Creating OPAM packages

In this tutorial, you will learn how to package an OCaml library or software for
OPAM. The first section will introduce you the ounit OPAM package. Albeit
simple, it is a real example of what an OPAM package is, and actually most
packages in the OPAM repository are that simple. The second section will be a
comprehensive guide illustrated by more complicated examples of real packaging
cases.

An important thing to keep in mind is that OPAM is (at least for now) only a
package manager, as opposed to — for example — the oasis/odb suite, which
includes a build system (oasis) as well as a package manager (odb). This means
that OPAM cannot help you to actually build your ocaml software or library,
to do so, you need to use dedicated tools such as ocamlbuild, oasis, omake and
others. OPAM packages are just built the same way you would build the software
yourself (with shell commands).

The ounit OPAM package

Let get started by learning from the ounit OPAM package. This is a widely
used OCaml library to create unit tests for OCaml projects, and is a perfect
example of a minimalistic yet complete package.

By reading about ounit on the upstream website, you learn that it is a library to
create unit tests, that its latest version is 1.1.2, and that it depends on ocamlfind.
You know the URL you can download its source tarball, and you must compute
the md5sum of this source tarball by running md5sum ounit-1.1.2.tar.gz (or,
on some operating systems, md5 instead of md5sum).

You also learn that to build and install it, you have to:

make build
make install

And that’s all the information you need to build an OPAM package.

A minimum OPAM package is a directory containing three files: descr, opam,
and url. The name of the directory defines the package name and version:
<package-name>.<package-version>. In our case, the directory will be
ounit.1.1.2 and contain the following files:

e packages/<package-name>.<package-version>/descr

Unit testing framework inspired by the JUnit tool and the HUnit tool

http://ounit.forge.ocamlcore.org
http://projects.camlcity.org/projects/findlib.html/

e packages/<package-name>.<package-version>/opam

opam-version: "1"
maintainer: "contact@ocamlpro.com"
build: [

[make "build"]

[make "install"]

]
remove: [

["ocamlfind" "remove" "oUnit"]
]

depends: ["ocamlfind"]
e packages/<package-name>.<package-version>/url

archive: "http://forge.ocamlcore.org/frs/download.php/886/ounit-1.1.2.tar.gz"
checksum: "14e4d8ee551004dbcc1607£438ef7d83"

Notes
descr

This file is pure text. Its first line will be used as a short description of the
package, it is what is displayed for each package when you do opam list. The
whole text contained in there is displayed when you do opam search <package>.
Therefore you should put a short meaningful description on the first line, and a
long description starting from the second line.

opam

The full ABNF specification of the syntax for opam files is available in OPAM
developer manual. In this file, opam-version MUST be 1, and you should put
your email in the maintainer field. build has OCaml type string list list,
and contains the build instructions. Here,

make build
make install

gets translated into
build: [

[make "build"]
[make "install"]

https://github.com/OCamlPro/opam/blob/master/doc/dev-manual/dev-manual.pdf?raw=true

You should adapt this to the required commands to build your package, and
each line contains the shell commands corresponding to a string list. Note
that make is a special variable which will be automatically translated to either
make on linux and OSX or ‘gmake’ on BSD systems.

The remove field follows the same syntax as the build field. The depends field
is a string list of dependencies, with each dependency being another OPAM
package. Here ounit depends only on ocamlifind.

url

This file contains at least one archive line containing the URL of the source
package, and optionally a checksum line that must contain the MD5 sum of
the source package if it is present. It is good practice to systematically add a
checksum line to your packages, unless the source package has no fixed version
(the typical example being a source package hosted on github with no tags). This
checksum will be checked when creating and installing the package.

The URL can also contain a single git or darcs field instead of archive, which
points to GIT or DARCS repository URL. This will be checked out and updated
every time opam update is run, which is useful for development packages.

Testing custom OPAM packages

The easiest way to test your new packages is to set-up a local repository for
testing purposes.

$ mkdir -p /tmp/testing
$ opam repo add testing /tmp/testing

These commands add a new (currently empty) repository named testing (you
can pick an other name if your prefer) which will contain what is in /tmp/testing
(Remark: you can also clone the official git repository if you don’t want to start
from a fresh one, this will work as well).

You can now check that this new repository exists:
$ opam repo # eq. to ’opam repo list’

This command displays the list of repositories, with testing having the highest
priority (you can use opam repo priority to change the relative repository
priorities later).

Now it is time to populate /tmp/testing/packages with your new package
files. For instance, if you want to test the version 1.1.3 of ounit, you have

to create /tmp/testing/packages/ounit.1.1.3/{opam,descr,url} following
the guidelines defined above.

To take this changes into account, update your testing repository:
$ opam update testing

If everything is fine, OPAM should tell you than a new version of ounit is
available. If this is the case, you can install it by doing:

$ opam install ounit.1.1.3

Remark: you can use opam-admin to simulate the creation of OPAM package
archives done on opam.ocamlpro.com:

$ cd /tmp/testing && opam-admin check && opam-admin make -g ounit

This command will: * Check that your metadata are well-formed. * Download the
upstream archive, and generate the correct checksum (because of -g) ; * Create
the archivearchives/ounit.1.1.34+-opam.tar.gzcontaining the content

of the upstream archive + the files inpackages/ounit.1.1.3/files/*
Createurls.txtandindex.tar.gz‘ at the root of your repository, which will let you
host it as an HT'TP remote.

If archives/ounit.1.1.3+opam.tar.gz exists, OPAM will use it directly in-
stead of downloading the archive upstream.

If (i) the basic installation and (ii) the archive creation work, you are in good
shape to submit your new package upstream (see below).

Advanced OPAM packaging guide

This section will be as comprehensive as possible on the art of creating OPAM
packages, but in case of ambiguities, the ABNF syntax documentation has
priority.

Since everything has already be said about the descr file and almost everything
about the url file, this section is mostly about the opam files.

OPAM variables

OPAM maintains a set of variables (key value pairs) that can be used in opam
files and that will be substituted by their values on package creation. The list of
variables that can be used in opam files can be displayed by doing opam config
list. The following example shows the build section of package ocamlnet that
use the variable bin:

build: [
["./configure" "--bindir" bin]
[make "all"]
[make "opt"]
[make "install"]

In this case, bin will be substituted by the value of the bin variable. In case you
need to substitue a substring, you can use "--bindir=Y%{bin}%": here %{bin}%
will be substituted by the value of bin.

Optional dependencies

We mentioned the ability to specify optional dependencies for packages. If a
package has optional dependencies, they will not be installed automatically,
but will be taken into account if they are present before the installation. If
the optional dependency is not present, but are subsequently installed, then
the depending package will also be recompiled to take advantage of the newly
installed library.

Let us see how it works via the following example, which shows the opam file of
the lwt package:

opam-version: "1"

maintainer: "contact@ocamlpro.com"

build: [
["./configure" "--Y%{conf-libev:enable}};-libev" "--Y{react:enablel}),—react" "--Y{ssl:enable:
[make "build"]
[make "install"]

]
remove: [

["ocamlfind" "remove" "lwt"]
]

depends: ["ocamlfind"]

depopts: ["base-threads" "base-unix" "

conf-libev" "ssl" "react"]

Notice the new depopts field, which contains the list of optional dependencies,
specified in the same format as the depends field.

Also notice a new syntax for substitutions of the form %{<package>:enablel},.
If package is installed, this pattern will be replaced by enable, other-
wise by disable. This ease the building of lines of type ./configure
--enable-<featurel> --disable-<feature2>.

Version constraints

If a package depends (respectively optionally depends) on a specific version of a
package, this can be specified by using the following syntax for the field depends
(respectively depopts) of the opan file:

depends: ["ocamlfind" "re" "uri" "ounit"]
depopts: ["async" {= "108.00.02"} "lwt" "mirage-net"]

The above example shows two fields of the opam file of package cohttp, that
optionally depends of the version 108.00.02 of package async.

The OPAM specification document specifies the format used by the depends
and depopts fields. As there is much more to say about version constraints, you
should read it to learn how to write very fine grained version constraints.

Manually installing binaries or libaries

Most of the time, when a package is built, binaries and/or libraries that it
provides are installed by the package’s build commands. However, for various
reasons, sometimes a source package’s build commands do not allow you to
install all the files you would like or do not install them with the name or path
you would like. Opam allows you to control installed files precisely by providing
a .install file. For example, the package zmlm has this following opam file:

opam-version: "1"
maintainer: "contact@ocamlpro.com"

build: [
["ocaml" "setup.ml" "-configure" "--prefix" prefix]
["ocaml" "setup.ml" "-build"]
["ocaml" "setup.ml" "-install"]

]

remove: [

["ocamlfind" "remove" "xmlm"]

]
depends: ["ocamlfind"]

and has additional file files/xmlm.install:

bin: ["_build/test/xmltrip.native" {"xmltrip"}]

This has the semantics: “install the file of path _build/test/xmltrip.native
relative to the root of the source package into the directory returned by the com-

mand opam config var bin under the name xmltrip”. If the source filename
starts by 7, the installation will not fail if the file is not present.

Thus, this additional file gets installed and removed by opam, in addition to those
installed by the ocaml setup.ml -install and removed by the ocamlfind
remove xmlm commands.

The bin section installs files in opam’s bin directory. You can also define a
list of files to be installed in the sections: lib, toplevel, share, doc, misc,
stublibs, and man. For example, to install additional library files, you can have
the section:

1lib: ["META" "lib/foo.cmi" "1lib/foo.cmo" "lib/foo.cmx"]

Note the destination name in curly braces can be omitted if no modification to
the filename is necessary.

Ideally, the .install file should be dynamically created by the pack-
age build system at the root of the project and should be named
$ (OPAM_PACKAGE_NAME) .install ($OPAM_PACKAGE_NAME is automatically
set by OPAM). If it comprehensively lists every file that should be installed, then
the build section of the package’s opam file should exclude a make install (or
equivalent) command, and the remove section should be omitted.

Aside from dynamically generating this file, it is also possible to include a static
version in a package under the files sub-directory, as is the case for the xmlm
example above. This is less ideal than dynamically generating it, but is supported
because package developers may find it easier to generate this file manually than
figuring out how to dynamically generate it with their build system.

For comprehensive information about this facility refer to the Section 1.2.5 of
OPAM developer manual

Compiler version constraints

Some packages require a specific OCaml version to work and thus can only be in-
stalled under specific compiler versions. To specify such a constraint, you can add
a field ocaml-version: [< "4.00.0"] (or available: [ocaml-version
< "4.00.0"] for OPAM 1.1 on) to the opam file. This particular constraint
implies that the package cannot be built or installed under OCaml 4.00.0 or
later.

Patching sources

You can instruct OPAM to apply patches to the source code before building a
package. To do so, you have to add a patches field to the opam file, the syntax
being of the form patches: ["bugfixl.patch" "bugfix2.patch"], where
bugfixl.patch and bugfix2.patch are two files existing in the directory files.
Before building such a package, OPAM will substitute any opam variable (of the

https://github.com/OCamlPro/opam/blob/master/doc/dev-manual/dev-manual.pdf?raw=true

form %{variable}%) to their respective values and apply the resulting patches
to the source code. Only then will the package be built. For more information,
please look at packages including patches, such as dbm.1.0.

Git / Darcs packages

It is possible to use a git repository instead of an archive file in url files. To do
so, you need to use the following syntax:

git: "<url>"

<url> being any url that git knows how to clone. For git packages, OPAM has
the following behaviour:

e When installing a git package, OPAM will use git to clone its url and use
it as the package source

e When updating packages, OPAM will do a git fetch in order to have
the last patches available for git packages

e When upgrading packages, OPAM will merge the last changes before
rebuilding and upgrading the packages

If you host your project on Github, you may not use git packages but instead use

github’s functionality to create a tarball from a git repository. Is is generally avail-

able at https://github. com/<your-id>/<your-project>/tarball/<branch-or-tag>.
You can use this url to create “normal” — non-git packages from git repositories

hosted on github.

Note that git packages will normally never be included in the default OPAM
repository, and are mainly an aid for developers who use OPAM in their devel-
opment process. If you plan to do that, please have a look at the Developing
with OPAM tutorial.

Darcs packages
Darcs repositories are supported as well. OPAM behaves the same way it does

with git repositories, as described above. You just need to specify the repository
url using the following syntax in url files:

darcs: "<url>"

http://opam.ocamlpro.com/doc/Developing.html
http://opam.ocamlpro.com/doc/Developing.html
http://darcs.net/

Where to go from here

Although this tutorial covered most packaging cases, there are still packages that
requires more tuning that what have been described above. If you find yourself
stuck trying to package a software or a library, please read the OPAM developer
manual (you will find it in the doc directory in the OPAM tarball) and/or read
existing OPAM package descriptions for inspiration.

Including packages to the official OPAM reposi-
tory

This section will help you getting started with the process of submitting
packages to the official OPAM repository. This repository is available at url
[http://opam.ocamlpro.com], but its content is generated from a git repository
hosted on github.

To submit a package for inclusion in the official repository, all you have to do is
to fork opam-repository on github, commit a patch containing the package(s)
you want to include, and open a pull request for it.

If the above sentence makes no sense for you, you probably don’t know about
either git or github (or both). git is a distributed version control system, very
popular at the time we write those lines. Getting started with git is definitely a
topic outside the scope of this short tutorial, but you can read about it on git’s
documentation page.

Github is a web frontend to git. It allows users to store public git repositories,
and provides additional convenient features over git such as “pull requests” that
automatise the process of sharing patches with others. You can learn how to use
it here.

If you cannot (or do not want to) use github but still want to contribute to
packages, you can try sending a mail to contact@ocamlpro.com with your
patches to opam-repository. As this method requires manual intervention from
our not very big OPAM team, it should only be used if the first method is not an
option for you. It might as well take more time for your request to be processed
in this case.

https://github.com/OCamlPro/opam/blob/master/doc/dev-manual/dev-manual.pdf?raw=true
https://github.com/OCamlPro/opam/blob/master/doc/dev-manual/dev-manual.pdf?raw=true
https://github.com/OCamlPro/opam-repository
https://github.com/
http://git-scm.com/documentation
https://help.github.com/articles/using-pull-requests
https://help.github.com/

	Creating OPAM packages
	The ounit OPAM package
	Notes
	descr
	opam
	url

	Testing custom OPAM packages
	Advanced OPAM packaging guide
	OPAM variables
	Optional dependencies
	Version constraints
	Manually installing binaries or libaries
	Compiler version constraints
	Patching sources
	Git / Darcs packages
	Darcs packages

	Where to go from here

	Including packages to the official OPAM repository

