
Using OPAM

This tutorial covers most of the OPAM features you will want to use. For a
quick overview of most common OPAM commands, the Basic Usage tutorial is
a good reading. There is also a dedicated guide explaining how to use OPAM
efficiently in a development workflow.

Updating packages

When adding a new repository, as it is the case when running opam init, OPAM
will store its state into ~/.opam/repo/<name>, including the list of all available
packages, their versions, etc. To be sure this state reflects the state of your
remote repositories, just run:

opam update

This command will update the locally-saved states of your repositories to make
sure you have access to the last updates from them.

Examining packages

You are now ready to install packages. But first you probably want to see what
packages are available and get some info about those packages.

opam list

This will display as many lines as there are packages available, and each line
displays the name of the package, its version if it is installed, and a short
description. For the moment, you don’t have any installed package, except the
so-called base packages that aren’t real OPAM packages, but modules that may
or may not be distributed with you OCaml installation. The base packages are
just an indication of whether the compiler comes with these modules or not.

opam search foo

This will display something similar to opam list except for it is only going to
display available packages whose name or description match the string foo.

opam info opam

This will display information about the package opam. This information includes
the installed version if the package is installed, all available versions that can be
installed, and the full description of the package.

1

Basic_Usage.html
Developing.html
Developing.html


Installing packages

We are now ready to install some packages. Suppose you want to install the
package lwt:

opam install lwt

If the package to be installed has no dependencies or if all its dependencies are
already installed, then OPAM will install it without further ado. Otherwise, it
will print a summary of the actions that are going to be performed, and you will
be asked if it should go ahead or not.

A package can also have optional dependencies. These are dependencies that the
package can make use of, but that are not mandatory. They will not be installed
with the package by default, but opam install will take advantage of them if
they are already installed while installing a package that optionally depends on
them. For example, if you install react before installing lwt, opam install lwt will
configure lwt to use react, but just installing lwt will not install react.
OPAM is even able to track optional dependencies. This means that while
installing a new package, OPAM will check if any already installed package
optionally depends on the package to be installed, and will recompile such
packages and all their forward dependencies. For example, doing opam install
react after an opam install lwt will have the effect to recompile lwt (with react
support) as well as all the packages that depend on lwt.

Upgrading packages

After running opam update, it is possible that some packages that you installed
got updated upstream, and it is now possible to upgrade them on your system.
Just type:

opam upgrade

to upgrade your packages. The dependency solver will be called to make sure
the upgrade is possible, that is, that most packages can get upgraded. OPAM
will select the the best upgrade scenario and display a summary of what will be
done during the upgrade. You will be asked if it should go ahead or not. This
is similar to what happen when you upgrade your packages in most operating
systems.

Using a different compiler

OPAM has the ability to install and use different OCaml compilers. This
functionality is useful if you need to use different compilers on the same computer,
and will make it very easy to switch between different compiler versions.

2



This functionality is driven by the opam switch command. Using opam switch
--help will give you the full documentation. What follows is a short primer for
the most useful features.

• opam switch list will display a list of the available compilers. The first
section is a list of installed compilers on this computer. It contains at
least system, which is not a compiler installed by opam but the compiler
that was used to compile opam in the first place. A “*” symbol will be
displayed before the current selected compiler.

• opam switch 4.00.0 will make opam to switch to OCaml 4.00.0. If opam
did not install it already, it will do so now. The first opam switch therefore
takes the time it needs for your system to compile OCaml 4.00.0.

• opam switch remove <version> will just delete an opam-installed com-
piler from your system, thus freeing some disk space.

After switching to another compiler, opam will ask you to update your envi-
ronment by running eval ‘opam config env‘. Indeed, compiler switching rely
on environment variables so that your shell can find the libraries and binaries
corresponding to the compiler you selected. Please don’t forget to run this
command!

These are the basic features of opam switch. There is two useful additions to
them, which we will present now:

Ability to make a copy of a given compiler under an alias

It is useful if you want to use two instances of the same compiler. As ocamlfind
allows only one version of an OCaml package to be installed, you can use this
as a workaround to install multiple versions of the same package. Or more
generally, if you need to hack packages and are afraid to break your clean opam
installation, you can just use this feature as well. The sytax is

opam switch install <alias> --alias-of <version>

For example do opam switch -install foo -alias-of 4.00.0 will make a
copy of OCaml 4.00.0 under the name foo. Note that the state of compiler 4.00.0
will not be replicated in foo. foo is brand new with no packages installed.

Ability to export a compiler universe into another one

This means “replicate the state (installed packages, etc.) from one compiler to
another one”. It is useful if you want to have the ability to fork a given compiler.
The syntax is

3



opam switch <version>
opam switch export -f universe_for_<version>
opam switch <other-version>
opam switch import -f universe_for_<version>

The import installs all packages from the file into the currently selected compiler.
The above sequence of commands will install all packages installed in the compiler
<version> into the compiler <other-version>.

Version pinning

opam pin <package> </local/path>

This command will use the content of </local/path> to compile <package>.
This means that the next time you will do opam install <package>, the com-
pilation process will be using a mirror of </local/path> instead of downloading
the archive. This also means that any modification to </local/path> will be
picked up by opam update, and thus opam upgrade will recompile <package>
(and its forward dependencies) if needed.

To unpin a package, simply run:

opam pin <package> none

You can also pin a package to a specific version: opam pin <package>
<version>

By default, local directories will be pinned as local backends. You can change
that default choice by forcing a given backend kind using the --kind option.

Handling of repositories

OPAM supports using multiple repositories at the same time, and supports
multiple repository backends as well. Currently supported backends are HTTP,
rsync, and git.

• The HTTP backend is used when the repository is available via the HTTP
protocol, typically because it resides on a public website. This backend
is the equivalent of what most Linux distributions are using to manage
their packages. This backend needs either the curl or wget program to be
installed on your system to work. It is also the default backend used by
opam when doing a opam init.

4



• The rsync backend uses the rsync program to fetch data from a repository.
It can thus be used if the repository is accessible to the rsync program,
that is either locally (on your computer’s filesystem) or via sftp.

• The git backend uses git to fetch data from a repository. It will be used if
the repository is stored as a git repository.

These three backends should be sufficient to access most repositories. Additional
backends can be added without much effort because of the modularized interface,
basically, adding a backend means just implementing a module matching the
REPOSITORY signature.

From repositories, OPAM makes a global index of all available packages. This
means that if two repositories export the same package, OPAM will download it
from a random one (in practice, from the last added repository). You can change
that by editing ~/.opam/repo/index and moving the repository you want to
use in the beginning of each package line you want to install from this repository.

Using multiple repositories covers several cases:

You made packages and you want to use them

in addition of the ones available in the default OPAM repository. In order to do
that, put these packages in a private repository and then add this repository in
order to be able to install these packages the same way you install public OPAM
packages. For example, if your packages are stored in a git repository, do:

opam init # Use the default repository
opam remote add devel git://devel.git

OPAM will add the default OPAM repository when initializing, and you add
your development repository afterwards under the name devel. The git backend
will be used because the URL starts by git://. By default, OPAM manage to
figure out automatically which backend to use. See opam help remote for more
information.

You want more control over the public repository

because for example, you want to hack the packages, or you want to add some
packages that are not available in the public repository yourself.

In this case, you probably want to do

git clone git://github.com/OCamlPro/opam-repository.git ~/myrepo
opam init default ~/myrepo

5



Afterwards, you can modify packages into ~/myrepo and use them in opam after
doing an opam update.

6


	Using OPAM
	Updating packages
	Examining packages
	opam list
	opam search foo
	opam info opam

	Installing packages
	Upgrading packages
	Using a different compiler
	Ability to make a copy of a given compiler under an alias
	Ability to export a compiler universe into another one

	Version pinning
	Handling of repositories
	You made packages and you want to use them
	You want more control over the public repository



