perform various operations on them, and write images (in any format for which
an ImageOutput plugin can be found).

The oiiotool utility is invoked as follows:

oiiotool args

oiiotool maintains an image stack, with the top image in the stack also called the current
image. The stack begins containing no images.

oiiotool arguments consist of image names, or commands. When an image name is en-
countered, that image is pushed on the stack and becomes the new current image.

Most other commands either alter the current image (replacing it with the alteration), or in
some cases will pull more than one image off the stack (such as the current image and the next
item on the stack) and then push a new result image onto the stack.

Argument order matters!

oiiotool processes operations in order. Thus, the order of operations on the command line is
extremely important. For example,

oiiotool in.tif -resize 640x480 -o out.tif

has the effect of reading "in.tif" (thus making it the current image), resizing it (taking the
original off the stack, and placing the resized result back on the stack), and then writing the
new current image to the file "out.tif". Contrast that with the following subtly-incorrect
command:

oiiotool in.tif -o out.tif -resize 640x480

has the effect of reading "in.tif" (thus making it the current image), saving the current image
to the file "out.tif" (note that it will be an exact copy of "in.tif"), resizing the current
image, and then... exiting. Thus, the resized image is never saved, and "out.tif" will be an
unaltered copy of "in.tif".

303

304 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

Optional arguments

Some commands stand completely on their own (like --flip), others take one or more argu-
ments (like --resize or -o):

oiiotool foo.jpg --flip --resize 640x480 -o out.tif

A few commands take optional modifiers for options that are so rarely-used or confusing
that they should not be required arguments. In these cases, they are appended to the command
name, after a colon (“:”), and with a name=value format. Multiple optional modifiers can be
chained together, with colon separators. As an example:

oiiotool in.tif --text:x=400:y=600:color=1,0,0 "Hello" -o out.tif
____/____/____/__________/ ____/

| | | | |
command -------+ | | | +----- required argument

| | |
optional modifiers ---------+-----+--------+

Frame sequences

It is also possible to have oiiotool operate on numbered sequences of images. In effect,
this will execute the oiiotool command several times, making substitutions to the sequence
arguments in turn.

Image sequences are specified by having filename arguments to oiiotool use either a numeric
range wildcard (designated such as “1-10#” or a printf-like notation “1-10%d”), or spelling
out a more complex pattern with --frames. For example:

oiiotool big.1-3#.tif --resize 100x100 -o small.1-3#.tif

oiiotool big.1-3%04d.tif --resize 100x100 -o small.1-3%04d.tif

oiiotool --frames 1-3 big.#.tif --resize 100x100 -o small.#.tif

oiiotool --frames 1-3 big.%04d.tif --resize 100x100 -o small.%04d.tif

Any of those will be the equivalent of having issued the following sequence of commands:

oiiotool big.0001.tif --resize 100x100 -o small.0001.tif
oiiotool big.0002.tif --resize 100x100 -o small.0002.tif
oiiotool big.0003.tif --resize 100x100 -o small.0003.tif

The frame range may be forwards (1-5) or backwards (5-1), and may give a step size to
skip frames (1-5x2 means 1, 3, 5) or take the complement of the step size set (1-5y2 means 2,
4) and may combine subsequences with a comma.

If you are using the # or @ wildcards, then the wildcard characters themselves specify how
many digits to pad with leading zeroes, with # indicating 4 digits and @ indicating one digit
(these may be combined: #@@ means 6 digits). An optional --framepadding can also be used
to override the number of padding digits. For example,

oiiotool --framepadding 3 --frames 3,4,10-20x2 blah.#.tif

OpenImageIO Programmer’s Documentation

12.1. OVERVIEW 305

would match blah.003.tif, blah.004.tif, blah.010.tif, blah.012.tif, blah.014.tif,
blah.016.tif, blah.018.tif, blah.020.tif.

Alternately, you can use the printf notation, such as

oiiotool --frames 3,4,10-20x2 blah.%03d.tif

Two special command line arguments can be used to disable numeric wildcard expansion:
--wildcardoff disables numeric wildcard expansion for subsequent command line arguments,
until --wildcardon re-enables it for subsequent command line arguments. Turning wildcard
expansion off for selected arguments can be helpful if you have arguments that must contain the
wildcard characters themselves. For example:

oiiotool input.@@@.tif --wildcardoff --sattrib Caption "lg@openimageio.org" \
--wildcardon -o output.@@@.tif

In this example, the ‘@’ characters in the filenames should be expanded into numeric file se-
quence wildcards, but the ‘@’ in the caption (denoting an email address) should not.

Stereo wildcards

oiiotool can also handle image sequences with separate left and right images per frame using
views. The %V wildcard will match the full name of all views and %v will match the first
character of each view. View names default to “left” and “right”, but may be overridden using
the --views option. For example,

oiiotool --frames 1-5 blah_%V.#.tif

would match blah left.0001.tif, blah right.0001.tif, blah left.0002.tif, blah -
right.0002.tif, blah left.0003.tif, blah right.0003.tif, blah left.0004.tif,
blah right.0004.tif, blah left.0005.tif, blah right.0005.tif, and

oiiotool --frames 1-5 blah_%v.#.tif

would match blah l.0001.tif, blah r.0001.tif, blah l.0002.tif, blah r.0002.tif,
blah l.0003.tif, blah r.0003.tif, blah l.0004.tif, blah r.0004.tif, blah l.0005.tif,
blah r.0005.tif, but

oiiotool --views left --frames 1-5 blah_%v.#.tif

would only match blah l.0001.tif, blah l.0002.tif, blah l.0003.tif, blah l.0004.tif,
blah l.0005.tif.

Expression evaluation and substitution

oiiotool can perform expression evaluation and substitution on command-line arguments. As
command-line arguments are needed, they are scanned for containing braces { }. If found, the
braces and any text they enclose will be evaluated as an expression and replaced by its result.
The contents of an expression may be any of:

number A numerical value (e.g., 1 or 3.14159).

OpenImageIO Programmer’s Documentation

306 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

imagename.metadata The named metadata of an image.

The imagename may be one of: TOP (the top or current image), IMG[i] describing the ith

image on the stack (thus TOP is a synonym for IMG[0] , the next image on the stack is
IMG[1], etc.), or IMG["name"] to denote an image named by filename or by label name.
Remember that the positions on the stack (including TOP) refer to at that moment, with
successive commands changing the contents of the top image.

The metadata may be any of:

• the name of any standard metadata of the specified image (e.g., ImageDescription,
or width)

• filename : the name of the file (e.g., "foo.tif")

• file extension : the extension of the file (e.g., "tif")

• geom : the pixel data size in the form "640x480+0+0")

• full geom : the “full” or “display” size)

• MINCOLOR : the minimum value in each channel(channels are comma-separated)

• MAXCOLOR : the maximum value in each channel(channels are comma-separated)

• AVGCOLOR : the average pixel value of the image (channels are comma-separated)

imagename.’metadata’ If the metadata name is not a ”C identifier” (initial letter followed by
any number of letter, number, or underscore), it is permissible to use single or double
quotes to enclose the metadata name. For example, suppose you want to retrieve metadata
named "foo/bar", you could say

{TOP.’foo/bar’}

Without the quotes, it might try to retrieve TOP.foo (which doesn’t exist) and divide it by
bar.

Arithmetic Sub-expressions may be joined by +, -, *, or / for arithmetic operations. Paren-
theses are supported, and standard operator precedence applies.

Special variables

• FRAME NUMBER : the number of the frame in this iteration of wildcard expansion.

• FRAME NUMBER PAD : like FRAME NUMBER, but 0-padded based on the value set on
the command line by --framepadding.

To illustrate how this works, consider the following command, which trims a four-pixel
border from all sides and outputs a new image prefixed with ”cropped ”, without needing to
know the resolution or filename of the original image:

oiiotool input.exr -cut "{TOP.width-2*4}x{TOP.height-2*4}+{TOP.x+4}+{TOP.y+4}" \
-o cropped_{TOP.filename}

OpenImageIO Programmer’s Documentation

12.2. OIIOTOOL TUTORIAL / RECIPES 307

12.2 oiiotool Tutorial / Recipes

This section will give quick examples of common uses of oiiotool to get you started. They
should be fairly intuitive, but you can read the subsequent sections of this chapter for all the
details on every command.

Printing information about images

To print the name, format, resolution, and data type of an image (or many images):

oiiotool --info *.tif

To also print the full metadata about each input image, use both --info and -v:

oiiotool --info -v *.tif

or

oiiotool --info:verbose=1 *.tif

To print info about all subimages and/or MIP-map levels of each input image, use the -a flag:

oiiotool --info -v -a mipmap.exr

To print statistics giving the minimum, maximum, average, and standard deviation of each
channel of an image, as well as other information about the pixels:

oiiotool --stats img_2012.jpg

The --info, --stats, -v, and -a flags may be used in any combination.

Converting between file formats

It’s a snap to convert among image formats supported by OpenImageIO (i.e., for which ImageInput
and ImageOutput plugins can be found). The oiiotool utility will simply infer the file format
from the file extension. The following example converts a PNG image to JPEG:

oiiotool lena.png -o lena.jpg

The first argument (lena.png) is a filename, causing oiiotool to read the file and makes
it the current image. The -o command outputs the current image to the filename specified by
the next argument.

Thus, the above command should be read to mean, “Read lena.png into the current image,
then output the current image as lena.jpg (using whatever file format is traditionally associated
with the .jpg extension).”

OpenImageIO Programmer’s Documentation

308 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

Comparing two images

To print a report of the differences between two images of the same resolution:

oiiotool old.tif new.tif --diff

If you also want to save an image showing just the differences:

oiiotool old.tif new.tif --diff --absdiff -o diff.tif

This looks complicated, but it’s really simple: read old.tif, read new.tif (pushing old.tif
down on the image stack), report the differences between them, subtract new.tif from old.tif
and replace them both with the difference image, replace that with its absolute value, then save
that image to diff.tif.

Sometimes you want to compare images but allow a certain number of small difference,
say allowing the comparison to pass as long as no more than 1% of pixels differs by more
than 1/255, and as long as no single pixel differs by more than 2/255.. You can do this with
thresholds:

oiiotool old.tif new.tif --fail 0.004 -failpercent 1 --hardfail 0.008 --diff

Changing the data format or bit depth

Just use the -d option to specify a pixel data format for all subsequent outputs. For example,
assuming that in.tif uses 16-bit unsigned integer pixels, the following will convert it to an
8-bit unsigned pixels:

oiiotool in.tif -d uint8 -o out.tif

For formats that support per-channel data formats, you can override the format for one par-
ticular channel using -d CHNAME=TYPE. For example, assuming rgbaz.exr is a float RGBAZ
file, and we wish to convert it to be half for RGBA, and float for Z. That can be accomplished
with the following command:

oiiotool rgbaz.tif -d half -d Z=float -o rgbaz2.exr

Changing the compression

The following command converts writes a TIFF file, specifically using LZW compression:

oiiotool in.tif --compression lzw -o compressed.tif

The following command writes its results as a JPEG file at a compression quality of 50
(pretty severe compression):

oiiotool big.jpg --quality 50 -o small.jpg

OpenImageIO Programmer’s Documentation

12.2. OIIOTOOL TUTORIAL / RECIPES 309

Converting between scanline and tiled images

Convert a scanline file to a tiled file with 16×16 tiles:

oiiotool s.tif --tile 16 16 -o t.tif

Convert a tiled file to scanline:

oiiotool t.tif --scanline -o s.tif

Adding captions or metadata

Add a caption to the metadata:

oiiotool foo.jpg --caption "Hawaii vacation" -o bar.jpg

Add keywords to the metadata:

oiiotool foo.jpg --keyword "volcano,lava" -o bar.jpg

Add other arbitrary metadata:

oiiotool in.exr --attrib "FStop" 22.0 \
--attrib "IPTC:City" "Berkeley" -o out.exr

oiiotool in.exr --attrib:type=timecode smpte:TimeCode "11:34:04:00" \
-o out.exr

oiiotool in.exr --attrib:type=int[4] FaceBBox "140,300,219,460" \
-o out.exr

Changing image boundaries

Change the origin of the pixel data window:

oiiotool in.exr --origin +256+80 -o offset.exr

Change the display window:

oiiotool in.exr --fullsize 1024x768+16+16 -o out.exr

Change the display window to match the data window:

oiiotool in.exr --fullpixels -o out.exr

Crop (trim) an image to a 128x128 region whose upper left corner is at location (900,300),
leaving the remaining pixels in their original positions on the image plane (i.e., the resulting
image will have origin at 900,300), and retaining its original display window:

oiiotool in.exr --crop 128x128+900+300 -o out.exr

Cut (trim and extract) a 128x128 region whose upper left corner is at location (900,300), moving
the result to the origin (0,0) of the image plane and setting the display window to the new pixel
data window:

oiiotool in.exr --cut 128x128+900+300 -o out.exr

OpenImageIO Programmer’s Documentation

310 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

Scale the values in an image

Reduce the brightness of the R, G, and B channels by 10%, but leave the A channel at its original
value:

oiiotool original.exr --mulc 0.9,0.9,0.9,1.0 -o out.exr

Remove gamma-correction from an image

Convert a gamma-corrected image (with gamma = 2.2) to linear values.

oiiotool corrected.exr --powc 2.2,2.2,2.2,1.0 -o linear.exr

Resize an image

Resize to a specific resolution:

oiiotool original.tif --resize 1024x768 -o specific.tif

Resize both dimensions by a known scale factor:

oiiotool original.tif --resize 200% -o big.tif
oiiotool original.tif --resize 25% -o small.tif

Resize each dimension, independently, by known scale factors:

oiiotool original.tif --resize 300%x200% -o big.tif
oiiotool original.tif --resize 100%x25% -o small.tif

Resize to a known resolution in one dimension, with the other dimension automatically com-
puted to preserve aspect ratio (just specify 0 as the resolution in the dimension to be automati-
cally computed):

oiiotool original.tif --resize 200x0 -o out.tif
oiiotool original.tif --resize 0x1024 -o out.tif

Resize to fit into a given resolution, keeping the original aspect ratio and padding with black
where necessary to fit into the specified resolution:

oiiotool original.tif --fit 640x480 -o fit.tif

Color convert an image

This command linearizes a JPEG assumed to be in sRGB, saving as an HDRI OpenEXR file:

oiiotool photo.jpg --colorconvert sRGB linear -o output.exr

And the other direction:

oiiotool render.exr --colorconvert linear sRGB -o fortheweb.png

This converts between two named color spaces (presumably defined by your facility’s Open-
ColorIO configuration):

oiiotool in.dpx --colorconvert lg10 lnf -o out.exr

OpenImageIO Programmer’s Documentation

12.2. OIIOTOOL TUTORIAL / RECIPES 311

Grayscale and RGB

Turn a single channel image into a 3-channel gray RGB:

oiiotool gray.tif --ch 0,0,0 -o rgb.tif

Convert a color image to luminance grayscale:

oiiotool RGB.tif --chsum:weight=.2126,.7152,.0722 -o luma.tif

Channel reordering and padding

Copy just the color from an RGBA file, truncating the A, yielding RGB only:

oiiotool rgba.tif --ch R,G,B -o rgb.tif

Zero out the red and green channels:

oiiotool rgb.tif --ch R=0,G=0,B -o justblue.tif

Swap the red and blue channels from an RGBA image:

oiiotool rgba.tif --ch R=B,G,B=R,A -o bgra.tif

Extract just the named channels from a many-channel image, as efficiently as possible (avoiding
memory and I/O for the unused channels):

oiiotool -i:ch=R,G,B manychannels.exr -o rgb.exr

Add an alpha channel to an RGB image, setting it to 1.0 everywhere, and naming it “A” so it
will be recognized as an alpha channel:

oiiotool rgb.tif --ch R,G,B,A=1.0 -o rgba.tif

Add an alpha channel to an RGB image, setting it to be the same as the R channel and naming
it “A” so it will be recognized as an alpha channel:

oiiotool rgb.tif --ch R,G,B,A=R -o rgba.tif

Add a z channel to an RGBA image, setting it to 3.0 everywhere, and naming it “Z” so it will
be recognized as a depth channel:

oiiotool rgba.exr --ch R,G,B,A,Z=3.0 -o rgbaz.exr

Fade between two images

Fade 30% of the way from A to B:

oiiotool A.exr --mulc 0.7 B.exr --mulc 0.3 --add -o fade.exr

Simple compositing

Simple “over” composite of aligned foreground and background:

oiiotool fg.exr bg.exr --over -o composite.exr

Composite of small foreground over background, with offset:

oiiotool fg.exr --origin +512+89 bg.exr --over -o composite.exr

OpenImageIO Programmer’s Documentation

312 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

Creating an animated GIF from still images

Combine several separate JPEG images into an animated GIF with a frame rate of 8 frames per
second:

oiiotool foo??.jpg --siappendall --attrib FramesPerSecond 10.0 -o anim.gif

Frame sequences: composite a sequence of images

Composite foreground images over background images for a series of files with frame numbers
in their names:

oiiotool fg.1-50%04d.exr bg.1-50%04d.exr --over -o comp.1-50%04d.exr

Or,

oiiotool --frames 1-50 fg.%04d.exr bg.%04d.exr --over -o comp.%04d.exr

Expression example: annotate the image with its caption

This command reads a file, and draws any text in the "ImageDescription" metadata, 30 pixels
from the bottom of the image.

oiiotool input.exr --text:x=30:y={TOP.height-30} {TOP.ImageDescription} -o out.exr

Note that this works without needing to know the caption ahead of time, and will always put the
text 30 pixels from the bottom of the image without requiring you to know the resolution.

Contrast enhancement: stretch pixel value range to exactly fit [0-1]

This command reads a file, subtracts the minimum pixel value and then divides by the (new)
maximum value, per channel, thus expanding its pixel values to the full [0−1] range:

oiiotool input.tif -subc {TOP.MINCOLOR} -divc {TOP.MAXCOLOR} -o out.tif

Note that this is a naive way to improve contrast and because each channel is handled indepen-
dently, it may result in color hue shifts.

12.2.1 Split a multi-image file into separate files

Take a multi-image TIFF file, split into its constituent subimages and output each one to a
different file, with names "sub0001.tif", "sub0002.tif", etc.

oiiotool multi.tif -sisplit -o:all=1 sub%04d.tif

OpenImageIO Programmer’s Documentation

12.3. OIIOTOOL COMMANDS: GENERAL AND IMAGE INFORMATION 313

12.3 oiiotool commands: general and image information

--help

Prints full usage information to the terminal, as well as information about image formats
supported, known color spaces, OIIO build options and library dependencies.

-v

Verbose status messages — print out more information about what oiiotool is doing at
every step.

-q

Quet mode — print out less information about what oiiotool is doing (only errors).

-n

No saved output — do not save any image files. This is helpful for certain kinds of tests,
or in combination with --runstats or --debug, for getting detailed information about
what a command sequence will do and what it costs, but without producing any saved
output files.

--debug

Debug mode — print lots of information about what operations are being performed.

--runstats

Print timing and memory statistics about the work done by oiiotool.

-a

Performs all operations on all subimages and/or MIPmap levels of each input image.
Without -a, generally each input image will really only read the top-level MIPmap of the
first subimage of the file.

--info

Prints information about each input image as it is read. If verbose mode is turned on
(-v), all the metadata for the image is printed. If verbose mode is not turned on, only the
resolution and data format are printed.

Optional appended arguments include:

format=name The format may be one of: text (default) for readable text, or
xml for an XML description of the image metadata.

verbose=1 If nonzero, the information will contain all metadata, not just
the minimal amount.

OpenImageIO Programmer’s Documentation

314 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--echo message

Prints the message to the console, at that point in the left-to-right execution of command
line arguments. The message may contain expressions for substitution.

Optional appended arguments include:

newline=n The number of newlines to print after the message (default is 1, but
0 will suppress the newline, and a larger number will make more
vertical space.

Examples:

oiiotool test.tif --resize 256x0 --echo "result is {TOP.width}x{TOP.height}"

This will resize the input to be 256 pixels wide and automatically size it vertically to
preserve the original aspect ratio, and then print a message to the console revealing the
resolution of the resulting image.

--metamatch regex
--no-metamatch regex

Regular expressions to restrict which metadata are output when using oiiotool --info
-v. The --metamatch expression causes only metadata whose name matches to print;
non-matches are not output. The --no-metamatch expression causes metadata whose
name matches to be suppressed; others (non-matches) are printed. It is not advised to use
both of these options at the same time (probably nothing bad will happen, but it’s hard to
reason about the behavior in that case).

--stats

Prints detailed statistical information about each input image as it is read.

--hash

Print the SHA-1 hash of the pixels of each input image.

--dumpdata

Print to the console detailed information about the values in every pixel.

Optional appended arguments include:

empty=0|1 If 0, will cause deep images to skip printing of information
about pixels with no samples.

OpenImageIO Programmer’s Documentation

12.3. OIIOTOOL COMMANDS: GENERAL AND IMAGE INFORMATION 315

--diff
--fail A --failpercent B --hardfail C
--warn A --warnpercent B --hardwarn C

This command computes the difference of the current image and the next image on the
stack, and prints a report of those differences (how many pixels differed, the maximum
amount, etc.). This command does not alter the image stack.

The --fail, --failpercent, and hardfail options set thresholds for FAILURE: if more
than B% of pixels (on a 0-100 floating point scale) are greater than A different, or if any
pixels are more than C different. The defaults are to fail if more than 0% (any) pixels
differ by more than 0.00001 (1e-6), and C is infinite.

The --warn, --warnpercent, and hardwarn options set thresholds for WARNING: if more
than B% of pixels (on a 0-100 floating point scale) are greater than A different, or if any
pixels are more than C different. The defaults are to warn if more than 0% (any) pixels
differ by more than 0.00001 (1e-6), and C is infinite.

--pdiff

This command computes the difference of the current image and the next image on the
stack using a perceptual metric, and prints whether or not they match according to that
metric. This command does not alter the image stack.

--colorcount r1,g1,b1,...:r2,g2,b2,...:...

Given a list of colors separated by colons or semicolons, where each color is a list of
comma-separated values (for each channel), examine all pixels of the current image and
print a short report of how many pixels matched each of the colors.

Optional appended arguments include:

eps=r,g,b,... Tolerance for matching colors (default: 0.001 for all channels).

Examples:

oiiotool test.tif --colorcount "0.792,0,0,1;0.722,0,0,1"

might produce the following output:

10290 0.792,0,0,1
11281 0.722,0,0,1

Notice that use of double quotes (" ") around the list of color arguments, in order to
make sure that the command shell does not interpret the semicolon (;) as a statement
separator. An alternate way to specify multiple colors is to separate them with a colon
(:), for example:

oiiotool test.tif --colorcount 0.792,0,0,1:0.722,0,0,1

Another example:

oiiotool test.tif --colorcount:eps=.01,.01,.01,1000 "0.792,0,0,1"

OpenImageIO Programmer’s Documentation

316 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

This example sets a larger epsilon for the R, G, and B channels (so that, for example, a
pixel with value [0.795,0,0] would also match), and by setting the epsilon to 1000 for the
alpha channel, it effectively ensures that alpha will not be considered in the matching of
pixels to the color value.

--rangecheck Rlow,Glow,Blow,... Rhi,Bhi,Ghi,...

Given a two colors (each a comma-separated list of values for each channel), print a count
of the number of pixels in the image that has channel values outside the [low,hi] range.
Any channels not specified will assume a low of 0.0 and high of 1.0.

Example:

oiiotool test.exr --rangecheck 0,0,0 1,1,1

might produce the following output:

0 < 0,0,0
221 > 1,1,1

65315 within range

--no-clobber

Sets “no clobber” mode, in which existing images on disk will never be overridden, even
if the -o command specifies that file.

--threads n

Use n execution threads if it helps to speed up image operations. The default (also if
n = 0) is to use as many threads as there are cores present in the hardware.

--frames seq
--framepadding n

Describes the frame range to substitute for the # or %0Nd numeric wildcards. The se-
quence is a comma-separated list of subsequences; each subsequence is a single frame
(e.g., 100), a range of frames (100-150), or a frame range with step (100-150x4 means
100,104,108,...).

The frame padding is the number of digits (with leading zeroes applied) that the frame
numbers should have. It defaults to 4.

For example,

oiiotool --framepadding 3 --frames 3,4,10-20x2 blah.#.tif

would match blah.003.tif, blah.004.tif, blah.010.tif, blah.012.tif, blah.014.tif,
blah.016.tif, blah.018.tif, blah.020.tif.

OpenImageIO Programmer’s Documentation

12.4. OIIOTOOL COMMANDS: READING AND WRITING IMAGES 317

--views name1,name2,...

Supplies a comma-separated list of view names (substituted for %V and %v). If not sup-
plied, the view list will be left,right.

--wildcardoff
--wildcardon

Turns off (or on) numeric wildcard expansion for subsequent command line arguments.
This can be useful in selectively disabling numeric wildcard expansion for a subset of the
command line.

12.4 oiiotool commands: reading and writing images

The commands described in this section read images, write images, or control the way that
subsequent images will be written upon output.

Reading images

filename
-i filename

If a command-line option is the name of an image file, that file will be read and will
become the new current image, with the previous current image pushed onto the image
stack.

The -i command may be used, which allows additional options that control the reading
of just that one file. Optional appended arguments include:

now=int If 1, read the image now, before proceding to the next com-
mand.

autocc=int Enable or disable --autocc for this input image.
info=int Print info about this file (even if the global --info was not

used) if nonzero. If the value is 2, print full verbose info (like
--info -v).

infoformat=name When printing info, the format may be one of: text (default)
for readable text, or xml for an XML description of the image
metadata.

type=name Upon reading, convert the pixel data to the named type. This
can override the default behavior of internally storing whatever
type is the most precise one found in the file.

ch=name,... Causes the input to read only the specified channels. This is
equivalent to following the input with a --ch command, ex-
cept that by integrating into the -i, it potentially can avoid the
I/O of the unneeded channels.

OpenImageIO Programmer’s Documentation

318 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--no-autopremult
--autopremult

By default, OpenImageIO’s format readers convert any “unassociated alpha” (color values
that are not “premultiplied” by alpha) to the usual associated/premultiplied convention.
If the --no-autopremult flag is found, subsequent inputs will not do this premultiplica-
tion. It can be turned on again via --autopremult.

--autoorient

Automatically do the equivalent of --reorient on every image as it is read in, if it has a
nonstandard orientation. This is generally a good idea to use if you are using oiiotool to
combine images that may have different orientations.

--autocc

Turns on automatic color space conversion: Every input image file will be immediately
converted to a scene-referred linear color space, and every file written will be first trans-
formed to an appropriate output color space based on the filename or type. Additionally,
if the name of an output file contains a color space and that color space is associated with
a particular data format, it will output that data format (akin to -d).

The rules for deducing color spaces are as follows, in order of priority:

1. If the filename (input or output) contains as a substring the name of a color space
from the current OpenColorIO configuration, that will be assumed to be the color
space of input data (or be the requested color space for output).

2. For input files, if the ImageInput set the "oiio:ColorSpace" metadata, it will be
honored if the filename did not override it.

3. When outputting to JPEG files, assume that sRGB is the desired output color space
(since JPEG requires sRGB), but still this only occurs if the filename does not spec-
ify something different.

If the implied color transformation is unknown (for example, involving a color space that
is not recognized), a warning will be printed, but it the rest of oiiotool processing will
proceed (but without having transformed the colors of the image).

Example:

If the input file "in lg10.dpx" is in the "lg10" color space, and you want to read it in,
brighten the RGB uniformly by 10% (in a linear space, of course), and then save it as a 16
bit integer TIFF file encoded in the vd16 color space, you could specifiy the conversions
explicitly:

oiiotool in_lg10.dpx --colorconvert lg10 linear \
--mulc 1.1,1.1,1.1,1.0 -colorconvert linear vd16 \
-d uint16 -o out_vd16.tif

OpenImageIO Programmer’s Documentation

12.4. OIIOTOOL COMMANDS: READING AND WRITING IMAGES 319

or rely on the naming convention matching the OCIO color space names and use auto-
matic conversion:

oiiotool --autocc in_lg10.dpx --mulc 1.1 -o out_vd16.tif

--native
Normally, all images read by oiiotool are read into an ImageBuf backed by an under-
lying ImageCache, and are automatically converted to float pixels for internal storage
(because any subsequent image processing is usually much faster and more accurate when
done on floating-point values).

This option causes (1) input images to be stored internally in their native pixel data type
rather than converted to float, and (2) to bypass the ImageCache (reading directly into
an ImageBuf) if the pixel data type is not one of the types that is supported internally to
ImageCache (uint8, uint16, half, and float).

images whose pixels are comprised of data types that are not natively representable ex-
actly in the ImageCache to bypass the ImageCache and be read directly into an ImageBuf.

The typical use case for this is when you know you are dealing with unusual pixel data
types that might lose precision if converted to float (for example, if you have images
with uint32 or double pixels). Another use case is if you are using oiiotool merely for
file format or data format conversion, with no actual image processing math performed
on the pixel values – in that case, you might save time and memory by bypassing the
conversion to float.

--cache size
Set the underlying ImageCache size (in MB). See Section 7.2.2.

--autotile tilesize
For the underlying ImageCache, turn on auto-tiling with the given tile size. Setting tile-
size to 0 turns off auto-tiling. If auto-tile is turned on, The ImageCache"autoscanline"
feature will also be enabled. See Section 7.2.2 for details.

--iconfig name value
Sets configuration metadata that will apply to the next input file read.

Optional appended arguments include:

type=typename Specify the metadata type.

If the optional type= specifier is used, that provides an explicit type for the metadata. If
not provided, it will try to infer the type of the metadata from the value: if the value con-
tains only numerals (with optional leading minus sign), it will be saved as int metadata;
if it also contains a decimal point, it will be saved as float metadata; otherwise, it will
be saved as a string metadata.
Examples:

oiiotool --iconfig "oiio:UnassociatedAlpha" 1 in.png -o out.tif

OpenImageIO Programmer’s Documentation

320 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

Writing images

-o filename

Outputs the current image to the named file. This does not remove the current image from
the image stack, it merely saves a copy of it.

Optional appended arguments include:

datatype=name Set the pixel data type (like -d) for this output image (e.g.,
uint8, uint16, half, float, etc.).

bits=int Set the bits per pixel (if nonstandard for the datatype) for this
output image.

dither=int Turn dither on or off for this output. (default: 0)
autocc=int Enable or disable --autocc for this output image.
autocrop=int Enable or disable autocrop for this output image.
autotrim=int Enable or disable --autotrim for this output image.
separate=int
contig=int Set separate or contiguous planar configuration for this output.
fileformatname=stringSpecify the desired output file format, overriding any guess

based on file name extension.
scanline=int If nonzero, force scanline output.
tile=intxint Force tiling with given size.
all=n Output all images currently on the stack using a pattern. See

further explanation below.

The all=n option causes all images on the image stack to be output, with the filename
argument used as a pattern assumed to contain a %d, which will be substituted with the
index of the image (beginning with n). For example, to take a multi-image TIFF and
extract all the subimages and save them as separate files,

oiiotool multi.tif -sisplit -o:all=1 sub%04d.tif

This will output the subimges as separate files "sub0001.tif", "sub0002.tif", and so
on.

-otex filename
-oenv filename
-obump filename

Outputs the current image to the named file, as a MIP-mapped texture or environment
map, identical to that which would be output by maketx (Chapter 18). The advantage
of using oiiotool rather than maketx is simply that you can have a complex oiiotool
command line sequence of image operations, culminating in a direct saving of the results
as a texture map, rather than saving to a temporary file and then separately invoking
maketx.

In addition to all the optional arguments of -o, optional appended arguments for -otex
and -oenv also include:

OpenImageIO Programmer’s Documentation

12.4. OIIOTOOL COMMANDS: READING AND WRITING IMAGES 321

wrap=string Set the default s and t wrap modes of the texture, to one of:
black, clamp, periodic, mirror.

swrap=string Set the default s wrap mode of the texture.
twrap=string Set the default t wrap mode of the texture.
resize=int If nonzero, resize to a power of 2 before starting to create the

MIPpmap levels. (default: 0)
nomipmap=int If nonzero, do not create MIP-map levels at all. (default: 0)
updatemode=int If nonzero, do not create and overwrite the existing texture if

it appears to already match the source pixels. (default: 0)
monochrome detect=int Detect monochrome (R=G=B) images and turn them into 1-

channel textures. (default: 0)
opaque detect=int Detect opaque (A=1) images and drop the alpha channel from

the texture. (default: 0)
unpremult=int Unpremultiply colors before any per-MIP-level color conver-

sions, and re-premultiply after. (default: 0)
incolorspace=string Specify color space conversion.
outcolorspace=string ...
highlightcomp=int Use highlight compensation for HDR images when resizing

for MIP-map levels. (default: 0)
sharpen=float Additional sharpening factor when resizing for MIP-map lev-

els. (default: 0.0)
filter=string Specify the filter for MIP-map level resizing. (default: box)
prman metadata=int Turn all all options required to make the resulting texture file

compatible with PRMan (particular tile sizes, formats, op-
tions, and metadata). (default: 0)

prman options=int Include the metadata that PRMan’s texture system wants. (de-
fault: 0)

bumpformat=string For -obump only, specifies the interpretation of 3-channel
source images as one of: height, normal, auto (default)).

Examples:
oiiotool in.tif -otex out.tx

oiiotool in.jpg --colorconvert sRGB linear -d uint16 -otex out.tx

oiiotool --pattern:checker 512x512 3 -d uint8 -otex:wrap=periodic checker.tx

oiiotool in.exr -otex:hilightcomp=1:sharpen=0.5 out.exr

OpenImageIO Programmer’s Documentation

322 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

-d datatype
-d channelname=datatype

Attempts to set the pixel data type of all subsequent outputs. If no channel is named, sets
all channels to be the specified data type. If a specific channel is named, then the data
type will be overridden for just that channel (multiple -d commands may be used).

Valid types are: uint8, sint8, uint16, sint16, half, float, double. The types
uint10 and uint12 may be used to request 10- or 12-bit unsigned integers. If the output
file format does not support them, uint16 will be substituted.

If the -d option is not supplied, the output data type will be the same as the data format
of the input files, if possible.

In any case, if the output file type does not support the requested data type, it will instead
use whichever supported data type results in the least amount of precision lost.

--scanline

Requests that subsequent output files be scanline-oriented, if scanline orientation is sup-
ported by the output file format. By default, the output file will be scanline if the input is
scanline, or tiled if the input is tiled.

--tile x y

Requests that subsequent output files be tiled, with the given x×y tile size, if tiled images
are supported by the output format. By default, the output file will take on the tiledness
and tile size of the input file.

--compression method

Sets the compression method for subsequent output images. Each ImageOutput plugin
will have its own set of methods that it supports. By default, the output image will use the
same compression technique as the input image (assuming it is supported by the output
format, otherwise it will use the default compression method of the output plugin).

--quality q

Sets the compression quality, on a 1–100 floating-point scale. This only has an effect if
the particular compression method supports a quality metric (as JPEG does).

--dither

Turns on dither when outputting to 8-bit image files (does not affect other data types).
This adds just a bit of noise that reduces visible banding artifacts.

OpenImageIO Programmer’s Documentation

12.5. OIIOTOOL COMMANDS THAT CHANGE THE CURRENT IMAGE
METADATA 323

--planarconfig config

Sets the planar configuration of subsequent outputs (if supported by their formats). Valid
choices are: config for contiguous (or interleaved) packing of channels in the file (e.g.,
RGBRGBRGB...), separate for separate channel planes (e.g., RRRR...GGGG...BBBB...),
or default for the default choice for the given format. This command will be ignored
for output files whose file format does not support the given choice.

--adjust-time

When this flag is present, after writing each output, the resulting file’s modification time
will be adjusted to match any "DateTime" metadata in the image. After doing this, a
directory listing will show file times that match when the original image was created or
captured, rather than simply when oiiotool was run. This has no effect on image files
that don’t contain any "DateTime" metadata.

--noautocrop

For subsequent outputs, do not automatically crop images whose formats don’t support
separate pixel data and full/display windows. Without this, the default is that outputs will
be cropped or padded with black as necessary when written to formats that don’t support
the concepts of pixel data windows and full/display windows. This is a non-issue for file
formats that support these concepts, such as OpenEXR.

--autotrim

For subsequent outputs, if the output format supports separate pixel data and full/display
windows, automatically trim the output so that it writes the minimal data window that
contains all the non-zero valued pixels. In other words, trim off any all-black border rows
and columns before writing the file.

12.5 oiiotool commands that change the current image meta-
data

This section describes oiiotool commands that alter the metadata of the current image, but do
not alter its pixel values. Only the current (i.e., top of stack) image is affected, not any images
further down the stack.

If the -a flag has previously been set, these commands apply to all subimages or MIPmap
levels of the current top image. Otherwise, they only apply to the highest-resolution MIPmap
level of the first subimage of the current top image.

OpenImageIO Programmer’s Documentation

324 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--attrib name value
--sattrib name value

Adds or replaces metadata with the given name to have the specified value.

Optional appended arguments include:

type=typename Specify the metadata type.

If the optional type= specifier is used, that provides an explicit type for the metadata. If
not provided, it will try to infer the type of the metadata from the value: if the value con-
tains only numerals (with optional leading minus sign), it will be saved as int metadata;
if it also contains a decimal point, it will be saved as float metadata; otherwise, it will
be saved as a string metadata.

The --sattrib command is equivalent to --attrib:type=string.

Examples:

oiiotool in.jpg --attrib "IPTC:City" "Berkeley" -o out.jpg

oiiotool in.jpg --attrib:type=string "Name" "0" -o out.jpg

oiiotool in.exr --attrib:type=matrix worldtocam \
"1,0,0,0,0,1,0,0,0,0,1,0,2.3,2.1,0,1" -o out.exr

oiiotool in.exr --attrib:type=timecode smpte:TimeCode "11:34:04:00" \
-o out.exr

--caption text

Sets the image metadata "ImageDescription". This has no effect if the output image
format does not support some kind of title, caption, or description metadata field. Be
careful to enclose text in quotes if you want your caption to include spaces or certain
punctuation!

--keyword text

Adds a keyword to the image metadata "Keywords". Any existing keywords will be
preserved, not replaced, and the new keyword will not be added if it is an exact duplicate
of existing keywords. This has no effect if the output image format does not support some
kind of keyword field.

Be careful to enclose text in quotes if you want your keyword to include spaces or certain
punctuation. For image formats that have only a single field for keywords, OpenImageIO
will concatenate the keywords, separated by semicolon (‘;’), so don’t use semicolons
within your keywords.

--clear-keywords

Clears all existing keywords in the current image.

OpenImageIO Programmer’s Documentation

12.5. OIIOTOOL COMMANDS THAT CHANGE THE CURRENT IMAGE
METADATA 325

--nosoftwareattrib

When set, this prevents the normal adjustment of "Software" and "ImageHistory"
metadata to reflect what oiiotool is doing.

--sansattrib

When set, this edits the command line inserted in the "Software" and "ImageHistory"
metadata to omit any verbose --attrib and --sattrib commands.

--eraseattrib pattern

Removes any metadata whose name matches the regular expression pattern. The pattern
will be case insensitive.

Examples:

Remove one item only
oiiotool in.jpg --eraseattrib "smpte:TimeCode" -o no_timecode.jpg

Remove all GPS tags
oiiotool in.jpg --eraseattrib "GPS:.*" -o no_gps_metadata.jpg

Remove all metadata
oiiotool in.exr --eraseattrib ".*" -o no_metadata.exr

--orientation orient

Explicitly sets the image’s "Orientation" metadata to a numeric value (see Section B.2
for the numeric codes). This only changes the metadata field that specifies how the image
should be displayed, it does NOT alter the pixels themselves, and so has no effect for
image formats that don’t support some kind of orientation metadata.

--orientcw
--orientccw
--orient180

Adjusts the image’s "Orientation" metadata by rotating the suggested viewing orienta-
tion 90◦ clockwise, 90◦ degrees counter-clockwise, or 180◦, respectively, compared to its
current setting. This only changes the metadata field that specifies how the image should
be displayed, it does NOT alter the pixels themselves, and so has no effect for image
formats that don’t support some kind of orientation metadata.

See the --rotate90, --rotate180, --rotate270, and --reorient commands for true
rotation of the pixels (not just the metadata).

OpenImageIO Programmer’s Documentation

326 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--origin offset
Set the pixel data window origin, essentially translating the existing pixel data window to
a different position on the image plane. The offset is in the form

[+-]x[+-]y

Examples:
--origin +20+10 x=20, y=10
--origin +0-40 x=0, y=-40

--fullsize size

Set the display/full window size and/or offset. The size is in the form
width x height[+-]xoffset[+-]yoffset
If either the offset or resolution is omitted, it will remain unchanged.

Examples:

--fullsize 1920x1080 resolution w=1920, h=1080, offset unchanged
--fullsize -20-30 resolution unchanged, x=-20, y=-30
--fullsize 1024x768+100+0 resolution w=1024, h=768, offset x=100, y=0

--fullpixels

Set the full/display window range to exactly cover the pixel data window.

--chnames name-list

Rename some or all of the channels of the top image to the given comma-separated list.
Any completely empty channel names in the list will not be changed. For example,

oiiotool in.exr --chnames ",,,A,Z" -o out.exr

will rename channel 3 to be "A" and channel 4 to be "Z", but will leave channels 0–3
with their old names.

12.6 oiiotool commands that shuffle channels or subimages

--selectmip level

If the current image is MIP-mapped, replace the current image with a new image consist-
ing of only the given level of the MIPmap. Level 0 is the highest resolution version, level
1 is the next-lower resolution version, etc.

--unmip

If the current image is MIP-mapped, discard all but the top level (i.e., replacing the current
image with a new image consisting of only the highest-resolution level). Note that this is
equivalent to --selectmip 0.

OpenImageIO Programmer’s Documentation

12.7. OIIOTOOL COMMANDS THAT ADJUST THE IMAGE STACK 327

--subimage n

If the current image has multiple subimages, extract the specified subimage. The subim-
age specifier n is either an integer giving the index of the subimage to extract (starting
with 0), or the name of the subimage to extract (comparing to the "oiio:subimagename"
metadata).

--sisplit

Remove the top image from the stack, split it into its constituent subimages, and push
them all onto the stack (first to last).

--siappend

Replaces the top two images on the stack with a single new image comprised of the
subimages of both images appended together.

--siappendall

Replace all of the individual images on the stack with a single new image comprised of
the subimages of all original images appended together.

--ch channellist

Replaces the top image with a new image whose channels have been reordered as given
by the channellist. The channellist is a comma-separated list of channel designations,
each of which may be (a) an integer channel index of the channel to copy, (b) the name of a
channel to copy, (c) newname=oldname, which copies a named channel and also renames
it, (d) =float, which will set the channel to a constant value, or (e) newname=float, which
sets the channel to a constant value as well as names the new channel. Examples include:
"R,G,B", "R=0.0,G,B,A=1.0", "R=B,G,B=R", "4,5,6,A".

Channel numbers outside the valid range of input channels, or unknown names, will be
replaced by black channels. If the channellist is shorter than the number of channels in
the source image, unspecified channels will be omitted.

--chappend

Replaces the top two images on the stack with a new image comprised of the channels of
both images appended together.

12.7 oiiotool commands that adjust the image stack

--pop

Pop the image stack, discarding the current image and thereby making the next image on
the stack into the new current image.

OpenImageIO Programmer’s Documentation

328 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--dup

Duplicate the current image and push the duplicate on the stack. Note that this results in
both the current and the next image on the stack being identical copies.

--swap

Swap the current image and the next one on the stack.

--label name

Gives a name to (and saves) the current image at the top of the stack. Thereafter, the label
name may be used to refer to that saved image, in the usual manner that an ordinary input
image would be specified by filename.

12.8 oiiotool commands that make entirely new images

--create size channels

Create new black image with the given size and number of channels, pushing it onto the
image stack and making it the new current image.

The size is in the form
width x height[+-]xoffset[+-]yoffset

If the offset is omitted, it will be x = 0,y = 0.

Examples:

--create 1920x1080 3 RGB with w=1920, h=1080, x=0, y=0
--create 1024x768+100+0 4 RGBA with w=1024, h=768, x=100, y=0

OpenImageIO Programmer’s Documentation

12.8. OIIOTOOL COMMANDS THAT MAKE ENTIRELY NEW IMAGES 329

--pattern patternname size channels

Create new image with the given size and number of channels, initialize its pixels to the
named pattern, and push it onto the image stack to make it the new current image.

The size is in the form
width x height[+-]xoffset[+-]yoffset

If the offset is omitted, it will be x = 0,y = 0.

The patterns recognized include the following:

black A black image (all pixels 0.0)
constant A constant color image, defaulting to white, but the color can be

set with the optional :color=r,g,b,... arguments giving a nu-
merical value for each channel.

checker A black and white checkerboard pattern. The optional argument
:width= sets with width of the checkers (defaulting to 8 pixels).

fill A constant color or gradient, depending on the optional colors.
Argument :color=r,g,b,... results in a constant color.
Argument :top=r,g,b,...:bottom=... results in a top-to-
bottom gradient. Argument :left=r,g,b,...:right=...
results in a left-to-right gradient. Argument
:topleft=r,g,b,...:topright=...:bottomleft=...:bottomright=...

results in a 4-corner bilinear gradient.
noise Create a noise image, with the option :type= specifying the kind

of noise: (1) gaussian (default) for normal distribution noise with
mean and standard deviation given by :mean= and :stddev=, re-
spectively (defaulting to 0 and 0.1); (2) uniform for uniformly-
distributed noise over the range of values given by options :min=
and :max= (defaults: 0 and 0.1); (3) salt for “salt and pepper”
noise where a portion of pixels given by option portion= (de-
fault: 0.1) is replaced with value given by option value= (default:
0). For any of these noise types, the option seed= can be used to
change the random number seed and mono=1 can be used to make
monochromatic noise (same value in all channels).

Examples:

--pattern constant:color=0.3,0.5,0.1,1.0 640x480 4

A constant 4-channel, 640×480 image with all pixels (0.5, 0.5, 0.1, 1).

OpenImageIO Programmer’s Documentation

330 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--pattern checker:width=16:height=16 256x256 3

An 256×256 RGB image with a 16-pixel-wide checker pattern.

--pattern fill:top=0.1,0.1,0.1:bottom=0,0,0.5 640x480 3
--pattern fill:left=0.1,0.1,0.1:right=0,0.75,0 640x480 3
--pattern fill:topleft=.1,.1,.1:topright=1,0,0:bottomleft=0,1,0:botromright=0,0,1 640x480 3

Horizontal, vertical, or 4-corner gradients.

oiiotool --pattern noise:type=uniform:min=1:max=1 256x256 3 -o colornoise.jpg

oiiotool --pattern noise:type=uniform:min=0:max=1:mono=1 256x256 3 -o greynoise.jpg

The first example puts uniform noise independently in 3 channels, while the second
generates a single greyscale noise and replicates it in all channels.

OpenImageIO Programmer’s Documentation

12.9. OIIOTOOL COMMANDS THAT DO IMAGE PROCESSING 331

oiiotool --pattern noise:type=gaussian:mean=0.5:stddev=0.2 256x256 3 -o gaussnoise.jpg

Generate Gaussian noise with mean 0.5 and standard deviation 0.2 for each channel.

--kernel name size

Create new 1-channel float image big enough to hold the named kernel and size (size
is expressed as widthxheight, e.g. 5x5). The width and height are allowed to be floating-
point numbers. The kernel image will have its origin offset so that the kernel center is at
(0,0), and and will be normalized (the sum of all pixel values will be 1.0).

Kernel names can be: gaussian, sharp-gaussian, box, triangle, blackman-harris,
mitchell, b-spline, "cubic", "keys", "simon", "rifman", disk. There are also
catmull-rom and lanczos3, but they are fixed-size kernels that don’t scale with the
width, and are therefore probably less useful in most cases.

Examples:

oiiotool --kernel gaussian 11x11 -o gaussian.exr

--capture

Capture a frame from a camera device, pushing it onto the image stack and making it the
new current image. Optional appended arguments include:

camera=num Select which camera number to capture (default: 0).

Examples:

--capture Capture from the default camera.
--capture:camera=1 Capture from camera #1.

12.9 oiiotool commands that do image processing

OpenImageIO Programmer’s Documentation

332 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--add
--addc value
--addc value0,value1,value2...

Replace the two top images with a new image that is the pixel-by- pixel sum of those
images (--add), or add a constant color value to all pixels in the top image (--addc).

For --addc, if a single constant value is given, it will be added to all color channels.
Alternatively, a series of comma-separated constant values (with no spaces!) may be
used to specifiy a different value to add to each channel in the image.
Examples:

oiiotool tahoe.jpg --addc 0.5 -o addc.jpg

→

oiiotool imageA.tif imageB.tif --add -o sum.jpg

--sub
--subc value
--subc value0,value1,value2...

Replace the two top images with a new image that is the pixel-by- pixel difference be-
tween the first and second images (--sub), or subtract a constant color value from all
pixels in the top image (--subc).

For --subc, if a single constant value is given, it will be subtracted from all color chan-
nels. Alternatively, a series of comma-separated constant values (with no spaces!) may
be used to specifiy a different value to subtract from each channel in the image.

--mul
--mulc value
--mulc value0,value1,value2...

Replace the two top images with a new image that is the pixel-by- pixel multiplicative
product of those images (--mul), or multiply all pixels in the top image by a constant
value (--mulc).

For --mulc, if a single constant value is given, it will be multiplied to all color channels.
Alternatively, a series of comma-separated constant values (with no spaces!) may be used
to specifiy a different value to multiply with each channel in the image.
Example:

oiiotool tahoe.jpg --mulc 0.2 -o mulc.jpg

OpenImageIO Programmer’s Documentation

12.9. OIIOTOOL COMMANDS THAT DO IMAGE PROCESSING 333

→

--div
--divc value
--divc value0,value1,value2...

Replace the two top images with a new image that is the pixel-by-pixel, channel-by-
channel result of the first image divided by the second image (--div), or divide all pixels
in the top image by a constant value (--divc). Division by zero is defined as resulting in
0.

For --divc, if a single constant value is given, all color channels will have their values
divided by the same value. Alternatively, a series of comma-separated constant values
(with no spaces!) may be used to specifiy a different multiplier for each channel in the
image, respectively.

--mad

Replace the three top images A, B, and C (C being the top of stack, B below it, and
A below B), and compute A*B+C, placing the result on the stack. Note that "A B C
--mad" is equivalent to "A B --mul C --add", though using --mad may be somewhat
faster and preserve more precision.

--invert

Replace the top images with its color inverse. It only inverts the first three channels, in
order to preserve alpha.

Example:

oiiotool tahoe.jpg --inverse -o inverse.jpg

→

OpenImageIO Programmer’s Documentation

334 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--absdiff
--absdiffc value
--absdiffc value0,value1,value2...

Replace the two top images with a new image that is the absolute value of the differ-
ence between the first and second images (--absdiff), or replace the top image by the
absolute value of the difference between each pixel and a constant color (--absdiffc).

--abs
Replace the current image with a new image that has each pixel consisting of the absolute
value of he old pixel value.

--powc value
--powc value0,value1,value2...

Raise all the pixel values in the top image to a constant power value. If a single constant
value is given, all color channels will have their values raised to this power. Alternatively,
a series of comma-separated constant values (with no spaces!) may be used to specifiy a
different exponent for each channel in the image, respectively.

--noise
Alter the top image to introduce noise, with the option :type= specifying the kind of
noise: (1) gaussian (default) for normal distribution noise with mean and standard devi-
ation given by :mean= and :stddev=, respectively (defaulting to 0 and 0.1); (2) uniform
for uniformly-distributed noise over the range of values given by options :min= and
:max= (defaults: 0 and 0.1); (3) salt for “salt and pepper” noise where a portion of
pixels given by option portion= (default: 0.1) is replaced with value given by option
value= (default: 0).

For any of these noise types, the option seed= can be used to change the random number
seed, mono=1 can be used to make monochromatic noise (same value in all channels), and
nchannels= can be used to limit which channels are affected by the noise
Example:

Add color gaussian noise to an image
oiiotool tahoe.jpg --noise:type=gaussian:stddev=0.1 -o noisy.jpg

Simulate bad pixels by turning 1% of pixels black, but only in RGB
channels (leave A alone)
oiiotool tahoe-rgba.tif --noise:type=salt:value=0:portion=0.01:mono=1:nchannels=3 \

-o dropouts.tif

original gaussian noise salt & pepper dropouts

OpenImageIO Programmer’s Documentation

12.9. OIIOTOOL COMMANDS THAT DO IMAGE PROCESSING 335

--chsum

Replaces the top image by a copy that contains only 1 color channel, whose value at each
pixel is the sum of all channels of the original image. Using the optional weight allows
you to customize the weight of each channel in the sum.

weight=r,g,... Specify the weight of each channel (default: 1).

Example:

oiiotool RGB.tif --chsum:weight=.2126,.7152,.0722 -o luma.tif

→

--contrast

NEW!Remap pixel values from [black, white] to [min, max], with an optional smooth sigmoidal
contrast stretch as well.

Optional appended arguments include:

black=vals Specify black value(s), default 0.0.
white=vals Specify white value(s), default 1.0.
min=vals Specify the minimum range value(s), default 0.0.
max=vals Specify the maximum range value(s), default 1.0.
scontrast=vals Specify sigmoidal contrast slope value(s), default 1.0.
sthresh=vals Specify sigmoidal threshold value(s) giving the position of

maximum slope, default 0.5.
clamp=on If on is nonzero, will optionally clamp all result channels to

[min,max].

Each vals may be either a single floating point value for all channels, or a comma-
separated list of per-channel values.

Examples:

oiiotool tahoe.tif --contrast:black=0.1:white=0.75 -o linstretch.tif
oiiotool tahoe.tif --contrast:black=1.0:white=0.0:clamp=0 -o inverse.tif
oiiotool tahoe.tif --contrast:scontrast=5 -o sigmoid.tif

original linstretch inverse sigmoid

OpenImageIO Programmer’s Documentation

336 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--colormap mapname
Creates an RGB color map based on the luminance of the input image. The mapname may
be one of: "magma", "inferno", "plasma", "viridis", "blue-red", "spectrum", and
"heat". Or, mapname may also be a comma-separated list of RGB triples, to form a
custom color map curve.

NEW! Note that "magma", "inferno", "plasma", "viridis" are perceptually uniform, strictly
increasing in luminance, look good when converted to grayscale, and work for people
with all types of colorblindness. These are all desirable qualities that are lacking in the
other, older, crappier maps (blue-red, spectrum, and heat). Don’t be fooled by the flashy
"spectrum" colors — it is an empirically bad color map compared to the preferred ones.
Example:

oiiotool tahoe.jpg --colormap inferno -o inferno.jpg
oiiotool tahoe.jpg --colormap viridis -o viridis.jpg
oiiotool tahoe.jpg --colormap spectrum -o spectrum.jpg
oiiotool tahoe.jpg --colormap .25,.25,.25,0,.5,0,1,0,0 -o custom.jpg

original inferno viridis spectrum custom values

--paste location
Takes two images – the first is the “foreground” and the second is the “background” – and
uses the pixels of the foreground to replace those of the backgroud beginning at the upper
left location (expressed as +xpos+ypos, e.g., +100+50, or of course using - for negative
offsets).

--mosaic size
Removes wxh images, dictated by the size, and turns them into a single image mosaic.
Optional appended arguments include:

pad=num Select the number of pixels of black padding to add be-
tween images (default: 0).

Examples:
oiiotool left.tif right.tif --mosaic:pad=16 2x1 -o out.tif

oiiotool 0.tif 1.tif 2.tif 3.tif 4.tif --mosaic:pad=16 2x2 -o out.tif

--over

Replace the two top images with a new image that is the Porter/Duff “over” composite
with the first image as the foreground and the second image as the background. Both
input images must have the same number and order of channels and must contain an
alpha channel.

OpenImageIO Programmer’s Documentation

12.9. OIIOTOOL COMMANDS THAT DO IMAGE PROCESSING 337

--zover

Replace the two top images with a new image that is a depth composite of the two im-
ages – the operation is the Porter/Duff “over” composite, but each pixel individually will
choose which of the two images is the foreground and which background, depending on
the “Z” channel values for that pixel (larger Z means farther away). Both input images
must have the same number and order of channels and must contain both depth/Z and
alpha channels. Optional appended arguments include:

zeroisinf=num If nonzero, indicates that z = 0 pixels should be treated as
if they were infinitely far away. (The default is 0, meaning
that “zero means zero.”).

--rotate90

Replace the current image with a new image that is rotated 90 degrees clockwise.

Example:

oiiotool grid.jpg --rotate90 -o rotate90.jpg

→

--rotate180

Replace the current image with a new image that is rotated by 180 degrees.

Example:

oiiotool grid.jpg --rotate180 -o rotate180.jpg

→

OpenImageIO Programmer’s Documentation

338 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--rotate270

Replace the current image with a new image that is rotated 270 degrees clockwise (or 90
degrees counter-clockwise).
Example:

oiiotool grid.jpg --rotate270 -o rotate270.jpg

→

--flip

Replace the current image with a new image that is flipped vertically, with the top scanline
becoming the bottom, and vice versa.
Example:

oiiotool grid.jpg --flip -o flip.jpg

→

--flop

Replace the current image with a new image that is flopped horizontally, with the leftmost
column becoming the rightmost, and vice versa.
Example:

oiiotool grid.jpg --flop -o flop.jpg

→

OpenImageIO Programmer’s Documentation

12.9. OIIOTOOL COMMANDS THAT DO IMAGE PROCESSING 339

--reorient

Replace the current image with a new image that is rotated and/or flipped as necessary
to move the pixels to match the Orientation metadata that describes the desired display
orientation.

Example:

oiiotool tahoe.jpg --reorient -o oriented.jpg

--transpose

Replace the current image with a new image that is trasposed about the xy axis (x and
coordinates and size are flipped).

Example:

oiiotool grid.jpg --transpose -o transpose.jpg

→

--cshift offset

Circularly shift the pixels of the image by the given offset (expressed as +10+100 to
move by 10 pixels horizontally and 100 pixels vertically, or +50-30 to move by 50 pixels
horizontally and−30 pixels vertically. Circular shifting means that the pixels wrap to the
other side as they shift.

Example:

oiiotool grid.jpg --cshift +70+30 -o cshift.jpg

→

OpenImageIO Programmer’s Documentation

340 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--crop size

Replace the current image with a new copy with the given size, cropping old pixels no
longer needed, padding black pixels where they previously did not exist in the old image,
and adjusting the offsets if requested.

The size is in the form
width x height[+-]xoffset[+-]yoffset

or xmin,ymin,xmax,ymax

Note that crop does not reposition pixels, it only trims or pads to reset the image’s pixel
data window to the specified region.

If oiiotool’s global -a flag is used (all subimages)), or if the optional --crop:allsubimages=1
is employed, the crop will be applied identically to all subimages.

Examples:

Both of these crop to a 100x120 region that begins at x=35,y=40
oiiotool tahoe.exr --crop 100x120+35+40 -o crop.exr
oiiotool tahoe.exr --crop 35,40,134,159 -o crop.exr

→

--croptofull

Replace the current image with a new image that is cropped or padded as necessary to
make the pixel data window exactly cover the full/display window.

--trim

Replace the current image with a new image that is cropped to contain the minimal rect-
angular ROI that contains all of the nonzero-valued pixels of the original image.

Examples:

oiiotool greenrect.exr -trim -o trimmed.jpg

→

OpenImageIO Programmer’s Documentation

12.9. OIIOTOOL COMMANDS THAT DO IMAGE PROCESSING 341

--cut size
Replace the current image with a new copy with the given size, cropping old pixels no
longer needed, padding black pixels where they previously did not exist in the old image,
repositioning the cut region at the image origin (0,0) and resetting the full/display window
to be identical to the new pixel data window. (In other words, --cut is equavalent to
--crop followed by --origin +0+0 --fullpixels.)

The size is in the form
width x height[+-]xoffset[+-]yoffset

or xmin,ymin,xmax,ymax

Examples:
Both of these crop to a 100x120 region that begins at x=35,y=40
oiiotool tahoe.exr --cut 100x120+35+40 -o cut.exr
oiiotool tahoe.exr --cut 35,40,134,159 -o cut.exr

→

--resample size
Replace the current image with a new image that is resampled to the given pixel data
resolution rapidly, but at a low quality, either by simple bilinear interpolation or by just
copying the “closest” pixel. The size is in the form

width x height[+-]xoffset[+-]yoffset
or xmin,ymin,xmax,ymax

or scale%

or wscale% x hscale%

if width or height is 0, that dimension will be automatically computed so as to preserve
the original aspect ratio.

Optional appended arguments include:
interp=bool If set to zero, it will just copy the “closest” pixel; if nonzero,

bilinear interpolation of the surrounding 4 pixels will be used.
Examples (suppose that the original image is 640x480):
--resample 1024x768 new resolution w=1024, h=768
--resample 50% reduce resolution to 320x240
--resample 300% increase resolution to 1920x1440
--resample 400x0 new resolution will be 400x300

OpenImageIO Programmer’s Documentation

342 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--resize size

Replace the current image with a new image whose display (full) size is the given pixel
data resolution and offset. The size is in the form

width x height[+-]xoffset[+-]yoffset
or xmin,ymin,xmax,ymax

or scale%

or wscale% x hscale%

if width or height is 0, that dimension will be automatically computed so as to preserve
the original aspect ratio.

Optional appended arguments include:

filter=name Filter name. The default is blackman-harris when increas-
ing resolution, lanczos3 when decreasing resolution.

Examples (suppose that the original image is 640x480):

--resize 1024x768 new resolution w=1024, h=768
--resize 50% reduce resolution to 320x240
--resize 300% increase resolution to 1920x1440
--resize 400x0 new resolution will be 400x300

--fit size

Replace the current image with a new image that is resized to fit into the given pixel data
resolution, keeping the original aspect ratio and padding with black pixels if the requested
image size does not have the same aspect ratio. The size is in the form

width x height
or width x height[+-]xorigin[+-]yorigin

Optional appended arguments include:

filter=name Filter name. The default is blackman-harris when increas-
ing resolution, lanczos3 when decreasing resolution.

pad=p If the argument is nonzero, will pad with black pixels to make
the resulting image exactly the size specified, if the source and
desired size are not the same aspect ratio.

exact=e If the argument is nonzero, will result in an exact match on
aspect ratio and centering (partial pixel shift if necessary),
whereas the default (0) will only preserve aspect ratio and cen-
tering to the precision of a whole pixel.

wrap=w For “exact” aspect ratio fitting, this determines the wrap mode
used for the resizing kernel (default: "black", other choices
include "clamp", "periodic", "mirror").

Examples:

OpenImageIO Programmer’s Documentation

12.9. OIIOTOOL COMMANDS THAT DO IMAGE PROCESSING 343

oiiotool in.exr --fit:pad=1:exact=1 640x480 -o out.exr

oiiotool in.exr --fit 1024x1024 -o out.exr

--pixelaspect aspect

Replace the current image with a new image that scales up the width or height in order
to match the requested pixel aspect ratio. If displayed in a manner that honors the Pix-
elAspectRatio, it should look the same, but it will have different pixel dimensions than
the original. It will always be the same or higher resolution, so it does not lose any detail
present in the original.

As an example, if you have a 512×512 image with pixel aspect ratio 1.0, --pixelaspect
2.0 will result in a 512×1024 image that has "PixelAspectRatio" metadata set to 2.0.

Optional appended arguments include:

filter=name Filter name. The default is "lanczos3".

Examples:
oiiotool mandrill.tif --pixelaspect 2.0 -o widepixels.tif

--rotate angle

Replace the current image with a new image that is rotated by the given angle (in degrees).
Positive angles mean to rotate counter-clockwise, negative angles mean clockwise. By
default, the center of rotation is at the exact center of the display window (a.k.a. “full”
image), but can be explicitly set with the optional center=x,y option.

Optional appended arguments include:

center=x,y Alternate center of rotation.
filter=name Filter name. The default is "lanczos3".
recompute roi=val If nonzero, recompute the pixel data window to exactly

hold the transformed image (default=0).

Examples:
oiiotool mandrill.tif --rotate 45 -o rotated.tif

oiiotool mandrill.tif --rotate:center=80,91.5:filter=lanczos3 45 -o rotated.tif

→

OpenImageIO Programmer’s Documentation

344 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--warp M33

Replace the current image with a new image that is warped by the given 3× 3 matrix
(presented as a comma-separated list of values, without any spaces).

Optional appended arguments include:

filter=name Filter name. The default is "lanczos3".
recompute roi=val If nonzero, recompute the pixel data window to exactly

hold the transformed image (default=0).

Examples:
oiiotool mandrill.tif --warp "0.707,0.707,0,-0.707,0.707,0,128,-53.02,1" -o warped.tif

--convolve

Use the top image as a kernel to convolve the next image farther down the stack, replacing
both with the result.

Examples:

Use a kernel image already prepared
oiiotool image.exr kernel.exr --convolve -o output.exr

Construct a kernel image on the fly with --kernel
oiiotool image.exr --kernel gaussian 5x5 --convolve -o blurred.exr

--blur size

Blur the top image with a blur kernel of the given size expressed as widthxheight. (The
sizes may be floating point numbers.)

Optional appended arguments include:

kernel=name Kernel name. The default is gaussian.

Examples:

oiiotool image.jpg --blur 5x5 -o blurred.jpg

oiiotool image.jpg --blur:kernel=bspline 7x7 -o blurred.jpg

original blurred

OpenImageIO Programmer’s Documentation

12.9. OIIOTOOL COMMANDS THAT DO IMAGE PROCESSING 345

--median size

Perform a median filter on the top image with a window of the given size expressed
as widthxheight. (The sizes are integers.) This helps to eliminate noise and other un-
wanted high-frequency detail, but without blurring long edges the way a --blur com-
mand would.

Examples:

oiiotool noisy.jpg --median 3x3 -o smoothed.jpg

original with dropouts median filtered

--dilate size
--erode size

Perform dilation or erosion on the top image with a window of the given size expressed as
widthxheight. (The sizes are integers.) Dilation takes the maximum of pixel values inside
the window, and makes bright features wider and more prominent, dark features thinner,
and removes small isolated dark spots. Erosion takes the minimum of pixel values inside
the window, and makes dark features wider, bright features thinner, and removes small
isolated bright spots.

Examples:

oiiotool orig.tif --dilate 3x3 -o dilate.tif
oiiotool orig.tif --erode 3x3 -o erode.tif
oiiotool orig.tif --erode 3x3 --dilate 3x3 -o open.tif
oiiotool orig.tif --dilate 3x3 --erode 3x3 -o close.tif
oiiotool orig.tif --dilate 3x3 --erode 3x3 -sub -o gradient.tif
oiiotool orig.tif open.tif -o tophat.tif
oiiotool close.tif orig.tif -o bottomhat.tif

original dilate erode open

close gradient tophat bottomhat

OpenImageIO Programmer’s Documentation

346 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--laplacian

Calculates the Laplacian of the top image.

Examples:

oiiotool tahoe.jpg --laplacian tahoe-laplacian.exr

original Laplacian image

--unsharp

Unblur the top image using an “unsharp mask.”

Optional appended arguments include:

kernel=name Name of the blur kernel (default: gaussian). If the kernel
name is median, the unsarp mask algorithm will use a median
filter rather than a blurring filter in order to compute the low-
frequency image.

width=w Width of the blur kernel (default: 3).
contrast=c Contrast scale (default: 1.0)
threshold=t Threshold for applying the difference (default: 0)

Examples:

oiiotool image.jpg --unsharp -o sharper.jpg

oiiotool image.jpg --unsharp:width=5:contrast=1.5 -o sharper.jpg

oiiotool image.jpg --unsharp:kernel=median -o sharper.jpg
Note: median filter helps emphasize compact high-frequency details
without over-sharpening long edges as the default unsharp filter
sometimes does.

--fft
--ifft

Performs forward and inverse unitized discrete Fourier transform. The forward FFT al-
ways transforms only the first channel of the top image on the stack, and results in a
2-channel image (with real and imaginary channels). The inverse FFT transforms the
first two channels of the top image on the stack (assuming they are real and imaginary,
respectively) and results in a single channel result (with the real component only of the
spatial domain result).

Examples:

OpenImageIO Programmer’s Documentation

12.9. OIIOTOOL COMMANDS THAT DO IMAGE PROCESSING 347

Select the blue channel and take its DCT
oiiotool image.jpg --ch 2 --fft -o fft.exr

Reconstruct from the FFT
oiiotool fft.exr --ifft -o reconstructed.exr

Output the power spectrum: realˆ2 + imagˆ2
oiiotool fft.exr --dup --mul --chsum -o powerspectrum.exr

--polar
--unpolar

The --polar transforms a 2-channel image whose channels are interpreted as complex
values (real and imaginary components) into the equivalent values expressed in polar
form of amplitude and phase (with phase between 0 and 2π).

The unpolar performs the reverse transformation, converting from polar values (ampli-
tude and phase) to complex (real and imaginary).

Examples:

oiiotool complex.exr --polar -o polar.exr
oiiotool polar.exr --unpolar -o complex.exr

--fixnan streategy

Replace the top image with a copy in which any pixels that contained NaN or Inf val-
ues (hereafter referred to collectively as “nonfinite”) are repaired. If strategy is black,
nonfinite values will be replaced with 0. If strategy is box3, nonfinite values will be re-
placed by the average of all the finite values within a 3×3 region surrounding the pixel.
If strategy is error, nonfinite values will be left alone, but it will result in an error that
will terminate oiiotool.

--clamp

Replace the top image with a copy in which pixel values have been clamped. Optional
arguments include:

Optional appended arguments include:

min=val Specify a minimum value for all channels.
min=val0,val1,... Specify minimum value for each channel individually.
max=val Specify a maximum value for all channels.
max=val0,val1,... Specify maximum value for each channel individually.
clampalpha=val If val is nonzero, will additionally clamp the alpha channel to

[0,1]. (Default: 0, no additional alpha clamp.)

If no value is given for either the minimum or maximum, it will NOT clamp in that
direction. For the variety of minimum and maximum that specify per-channel values, a
missing value indicates that the corresponding channel should not be clamped.

OpenImageIO Programmer’s Documentation

348 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

Examples:

--clamp:min=0 Clamp all channels to a mimimum of 0 (all
negative values are changed to 0).

--clamp:min=0:max=1 Clamp all channels to [0,1].
--clamp:clampalpha=1 Clamp the designated alpha channel to [0,1].
--clamp:min=,,0:max=,,3.0 Clamp the third channel to [0,3], do not clamp

other channels.

--rangecompress
--rangeexpand

Range compression re-maps input values to a logarithmic scale. Range expansion is the
inverse mapping back to a linear scale. Range compression and expansion only applies
to color channels; alpha or z channels will not be modified.

By default, this transformation will happen to each color channel independently. But if
the optional luma argument is nonzero and the image has at least 3 channels and the first
three channels are not alpha or depth, they will be assumed to be RGB and the pixel
scaling will be done using the luminance and applied equally to all color channels. This
can help to preserve color even when remapping intensity.

Optional appended arguments include:

luma=val If val is 0, turns off the luma behavior.

Range compression and expansion can be useful in cases where high contrast super-white
(> 1) pixels (such as very bright highlights in HDR captured or rendered images) can
produce undesirable artifacts, such as if you resize an HDR image using a filter with
negative lobes – which could result in objectionable ringing or even negative result pixel
values. For example,

oiiotool hdr.exr --rangecompress --resize 512x512 --rangeexpand -o resized.exr

--fillholes

Replace the top image with a copy in which any pixels that had α < 1 are “filled” in a
smooth way using data from surrounding α > 0 pixels, resulting in an image that is α = 1
and plausible color everywhere. This can be used both to fill internal “holes” as well as
to extend an image out.

--line x1,y1,x2,y2,...

Draw (rasterize) an open polyline connecting the list of pixel positions, as a comma-
separated list of alternating x and y values. Additional optional arguments include:

color=r,g,b,... specify the color of the line

The default color, if not supplied, is opaque white.

Examples:
oiiotool checker.exr --line:color=1,0,0 10,60,250,20,100,190 -o out.exr

OpenImageIO Programmer’s Documentation

12.9. OIIOTOOL COMMANDS THAT DO IMAGE PROCESSING 349

--box x1,y1,x2,y2

Draw (rasterize) a filled or unfilled a box with opposite corners (x1,y1) and (x2,y2).
Additional optional arguments include:

color=r,g,b,... specify the color of the lines
fill=bool if nonzero, fill in the box

The default color, if not supplied, is opaque white.

Examples:

oiiotool checker.exr --box:color=0,1,1,1 150,100,240,180 \
--box:color=0.5,0.5,0,0.5:fill=1 100,50,180,140 -o out.exr

--fill size

Alter the top image by filling the ROI specified by size. The fill can be a constant color,
vertical gradient, horizontal gradient, or four-corner gradient.

Optional arguments for constant color:
color=r,g,b,... the color of the constant

Optional arguments for vertical gradient:
top=r,g,b,... the color for the top edge of the region
bottom=r,g,b,... the color for the bottom edge of the region

Optional arguments for horizontal gradient:
left=r,g,b,... the color for the left edge of the region
right=r,g,b,... the color for the right edge of the region

OpenImageIO Programmer’s Documentation

350 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

Optional arguments for 4-corner gradient:
topleft=r,g,b,... the color for the top left corner of the region
topright=r,g,b,... the color for the top right corner of the region
bottomleft=r,g,b,... the color for the bottom left corner of the region
bottomright=r,g,b,... the color for the bottom right corner of the region

Examples:
make a grey-to-blue vertical gradient
oiiotool --create 640x480 3 \

--fill:top=0.1,0.1,0.1:bottom=0,0,0.5 640x480 -o gradient.tif

make a grey-to-green horizontal gradient
oiiotool --create 640x480 3 \

--fill:left=0.1,0.1,0.1:right=0,0.75,0 640x480 -o gradient.tif

four-corner interpolated gradient
oiiotool --create 640x480 3 \

-fill:topleft=.1,.1,.1:topright=1,0,0:bottomleft=0,1,0:botromright=0,0,1 \
640x480 -o gradient.tif

--text words

Draw (rasterize) text overtop of the current image.

x=xpos x position (in pixel coordinates) of the text
y=ypos y position (in pixel coordinates) of the text
size=size font size (height, in pixels)
font=name font name, full path to the font file on disk (use double quotes

"name" if the path name includes spaces)
color=r,g,b,... specify the color of the text
xalign=val controls horizontal text alignment: "left" (default),

"right", "center".
yalign=val controls vertical text alignment: "base" (default), "top",

"bottom", "center".
shadow=size if nonzero, will make a dark shadow halo to make the text

more clear on bright backgrounds.

The default positions the text starting at the center of the image, drawn 16 pixels high in
opaque white in all channels (1,1,1,...), and using a default font (which may be system
dependent).

Examples:
oiiotool --create 320x240 3 --text:x=10:y=400:size=40 "Hello world" \

--text:x=100:y=200:font="Arial Bold":color=1,0,0:size=60 "Go Big Red!" \
--tocolorspace sRGB -o text.jpg

OpenImageIO Programmer’s Documentation

12.10. OIIOTOOL COMMANDS FOR COLOR MANAGEMENT 351

oiiotool --create 320x240 3 --text:x=160:y=120:xalign=center "Centered" \
--tocolorspace sRGB -o textcentered.jpg

oiiotool tahoe-small.jpg \
--text:x=160:y=40:xalign=center:size=40:shadow=0 "shadow = 0" \
--text:x=160:y=80:xalign=center:size=40:shadow=1 "shadow = 1" \
--text:x=160:y=120:xalign=center:size=40:shadow=2 "shadow = 2" \
--tocolorspace sRGB -o textshadowed.jpg

Note that because of slightly differing fonts and versions of Freetype available, we do
not expect drawn text to be pixel-for-pixel identical on different platforms supported by
OpenImageIO.

12.10 oiiotool commands for color management

Many of the color management commands depend on an installation of OpenColorIO (http://opencolorio.org/).
If OIIO has been compiled with OpenColorIO support and the environment variable $OCIO

is set to point to a valid OpenColorIO configuration file, you will have access to all the color
spaces that are known by that OCIO configuration. Alternately, you can use the --colorconfig
option to explicitly point to a configuration file. If no valid configuration file is found (either
in $OCIO or specified by --colorconfig) or OIIO was not compiled with OCIO support, then
the only color space transformats available are linear to Rec709 (and vice versa) and linear
to sRGB (and vice versa).

If you ask for oiiotool help (oiiotool --help), at the very bottom you will see the list
of all color spaces, looks, and displays that oiiotool knows about.

--iscolorspace colorspace

Alter the metadata of the current image so that it thinks its pixels are in the named color
space. This does not alter the pixels of the image, it only changes oiiotool’s under-
standing of what color space those those pixels are in.

--colorconfig filename

Instruct oiiotool to read an OCIO configuration from a custom location. Without this,
the default is to use the $OCIO environment variable as a guide for the location of the
configuration file.

OpenImageIO Programmer’s Documentation

352 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--colorconvert fromspace tospace

Replace the current image with a new image whose pixels are transformed from the
named fromspace color space into the named tospace (disregarding any notion it may
have previously had about the color space of the current image). Optional appended ar-
guments include:

key=name
value=str Adds a key/value pair to the “context” that OpenColorIO will

used when applying the look. Multiple key/value pairs may be
specified by making each one a comma-separated list.

unpremult=val If the numeric val is nonzero, the pixel values will be “un-
premultipled” (divided by alpha) prior to the actual color con-
version, and then re-multipled by alpha afterwards. The de-
fault is 0, meaning the color transformation not will be auto-
matically bracketed by divide-by-alpha / mult-by-alpha oper-
ations.

strict=val When nonzero (the default), an inability to perform the color
transform will be a hard error. If strict is 0, inability to find the
transformation will just print a warning and simply copy the
image without changing colors.

--tocolorspace tospace

Replace the current image with a new image whose pixels are transformed from their ex-
isting color space (as best understood or guessed by OIIO) into the named tospace. This is
equivalent to a use of oiiotool --colorconvert where the fromspace is automatically
deduced.

OpenImageIO Programmer’s Documentation

12.10. OIIOTOOL COMMANDS FOR COLOR MANAGEMENT 353

--ociolook lookname
Replace the current image with a new image whose pixels are transformed using the
named OpenColorIO look description. Optional appended arguments include:

from=val Assume the image is in the named color space. If no from= is
supplied, it will try to deduce it from the image’s metadata or
previous --iscolorspace directives.

to=val Convert to the named space after applying the look.
inverse=val If val is nonzero, inverts the color transformation and look ap-

plication.
key=name
value=str Adds a key/value pair to the “context” that OpenColorIO will

used when applying the look. Multiple key/value pairs may be
specified by making each one a comma-separated list.

unpremult=val If the numeric val is nonzero, the pixel values will be “un-
premultipled” (divided by alpha) prior to the actual color con-
version, and then re-multipled by alpha afterwards. The de-
fault is 0, meaning the color transformation not will be auto-
matically bracketed by divide-by-alpha / mult-by-alpha oper-
ations.

This command is only meaningful if OIIO was compiled with OCIO support and the
environment variable $OCIO is set to point to a valid OpenColorIO configuration file. If
you ask for oiiotool help (oiiotool --help), at the very bottom you will see the list
of all looks that oiiotool knows about.
Examples:
oiiotool in.jpg --ociolook:from=vd8:to=vd8:key=SHOT:value=pe0012 match -o cc.jpg

--ociodisplay displayname viewname
Replace the current image with a new image whose pixels are transformed using the
named OpenColorIO “display” transformation given by the displayname and viewname.
Optional appended arguments include:

from=val Assume the image is in the named color space. If no from= is
supplied, it will try to deduce it from the image’s metadata or
previous --iscolorspace directives.

key=name
value=str Adds a key/value pair to the “context” that OpenColorIO will

used when applying the display transform. Multiple key/value
pairs may be specified by making each one a comma-separated
list.

unpremult=val If the numeric val is nonzero, the pixel values will be “un-
premultipled” (divided by alpha) prior to the actual color con-
version, and then re-multipled by alpha afterwards. The de-
fault is 0, meaning the color transformation not will be auto-
matically bracketed by divide-by-alpha / mult-by-alpha oper-
ations.

OpenImageIO Programmer’s Documentation

354 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

This command is only meaningful if OIIO was compiled with OCIO support and the
environment variable $OCIO is set to point to a valid OpenColorIO configuration file. If
you ask for oiiotool help (oiiotool --help), at the very bottom you will see the list
of all looks that oiiotool knows about.
Examples:
oiiotool in.exr --ociodisplay:from=lnf:key=SHOT:value=pe0012 sRGB Film -o cc.jpg

--ociofiletransform name

Replace the current image with a new image whose pixels are transformed using the
named OpenColorIO file transform. Optional appended arguments include:

inverse=val If val is nonzero, inverts the color transformation.
unpremult=val If the numeric val is nonzero, the pixel values will be “un-

premultipled” (divided by alpha) prior to the actual color con-
version, and then re-multipled by alpha afterwards. The de-
fault is 0, meaning the color transformation not will be auto-
matically bracketed by divide-by-alpha / mult-by-alpha oper-
ations.

This command is only meaningful if OIIO was compiled with OCIO support and the
environment variable $OCIO is set to point to a valid OpenColorIO configuration file. If
you ask for oiiotool help (oiiotool --help), at the very bottom you will see the list
of all looks that oiiotool knows about.
Examples:
oiiotool in.jpg --ociofiletransform footransform.csp -o out.jpg

--unpremult

Divide all color channels (those not alpha or z) of the current image by the alpha value,
to “un-premultiply” them. This presumes that the image starts of as “associated alpha,”
a.k.a. “premultipled.” Pixels in which the alpha channel is 0 will not be modified (since
the operation is undefined in that case). This is a no-op if there is no identified alpha
channel.

--premult

Multiply all color channels (those not alpha or z) of the current image by the alpha value,
to “premultiply” them. This presumes that the image starts of as “unassociated alpha,”
a.k.a. “non-premultipled.”

12.11 oiiotool commands for deep images

A number of oiiotool operations are designed to work with “deep” images. These are detailed
below. In general, operations not listed in this section should not be expected to work with deep
images.

OpenImageIO Programmer’s Documentation

12.11. OIIOTOOL COMMANDS FOR DEEP IMAGES 355

12.11.1 Commands specific to deep images

--deepen

If the top image is not deep, then turn it into the equivalent “deep” image. Pixels with
non-infinite z or with any non-zero color channels will get a single depth sample in the
resulting deep image. Pixels in the source that have 0 in all channels, and either no "Z"
channel or a z value indicating an infinite distance, will result in a pixel with no depth
samples.

Optional appended arguments include:

z=val The depth to use for deep samples if the source image did not
have a "Z" channel. (The default is 1.0.)

--flatten

If the top image is “deep,” then “flatten” it by compositing the depth samples in each
pixel.

--deepmerge

Replace the two top images with a new deep image that is the “deep merge” of the inputs.
Both input images must be deep images, have the same number and order of channels
and must contain an alpha channel and depth channel.

--deepholdout

Replace the two top images with a new deep image that is the “deep holdout” of the first
image by the second — that is, the samples from the first image that are closer than the
opaque frontier of the second image. Both input inputs must be deep images.

12.11.2 General commands that also work for deep images

--addc
--subc
--mulc
--divc

Adding, subtracting, multiplying, or dividing a per-channel constant will work for deep
images, performing the operation for every sample in the image.

--autotrim

For subsequent outputs, automatically --trim before writing the file.

OpenImageIO Programmer’s Documentation

356 CHAPTER 12. OIIOTOOL: THE OIIO SWISS ARMY KNIFE

--ch channellist

Reorder, rename, remove, or add channels to a deep image. See Section 12.6

--crop size

Crop (adjust the pixel data window), removing pixels or adding empty pixels as needed.

--resample size

Resampling (resize without filtering or interpolation, just choosing the closest deep pixel
to copy for each output pixel).

--diff

Report on the difference of the top two images.

--dumpdata

Print to the console detailed information about the values in every pixel.

Optional appended arguments include:

empty=0|1 If 0, will cause deep images to skip printing of information
about pixels with no samples, and cause non-deep images to
skip printing information about pixels that are entirely 0.0
value in all channels.

--info

Prints information about each input image as it is read.

--trim

Replace the current image with a new image that is cropped to contain the minimal rect-
angular ROI that contains all of the non-empty pixels of the original image.

--scanline
--tile x y

Convert to scanline or to tiled representations upon output.

--stats

Prints detailed statistical information about each input image as it is read.

--fixnan streategy

Replace the top image with a copy in which any pixels that contained NaN or Inf values
(hereafter referred to collectively as “nonfinite”) are repaired. The strategy may be either
black or error.

OpenImageIO Programmer’s Documentation

13 The iv Image Viewer

The iv program is a great interactive image viewer. Because iv is built on top on OpenImageIO,
it can display images of any formats readable by ImageInput plugins on hand.

More documentation on this later.

357

358 CHAPTER 13. THE IV IMAGE VIEWER

OpenImageIO Programmer’s Documentation

14 Getting Image information With
iinfo

The iinfo program will print either basic information (name, resolution, format) or detailed
information (including all metadata) found in images. Because iinfo is built on top on Open-
ImageIO, it will print information about images of any formats readable by ImageInput plugins
on hand.

14.1 Using iinfo

The iinfo utility is invoked as follows:

iinfo [options] filename ...

Where filename (and any following strings) names the image file(s) whose information
should be printed. The image files may be of any format recognized by OpenImageIO (i.e.,
for which ImageInput plugins are available).

In its most basic usage, it simply prints the resolution, number of channels, pixel data type,
and file format type of each of the files listed:

$ iinfo img_6019m.jpg grid.tif lenna.png

img_6019m.jpg : 1024 x 683, 3 channel, uint8 jpeg
grid.tif : 512 x 512, 3 channel, uint8 tiff
lenna.png : 120 x 120, 4 channel, uint8 png

The -s flag also prints the uncompressed sizes of each image file, plus a sum for all of the
images:

$ iinfo -s img_6019m.jpg grid.tif lenna.png

img_6019m.jpg : 1024 x 683, 3 channel, uint8 jpeg (2.00 MB)
grid.tif : 512 x 512, 3 channel, uint8 tiff (0.75 MB)
lenna.png : 120 x 120, 4 channel, uint8 png (0.05 MB)
Total size: 2.81 MB

The -v option turns on verbose mode, which exhaustively prints all metadata about each
image:

359

360 CHAPTER 14. GETTING IMAGE INFORMATION WITH IINFO

$ iinfo -v img_6019m.jpg

img_6019m.jpg : 1024 x 683, 3 channel, uint8 jpeg
channel list: R, G, B
Color space: sRGB
ImageDescription: "Family photo"
Make: "Canon"
Model: "Canon EOS DIGITAL REBEL XT"
Orientation: 1 (normal)
XResolution: 72
YResolution: 72
ResolutionUnit: 2 (inches)
DateTime: "2008:05:04 19:51:19"
Exif:YCbCrPositioning: 2
ExposureTime: 0.004
FNumber: 11
Exif:ExposureProgram: 2 (normal program)
Exif:ISOSpeedRatings: 400
Exif:DateTimeOriginal: "2008:05:04 19:51:19"
Exif:DateTimeDigitized: "2008:05:04 19:51:19"
Exif:ShutterSpeedValue: 7.96579 (1/250 s)
Exif:ApertureValue: 6.91887 (f/11)
Exif:ExposureBiasValue: 0
Exif:MeteringMode: 5 (pattern)
Exif:Flash: 16 (no flash, flash supression)
Exif:FocalLength: 27 (27 mm)
Exif:ColorSpace: 1
Exif:PixelXDimension: 2496
Exif:PixelYDimension: 1664
Exif:FocalPlaneXResolution: 2855.84
Exif:FocalPlaneYResolution: 2859.11
Exif:FocalPlaneResolutionUnit: 2 (inches)
Exif:CustomRendered: 0 (no)
Exif:ExposureMode: 0 (auto)
Exif:WhiteBalance: 0 (auto)
Exif:SceneCaptureType: 0 (standard)
Keywords: "Carly; Jack"

If the input file has multiple subimages, extra information summarizing the subimages will
be printed:

$ iinfo img_6019m.tx

img_6019m.tx : 1024 x 1024, 3 channel, uint8 tiff (11 subimages)

$ iinfo -v img_6019m.tx

img_6019m.tx : 1024 x 1024, 3 channel, uint8 tiff
11 subimages: 1024x1024 512x512 256x256 128x128 64x64 32x32 16x16 8x8 4x4 2x2 1x1
channel list: R, G, B
tile size: 64 x 64

OpenImageIO Programmer’s Documentation

14.2. IINFO COMMAND-LINE OPTIONS 361

...

Furthermore, the -a option will print information about all individual subimages:

$ iinfo -a ../sample-images/img_6019m.tx

img_6019m.tx : 1024 x 1024, 3 channel, uint8 tiff (11 subimages)
subimage 0: 1024 x 1024, 3 channel, uint8 tiff
subimage 1: 512 x 512, 3 channel, uint8 tiff
subimage 2: 256 x 256, 3 channel, uint8 tiff
subimage 3: 128 x 128, 3 channel, uint8 tiff
subimage 4: 64 x 64, 3 channel, uint8 tiff
subimage 5: 32 x 32, 3 channel, uint8 tiff
subimage 6: 16 x 16, 3 channel, uint8 tiff
subimage 7: 8 x 8, 3 channel, uint8 tiff
subimage 8: 4 x 4, 3 channel, uint8 tiff
subimage 9: 2 x 2, 3 channel, uint8 tiff
subimage 10: 1 x 1, 3 channel, uint8 tiff

$ iinfo -v -a img_6019m.tx
img_6019m.tx : 1024 x 1024, 3 channel, uint8 tiff

11 subimages: 1024x1024 512x512 256x256 128x128 64x64 32x32 16x16 8x8 4x4 2x2 1x1
subimage 0: 1024 x 1024, 3 channel, uint8 tiff

channel list: R, G, B
tile size: 64 x 64
...

subimage 1: 512 x 512, 3 channel, uint8 tiff
channel list: R, G, B
...

...

14.2 iinfo command-line options

--help

Prints usage information to the terminal.

-v

Verbose output — prints all metadata of the image files.

-a

Print information about all subimages in the file(s).

OpenImageIO Programmer’s Documentation

362 CHAPTER 14. GETTING IMAGE INFORMATION WITH IINFO

-f

Print the filename as a prefix to every line. For example,

$ iinfo -v -f img_6019m.jpg

img_6019m.jpg : 1024 x 683, 3 channel, uint8 jpeg
img_6019m.jpg : channel list: R, G, B
img_6019m.jpg : Color space: sRGB
img_6019m.jpg : ImageDescription: "Family photo"
img_6019m.jpg : Make: "Canon"
...

-m pattern

Match the pattern (specified as an extended regular expression) against data metadata
field names and print only data fields whose names match. The default is to print all data
fields found in the file (if -v is given).

For example,

$ iinfo -v -f -m ImageDescription test*.jpg

test3.jpg : ImageDescription: "Birthday party"
test4.jpg : ImageDescription: "Hawaii vacation"
test5.jpg : ImageDescription: "Bob’s graduation"
test6.jpg : ImageDescription: <unknown>

Note: the -m option is probably not very useful without also using the -v and -f options.

--hash

Displays a SHA-1 hash of the pixel data of the image (and of each subimage if combined
with the -a flag).

-s

Show the image sizes, including a sum of all the listed images.

OpenImageIO Programmer’s Documentation

15 Converting Image Formats With
iconvert

15.1 Overview

The iconvert program will read an image (from any file format for which an ImageInput
plugin can be found) and then write the image to a new file (in any format for which an
ImageOutput plugin can be found). In the process, iconvert can optionally change the file for-
mat or data format (for example, converting floating-point data to 8-bit integers), apply gamma
correction, switch between tiled and scanline orientation, or alter or add certain metadata to the
image.

The iconvert utility is invoked as follows:

iconvert [options] input output

Where input and output name the input image and desired output filename. The image files
may be of any format recognized by OpenImageIO (i.e., for which ImageInput plugins are
available). The file format of the output image will be inferred from the file extension of the
output filename (e.g., "foo.tif" will write a TIFF file).

Alternately, any number of files may be specified as follows:

iconvert --inplace [options] file1 file2 ..

When the --inplace option is used, any number of file names ≥ 1 may be specified, and
the image conversion commands are applied to each file in turn, with the output being saved
under the original file name. This is useful for applying the same conversion to many files,
or simply if you want to replace the input with the output rather than create a new file with a
different name.

15.2 iconvert Recipes

This section will give quick examples of common uses of iconvert.

Converting between file formats

It’s a snap to converting among image formats supported by OpenImageIO (i.e., for which
ImageInput and ImageOutput plugins can be found). The iconvert utility will simply infer
the file format from the file extension. The following example converts a PNG image to JPEG:

363

364 CHAPTER 15. CONVERTING IMAGE FORMATS WITH ICONVERT

iconvert lena.png lena.jpg

Changing the data format or bit depth

Just use the -d option to specify a pixel data format. For example, assuming that in.tif uses
16-bit unsigned integer pixels, the following will convert it to an 8-bit unsigned pixels:

iconvert -d uint8 in.tif out.tif

Changing the compression

The following command converts writes a TIFF file, specifically using LZW compression:

iconvert --compression lzw in.tif out.tif

The following command writes its results as a JPEG file at a compression quality of 50
(pretty severe compression):

iconvert --quality 50 big.jpg small.jpg

Gamma-correcting an image

The following gamma-corrects the pixels, raising all pixel values to x1/2.2 upon writing:

iconvert -g 2.2 in.tif out.tif

Converting between scanline and tiled images

Convert a scanline file to a tiled file with 16×16 tiles:

iconvert --tile 16 16 s.tif t.tif

Convert a tiled file to scanline:

iconvert --scanline t.tif s.tif

Converting images in place

You can use the --inplace flag to cause the output to replace the input file, rather than create a
new file with a different name. For example, this will re-compress all of your TIFF files to use
ZIP compression (rather than whatever they currently are using):

iconvert --inplace --compression zip *.tif

OpenImageIO Programmer’s Documentation

15.3. ICONVERT COMMAND-LINE OPTIONS 365

Change the file modification time to the image capture time

Many image formats (including JPEGs from digital cameras) contain an internal time stamp
indicating when the image was captured. But the time stamp on the file itself (what you’d see in
a directory listing from your OS) most likely shows when the file was last copied, not when it
was created or captured. You can use the following command to re-stamp your files so that the
file system modification time matches the time that the digital image was originally captured:

iconvert --inplace --adjust-time *.jpg

Add captions, keywords, IPTC tags

For formats that support it, you can add a caption/image description, keywords, or arbitrary
string metadata:

iconvert --inplace --adjust-time --caption "Hawaii vacation" *.jpg

iconvert --inplace --adjust-time --keyword "John" img18.jpg img21.jpg

iconvert --inplace --adjust-time --attrib IPTC:State "HI" \
--attrib IPTC:City "Honolulu" *.jpg

15.3 iconvert command-line options

--help

Prints usage information to the terminal.

-v

Verbose status messages.

--threads n

Use n execution threads if it helps to speed up image operations. The default (also if
n = 0) is to use as many threads as there are cores present in the hardware.

OpenImageIO Programmer’s Documentation

366 CHAPTER 15. CONVERTING IMAGE FORMATS WITH ICONVERT

--inplace

Causes the output to replace the input file, rather than create a new file with a different
name.

Without this flag, iconvert expects two file names, which will be used to specify the
input and output files, respectively.

But when --inplace option is used, any number of file names≥ 1 may be specified, and
the image conversion commands are applied to each file in turn, with the output being
saved under the original file name. This is useful for applying the same conversion to
many files.

For example, the following example will add the caption “Hawaii vacation” to all JPEG
files in the current directory:

iconvert --inplace --adjust-time --caption "Hawaii vacation" *.jpg

-d datatype

Attempt to sets the output pixel data type to one of: uint8, sint8, uint16, sint16,
half, float, double.

The types uint10 and uint12 may be used to request 10- or 12-bit unsigned integers. If
the output file format does not support them, uint16 will be substituted.

If the -d option is not supplied, the output data type will be the same as the data format
of the input file, if possible.

In any case, if the output file type does not support the requested data type, it will instead
use whichever supported data type results in the least amount of precision lost.

-g gamma

Applies a gamma correction of 1/gamma to the pixels as they are output.

--sRGB

Explicitly tags the image as being in sRGB color space. Note that this does not alter pixel
values, it only marks which color space those values refer to (and only works for file
formats that understand such things). An example use of this command is if you have an
image that is not explicitly marked as being in any particular color space, but you know
that the values are sRGB.

--tile x y

Requests that the output file be tiled, with the given x× y tile size, if tiled images are
supported by the output format. By default, the output file will take on the tiledness and
tile size of the input file.

OpenImageIO Programmer’s Documentation

15.3. ICONVERT COMMAND-LINE OPTIONS 367

--scanline

Requests that the output file be scanline-oriented (even if the input file was tile-oriented),
if scanline orientation is supported by the output file format. By default, the output file
will be scanline if the input is scanline, or tiled if the input is tiled.

--separate
--contig

Forces either “separate” (e.g., RRR...GGG...BBB) or “contiguous” (e.g., RGBRGBRGB...)
packing of channels in the file. If neither of these options are present, the output file will
have the same kind of channel packing as the input file. Of course, this is ignored if
the output file format does not support a choice or does not support the particular choice
requested.

--compression method

Sets the compression method for the output image. Each ImageOutput plugin will have
its own set of methods that it supports.

By default, the output image will use the same compression technique as the input image
(assuming it is supported by the output format, otherwise it will use the default compres-
sion method of the output plugin).

--quality q

Sets the compression quality, on a 1–100 floating-point scale. This only has an effect if
the particular compression method supports a quality metric (as JPEG does).

--no-copy-image

Ordinarily, iconvert will attempt to use ImageOutput::copy image underneath to
avoid de/recompression or alteration of pixel values, unless other settings clearly contra-
dict this (such as any settings that must alter pixel values). The use of --no-copy-image
will force all pixels to be decompressed, read, and compressed/written, rather than copied
in compressed form. We’re not exactly sure when you would need to do this, but we put
it in just in case.

--adjust-time

When this flag is present, after writing the output, the resulting file’s modification time
will be adjusted to match any "DateTime" metadata in the image. After doing this, a
directory listing will show file times that match when the original image was created or
captured, rather than simply when iconvert was run. This has no effect on image files
that don’t contain any "DateTime" metadata.

OpenImageIO Programmer’s Documentation

368 CHAPTER 15. CONVERTING IMAGE FORMATS WITH ICONVERT

--caption text

Sets the image metadata "ImageDescription". This has no effect if the output image
format does not support some kind of title, caption, or description metadata field. Be
careful to enclose text in quotes if you want your caption to include spaces or certain
punctuation!

--keyword text

Adds a keyword to the image metadata "Keywords". Any existing keywords will be
preserved, not replaced, and the new keyword will not be added if it is an exact duplicate
of existing keywords. This has no effect if the output image format does not support some
kind of keyword field.

Be careful to enclose text in quotes if you want your keyword to include spaces or certain
punctuation. For image formats that have only a single field for keywords, OpenImageIO
will concatenate the keywords, separated by semicolon (‘;’), so don’t use semicolons
within your keywords.

--clear-keywords

Clears all existing keywords in the image.

--attrib name text

Sets the named image metadata attribute to a string given by text. For example, you could
explicitly set the IPTC location metadata fields with:

iconvert --attrib "IPTC:City" "Berkeley" in.jpg out.jpg

--orientation orient

Explicitly sets the image’s "Orientation" metadata to a numeric value (see Section B.2
for the numeric codes). This only changes the metadata field that specifies how the image
should be displayed, it does NOT alter the pixels themselves, and so has no effect for
image formats that don’t support some kind of orientation metadata.

--rotcw
--rotccw
--rot180

Adjusts the image’s "Orientation" metadata by rotating it 90◦ clockwise, 90◦ de-
grees counter-clockwise, or 180◦, respectively, compared to its current setting. This only
changes the metadata field that specifies how the image should be displayed, it does NOT
alter the pixels themselves, and so has no effect for image formats that don’t support some
kind of orientation metadata.

OpenImageIO Programmer’s Documentation

16 Searching Image Metadata With
igrep

The igrep program search one or more image files for metadata that match a string or regular
expression.

16.1 Using igrep

The igrep utility is invoked as follows:

igrep [options] pattern filename ...

Where pattern is a POSIX.2 regular expression (just like the Unix/Linux grep(1) com-
mand), and filename (and any following names) specify images or directories that should be
searched. An image file will “match” if any of its metadata contains values contain substring
that are recognized regular expression. The image files may be of any format recognized by
OpenImageIO (i.e., for which ImageInput plugins are available).

Example:

$ igrep Jack *.jpg
bar.jpg: Keywords = Carly; Jack
foo.jpg: Keywords = Jack
test7.jpg: ImageDescription = Jack on vacation

16.2 igrep command-line options

--help

Prints usage information to the terminal.

-d

Print directory names as it recurses. This only happens if the -r option is also used.

369

370 CHAPTER 16. SEARCHING IMAGE METADATA WITH IGREP

-E

Interpret the pattern as an extended regular expression (just like egrep or grep -E).

-f

Match the expression against the filename, as well as the metadata within the file.

-i

Ignore upper/lower case distinctions. Without this flag, the expression matching will be
case-sensitive.

-l

Simply list the matching files by name, surpressing the normal output that would include
the metadata name and values that matched. For example:

$ igrep Jack *.jpg
bar.jpg: Keywords = Carly; Jack
foo.jpg: Keywords = Jack
test7.jpg: ImageDescription = Jack on vacation

$ igrep -l Jack *.jpg
bar.jpg
foo.jpg
test7.jpg

-r

Recurse into directories. If this flag is present, any files specified that are directories will
have any image file contained therein to be searched for a match (an so on, recursively).

-v

Invert the sense of matching, to select image files that do not match the expression.

OpenImageIO Programmer’s Documentation

17 Comparing Images With idiff

17.1 Overview

The idiff program compares two images, printing a report about how different they are and
optionally producing a third image that records the pixel-by-pixel differences between them.
There are a variety of options and ways to compare (absolute pixel difference, various thresholds
for warnings and errors, and also an optional perceptual difference metric).

Because idiff is built on top on OpenImageIO, it can compare two images of any formats
readable by ImageInput plugins on hand. They may have any (or different) file formats, data
formats, etc.

17.2 Using idiff

The idiff utility is invoked as follows:

idiff [options] image1 image2

Where input1 and input2 are the names of two image files that should be compared. They
may be of any format recognized by OpenImageIO (i.e., for which image-reading plugins are
available).

If the two input images are not the same resolutions, or do not have the same number of
channels, the comparison will return FAILURE immediately and will not attempt to compare
the pixels of the two images. If they are the same dimensions, the pixels of the two images will
be compared, and a report will be printed including the mean and maximum error, how many
pixels were above the warning and failure thresholds, and whether the result is PASS, WARNING,
or FAILURE. For example:

$ idiff a.jpg b.jpg

Comparing "a.jpg" and "b.jpg"
Mean error = 0.00450079
RMS error = 0.00764215
Peak SNR = 42.3357
Max error = 0.254902 @ (700, 222, B)
574062 pixels (82.1%) over 1e-06
574062 pixels (82.1%) over 1e-06

FAILURE

371

372 CHAPTER 17. COMPARING IMAGES WITH IDIFF

The “mean error” is the average difference (per channel, per pixel). The “max error” is
the largest difference in any pixel channel, and will point out on which pixel and channel it
was found. It will also give a count of how many pixels were above the warning and failure
thresholds.

The metadata of the two images (e.g., the comments) are not currently compared; only
differences in pixel values are taken into consideration.

Raising the thresholds

By default, if any pixels differ between the images, the comparison will fail. You can allow
some differences to still pass by raising the failure thresholds. The following example will
allow images to pass the comparison test, as long as no more than 10% of the pixels differ by
0.004 (just above a 1/255 threshold):

idiff -fail 0.004 -failpercent 10 a.jpg b.jpg

But what happens if a just a few pixels are very different? Maybe you want that to fail, also.
The following adjustment will fail if at least 10% of pixels differ by 0.004, or if any pixel differs
by more than 0.25:

idiff -fail 0.004 -failpercent 10 -hardfail 0.25 a.jpg b.jpg

If none of the failure criteria are met, and yet some pixels are still different, it will still give
a WARNING. But you can also raise the warning threshold in a similar way:

idiff -fail 0.004 -failpercent 10 -hardfail 0.25 \
-warn 0.004 -warnpercent 3 a.jpg b.jpg

The above example will PASS as long as fewer than 3% of pixels differ by more than 0.004. If
it does, it will be a WARNING as long as no more than 10% of pixels differ by 0.004 and no
pixel differs by more than 0.25, otherwise it is a FAILURE.

Output a difference image

Ordinary text output will tell you how many pixels failed or were warnings, and which pixel
had the biggest difference. But sometimes you need to see visually where the images differ.
You can get idiff to save an image of the differences between the two input images:

idiff -o diff.tif -abs a.jpg b.jpg

The -abs flag saves the absolute value of the differences (i.e., all positive values or zero).
If you omit the -abs, pixels in which a.jpg have smaller values than b.jpg will be negative in
the difference image (be careful in this case of using a file format that doesn’t support negative
values).

You can also scale the difference image with the -scale, making them easier to see. And
the -od flag can be used to output a difference image only if the comparison fails, but not if the
images pass within the designated threshold (thus saving you the trouble and space of saving a
black image).

OpenImageIO Programmer’s Documentation

17.3. IDIFF REFERENCE 373

17.3 idiff Reference

The various command-line options are discussed below:

General options

--help

Prints usage information to the terminal.

-v

Verbose output — more detail about what it finds when comparing images, even when
the comparison does not fail.

-q

Quiet mode – output nothing for successful match), output only minimal error messages
to stderr for failure / no match. The shell return code also indicates success or failure
(successful match returns 0, failure returns nonzero).

-a

Compare all subimages. Without this flag, only the first subimage of each file will be
compared.

Thresholds and comparison options

-fail A
-failpercent B
-hardfail C

Sets the threshold for FAILURE: if more than B% of pixels (on a 0-100 floating point scale)
are greater than A different, or if any pixels are more than C different. The defaults are to
fail if more than 0% (any) pixels differ by more than 0.00001 (1e-6), and C is infinite.

-warn A
-warnpercent B
-hardwarn C

Sets the threshold for WARNING: if more than B% of pixels (on a 0-100 floating point scale)
are greater than A different, or if any pixels are more than C different. The defaults are to
warn if more than 0% (any) pixels differ by more than 0.00001 (1e-6), and C is infinite.

OpenImageIO Programmer’s Documentation

374 CHAPTER 17. COMPARING IMAGES WITH IDIFF

-p

Does an additional test on the images to attempt to see if they are perceptually different
(whether you are likely to discern a difference visually), using Hector Yee’s metric. If
this option is enabled, the statistics will additionally show a report on how many pixels
failed the perceptual test, and the test overall will fail if more than the “fail percentage”
failed the perceptual test.

Difference image output

-o outputfile

Outputs a difference image to the designated file. This difference image pixels consist are
each of the value of the corresponding pixel from image1 minus the value of the pixel
image2.

The file extension of the output file is used to determine the file format to write (e.g.,
"out.tif" will write a TIFF file, "out.jpg" will write a JPEG, etc.). The data format
of the output file will be format of whichever of the two input images has higher precision
(or the maximum precision that the designated output format is capable of, if that is less
than either of the input imges).

Note that pixels whose value is lower in image1 than in image2, this will result in negative
pixels (which may be clamped to zero if the image format does not support negative
values)), unless the -abs option is also used.

-abs

Will cause the output image to consist of the absolute value of the difference between the
two input images (so all values in the difference image ≥ 0).

-scale factor

Scales the values in the difference image by the given (floating point) factor. The main
use for this is to make small actual differences more visible in the resulting difference
image by giving a large scale factor.

-od

Causes a difference image to be produce only if the image comparison fails. That is, even
if the -o option is used, images that are within the comparison threshold will not write
out a useless black (or nearly black) difference image.

OpenImageIO Programmer’s Documentation

17.3. IDIFF REFERENCE 375

Process return codes

The idiff program will return a code that can be used by scripts to indicate the results:

0 OK: the images match within the warning and error thresholds.
1 Warning: the errors differ a little, but within error thresholds.
2 Failure: the errors differ a lot, outside error thresholds.
3 The images weren’t the same size and couldn’t be compared.
4 File error: could not find or open input files, etc.

OpenImageIO Programmer’s Documentation

376 CHAPTER 17. COMPARING IMAGES WITH IDIFF

OpenImageIO Programmer’s Documentation

18 Making Tiled MIP-Map Texture
Files With maketx or oiiotool

18.1 Overview

The TextureSystem (Chapter 8) will exhibit much higher performance if the image files it
uses as textures are tiled (versus scanline) orientation, have multiple subimages at different
resolutions (MIP-mapped), and include a variety of header or metadata fields appropriately set
for texture maps. Any image that you intend to use as input to TextureSystem, therefore,
should first be converted to have these properties. An ordinary image will work as a texture,
but without this additional step, it will be drastically less efficient in terms of memory, disk or
network I/O, and time.

This can be accomplished programmatically using the ImageBufAlgo make texture()
function (see Section 10.9 for C++ and Section 11.9.8 for Python).

OpenImageIO includes two command-line utilities capable of converting ordinary images
into texture files: maketx and oiiotool.1

18.2 maketx

The maketx program will convert ordinary images to efficient textures. The maketx utility is
invoked as follows:

maketx [options] input... -o output

Where input and output name the input image and desired output filename. The input files
may be of any image format recognized by OpenImageIO (i.e., for which ImageInput plugins
are available). The file format of the output image will be inferred from the file extension of the
output filename (e.g., "foo.tif" will write a TIFF file).

1Why are there two programs? Historical artifact – maketx existed first, and much later oiiotool was extended
to be capable of directly writing texture files. If you are simply converting an image into a texture, maketx is
more straightforward and foolproof, in that you can’t accidentally forget to turn it into a texture, as you might do
with oiiotool. On the other hand, oiiotool is the way to go if you have a complex series of image processing
operations and want the end result to be a texture, without having to write an intermediate file to feed separately to
maketx.

377

378
CHAPTER 18. MAKING TILED MIP-MAP TEXTURE FILES WITH MAKETX OR

OIIOTOOL

Command-line arguments are:

--help

Prints usage information to the terminal.

-v

Verbose status messages, including runtime statistics and timing.

--runstats

Print runtime statistics and timing.

-o outputname

Sets the name of the output texture.

--threads n

Use n execution threads if it helps to speed up image operations. The default (also if
n = 0) is to use as many threads as there are cores present in the hardware.

--format formatname

Specifies the image format of the output file (e.g., “tiff”, “OpenEXR”, etc.). If --format
is not used, maketx will guess based on the file extension of the output filename; if it is
not a recognized format extension, TIFF will be used by default.

-d datatype

Attempt to sets the output pixel data type to one of: uint8, sint8, uint16, sint16,
half, float, double.

If the -d option is not supplied, the output data type will be the same as the data format
of the input file.

In either case, the output file format itself (implied by the file extension of the output
filename) may trump the request if the file format simply does not support the requested
data type.

--tile x y

Specifies the tile size of the output texture. If not specified, maketx will make 64× 64
tiles.

--separate

Forces “separate” (e.g., RRR...GGG...BBB) packing of channels in the output file. With-
out this option specified, “contiguous” (e.g., RGBRGBRGB...) packing of channels will
be used for those file formats that support it.

OpenImageIO Programmer’s Documentation

18.2. MAKETX 379

--compression method

Sets the compression method for the output image (the default is to try to use "zip"
compression, if it is available).

-u

Ordinarily, textures are created unconditionally (which could take several seconds for
large input files if read over a network) and will be stamped with the current time.

The -u option enables update mode: if the output file already exists, and has the same
time stamp as the input file, and the command-lie arguments that created it are identical
to the current ones, then the texture will be left alone and not be recreated. If the output
file does not exist, or has a different time stamp than the input file, or was created using
different command line arguments, then the texture will be created and given the time
stamp of the input file.

--wrap wrapmode
--swrap wrapmode --twrap wrapmode

Sets the default wrap mode for the texture, which determines the behavior when the tex-
ture is sampled outside the [0,1] range. Valid wrap modes are: black, clamp, periodic,
mirror. The default, if none is set, is black. The --wrap option sets the wrap mode in
both directions simultaneously, while the --swrap and --twrap may be used to set them
individually in the s (horizontal) and t (vertical) diretions.

Although this sets the default wrap mode for a texture, note that the wrap mode may have
an override specified in the texture lookup at runtime.

--resize

Causes the highest-resolution level of the MIP-map to be a power-of-two resolution in
each dimension (by rounding up the resolution of the input image). There is no good
reason to do this for the sake of OIIO’s texture system, but some users may require it in
order to create MIP-map images that are compatible with both OIIO and other texturing
systems that require power-of-2 textures.

--filter name

By default, the resizing step that generates successive MIP levels uses a triangle filter
to bilinearly combine pixels (for MIP levels with even number of pixels, this is also
equivalent to a box filter, which merely averages groups of 4 adjacent pixels). This is
fast, but for source images with high frequency content, can result in aliasing or other
artifacts in the lower-resolution MIP levels.

The --filter option selects a high-quality filter to use when resizing to generate suc-
cessive MIP levels. Choices include lanczos3 (our best recommendation for highest-
quality filtering, a 3-lobe Lanczos filter), box, triangle, catrom, blackman-harris,
gaussian, mitchell, bspline, "cubic", "keys", "simon", "rifman", radial-lanczos3,
disk, sinc.

OpenImageIO Programmer’s Documentation

380
CHAPTER 18. MAKING TILED MIP-MAP TEXTURE FILES WITH MAKETX OR

OIIOTOOL

If you select a filter with negative lobes (including lanczos3, sinc, lanczos3, keys,
simon, rifman, or catrom), and your source image is an HDR image with very high con-
trast regions that include pixels with values > 1, you may also wish to use the --rangecompress
option to avoid ringing artifacts.

--hicomp

Perform highlight compensation. When HDR input data with high-contrast highlights is
turned into a MIP-mapped texture using a high-quality filter with negative lobes (such as
lanczos3), objectionable ringing could appear near very high-contrast regions with pixel
values > 1. This option improves those areas by using range compression (transforming
values from a linear to a logarithmic scale that greatly compresses the values > 1) prior to
each image filtered-resize step, and then expanded back to a linear format after the resize,
and also clamping resulting pixel values to be non-negative. This can result in some loss
of energy, but often this is a preferable alternative to ringing artifacts in your upper MIP
levels.

--sharpen contrast

EXPERIMENTAL: USE AT YOUR OWN RISK!

This option will run an additional sharpening filter when creating the successive MIP-
map levels. It uses an unsharp mask (much like in Section 10.7) to emphasize high-
frequency details to make features “pop” visually even at high MIP-map levels. The
contrast controls the degree to which it does this. Probably a good value to enhance
detail but not go overboard is 0.5 or even 0.25. A value of 1.0 may make strage artifacts
at high MIP-map levels. Also, if you simultaneously use --filter unsharp-median,
a slightly different variant of unsharp masking will be used that employs a median filter
to separate out the low-frequencies, this may tend to help emphasize small features while
not over-emphasizing large edges.

--nomipmap

Causes the output to not be MIP-mapped, i.e., only will have the highest-resolution level.

--nchannels n

Sets the number of output channels. If n is less than the number of channels in the input
image, the extra channels will simply be ignored. If n is greater than the number of
channels in the input image, the additional channels will be filled with 0 values.

--chnames a,b,...

Renames the channels of the output image. All the channel names are concatenated to-
gether, separated by commas. A “blank” entry will cause the channel to retain its previous
value (for example, --chnames ,,,A will rename channel 3 to be "A" and leave channels
0–2 as they were.

OpenImageIO Programmer’s Documentation

18.2. MAKETX 381

--checknan

Checks every pixel of the input image to ensure that no NaN or Inf values are present. If
such non-finite pixel values are found, an error message will be printed and maketx will
terminate without writing the output image (returning an error code).

--fixnan streategy

Repairs any pixels in the input image that contained NaN or Inf values (hereafter referred
to collectively as “nonfinite”). If strategy is black, nonfinite values will be replaced with
0. If strategy is box3, nonfinite values will be replaced by the average of all the finite
values within a 3×3 region surrounding the pixel.

--fullpixels

Resets the “full” (or “display”) pixel range to be the “data” range. This is used to deal with
input images that appear, in their headers, to be crop windows or overscanned images, but
you want to treat them as full 0–1 range images over just their defined pixel data.

--Mcamera ...16 floats...
--Mscreen ...16 floats...

Sets the camera and screen matrices (sometimes called Nl and NP, respectively, by some
renderers) in the texture file, overriding any such matrices that may be in the input image
(and would ordinarily be copied to the output texture).

--prman-metadata

Causes metadata "PixarTextureFormat" to be set, which is useful if you intend to
create an OpenEXR texture or environment map that can be used with PRMan as well as
OIIO.

--attrib name value

Adds or replaces metadata with the given name to have the specified value.

It will try to infer the type of the metadata from the value: if the value contains only
numerals (with optional leading minus sign), it will be saved as int metadata; if it also
contains a decimal point, it will be saved as float metadata; otherwise, it will be saved
as a string metadata.
For example, you could explicitly set the IPTC location metadata fields with:

oiiotool --attrib "IPTC:City" "Berkeley" in.jpg out.jpg

--sattrib name value

Adds or replaces metadata with the given name to have the specified value, forcing it to
be interpreted as a string. This is helpful if you want to set a string metadata to a
value that the --attrib command would normally interpret as a number.

OpenImageIO Programmer’s Documentation

382
CHAPTER 18. MAKING TILED MIP-MAP TEXTURE FILES WITH MAKETX OR

OIIOTOOL

--sansattrib

When set, this edits the command line inserted in the "Software" and "ImageHistory"
metadata to omit any verbose --attrib and --sattrib commands.

--constant-color-detect

Detects images in which all pixels are identical, and outputs the texture at a reduced
resolution equal to the tile size, rather than filling endless tiles with the same constant
color. That is, by substituting a low-res texture for a high-res texture if it’s a constant
color, you could save a lot of save disk space, I/O, and texture cache size. It also sets the
"ImageDescription" to contain a special message of the form "ConstantColor=[r,g,...]".

--monochrome-detect

Detects multi-channel images in which all color components are identical, and outputs
the texture as a single-channel image instead. That is, it changes RGB images that are
gray into single-channel gray scale images.

Use with caution! This is a great optimization if such textures will only have their first
channel accessed, but may cause unexpected behavior if the “client” application will
attempt to access those other channels that will no longer exist.

--opaque-detect

Detects images that have a designated alpha channel for which the alpha value for all
pixels is 1.0 (fully opaque), and omits the alpha channel from the output texture. So, for
example, an RGBA input texture where A=1 for all pixels will be output just as RGB.
The purpose is to save disk space, texture I/O bandwidth, and texturing time for those
textures where alpha was present in the input, but clearly not necessary.

Use with caution! This is a great optimization only if your use of such textures will
assume that missing alpha channels are equivalent to textures whose alpha is 1.0 every-
where.

--ignore-unassoc

Ignore any header tags in the input images that indicate that the input has “unassociated”
alpha. When this option is used, color channels with unassociated alpha will not be
automatically multiplied by alpha to turn them into associated alpha. This is also a good
way to fix input images that really are associated alpha, but whose headers incorrectly
indicate that they are unassociated alpha.

OpenImageIO Programmer’s Documentation

18.2. MAKETX 383

--prman

PRMan is will crash in strange ways if given textures that don’t have its quirky set of
tile sizes and other specific metadata. If you want maketx to generate textures that may
be used with either OpenImageIO or PRMan, you should use the --prman option, which
will set several options to make PRMan happy, overriding any contradictory settings on
the command line or in the input texture.

Specifically, this option sets the tile size (to 64x64 for 8 bit, 64x32 for 16 bit integer,
and 32x32 for float or half images), uses “separate” planar configuration (--separate),
and sets PRMan-specific metadata (--prman-metadata). It also outputs sint16 textures
if uint16 is requested (because PRMan for some reason does not accept true uint16 tex-
tures), and in the case of TIFF files will omit the Exif directory block which will not be
recognized by the older version of libtiff used by PRMan.

OpenImageIO will happily accept textures that conform to PRMan’s expectations, but
not vice versa. But OpenImageIO’s TextureSystem has better performance with tex-
tures that use maketx’s default settings rather than these oddball choices. You have been
warned!

--oiio

This sets several options that we have determined are the optimal values for OpenIm-
ageIO’s TextureSystem, overriding any contradictory settings on the command line or
in the input texture.

Specifically, this is the equivalent to using
--separate --tile 64 64.

--colorconvert inspace outspace

Convert the color space of the input image from inspace to tospace. If OpenColorIO is
installed and finds a valid configuration, it will be used for the color conversion. If OCIO
is not enabled (or cannot find a valid configuration, OIIO will at least be able to convert
among linear, sRGB, and Rec709.

--colorconfig name

Explicitly specify a custom OpenColorIO configuration file. Without this, the default is
to use the $OCIO environment variable as a guide for the location of the OpenColorIO
configuration file.

--unpremult

When undergoing some color conversions, it is helpful to “un-premultiply” the alpha
before converting color channels, and then re-multiplying by alpha. Caveat emptor – if
you don’t know exactly when to use this, you probably shouldn’t be using it at all.

OpenImageIO Programmer’s Documentation

384
CHAPTER 18. MAKING TILED MIP-MAP TEXTURE FILES WITH MAKETX OR

OIIOTOOL

--mipimage filename

Specifies the name of an image file to use as a custom MIP-map level, instead of simply
downsizing the last one. This option may be used multiple times to specify multiple
levels. For example:

maketx 256.tif --mipimage 128.tif --mipimage 64.tif -o out.tx

This will make a texture with the first MIP level taken from 256.tif, the second level
from 128.tif, the third from 64.tif, and then subsequent levels will be the usual down-
sizings of 64.tif.

--envlatl

Creates a latitude-longitude environment map, rather than an ordinary texture map.

--lightprobe

Creates a latitude-longitude environment map, but in contrast to --envlatl, the original
input image is assumed to be formatted as a light probe image2.

--bumpslopes

NEW! For a single channel input image representing height (that you would ordinarily use for a
bump or displacement), this produces a 6-channel texture that contains the first and sec-
ond moments of bump slope, which can be used to implement certain bump-to-roughness
techniques. The channel layout is as follows:

index channel name data at MIP level 0
0 "b0 h" h (height)
1 "b1 dhds" ∂h/∂s
2 "b2 dhdt" ∂h/∂t
3 "b3 dhds2" (∂h/∂s)2

4 "b4 dhdt2" (∂h/∂t)2

5 "b5 dhdsdt" (∂h/∂s) · (∂h/∂t)

(The strange channel names are to guarantee they are in alphabetical order, to prevent
reordering by OpenEXR. And also note that the simple relationships between channels 1
& 2, and 3–6, is only for the highest- resolution level of the MIP-map, and will differ for
the lower-res filtered versions, and those differences is what gives us the slope momets
that we need.)

A reference for explaining how this can be used is here:
Christophe Hery, Michael Kass, and Junhi Ling. ”Geometry into Shading.” Techni-
cal Memo 14-04, Pixar Animation Studios, 2014. https://graphics.pixar.com/
library/BumpRoughness

2See http://www.pauldebevec.com/Probes/ for examples and an explanation of the geometric layout.

OpenImageIO Programmer’s Documentation

https://graphics.pixar.com/library/BumpRoughness
https://graphics.pixar.com/library/BumpRoughness

18.2. MAKETX 385

--bumpformat bformat

NEW!In conjunction with --bumpslopes, this option can specify the strategy for determining
whether a 3-channel source image specifies a height map or a normal map. The value
"height" indicates it is a height map (only the first channel will be used). The value
"normal" indicates it is a normal map (all three channels will be used for x,y,z). The
default value, "auto", indicates that it should be interpreted as a height map if and only
if the R, G, B channel values are identical in all pixels, otherwise it will be interpreted as
a 3-channel normal map.

OpenImageIO Programmer’s Documentation

386
CHAPTER 18. MAKING TILED MIP-MAP TEXTURE FILES WITH MAKETX OR

OIIOTOOL

18.3 oiiotool

The oiiotool utility (Chapter 12) is capable of writing textures using the -otex option, and
lat-long environment maps using the -oenv option. Roughly speaking,

maketx [maketx-options] input -o output

is equivalent to

oiiotool input [oiiotool-options] -otex output

and

maketx -envlatl [maketx-options] input -o output

is equivalent to

oiiotool input [oiiotool-options] -oenv output

However, the notation for the various options are not identical between the two programs, as
will be explained by the remainder of this section.

The most important difference between oiiotool and maketx is that oiiotool can do so
much more than convert an existing input image to a texture – literally any image creation or
manipulation you can do via oiiotool may be output directly as a full texture file using -otex
(or as a lat-long environment map using -oenv).

Note that it is vitally important that you use one of the texture output commands (-otex or
-oenv) when creating textures with oiiotool— if you inadvertently forget and use an ordinary
-o, you will end up with an output image that is much less efficient to use as a texture.

Command line arguments useful when creating textures

As with any use of oiiotool, you may use the following to control the run generally:

--help
-v
--runstats
--threads n

and as with any use of oiiotool, you may use the following command-line options to control
aspects of the any output files (including those from -otex and -oenv, as well as -o). Only
brief descriptions are given below, please consult Chapter 12 for detailed explanations.

-d datatype

Specify the pixel data type (uint8, uint16, half, float, etc.) if you wish to override
the default of writing the same data type as the first input file read.

OpenImageIO Programmer’s Documentation

18.3. OIIOTOOL 387

--tile x y

Explicitly override the tile size (though you are strongly urged to use the default, and not
use this command).

--compression method

Explicitly override the default compression methods when writing the texture file.

--ch channellist

Shuffle, add, delete, or rename channels (see 12.6).

--chnames a,b,...

Renames the channels of the output image.

--fixnan stretegy

Repairs any pixels in the input image that contained NaN or Inf values (if the strategy is
box3 or black), or to simply abort with an error message (if the strategy is error).

--fullpixels

Resets the “full” (or “display”) pixel range to be the “data” range.

--planarconfig separate

Forces “separate” (e.g., RRR...GGG...BBB) packing of channels in the output texture.
This is almost always a bad choice, unless you know that the texture file must be readable
by PRMan, in which case it is required.

--attrib name value

oiiotool’s --attrib command may be used to set attributes in the metadata of the
output texture.

--attrib:type=matrix worldtocam ...16 comma-separated floats...
--attrib:type=matrix screentocam ...16 comma-separated floats...

Set/override the camera and screen matrices.

OpenImageIO Programmer’s Documentation

388
CHAPTER 18. MAKING TILED MIP-MAP TEXTURE FILES WITH MAKETX OR

OIIOTOOL

Optional arguments to -otex and -oenv

As with many oiiotool commands, the -otex and -oenv may have various optional arguments
appended, in the form :name=value (see Section 12.1).

Optional arguments supported by -otex and -oenv include all the same options as -o (Sec-
tion 12.4) and also the following (explanations are brief, please consult Section 18.2 for more
detailed explanations of each, for the corresponding maketx option):

Appended Option maketx equivalent
wrap=string --wrap
swrap=string --swrap
twrap=string --twrap

resize=1 --resize
nomipmap=1 --nomipmap
updatemode=1 -u
monochrome detect=1 --monochrome-detect
opaque detect=1 --opaque-detect
unpremult=1 --unpremult
incolorspace=name --incolorspace
outcolorspace=name --outcolorspace
hilightcomp=1 --hicomp
sharpen=float --sharpen
filter=string --filter
prman metadata=1 --prman
prman options=1 --prman-metadata

Examples

oiiotool in.tif -otex out.tx

oiiotool in.jpg --colorconvert sRGB linear -d uint16 -otex out.tx

oiiotool --pattern:checker 512x512 3 -d uint8 -otex:wrap=periodic checker.tx

oiiotool in.exr -otex:hilightcomp=1:sharpen=0.5 out.exr

OpenImageIO Programmer’s Documentation

Part III

Appendices

389

A Building OpenImageIO

391

392 APPENDIX A. BUILDING OPENIMAGEIO

OpenImageIO Programmer’s Documentation

B Metadata conventions

The ImageSpec class, described thoroughly in Section 2.6, provides the basic description of an
image that are essential across all formats — resolution, number of channels, pixel data format,
etc. Individual images may have additional data, stored as name/value pairs in the extra -
attribs field. Though literally anything can be stored in extra attribs — it’s specifically
designed for format- and user-extensibility — this chapter establishes some guidelines and lays
out all of the field names that OpenImageIO understands.

B.1 Description of the image

"ImageDescription" : string

The image description, title, caption, or comments.

"Keywords" : string

Semicolon-separated keywords describing the contents of the image. (Semicolons are
used rather than commas because of the common case of a comma being part of a keyword
itself, e.g., “Kurt Vonnegut, Jr.” or “Washington, DC.”)

"Artist" : string

The artist, creator, or owner of the image.

"Copyright" : string

Any copyright notice or owner of the image.

"DateTime" : string

The creation date of the image, in the following format: YYYY:MM:DD HH:MM:SS (exactly
19 characters long, not including a terminating NULL). For example, 7:30am on Dec 31,
2008 is encoded as "2008:12:31 07:30:00".

Usually this is simply the time that the image data was last modified. It may be wise to
also store the "Exif:DateTimeOriginal" and "Exif:DateTimeDigitized" (see Sec-
tion B.8) to further distinguish the original image and its conversion to digital media.

393

394 APPENDIX B. METADATA CONVENTIONS

"DocumentName" : string

The name of an overall document that this image is a part of.

"Software" : string

The software that was used to create the image.

"HostComputer" : string

The name or identity of the computer that created the image.

B.2 Display hints

"Orientation" : int

By default, image pixels are ordered from the top of the display to the bottom, and within
each scanline, from left to right (i.e., the same ordering as English text and scan progres-
sion on a CRT). But the "Orientation" field can suggest that it should be displayed
with a different orientation, according to the TIFF/EXIF conventions:

1 normal (top to bottom, left to right)
2 flipped horizontally (top to botom, right to left)
3 rotated 180◦ (bottom to top, right to left)
4 flipped vertically (bottom to top, left to right)
5 transposed (left to right, top to bottom)
6 rotated 90◦ clockwise (right to left, top to bottom)
7 transverse (right to left, bottom to top)
8 rotated 90◦ counter-clockwise (left to right, bottom to top)

"PixelAspectRatio" : float

The aspect ratio (x/y) of the size of individual pixels, with square pixels being 1.0 (the
default).

"XResolution" : float
"YResolution" : float
"ResolutionUnit" : string

The number of horizontal (x) and vertical (y) pixels per resolution unit. This ties the
image to a physical size (where applicable, such as with a scanned image, or an image
that will eventually be printed).

Different file formats may dictate different resolution units. For example, the TIFF Im-
ageIO plugin supports "none", "in", and "cm".

OpenImageIO Programmer’s Documentation

B.3. COLOR INFORMATION 395

"oiio:Movie" : int

If nonzero, a hint that a multi-image file is meant to be interpreted as an animation (i.e.,
that the subimages are a time sequence).

"FramesPerSecond" : rational

For a multi-image file intended to be played back as an animation, the frame refresh
rate. (It’s technically a rational, but it may be retrieved as a float also, if you are ok with
imprecision.)

B.3 Color information

"oiio:ColorSpace" : string

The name of the color space of the color channels. Values incude:

"Linear" Color pixel values are known to be scene-linear and using facility-default
color primaries (presumed sRGB/Rec709 color primaries if otherwise unknown.

"sRGB" Using standard sRGB response and primaries.

"Rec709" Using standard Rec709 response and primaries.

"ACES" ACES color space encoding.

"AdobeRGB" Adobe RGB color space.

"KodakLog" Kodak logarithmic color space.

"GammaCorrectedX.Y" Color values have been gamma corrected (raised to the power
1/γ). The X.Y is the numeric value of the gamma exponent.

arbitrary The name of any color space known to OpenColorIO (if OCIO support is
present).

"oiio:Gamma" : float

If the color space is "GammaCorrectedX.Y", this value is the gamma exponent. (Op-
tional/deprecated; if present, it should match the suffix of the color space.)

"oiio:BorderColor" : float[nchannels]

The color presumed to be filling any parts of the display/full image window that are not
overlapping the pixel data window. If not supplied, the default is black (0 in all channels).

"ICCProfile" : uint8[]

The ICC color profile takes the form of an array of bytes (unsigned 8 bit chars). The
length of the array is the length of the profile blob.

OpenImageIO Programmer’s Documentation

396 APPENDIX B. METADATA CONVENTIONS

B.4 Disk file format info/hints

"oiio:BitsPerSample" : int

Number of bits per sample in the file.

Note that this may not match the reported ImageSpec::format, if the plugin is translat-
ing from an unsupported format. For example, if a file stores 4 bit grayscale per channel,
the "oiio:BitsPerSample" may be 4 but the format field may be TypeDesc::UINT8
(because the OpenImageIO APIs do not support fewer than 8 bits per sample).

"oiio:UnassociatedAlpha" : int

Whether the data in the file stored alpha channels (if any) that were unassociated with the
color (i.e., color not “premultiplied” by the alpha coverage value).

"planarconfig" : string

"contig" indicates that the file has contiguous pixels (RGB RGB RGB...), whereas
"separate" indicate that the file stores each channel separately (RRR...GGG...BBB...).

Note that only contiguous pixels are transmitted through the OpenImageIO APIs, but this
metadata indicates how it is (or should be) stored in the file, if possible.

"compression" : string

Indicates the type of compression the file uses. Supported compression modes will vary
from ImageInput plugin to plugin, and each plugin should document the modes it sup-
ports. If ImageInput::open is called with an ImageSpec that specifies an compression
mode not supported by that ImageInput, it will choose a reasonable default. As an ex-
ample, the TIFF ImageInput plugin supports "none", "lzw", "ccittrle", "zip" (the
default), "packbits".

"CompressionQuality" : int

Indicates the quality of compression to use (0–100), for those plugins and compression
methods that allow a variable amount of compression, with higher numbers indicating
higher image fidelity.

B.5 Substituting an IOPRoxy for custom I/O overrides

NEW!
Format readers and writers that respond positively to supports("ioproxy") have the ability
to read or write using an I/O proxy object. Among other things, this lets an ImageOutput write
the file to a memory buffer rather than saving to disk, and for an ImageInput to read the file
from a memory buffer. (Currently, only PNG and OpenEXR have the ability to do this.) This
behavior is controlled by a special attributes

OpenImageIO Programmer’s Documentation

B.6. PHOTOGRAPHS OR SCANNED IMAGES 397

"oiio:ioproxy" : pointer

Pointer to a Filesystem::IOProxy that will handle the I/O.

An explanation of how this feature is used may be found in Sections ?? and ??.

B.6 Photographs or scanned images

The following metadata items are specific to photos or captured images.

"Make" : string

For captured or scanned image, the make of the camera or scanner.

"Model" : string

For captured or scanned image, the model of the camera or scanner.

"ExposureTime" : float

The exposure time (in seconds) of the captured image.

"FNumber" : float

The f/stop of the camera when it captured the image.

B.7 Texture Information

Several standard metadata are very helpful for images that are intended to be used as textures
(especially for OpenImageIO’s TextureSystem).

"textureformat" : string

The kind of texture that this image is intended to be. We suggest the following names:

"Plain Texture" Ordinary 2D texture
"Volume Texture" 3D volumetric texture
"Shadow" Ordinary z-depth shadow map
"CubeFace Shadow" Cube-face shadow map
"Volume Shadow" Volumetric (“deep”) shadow map
"LatLong Environment" Latitude-longitude (rectangular) environment map
"CubeFace Environment" Cube-face environment map

"wrapmodes" : string

Give the intended texture wrap mode indicating what happens with texture coordinates
outside the [0...1] range. We suggest the following names: "black", "periodic",
"clamp", "mirror". If the wrap mode is different in each direction, they should simply
be separated by a comma. For example, "black" means black wrap in both directions,
whereas "clamp,periodic" means to clamp in u and be periodic in v.

OpenImageIO Programmer’s Documentation

398 APPENDIX B. METADATA CONVENTIONS

"fovcot" : float

The cotangent (x/y) of the field of view of the original image (which may not be the same
as the aspect ratio of the pixels of the texture, which may have been resized).

"worldtocamera" : matrix44

For shadow maps or rendered images this item (of type TypeDesc::PT MATRIX) is the
world-to-camera matrix describing the camera position.

"worldtoscreen" : matrix44

For shadow maps or rendered images this item (of type TypeDesc::PT MATRIX) is the
world-to-screen matrix describing the full projection of the 3D view onto a [−1...1]×
[−1...1] 2D domain.

"oiio:updirection" : string

For environment maps, indicates which direction is “up” (valid values are "y" or "z"), to
disambiguate conventions for environment map orientation.

"oiio:sampleborder" : int

If not present or 0 (the default), the conversion from pixel integer coordinates (i, j) to
texture coordinates (s, t) follows the usual convention of s = (i+0.5)/xres and t = (j+
0.5)/yres. However, if this attribute is present and nonzero, the first and last row/column
of pixels lie exactly at the s or t = 0 or 1 boundaries, i.e., s = i/(xres− 1) and t =
j/(yres−1).

"oiio:ConstantColor" : string

If present, is a hint that the texture has the same value in all pixels, and the metadata
value is a string containing the channel values as a comma-separated list (no spaces, for
example: "0.73,0.9,0.11,1.0").

"oiio:AverageColor" : string

If present, is a hint giving the average value of all pixels in the texture, as a string contain-
ing a comma-separated list of the channel values (no spaces, for example: "0.73,0.9,0.11,1.0").

"oiio:SHA-1" : string

If present, is a 40-byte SHA-1 hash of the input image (possibly salted with various
maketx options) that can serve to quickly compare two separate textures to know if they
contain the same pixels. While it’s not, technically, 100% guaranteed that no separate
textures will match, it’s so astronomically unlikely that we discount the possibility (you’d
be rendering movies for centuries before finding a single match).

OpenImageIO Programmer’s Documentation

B.8. EXIF METADATA 399

B.8 Exif metadata

The following Exif metadata tags correspond to items in the “standard” set of metadata.

Exif tag OpenImageIO metadata convention
ColorSpace (reflected in "oiio:ColorSpace")
ExposureTime "ExposureTime"
FNumber "FNumber"

The other remaining Exif metadata tags all include the “Exif:” prefix to keep it from clash-
ing with other names that may be used for other purposes.

"Exif:ExposureProgram" : int

The exposure program used to set exposure when the picture was taken:

0 unknown
1 manual
2 normal program
3 aperture priority
4 shutter priority
5 Creative program (biased toward depth of field)
6 Action program (biased toward fast shutter speed)
7 Portrait mode (closeup photo with background out of focus)
8 Landscape mode (background in focus)

"Exif:SpectralSensitivity" : string

The camera’s spectral sensitivity, using the ASTM conventions.

"Exif:ISOSpeedRatings" : int

The ISO speed and ISO latitude of the camera as specified in ISO 12232.

"Exif:DateTimeOriginal" : string
"Exif:DateTimeDigitized" : string

Date and time that the original image data was generated or captured, and the time/time
that the image was stored as digital data. Both are in "YYYY:MM:DD HH:MM:SS" format.

To clarify the role of these (and also with respect to the standard "DateTime" metadata),
consider an analog photograph taken in 1960 (Exif:DateTimeOriginal), which was
scanned to a digital image in 2010 (Exif:DateTimeDigitized), and had color correc-
tions or other alterations performed in 2015 (DateTime).

"Exif:CompressedBitsPerPixel" : float

The compression mode used, measured in compressed bits per pixel.

OpenImageIO Programmer’s Documentation

400 APPENDIX B. METADATA CONVENTIONS

"Exif:ShutterSpeedValue" : float

Shutter speed, in APEX units: − log2(exposuretime)

"Exif:ApertureValue" : float

Aperture, in APEX units: 2 log2(fnumber)

"Exif:BrightnessValue" : float

Brightness value, assumed to be in the range of −99.99 – 99.99.

"Exif:ExposureBiasValue" : float

Exposure bias, assumed to be in the range of −99.99 – 99.99.

"Exif:MaxApertureValue" : float

Smallest F number of the lens, in APEX units: 2 log2(fnumber)

"Exif:SubjectDistance" : float

Distance to the subject, in meters.

"Exif:MeteringMode" : int

The metering mode:

0 unknown
1 average
2 center-weighted average
3 spot
4 multi-spot
5 pattern
6 partial
255 other

OpenImageIO Programmer’s Documentation

B.8. EXIF METADATA 401

"Exif:LightSource" : int

The kind of light source:

0 unknown
1 daylight
2 tungsten (incandescent light)
4 flash
9 fine weather
10 cloudy weather
11 shade
12 daylight fluorescent (D 5700-7100K)
13 day white fluorescent (N 4600-5400K)
14 cool white fuorescent (W 3900 - 4500K)
15 white fluorescent (WW 3200 - 3700K)
17 standard light A
18 standard light B
19 standard light C
20 D55
21 D65
22 D75
23 D50
24 ISO studio tungsten
255 other light source

"Exif:Flash" int

A sum of:

1 if the flash fired
0 no strobe return detection function
4 strobe return light was not detected
6 strobe return light was detected
8 compulsary flash firing
16 compulsary flash supression
24 auto-flash mode
32 no flash function (0 if flash function present)
64 red-eye reduction supported (0 if no red-eye reduction mode)

"Exif:FocalLength" : float

Actual focal length of the lens, in mm.

"Exif:SecurityClassification" : string

Security classification of the image: ‘C’ = confidential, ‘R’ = restricted, ‘S’ = secret, ‘T’
= top secret, ‘U’ = unclassified.

OpenImageIO Programmer’s Documentation

402 APPENDIX B. METADATA CONVENTIONS

"Exif:ImageHistory" : string

Image history.

"Exif:SubsecTime" : string

Fractions of a second to augment the "DateTime" (expressed as text of the digits to the
right of the decimal).

"Exif:SubsecTimeOriginal" : string

Fractions of a second to augment the "Exif:DateTimeOriginal" (expressed as text of
the digits to the right of the decimal).

"Exif:SubsecTimeDigitized" : string

Fractions of a second to augment the "Exif:DateTimeDigital" (expressed as text of
the digits to the right of the decimal).

"Exif:PixelXDimension" : int
"Exif:PixelYDimension" : int

The x and y dimensions of the valid pixel area. FIXME – better explanation?

"Exif:FlashEnergy" : float

Strobe energy when the image was captures, measured in Beam Candle Power Seconds
(BCPS).

"Exif:FocalPlaneXResolution" : float
"Exif:FocalPlaneYResolution" : float
"Exif:FocalPlaneResolutionUnit" : int

The number of pixels in the x and y dimension, per resolution unit. The codes for resolu-
tion units are:

1 none
2 inches
3 cm
4 mm
5 µm

"Exif:ExposureIndex" : float

The exposure index selected on the camera.

OpenImageIO Programmer’s Documentation

B.8. EXIF METADATA 403

"Exif:SensingMethod" : int

The image sensor type on the camra:

1 undefined
2 one-chip color area sensor
3 two-chip color area sensor
4 three-chip color area sensor
5 color sequential area sensor
7 trilinear sensor
8 color trilinear sensor

"Exif:FileSource" : int

The source type of the scanned image, if known:

1 film scanner
2 reflection print scanner
3 digital camera

"Exif:SceneType" : int

Set to 1, if a directly-photographed image, otherwise it should not be present.

"Exif:CustomRendered" : int

Set to 0 for a normal process, 1 if some custom processing has been performed on the
image data.

"Exif:ExposureMode" : int

The exposure mode:

0 auto
1 manual
2 auto-bracket

"Exif:WhiteBalance" : int

Set to 0 for auto white balance, 1 for manual white balance.

"Exif:DigitalZoomRatio" : float

The digital zoom ratio used when the image was shot.

"Exif:FocalLengthIn35mmFilm" : int

The equivalent focal length of a 35mm camera, in mm.

OpenImageIO Programmer’s Documentation

404 APPENDIX B. METADATA CONVENTIONS

"Exif:SceneCaptureType" : int

The type of scene that was shot:

0 standard
1 landscape
2 portrait
3 night scene

"Exif:GainControl" : float

The degree of overall gain adjustment:

0 none
1 low gain up
2 high gain up
3 low gain down
4 high gain down

"Exif:Contrast" : int

The direction of contrast processing applied by the camera:

0 normal
1 soft
2 hard

"Exif:Saturation" : int

The direction of saturation processing applied by the camera:

0 normal
1 low saturation
2 high saturation

"Exif:Sharpness" : int

The direction of sharpness processing applied by the camera:

0 normal
1 soft
2 hard

"Exif:SubjectDistanceRange" : int

The distance to the subject:

0 unknown
1 macro
2 close
3 distant

OpenImageIO Programmer’s Documentation

B.9. GPS EXIF METADATA 405

"Exif:ImageUniqueID" : string

A unique identifier for the image, as 16 ASCII hexidecimal digits representing a 128-bit
number.

B.9 GPS Exif metadata

The following GPS-related Exif metadata tags correspond to items in the “standard” set of
metadata.

"GPS:LatitudeRef" : string

Whether the "GPS:Latitude" tag refers to north or south: "N" or "S".

"GPS:Latitude" : float[3]

The degrees, minutes, and seconds of latitude (see also "GPS:LatitudeRef").

"GPS:LongitudeRef" : string

Whether the "GPS:Longitude" tag refers to east or west: "E" or "W".

"GPS:Longitude" : float[3]

The degrees, minutes, and seconds of longitude (see also "GPS:LongitudeRef").

"GPS:AltitudeRef" : string

A value of 0 indicates that the altitude is above sea level, 1 indicates below sea level.

"GPS:Altitude" : float

Absolute value of the altitude, in meters, relative to sea level (see "GPS:AltitudeRef"
for whether it’s above or below sea level).

"GPS:TimeStamp" : float[3]

Gives the hours, minutes, and seconds, in UTC.

"GPS:Satellites" : string

Information about what satellites were visible.

"GPS:Status" : string

"A" indicates a measurement in progress, "V" indicates measurement interoperability.

OpenImageIO Programmer’s Documentation

406 APPENDIX B. METADATA CONVENTIONS

"GPS:MeasureMode" : string

"2" indicates a 2D measurement, "3" indicates a 3D measurement.

"GPS:DOP" : float

Data degree of precision.

"GPS:SpeedRef" : string

Indicates the units of the related "GPS:Speed" tag: "K" for km/h, "M" for miles/h, "N"
for knots.

"GPS:Speed" : float

Speed of the GPS receiver (see "GPS:SpeedRef" for the units).

"GPS:TrackRef" : string

Describes the meaning of the "GPS:Track" field: "T" for true direction, "M" for magnetic
direction.

"GPS:Track" : float

Direction of the GPS receiver movement (from 0–359.99). The related "GPS:TrackRef"
indicate whether it’s true or magnetic.

"GPS:ImgDirectionRef" : string

Describes the meaning of the "GPS:ImgDirection" field: "T" for true direction, "M" for
magnetic direction.

"GPS:ImgDirection" : float

Direction of the image when captured (from 0–359.99). The related "GPS:ImgDirectionRef"
indicate whether it’s true or magnetic.

"GPS:MapDatum" : string

The geodetic survey data used by the GPS receiver.

"GPS:DestLatitudeRef" : string

Whether the "GPS:DestLatitude" tag refers to north or south: "N" or "S".

"GPS:DestLatitude" : float[3]

The degrees, minutes, and seconds of latitude of the destination (see also "GPS:DestLatitudeRef").

OpenImageIO Programmer’s Documentation

B.9. GPS EXIF METADATA 407

"GPS:DestLongitudeRef" : string

Whether the "GPS:DestLongitude" tag refers to east or west: "E" or "W".

"GPS:DestLongitude" : float[3]

The degrees, minutes, and seconds of longitude of the destination (see also "GPS:DestLongitudeRef").

"GPS:DestBearingRef" : string

Describes the meaning of the "GPS:DestBearing" field: "T" for true direction, "M" for
magnetic direction.

"GPS:DestBearing" : float

Bearing to the destination point (from 0–359.99). The related "GPS:DestBearingRef"
indicate whether it’s true or magnetic.

"GPS:DestDistanceRef" : string

Indicates the units of the related "GPS:DestDistance" tag: "K" for km, "M" for miles,
"N" for knots.

"GPS:DestDistance" : float

Distance to the destination (see "GPS:DestDistanceRef" for the units).

"GPS:ProcessingMethod" : string

Processing method information.

"GPS:AreaInformation" : string

Name of the GPS area.

"GPS:DateStamp" : string

Date according to the GPS device, in format "YYYY:MM:DD".

"GPS:Differential" : int

If 1, indicates that differential correction was applied.

"GPS:HPositioningError" : float

Positioning error.

OpenImageIO Programmer’s Documentation

408 APPENDIX B. METADATA CONVENTIONS

B.10 IPTC metadata

The IPTC (International Press Telecommunications Council) publishes conventions for storing
image metadata, and this standard is growing in popularity and is commonly used in photo-
browsing programs to record captions and keywords.

The following IPTC metadata items correspond exactly to metadata in the OpenImageIO
conventions, so it is recommended that you use the standards and that plugins supporting IPTC
metadata respond likewise:

IPTC tag OpenImageIO metadata convention
Caption "ImageDescription"

Keyword IPTC keywords should be concatenated, separated by
semicolons (;), and stored as the "Keywords" attribute.

ExposureTime "ExposureTime"

CopyrightNotice "Copyright"

Creator "Artist"

The remainder of IPTC metadata fields should use the following names, prefixed with
“IPTC:” to avoid conflicts with other plugins or standards.

"IPTC:ObjecTypeReference" : string

Object type reference.

"IPTC:ObjectAttributeReference" : string

Object attribute reference.

"IPTC:ObjectName" : string

The name of the object in the picture.

"IPTC:EditStatus" : string

Edit status.

"IPTC:SubjectReference" : string

Subject reference.

"IPTC:Category" : string

Category.

"IPTC:ContentLocationCode" : string

Code for content location.

OpenImageIO Programmer’s Documentation

B.10. IPTC METADATA 409

"IPTC:ContentLocationName" : string

Name of content location.

"IPTC:ReleaseDate" : string
"IPTC:ReleaseTime" : string

Release date and time.

"IPTC:ExpirationDate" : string
"IPTC:ExpirationTime" : string

Expiration date and time.

"IPTC:Instructions" : string

Special instructions for handling the image.

"IPTC:ReferenceService" : string
"IPTC:ReferenceDate" : string
"IPTC:ReferenceNumber" : string

Reference date, service, and number.

"IPTC:DateCreated" : string
"IPTC:TimeCreated" : string

Date and time that the image was created.

"IPTC:DigitalCreationDate" : string
"IPTC:DigitalCreationTime" : string

Date and time that the image was digitized.

"IPTC:ProgramVersion" : string

The version number of the creation software.

"IPTC:AuthorsPosition" : string

The job title or position of the creator of the image.

"IPTC:City" : string
"IPTC:Sublocation" : string
"IPTC:State" : string
"IPTC:Country" : string
"IPTC:CountryCode" : string

The city, sublocation within the city, state, country, and country code of the location of
the image.

OpenImageIO Programmer’s Documentation

410 APPENDIX B. METADATA CONVENTIONS

"IPTC:Headline" : string

Any headline that is meant to accompany the image.

"IPTC:Provider" : string

The provider of the image, or credit line.

"IPTC:Source" : string

The source of the image.

"IPTC:Contact" : string

The contact information for the image (possibly including name, address, email, etc.).

"IPTC:CaptionWriter" : string

The name of the person who wrote the caption or description of the image.

"IPTC:JobID" : string
"IPTC:MasterDocumentID" : string
"IPTC:ShortDocumentID" : string
"IPTC:UniqueDocumentID" : string
"IPTC:OwnerID" : string

Various identification tags.

"IPTC:Prefs" : string
"IPTC:ClassifyState" : string
"IPTC:SimilarityIndex" : string

Who knows what the heck these are?

"IPTC:DocumentNotes" : string

Notes about the image or document.

"IPTC:DocumentHistory" : string

The history of the image or document.

B.11 SMPTE metadata

"smpte:TimeCode" : int[2]

SMPTE time code, encoded as an array of 2 32-bit integers (as a TypeDesc, it will be
tagged with vecsemantics TIMECODE).

OpenImageIO Programmer’s Documentation

B.12. EXTENSION CONVENTIONS 411

"smpte:KeyCode" : int[7]

SMPTE key code, encoded as an array of 7 32-bit integers (as a TypeDesc, it will be
tagged with vecsemantics KEYCODE).

B.12 Extension conventions

To avoid conflicts with other plugins, or with any additional standard metadata names that may
be added in future verions of OpenImageIO, it is strongly advised that writers of new plugins
should prefix their metadata with the name of the format, much like the "Exif:" and "IPTC:"
metadata.

OpenImageIO Programmer’s Documentation

412 APPENDIX B. METADATA CONVENTIONS

OpenImageIO Programmer’s Documentation

C Glossary

Channel One of several data values persent in each pixel. Examples include red, green, blue,
alpha, etc. The data in one channel of a pixel may be represented by a single number,
whereas the pixel as a whole requires one number for each channel.

Client A client (as in “client application”) is a program or library that uses OpenImageIO or
any of its constituent libraries.

Data format The type of numerical representation used to store a piece of data. Examples
include 8-bit unsigned integers, 32-bit floating-point numbers, etc.

Image File Format The specification and data layout of an image on disk. For example, TIFF,
JPEG/JFIF, OpenEXR, etc.

Image Format Plugin A DSO/DLL that implements the ImageInput and ImageOutput classes
for a particular image file format.

Format Plugin See image format plugin.

Metadata Data about data. As used in OpenImageIO, this means Information about an image,
beyond describing the values of the pixels themselves. Examples include the name of the
artist that created the image, the date that an image was scanned, the camera settings used
when a photograph was taken, etc.

Native data format The data format used in the disk file representing an image. Note that with
OpenImageIO, this may be different than the data format used by an application to store
the image in the computer’s RAM.

Pixel One pixel element of an image, consisting of one number describing each channel of data
at a particular location in an image.

Plugin See image format plugin.

Scanline A single horizontal row of pixels of an image. See also tile.

Scanline Image An image whose data layout on disk is organized by breaking the image up
into horizontal scanlines, typically with the ability to read or write an entire scanline at
once. See also tiled image.

413

414 APPENDIX C. GLOSSARY

Tile A rectangular region of pixels of an image. A rectangular tile is more spatially coherent
than a scanline that stretches across the entire image — that is, a pixel’s neighbors are
most likely in the same tile, whereas a pixel in a scanline image will typically have most
of its immediate neighbors on different scanlines (requiring additional scanline reads in
order to access them).

Tiled Image An image whose data layout on disk is organized by breaking the image up into
rectangular regions of pixels called tiles. All the pixels in a tile can be read or written at
once, and individual tiles may be read or written separately from other tiles.

Volume Image A 3-D set of pixels that has not only horizontal and vertical dimensions, but
also a ”depth” dimension.

OpenImageIO Programmer’s Documentation

Index

abs, 207, 281
absdiff, 207, 281
add, 206, 237, 281
animated GIF, 312
attribute, 27, 131, 150
autotrim, 320, 323

batched texture lookups, 160
BMP, 105
bump mapping, 384, 385
bump to roughness, 384, 385

channels, 198, 276
checker, 193, 274
Cineon, 105
clamp, 212, 284
colorconvert, 227, 292
compare, 215, 286
composite, 336, 355
computePixelHashSHA1, 219, 288
computePixelStats, 214, 286
convolve, 220, 289
copy, 199, 277
crop, 199, 236, 277
crop windows, 38
cspan, 13
cut, 200, 277

data formats, 9
DDS, 105
debug, 28
deep data, 46, 68
deep images, 234, 235, 294, 295, 355
DeepData, 24
deepen, 234, 294
depth composite, 337
DICOM, 106
dilate, 224, 291, 345

div, 208, 237, 282
DPX, 106

environment, 159
erode, 224, 291, 345
error checking, 26, 50, 57, 70, 80, 144, 167
Exif metadata, 399
exr threads, 27
extension list, 28

ffmpeg, 113
fft, 221, 289
Field3D, 108
fill, 193, 274
fit, 205, 280
FITS, 109
fixNonFinite, 223, 237, 290
flatten, 235, 294
flip, 201, 278
flop, 201, 278
format list, 27
frame sequences, 304

getattribute, 29, 132, 151
geterror, 26
GIF, 110, 312
globalattribute, 27
good, 138, 154
GPS metadata, 405

HDR, 110
histogram, 219, 288
hw:simd, 29

ICO, 111
iconvert, 363
idiff, 371
IFF, 111
ifft, 221, 289

415

416 INDEX

igrep, 369
iinfo, 359
Image Buffers, 171–188
Image Cache, 129–145
image comparison, 308, 315
Image I/O API, 31–57, 59–80
Image I/O API Helper Classes, 9–30
Image Processing, 189–237
ImageBuf, 171–188
ImageBufAlgo, 189–237

abs, 207, 281
absdiff, 207, 281
add, 206, 237, 281
capture image, 234, 294
channel append, 199, 277
channel sum, 209, 283
channels, 198, 276
checker, 193, 274
circular shift, 202, 279
clamp, 212, 284
color count, 217
color map, 211, 284
color range check, 218
colorconvert, 227, 292
compare, 215, 286
complex to polar, 222, 290
computePixelHashSHA1, 219, 288
computePixelStats, 214, 286
contrast remap, 210, 283
convolve, 220, 289
copy, 199, 277
crop, 199, 236, 277
cut, 200, 277
deep holdout, 235, 295
deep merge, 235, 295
deepen, 234, 294
dilate, 224, 291
div, 208, 237, 282
erode, 224, 291
fft, 221, 289
fill, 193, 274
fillholes pushpull, 223, 290
fit, 205, 280
fixNonFinite, 223, 237, 290
flatten, 235, 294

flip, 201, 278
flop, 201, 278
from OpenCV, 233
histogram, 219, 288
ifft, 221, 289
invert, 209, 282
isConstantChannel, 216, 287
isConstantColor, 216, 287
isMonochrome, 217, 288
laplacian, 221, 289
mad, 208, 282
make kernel, 220, 288
make texture, 230, 293
median filter, 224, 291
mul, 207, 237, 282
noise, 274
nonzero region, 218, 236
ociodisplay, 228, 292
ociofiletransform, 229, 293
ociolook, 228, 292
over, 214, 285
paste, 200, 278
polar to complex, 222, 290
pow, 209, 283
premult, 293
rangecompress, 213, 285
rangeexpand, 213, 285
render box, 195, 275
render line, 195, 275
render point, 195, 275
render text, 196, 275
reorient, 201, 278
resample, 205, 237, 280
resize, 204, 280
roate90, 278
rotate, 203, 279
rotate180, 200, 278
rotate270, 200, 278
rotate90, 200
sub, 206, 237, 281
text size, 197, 276
to OpenCV, 234
transpose, 201, 278
unpremult, 229, 293
unsharp mask, 226, 291

OpenImageIO Programmer’s Documentation

INDEX 417

warp, 204, 279
zero, 192, 273
zover, 214, 286

ImageOutput, 31
ImageSpec, 17
input format list, 27
invert, 209, 282
IPTC metadata, 408
isConstantChannel, 216, 287
isConstantColor, 216, 287
isMonochrome, 217, 288
iv, 357

JPEG, 111
Jpeg 2000, 112

laplacian, 221, 289
library list, 28
log times, 28

mad, 208, 282
maketx, 377
morphological filtering, 224, 345
movie files, 113
mul, 207, 237, 282

noise, 194, 274
null format, 113
numeric frame sequence wildcards, 304

ociodisplay, 228, 292
ociofiletransform, 229, 293
ociolook, 228, 292
oiio:simd, 29
oiiotool, 303
OpenCV, 233, 234
OpenEXR, 114
OPENIMAGEIO LOG TIMES, 28
OpenVDB, 116
Orientation, 394
output format list, 27
over, 214, 285
overscan, 38

paste, 200, 278
PhotoShop images, 117
plugin searchpath, 27

Plugins
bundled, 105–127

PNG, 116
PNM, 117
pow, 209, 283
premult, 293
PSD, 117
Ptex, 118

rangecompress, 213, 285
rangeexpand, 213, 285
RAW digital camera files, 118
read chunk, 28
reading an image file from memory buffer, 69
reading an image file to memory buffer, 396
region of interest, 15
reorient, 201, 278
resample, 205, 237, 280
resident memory used MB, 29
resize, 204, 280
RGBE, 110
RLA, 120
roate90, 278
ROI, 15
rotate, 203, 279
rotate180, 200, 278
rotate270, 200, 278
rotate90, 200

SGI files, 121
shadow, 158
SIMD, 160
SMPTE metadata, 410
Softimage PIC, 121
span, 13
sub, 206, 237, 281

Targa, 121
texture, 155
Texture System, 147–169

making textures with maketx, 377
making textures with oiiotool, 320

texture3d, 156
TextureOpt, 147
threads, 27, 57, 79, 177
TIFF, 122

OpenImageIO Programmer’s Documentation

418 INDEX

timing report, 28
transpose, 201, 278

unpremult, 229, 293
ustring, 14

version, 26

warp, 204, 279
WebP, 127
wildcard, 304
writing an image file to memory buffer, 49,

396

zero, 192, 273
Zfile, 127
zover, 214, 286

OpenImageIO Programmer’s Documentation

	Introduction
	Overview
	Simplifying Assumptions
	Historical Origins
	Acknowledgments

	I The OpenImageIO Library APIs
	Image I/O API Helper Classes
	Data Type Descriptions: TypeDesc
	Non-owning string views: string_view
	Non-owning array views: span / cspan
	Efficient unique strings: ustring
	Helper: ROI
	Image Specification: ImageSpec
	``Deep'' pixel data: DeepData
	Miscellaneous Utilities

	ImageOutput: Writing Images
	Image Output Made Simple
	Advanced Image Output
	ImageOutput Class Reference

	ImageInput: Reading Images
	Image Input Made Simple
	Advanced Image Input
	ImageInput Class Reference

	Writing ImageIO Plugins
	Plugin Introduction
	Image Readers
	Image Writers
	Tips and Conventions
	Building ImageIO Plugins

	Bundled ImageIO Plugins
	BMP
	Cineon
	DDS
	DICOM
	DPX
	Field3D
	FITS
	GIF
	HDR/RGBE
	ICO
	IFF
	JPEG
	JPEG-2000
	Movie formats (using ffmpeg)
	Null format
	OpenEXR
	OpenVDB
	PNG
	PNM / Netpbm
	PSD
	Ptex
	RAW digital camera files
	RLA
	SGI
	Softimage PIC
	Targa
	TIFF
	Webp
	Zfile

	Cached Images
	Image Cache Introduction and Theory of Operation
	ImageCache API

	Texture Access: TextureSystem
	Texture System Introduction and Theory of Operation
	Helper Classes
	TextureSystem Setup
	Texture Lookups – single point
	Batched Texture Lookups
	Texture Metadata and Raw Texels
	Miscellaneous – Statistics, errors, flushing the cache

	Image Buffers
	ImageBuf Introduction and Theory of Operation
	Constructing, reading, and writing an ImageBuf
	Getting and setting basic information about an ImageBuf
	Copying ImageBuf's and blocks of pixels
	Getting and setting individual pixel values – simple but slow
	Miscellaneous
	Iterators – the fast way of accessing individual pixels
	Dealing with buffer data types

	Image Processing
	ImageBufAlgo common principles
	Pattern generation
	Image transformations and data movement
	Image arithmetic
	Image comparison and statistics
	Convolutions
	Image Enhancement / Restoration
	Color manipulation
	Import / export
	Deep images

	Python Bindings
	Overview
	TypeDesc
	ROI
	ImageSpec
	DeepData
	ImageInput
	ImageOutput
	ImageBuf
	ImageBufAlgo
	Miscellaneous Utilities
	Python Recipes

	II Image Utilities
	oiiotool: the OIIO Swiss Army Knife
	Overview
	oiiotool Tutorial / Recipes
	oiiotool commands: general and image information
	oiiotool commands: reading and writing images
	oiiotool commands that change the current image metadata
	oiiotool commands that shuffle channels or subimages
	oiiotool commands that adjust the image stack
	oiiotool commands that make entirely new images
	oiiotool commands that do image processing
	oiiotool commands for color management
	oiiotool commands for deep images

	The iv Image Viewer
	Getting Image information With iinfo
	Using iinfo
	iinfo command-line options

	Converting Image Formats With iconvert
	Overview
	iconvert Recipes
	iconvert command-line options

	Searching Image Metadata With igrep
	Using igrep
	igrep command-line options

	Comparing Images With idiff
	Overview
	Using idiff
	idiff Reference

	Making Tiled MIP-Map Texture Files With maketx or oiiotool
	Overview
	maketx
	oiiotool

	III Appendices
	Building OpenImageIO
	Metadata conventions
	Description of the image
	Display hints
	Color information
	Disk file format info/hints
	Substituting an IOPRoxy for custom I/O overrides
	Photographs or scanned images
	Texture Information
	Exif metadata
	GPS Exif metadata
	IPTC metadata
	SMPTE metadata
	Extension conventions

	Glossary
	Index

