The Logtalk Handbook
Release v3.72.0

Paulo Moura

Nov 09, 2023

CONTENTS

1 User Manual 1
1.1 Declarative object-oriented programming oottt e 1
1.2 Mainfeatures. v v i i e e e e e e e e e e e e e e 2

1.2.1 Integration of logic and object-oriented programming 2
1.2.2 Integration of event-driven and object-oriented programming 2
1.2.3 Support for component-based programming 3
1.2.4 Support for both prototype and class-based systems 3
1.2.5 Support for multiple object hierarchies 3
1.2.6 Separation between interface and implementation 3
1.2.7 Private, protected and public inheritanceo o o L 3
1.2.8 Private, protected and public object predicates, 4
1.2.9 Parametric ObJeCts L L e e e e e e e e e e e e e e e 4
1.2.10 High level multi-threading programming support 4
1.2.11 Smooth learning curve e e e e e 4
1.2.12 Compatibility with most Prolog systems and the ISO standard 4
1.2.13 Performance v o i i e 4
1.2.14 Logtalk SCOPE . . . v v v v e e e e e e e e e e e e e e e e e 5
1.3 Nomenclature i i i it e e e e e e e e e e e e 6
1.3.1 Prolognomenclature v v i i i it e e e e e e e e e 6
1.3.2 Smalltalk nomenclature e 8
1.3.3 CH++nomenclature L. e e e e 9
1.3.4 Javanomenclatureot e e e e e 11
1.3.5 Pythonnomenclature o i i i e e e e e e e 12
1.4 MESSAZES .« v v v v i e e e e e e e e e e e e e e e e e e e 14
1.4.1 Operators used in message sendingo e 14
1.4.2 Sending amessagetoanobject e e e e 14
1.4.3 Delegating amessagetoanobject 15
1.4.4 Sending amessage toselft e e e e e e e e e 15
1.4.5 Broadcasting e e e e e e e e e e e e 15
1.4.6 Calling imported and inherited predicates 15
1.4.7 Message sending and event generation 16
1.4.8 Sending a message fromamodule, 17
1.4.9 Message sending performance i it it e e e e e e e e e 17
1.5 Objects . . . o o i e e e e e e e e e e e 17
1.5.1 Objects, prototypes, classes, and instances 17
1.5.2 Defininganewobject. e e e e e e 18
1.5.3 Parametric 0bJECtS i i e e e e e e e e e e e e e e e e e e 21
1.5.4 Finding defined objects L e e e 22
1.5.5 Creating a new object in runtimettt e . 22
1.5.6 Abolishing an existingobject 23

1.5.7 Objectdirectives o v i i i e e e e e e e e e e e e 23

1.5.8 Objectrelationships o i e e e e e e 25
1.5.9 Object properties v v vt it e e e e e e e e e e 26
1.5.10 Built-inobjects e e e e e e e 28
1.6 Protocols i e e e e e e e e e e e e e 29
1.6.1 Defining a new protocol e e e e e e 29
1.6.2 Finding defined protocols e e e e 30
1.6.3 Creating a new protocol inruntime 0oL, 30
1.6.4 Abolishing an existing protocol L. 30
1.6.5 Protocol direCtives v v v v v i e e e e e e e e e e e e e e e e e e 31
1.6.6 Protocol relationships. o i i e e e e e 31
1.6.7 Protocol properties v v v i i e e e e e e e e e e e e e e e e e 32
1.6.8 Implementing protocols e e e e e e 33
1.6.9 Built-in protocols L e e e e e e 34
1.7 QategOri€S . . . v v v i e 34
1.7.1 Defining anew category o ottt e e e e e e e e e e e e e 34
1.7.2 Hotpatching i e e e e e e 36
1.7.3 Finding defined categorieso e e e e e e e e 38
1.7.4 Creating a new category inruntime oo v v v it e e 38
1.7.5 Abolishing an existing category« c v v v it e e e e e e e 39
1.7.6 Category direCtiVes ot i v i it i e e e e e e e e e e e e e e e 39
1.7.7 Category relationships e 40
1.7.8 Category ProPerties v v v v v e 40
1.7.9 Importing categories v v v v i v it e e e e e e e e e e e e e e 42
1.7.10 Calling category predicates o i i vttt e e e e e e e e 43
1.7.11 Parametric Cate€gOTi€S« v v v v v it e e e e e e e e e e e e e e e 44
1.7.12 Built-in categories e e e e e e e e e e e 44
1.8 PrediCateS. v v i i e e e e e e e e e 44
1.8.1 Reserved predicate NAMES v v v v v v v e e et e e e e e e e e e e e 45
1.8.2 Declaring predicates e e e e e e 45
1.8.3 Defining predicates L. e e e e e e e 55
1.8.4 Definite clause grammarrules L 60
1.8.5 Built-inmethods 63
1.8.6 Predicate properties. v v v i i e e e e e e e e e e e e e e e 67
1.8.7 Finding declared predicates 69
1.8.8 Calling Prolog predicates oo i i i i e e e e e e e e 69
1.8.9 Defining Prolog multifile predicates 74
1.8.10 Asserting and retracting Prolog predicates 74
1.9 Inheritance L e e e e e 76
1.9.1 Protocol inheritance e e e e e 76
1.9.2 Implementation inheritance 77
1.9.3 Public, protected, and private inheritanceo oo L oL 80
1.9.4 Multiple inheritance e e 81
1.9.5 Composition versus multiple inheritance 81
1.10 Event-driven programming v v v v v ittt e e e e e e e e e e e e e e e e e e 81
1.10.1 Definitions v v i e e e e e e e e e e e e e e e e e e e 82
1.10.2 Event generation v i v ittt e e e e e e e e 83
1.10.3 Communicating events to MONItOrS v v v v v v v v v e e et e e e et e e 83
1.10.4 Performance CONCEINS . . « ¢ v v v v v v vt b e e e e e e e e e e e e e e e e 83
1.10.5 Monitor SemantiCs v v v v i e e e e e e e e e e 84
1.10.6 Activation order of MONItOrs v i i e e e e e e 84
1.10.7 Eventhandling e e e e e e 84
1.11 Multi-threading programming v i i i it e e e e e e e e e e 87
1.11.1 Enabling multi-threading support 87

1.11.2 Enabling objects to make multi-threading calls 87

1.11.3 Multi-threading built-in predicates 87
1.11.4 Ome-way asynchronouscalls 90
1.11.5 Asynchronous calls and synchronized predicates 90
1.11.6 Synchronizing threads through notifications 91
1.11.7 Threaded engines o i e e e e e 92
1.11.8 Multi-threading performance ittt 93
1.12 Error handling i e e e e e e e e e e e e 93
1.12.1 Raising EXCeptions o v i i i i i e e e e e e e 94
1.12.2 Type-checking o o e e e e e e e e 94
1.12.3 Expected tEITNS . . « v v v v v v e 95
1.12.4 Compiler warnings and €ITorS o i vt i e e e e e e e e e e e e e e 95
1.12.5 RUDtME ITOTS .+ ¢ v v v v v v v v v v e e e e e e e e e e e e e e e e 98
1.13 Reflection o o i e e e e e e e e e e e e 98
1.13.1 Structural reflection e e e e e e e 99
1.13.2 Behavioral reflection e 99
1.14 Writing and running applicationso e e 100
1.14.1 Starting Logtalk e e e e e e e e e 100
1.14.2 Running parallel Logtalk processes 100
1.14.3 Source files i e e e e e e e e e e e 101
1.14.4 Multi-passcompiler L e e e e e 102
1.14.5 Compiling and loading your applications 102
1.14.6 Compiler errors, warnings, and comments« v v v vt bbbt 103
1.14.7 Loaderfiles e e e 104
1.14.8 Libraries of source files e 105
1.14.9 Settingsfiles e e e e e e e e 106
1.14.10 Compiler linter L e e e e e e 107
1.14.11Compiler flags L e e e e e e e e e e 107
1.14.12Reloading source files i i i i e e e e e e 114
1.14.13Batch processing o o v v i e e e e e e e e e e e e e e e 114
1.14.14 Optimizing performance e e e 114
1.14.15Portable applications e e e e e 115
1.14.16 Conditional compilation e e . 115
1.14.17 Avoiding COMMON €ITOTS . . « v v v v v v v e v e e et e e e e e e e e e e e e e e e 115
1.14.18 Coding style guidelines e 116
1.15 Printing messages and asking questionsl e e e 116
1.15.1 Printing MeSSAZES . .« « v v v v e 117
1.15.2 Message toKenization v v v v i i e e e e e e e e e e e e e e 118
1.15.3 Meta-meSSAZES . « v v v v v v v e 119
1.15.4 Intercepting MESSAZES . + « v v v v v v v v bt e e e e e e e e e e 119
1.15.5 Asking QUESHIONS . . . v v v v v i e 120
1.15.6 Intercepting QUESTIONS . . . « . v v v v i v bt e e e e e e e e e e e e e e e e e 121
1.16 Term and goal eXpansion v v v v v e e e e e e e e e e e e e e e e e e e 122
1.16.1 Defining eXpansions v v v vt it e e e e e e e e e e e e e 122
1.16.2 Expanding grammar rules i it i e e e e e e e e e e 124
1.16.3 BypasSing eXpansSiOns v v v v v v v vt e 124
1.16.4 Hook Objects i v i e e e e e e e e e e e e e 124
1.16.5 Virtual source file terms and loading context, 126
1.16.6 Default compiler expansion workflow oo o oL 127
1.16.7 User defined expansion workflows. 127
1.16.8 Using Prolog defined expansions.t i it i i i 127
1.16.9 Debugging eXpansions v v it i e e e e e e e e e e e e e e e 128
1.17 DOCUMENEING . .« v v v v o v i e 129
1.17.1 Documenting directives o o i i i i e e e e e e 130

1.17.2 Processing and viewing documenting files 133

1.17.3 Inline formatting in comments teXt o v vttt e e e e e e e e e e . 134
1.17.4 Diagrams v v v it e 135
1.18 Debugging i e e e e e e e e e e e e 135
1.18.1 Compiling source filesindebugmode, 135
1.18.2 Procedure boxmodel e 136
1.18.3 Defining spy POINS v v v vt e e e e e e e e e e e e e e e e e e e 137
1.18.4 Tracing program eXeCULION + ¢ v v vt v v v v b e e e e e e e e e e e e 139
1.18.5 Debugging using spy POINts ¢t i i it e e e e e e e e e e 140
1.18.6 Debugging commandst e e e e e e e e e e e 140
1.18.7 Customizing term Writing o o i i e e e e e e 142
1.18.8 Context-switching calls e 143
1.18.9 Debugging MeSSages v v v v v v v e e e e e e e e e e e e e e e e e e e 144
1.18.10 Using the term-expansion mechanism for debugging 146
1.18.11Ports profiling v v i e e e e e e e e e e e e e e 146
1.18.12Debug and trace €VeNtS+« v v v v i e e e e e e e e e e e e e e e e e 146
1.19 Performance i i it e e e e e e e e e e e e e 147
1.19.1 Source code compilationmodeso e e e . 147
1.19.2 Local predicate calls e 147
1.19.3 Calls to imported or inherited predicates 147
1.19.4 Callsto module predicates e 147
1.19.5 MESSAZES . v v v v e e e e e e e e e e e e e e e e e e 148
1.19.6 Automatic expansion of built-in meta-predicates, 149
1.19.7 Inlining i e e e e e e e e e e e e e e 149
1.19.8 Generated code simplification and optimizations 149
1.19.9 Size of the generatedcode 149
1.19.10Debug mode overhead 149
1.19.11 Other considerations o v v vt i i i v e e e e e e e 150
1.20 Installing Logtalk i i e e e e e e e e e e e e e e 150
1.20.1 Hardware and software reqQUIremMents« « v v v v v v v v v v e e e 150
1.20.2 Logtalkinstallers i i i i e e e e e e e e 151
1.20.3 Source distribution L. e e e e e 151
1.20.4 Distribution OVerview o Lo e e e e e e e e e e e e e e 151
1.21 Prolog integration and migration« v i ittt e e e e e e e e e e e e e e 154
1.21.1 Source files with both Prolog code and Logtalkcode 154
1.21.2 Encapsulating plain Prolog code inobjects, 154
1.21.3 Converting Prolog modules intoobjects 155
1.21.4 Compiling Prolog modules asobjects 156
1.21.5 Dealing with proprietary Prolog directives and predicates 159
1.21.6 Calling Prolog module predicates 160
1.21.7 Loading converted Prolog applications 160
2 Reference Manual 161
GraMmMAT . . . v v v vt e et e e e e e e e e e e e e e e e e e e e 161
211 Entities. o . o e 161
2.1.2 Objectdefinition e e e e e e e e 161
2.1.3 Category definition e e e e e 162
2.1.4 Protocol definition e 163
2.1.5 Entityrelations e e e e e e e e e e e e e e 163
2.1.6 Enmtityidentifiers e e e 168
2.1.7 Sourcefilenames i it i e e e e e e e e e e e e 170
2. 1.8 TEIMS . . o i e e e e e e e e e e 170
2.1.9 DIrectives v v v v i e e e e e e e e e e e 171
2.1.10 Clausesand goals i v i e e e e e e e e e e e e e 181

2.1.11 Lambda eXpressSions v v v v v v i e e e e e e e e e e e e e e e e e e 182

2.1.12 Entity properties o v v v it e 183
2.1.13 Predicate properties o i i i e e e e e e e e e e e e e e e e 186
2.1.14 Compilerflags e e e e e e 187

2.2 Control CONSIIUCES . . v v v v v e 187
2.2.1 Message sendingo oo e e e e e e e e e e e e 187

2.2.2 Message delegation it e e e e e e e e e e e e e e 189

2.2.3 Calling imported and inherited predicates 191

2.2.4 Calling predicates in this o o v i it e e e e e e e e 192

2.2.5 Calling external predicates o i it e e e e e e e e e e 193

2.2.6 Context switchingcalls e 195

2.3 DIFECHIVES . . . v v i i i i e e e e e e e e e e e e e e e e e e e 196
2.3.1 Source filedirectives e e e 196

2.3.2 Conditional compilation directives o o 202

2.3.3 Entity directives o o o e e e e e e e e e e e e e e e 205

2.3.4 Predicate direCtives i i e e e e e e e e e e e 218

2.4 Built-in predicates e e e e e e e e e e e e e e e e e e 235
2.4.1 Enumerating objects, categories and protocols 235

2.4.2 Enumerating objects, categories and protocols properties 238

2.4.3 Creating new objects, categories and protocols L. 240

2.4.4 Abolishing objects, categories and protocols 245

2.4.5 Obijects, categories, and protocols relations 247

2.4.6 Eventhandling e e e e e e 257

2.4.7 Multi-threading e e e 259

2.4.8 Multi-threading engines e 269

2.49 Compiling and loading source files, 277
2400 FIags . .« v o o o e e e e e e e e e e 290
2417 LINDEr . . . o v ot e e e e e e e e e e e e e e e e 293

2.5 Built-inmethods e 294
2.5.1 Logicand control e e e e 294

2.5.2 EXECUtiON CONEEXL . . . v v v v v e v v e 297

2.5.3 Reflection e 302

2.5.4 Database e e e e e 306

2.55 Meta-calls e 315

2.5.6 Errorhandling. e 318

2.5.7 Allsolutions e e e e e e e e e e e 333

2.5.8 Eventhandling 338

2.5.9 Message forwarding e 340
2.5.10 Definite clause grammarrules e e e e e e e e e 341
2.5.11 Term and goal expansion o i i e e 345
2.5.12 Coinduction hooks e 349
2.5.13 Message printing o Lt e e e e e e e e e e e e e e e e 350
2.5.14 Questionasking 355

3 Tutorial 359
3.1 ListprediCates . . v v v v i e 359
3.1.1 Defining alistobject e 359

3.1.2 Defining alist protocol e e e e e e e e 360

313 Summary e 362

3.2 Dynamic object attributes L e e 362
3.2.1 Defining acategory v v o i i e e e e e e e e e e e e e e e e e 362

3.2.2 Importing the Category v v v i i e e e e e e e e e e e e e e e 363

3.2.3 SUMMATY . . v v v o e 364

3.3 Avreflective class-based System e e e e e e e 364

3.4

FAQ
4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

3.3.1 Definingthebaseclasses e 364

3.3.2 0 SUMMATY . . v v v ot e 365
Profiling programs i e 365
3.4.1 Messages as €VENLS . . v v v v v i i e 366
3.4.2 Profilers as moOnitors i e e e e e e e e e e e e e e e 366
343 Summary e e e e e e e e e e e e e e e e 368
369
General L e e e e 369
4.1.1 Why are all versions of Logtalk numbered 2.xor 3.x? 369
4.1.2 Why do I need a Prolog compiler to use Logtalk? 369
4.1.3 Is the Logtalk implementation based on Prolog modules? 369
4.1.4 Does the Logtalk implementation use term-expansion? 370
Compatibility o e e e e e e e e e e 370
4.2.1 What are the backend Prolog compiler requirements to run Logtalk? 370
4.2.2 Can I use constraint-based packages with Logtalk? 370
4.2.3 Can I use Logtalk objects and Prolog modules at the same time? 370
Installation e e e e e e e e e e e 370
4.3.1 The integration scripts/shortcuts are not working! 370
4.3.2 1 get errors when starting up Logtalk after upgrading to the latest version! 371
Portability e e e e 371
4.4.1 Are my Logtalk applications portable across Prolog compilers? 371
4.4.2 Are my Logtalk applications portable across operating systems? 371
Programming o v it e 371
4.5.1 Should I use prototypes or classes in my application? 372
4.5.2 Can use both classes and prototypes in the same application? 372
4.5.3 Can I mix classes and prototypes in the same hierarchy? 372
4.5.4 Can I use a protocol or a category with both prototypes and classes? 372
4.5.5 What support is provided in Logtalk for defining and using components? 372
4.5.6 What support is provided in Logtalk for reflective programming? 372
Troubleshooting e e e e 372

4.6.1 Using compiler options on calls to the Logtalk compiling and loading predicates do
not work! . .. oL e 373

4.6.2 Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when brows-
ing XML documenting files! 373

4.6.3 Compiling a source file results in errors or warnings but the Logtalk compiler reports
a successful compilation with zero errors and zero warnings! 373
Usability o o e e e e e e e e e e e e e e 373
4.7.1 Is there a shortcut for compiling and loading source files? 373
4.7.2 Is there an equivalent directive to the ensure_loaded/1 Prolog directive? 374
4.7.3 Are there shortcuts for the make functionality? 374
Deployment i e e e e e e e e e e e e 374
4.8.1 Can I create standalone applications with Logtalk? 374
Performance i i i e e e e e e e 374
4.9.1 IsLogtalk implemented as a meta-interpreter? 374

4.9.2 What kind of code Logtalk generates when compiling objects? Dynamic code? Static
Code? . oL e e e e e 375

4.9.3 How about message-sending performance? Does Logtalk use static binding or dy-
namic binding? L e e e e e e e e e e e 375
4.9.4 Which Prolog-dependent factors are most crucial for good Logtalk performance? . . . 375
4.9.5 How does Logtalk performance compare with plain Prolog and with Prolog modules? 375
LICenSING . . . v v o i e e e e e e e e e e e e e e e 375
4.10.1 What’s the Logtalk distribution license? 376
4.10.2 Can Logtalk be used in commercial applications? 376

Vi

4.10.3 What's the final license for a combination of Logtalk with a Prolog compiler? 376

N) 05) o P 376
4.11.1 Are there professional consulting, training and supporting services? 376
Developer Tools 377
S OVEIVIEW . v v v vt it i e e e e e e e e e e e e e e e e e 377
5.1.1 Loading the developertools 378
5.1.2 Toolsdocumentation i i v i it e e e e e e e e e e 378
5.1.3 Toolscommonflags e e 378
5.1.4 Tools TeqUITEMENTS v v v i it e e e e e e e e e e e e e e e e e 378
5.2 asdf .o e e e e e e e e e 380
5.3 @sSertions i i e e e e e e e e e 380
5.3.1 APIdocumentation v v v v vt e e e e e e e e e e e e e e e e 381
53.2 Loading i e e e e e e 381
5.3.3 Testing i e e e e e e e e e e e e e e e e 381
5.3.4 Adding assertions to your source code e e e e e e e e e 381
5.3.5 Automatically adding file and line context information to assertions 381
5.3.6 Suppressing assertion calls from sourcecode 382
5.3.7 Redirecting assertion failure messages 382
5.3.8 Converting assertion failures into errors e 382
5.4 code_metriCs. . . . v i i i e e e e e e e e e e e e 383
5.4.1 APIdocumentation o v i v v ittt e e e e e e e e e e e e 383
542 Loading ¢ i it e e e e e e e e e e e e e 383
543 TeStNg L . e e e e e e e e e e e e e e e e e e e 383
5.4.4 Availablemetrics e e e 383
545 Usage . . .o i e e e e e e e e 385
5.4.6 Defining Nnew MetriCsS v v v v v v i i e e e e e e e e e e e e e e e e e 385
5.4.7 Third-party tools e e 385
5.4.8 Applying metrics to Prologmodules oo L. 385
5.4.9 Applying metrics to plain Prologcode L. 385
5.5 dead_code_scanner i e e e e e e e e e e e e e e e 386
5.5.1 APIdocumentation v v v v v v it e e e e e e e e e e e e e e 386
552 Loading i i i i e e e e e e e e e e e e e 387
5.5.3 Testing i e e e e e e e e e e e e e e e 387
5.5:4 UsSage . . . v it i e e e e e e e e e e e 387
5.5.5 Integration with themaketool L. 387
5.5.6 CaveatS i e e e e e e e e e e e e e e e e e 388
5.5.7 Scanning Prolog modules e e 388
5.5.8 Scanning plain Prologfiles 388
5.6 debug_messages i e 388
5.6.1 APIdocumentationt i it ittt e e e 389
56,2 Loading o i i e e e e e e e e e e e e e 389
5,63 Testing . . . v v v i i e 389
5604 USAZE . . . v i e 389
5.7 debugger . .o e 390
5.7.1 APIdocumentation i it ittt e e e e e e e 390
572 Loading i e e e e e 390
5.7.3 Testing . . . o v i e 391
574 USAZE . . o v i e 391
5.7.5 Alternative debugger tools L. e 391
5.7.6 KNOWNISSUES v i it et i e et e e e e e e e e e e e e e e e e e 392
5.8 diagrams e 392
5.8.1 Requirements v i v i i i e e e e e e e e e e e e e e e e e e e 392
5.8.2 APIdocumentation e 393

vii

5.9

5.10

5.11

5.12

5.13

583 Loading i i e e e e e e e e e e 393

584 Testing . . . v v i e 393
5.8.5 Supported diagramso e e e e e e e e e e 394
5.8.6 Graphelements e e e e e 394
5.8.7 Supported graph languages e 396
5.8.8 CuStomization i i e e e e e e e e e e e e 397
5.8.9 Linking diagrams e e e e e e e e e e e e 401
5.8.10 Creating diagrams for Prolog module applications 402
5.8.11 Creating diagrams for plain Prologfiles 402
5.8.12 Othernotes v i i i it i e e e e e e e e e e e e e 402
doclet e e e e e e e e e e 403
5.9.1 APIdocumentation i ittt e 403
5.9.2 Loading i i i i e e e e e e e e e e e e e 403
5.9.3 Automating running doclets L. oL e 403
5.9.4 Integration with themaketool., 403
help . o o e 404
5.10.1 APIdocumentation v i it i ittt e e 404
5.10.2 Loading o v v e e e e e e e e e e e e e e e e e 404
5.10.3 Testing . . . o v v v i e 404
5.10.4 Supported Operating-SySteImsttt v v e e e e e e e e e e e e e e 404
S5.10.5 Usage . v v v v v i it e e e e e e e e e e e e e e 404
5.10.6 Experimental features e 404
5.10.7 KNOWINISSUES . . . v v v v v i et e e e e e e e e e e e e e e e e 406
issue_creator L e e e e e 406
5.11.1 ReqUIremMents o v v v v vttt et e e e e e e e e e e e e e e e e e e 406
5.11.2 Loading v v v i e 406
SAIL.3 USAgE . v v v v v e e e e e e e e e e e e e e e e e 406
5.11.4 KnOWNiSSUES . . . v v v v v it i e e e e e e e e e e e e e e e e e 407
1gtdoc . . . e 407
5.12.1 APIdocumentation o v v v v i it e e e e e e e e e e e e 408
5.12.2 LoadiNg v v v i e 408
5.12.3 TeStiNg .« ¢ v v v o e 408
5.12.4 Documenting source code o i ittt e e e e e e e e e e 408
5.12.5 Generating documentation v . ittt e e e e e e e e e e e e e 408
5.12.6 Documentation linterchecks o o 409
1gtunit & o o e e e e e e e e e e e e e e e e e e 410
5.13.1 Mainfiles L e e e e 410
5.13.2 APIdocumentation v it ittt e e e e 410
5.13.3 Loading o i i i e e e e e e e e e e e e e e e e 410
5134 Testing . . . o v v v i e 410
5.13.5 Writing and running tests it e e e e e e e e e 411
5.13.6 Automating running tests o it e e e e e e e e e e e e e e e e e e 413
5.13.7 Parametric teSt ObJECtS o e e e e e e e e e e 414
5.13.8 Testdialects L e e e 415
5.13.9 User-defined testdialects e 417
5.13.10QuickCheck e e e e e 417
513 11 SKIPPING tESES & & v v v v e vt e 422
5.13.12Checking test goal results e 423
5.13.13Testing local predicates o i i i e e e e 424
5.13.14 Testing non-deterministic predicates 424
5.13.15Testing GeNeratorS v v v v v v v v b e 424
5.13.16 Testing input/output predicates v v v v v v it e e e e e e e 425
5.13.17 Suppressing tested predicates outputot e e 426
5.13.18 Tests with timeout limits e 427

viii

5.14

5.15

5.16

5.17

5.13.19Setup and cleanup goals e e e e e e e e e e e 427

5.13.20Test annotationNS . . . v v v v v v v v e e e e e e e e e e e e e e e e 427
5.13.21 Test execution times and MEMOIY USAZE . . .« v v v v« v v v v v v v e e e e e e e e e 428
5.13.22Working with test datafiles e 428
5.13.23Flaky teStS o & v v v v e 429
5.13.24Mocking e e e e e 429
5.13.25 Debugging messages iNteStS v v v v vt e e e e e e e e e e e e e e e e 430
5.13.26 Debugging failed tests e e 431
5.13.27C0de COVETAZE« v v v v e 431
5.13.28 Utility predicates i i i i e e e e e e e e e e e e e e 433
5.13.29 Exporting test results in xUnit XML format 434
5.13.30 Exporting test results in the TAP output format. 435
5.13.31 Generating Allure reports v v i i i e e e e e e e e e e e e e e e 435
5.13.32 Exporting code coverage results in XML format 437
5.13.33 Automatically creating bug reports at issue trackers, 437
5.13.34 Minimizing test results oUtPUt Lo e e e e 438
S5.13.35KNowWnissues e e e e e e e e e e 438
linter . . e e e e e e e 438
5.14.1 Mainlinterchecks e 438
5.14.2 Help onlinter warnings i i it i it e e 440
5.14.3 Extendingthelinter. e 440
5.14.4 Linting Prologmodules L e 440
5.14.5 Linting plain Prolog files e 440
1151 441
5.15.1 APIdocumentation oo i v v i i vt e e e e e e e e e e 441
PACKS v v e 441
5.16.1 RequUIrements v it ittt e e e e e e e e e e e e e 441
5.16.2 APIdocumentation ittt ittt e e e 442
5.16.3 Loading o v vt i e e e e e e e e e e e e e e e e e e 442
5164 Testing« o v i i e 443
5.16.5 Usage v v i i i e 443
5.16.6 Registries and packs storage e 443
5.16.7 Virtual environmentsttt e e e e e e e e e e e e e e e 443
5.16.8 Registry specification v . i it e e e e e e e e e e e e e e e 445
5.16.9 Registryhandling e 446
5.16.10Registry development o i i i e e e e e e e e e e e e e 447
5.16.11Pack specification i i i e e e e e e e e e e e 447
5.16.12Pack URLs and Single Sign-On it ittt i e 449
5.16.13 Multiple pack VErsions v . i i i i i e e e e e e e e e e e e e 449
5.16.14Pack dependencies i it i e e e e e e e e e e e e 450
5.16.15Pack portability e 450
5.16.16Pack development i i e e e e e e e e e e e 451
5.16.17Pack handling e 451
5.16.18 Pack documentationttt e e e e e e e 453
5.16.19 Pinning registriesand packs o oL e 454
5.16.20Testing packs i e e e e e e e e e 454
5.16.21 Security considerations i i i i e e e e e e e e e e e e e e e e 455
5.16.22BeSt PractiCes . . . v v v v v v v e 455
5.16.23Installing Prolog packs e e e e e 455
S5.16.24KNOWNISSUES . . v v v v v v o s e e e e e e e e e e e e e e e 456
POrts_profiler i e e e e e e e e e e e e e e e 456
5.17.1 APIdocumentation v v v v vt e e e e e e e e e e e e e e e e 457
5.17.2 Loading o i i e e e e e e e e e 457
5.17.3 TeStiNg . .« v v v v e e e e e e e e e e e e e e e e e e 457

6

5.17.4 Compiling source files for port profiling 457

5.17.5 Generating profilingdata. e e e e 457
5.17.6 Printing profiling data reports e e e 458
5.17.7 Interpreting profilingdata e 459
5.17.8 Profiling Prolog modules e 460
5.17.9 Profiling plain Prologcode e 460
5.17.10KNOWN ISSUES .« ¢ v v v v v v e 461
5.18 profiler . . . o e 461
5.18.1 Loading o o v i i e e e e e e e e e e e e e e 461
5.18.2 Testing v v o v i e et e 461
5.18.3 Supported backend Prolog compilers oo L. 461
5.18.4 Compiling source code for profiling 462
5.19 tULOr . . ot e e e e e e e e e 462
5.19.1 APIdocumentation o o v v v v i v e e e e e e e e e e 462
5.19.2 Loading o i i e e e e e e e e e e e e 462
5.19.3 USAZE . . & o i v it e 462
5.20 WFAPPEI © v v o e 463
5.20.1 APIdocumentation v v v v v v it e e e e e e e e e e e e e 464
5.20.2 Loading o i e e e e e e e e e e e e e 464
5.20.3 WOrkflows ot e e e e e e e e e e e e e e e 464
5.20.4 CuStOmMIZatiOn« ¢ v v v v it e 464
5.20.5 Current limitations 0 i e e e e e e e e e 465
Libraries 467
6.1 OVEIVIEW . . o v it i i et e 467
6.1.1 Library documentation i i it e e e e e e e e 467
6.1.2 Loading libraries i v i i e e e e e e e e e e e e e 467
6.1.3 Testing libraries L e e e e e 468
6.1.4 Credits v v v i e e e e e e e e e e e e e e e 468
6.1.5 Othernotes v i i i i ittt e e e e e e e e e e e e e e 468
6.2 arbitrary . .o e e e e e e e e e e e e e e e e e e e 468
6.2.1 APIdocumentation v v v v v it e e e e e e e e e e e e e 469
6.2.2 Loading i i e e e e e e e e e e e e e 469
6.2.3 TeStiNg o i e 469
6.2.4 USAZE . . . v i i e e e e e e e e e e e e e e 469
6.2.5 Examples e e e e e 471
6.2.6 KNOWNiSSUES v i it i it e e e e e e e e e e e e e e e e e e 471
6.3 ASSIENVAIrS . . v i e 471
6.3.1 APIdocumentation v v v v vt i e e e e e e e e e e e e e e e e e 471
6.3.2 LoadiNg v v it e e e e e e e e e e e e e e 471
6.3.3 Testingo e e e e e e e e e e e e e e 472
6.4 basebd e e e e e e e e e 472
6.4.1 APIdocumentation i v v v i it e e e e e e e e e e e e 472
6.4.2 Loading i i e e e e e e e e e e e e e 472
6.4.3 TestiNg i e e e e e e e e e e e e e e e e e e 472
6.4.4 Encoding. i e e e e e e e 472
6.4.5 Decoding i e e e e 473
6.5 basic _types e e e e e e e e e e e e e e e e e 473
6.5.1 APIdocumentation v v v i it e e e e e e e e e e e e 474
6.5.2 Loading i . e e e e e e e 474
6.5.3 Testing i e e e e e e e e e e e e e e e e e e e 474
6.6 coroutining i . e e e e e e e e e e e e e e e e 474
6.6.1 APIdocumentation v v v v v it e e e e e e e e e e e 474
6.6.2 Loading i i e e e e e e e e e e e e e 474

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.6.3 Testing o e 474

6.6.4 USAE i i i e e e e e e e e e e e e e 475
ChOr o e 475
6.7.1 Representation it e e e e e e e e e e e e e 475
6.7.2 Encoding. i e e e e e e e e 476
6.7.3 Decoding i e e e e e e 476
6.7.4 APl documentationt i i i i i i e e e e e e e e e e e e e e e e 476
6.7.5 Loading i i e e e e e e e e e e e 476
6.7.6 TeStiNg v o i e 476
o) o= 477
6.8.1 APIdocumentation i i i i i it e e e e e e e e e e e 477
6.8.2 Loading i i i i e e e e e e e e e e e 477
6.8.3 Testing o e 477
SV e 477
6.9.1 APIdocumentation v v v v it e e e e e e e e e e e e e 477
6.9.2 Loading i i e e e e e e 478
6.9.3 TeSting i e 478
6.9.4 USAZE v i i e e e e e e e e e e e e e e e e e 478
dates & v i e 479
6.10.1 APIdocumentation v i v v i e e e e e e e e e e e e e e e 479
6.10.2 Loading i i e e e e e e e e e 480
dependents L L e 480
6.11.1 APIdocumentation i i v i i it et e e e e e e e e e e e e e e 480
6.11.2 Loading v o v i e e e e e e e e e e e e e e e e e e e 480
dictionaries i i i i e e e e e e e e e e e e e e e e e 480
6.12.1 APl documentation v v v v it e e e e e e e e e e e e e e e 480
6.12.2 Loading i e e e e e e 480
6.12.3 Testing . . . v v v i e 481
60.12.4 USAge . . . v v i e 481
6.12.5 CreditS o i e e e e e e e e e e e e e e e e e e e 482
1 482
6.13.1 APl documentation v i v v i i it e e e e e e e e e e e e 482
6.13.2 Loading o v v i e e e e e e e e e e e e e e 482
6.13.3 Testing . . . o v v i e 482
0.13.4 Usage i i e 482
BACE v ot e 483
6.14.1 APl documentation v i v v i i i e e e e e e e e e e e e e 483
6.14.2 Loading i i e e e e e e 483
6.14.3 Testing v v v i e 483
0.14.4 UsSage . . . v v i e 484
6.14.5 IntroducCtion i i e 484
6.14.6 SYNEAX . . v v vttt e e e e e e e e e e e e e e e e e e 484
6.14.7 Declaration of Predicates o it e e e e e e e e e e e 485
6.14.8 Declaration of Accumulators i i e e e e e e e e e e e e e 485
6.14.9 Declaration of Passed ArgUMENES v v v v v v v o e e e e e e e e e e e e 486
6.14.10 Additional documentation e e e 486
BVENTS vt vt e e e e e e e e e e e e e e e 486
6.15.1 APIdocumentation v i v v i i it e e e e e e e e e e e e 486
6.15.2 Loading v v i e e e e e e e e e e e e e e 486
expand_library_alias_paths. L e e e e e e e e e 487
6.16.1 APl documentation i i it i i e e e e e e e e e e e e e e 487
6.16.2 LoadiNg v v v it e e e e e e e e e e e e e e e e 487
6.16.3 USAZE . . & . i v e 487
exXpecteds e 487

Xi

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.17.1 API documentation v v v v vt e e e e e e e e e e e e e e e e e 487

6.17.2 Loading i i e e e e e e e e e e e e e e e e 488
6.17.3 Testing o v i e 488
6.17.4 USAE . . . v v v i i e e e e e e e e e e e e e e e e e e 488
6.17.5 Seealso e e e e e e e e e 488
format . . . L e e e e e e e e e e e e e e e e e e 488
6.18.1 APIdocumentation v v v v v v v it e e e e e e e e e e e e e e e e e 489
6.18.2 Loading v i e e e e e e e e e e e e e e e 489
6.18.3 Testing vt i i e e e e e e e e e e e e e e e 489
6.18.4 UsSaZE . . . v v it e e e e e e e e e e e e e e e e 489
6.18.5 Portability e e e e e e e e e e e e 489
GENSYM o o v v e 490
6.19.1 APIdocumentation v v v v v vt e e e e e e e e e e e e e e e e e e e 490
6.19.2 Loading i it e e e e e e e e e 490
6.19.3 TeStiNg . . « v v v vt e 490
6.19.4 UsSaZe . . .« v v vt e e e e e e e e e e e e e e 490
CENINT . . L L e 490
6.20.1 APIdocumentation v v v v v v v i e e e e e e e e e e e e e e e e e e e 491
6.20.2 Loading i i e e e e e e e e e e e e e e e e e 491
6.20.3 TeStinNg o v i i e 491
6.20.4 USAZE . . .« v it e e e e e e e e e e e e e e e e e 491
=T 491
6.21.1 APIdocumentation v v v v v v v it e e e e e e e e e e e e e e e e e e 491
6.21.2 Loading i i i e e e e e e e e e e e e e e e e e e 491
6.21.3 TeStiNg v i i e e e e e e e e e e e e e e e e e e e 492
6.21.4 USAZE . . .« v v i e e e e e e e e e e e e e e e e e e e 492
o =Y111 1= o 493
6.22.1 APIdocumentation v v v v v v it e e e e e e e e e e e e e e e e e 493
6.22.2 Loading it e e e e e e e e e e e e e e e e 493
60.22.3 Testing o e 493
6.22.4 USAZE . . . v v i e 493
ReaPS . v i e 493
6.23.1 APIdocumentation v v v v v v i i e e e e e e e e e e e e e e e e e 494
6.23.2 Loading it e e e e e e e e e e e e e e e e 494
6.23.3 Testing o i e 494
6.23.4 Credits v i i e e e e e e e e e e e e e e e e e e 494
hierarchies i i i e e e e e e e e e e e e e e e e 494
6.24.1 APIdocumentation v v v v i i e e e e e e e e e e e e e e e e e e 494
6.24.2 Loading i i e e e e e e e e e e e e e e e e e 494
60.24.3 TeStiNg v v i e 494
hoOK _TLOWS . . . o i it e e e e e e e e e e e e e e e e e e 495
6.25.1 APIdocumentation v v v v v it e e e e e e e e e e e e e e e e e e 495
6.25.2 LoadiNg v v i i e e e e e e e e e e e e e e e 495
6.25.3 Testing v v i e 495
0.25.4 USAZE . . v v v i e 495
hoOK_0ObJects . . v v v o e e e e e e e e e e e e e e e e e 496
6.26.1 APIdocumentation v v v v v v vt e e e e e e e e e e e e e e e e e e 496
6.26.2 LoadiNg v v vt e 496
6.26.3 Testing i L e e e e e e e e e e e e e e e e e e 496
0.20.4 USAZE . . v v v i e 496
ML L L e 499
6.27.1 APIdocumentation v v v v v v v i e e e e e e e e e e e e e e e e e e e 500
6.27.2 Loading i e e e e e e e e 500
6.27.3 TeStiNg . . .« o o i e e e e e e e e e e e e e e e 500

Xii

6.28

6.29

6.30

6.31

6.32

6.33

6.34

6.35

6.36

6.37

6.27.4 Generatinga HTML document v v v v i v e e it e e et e e e e e e 500

6.27.5 Generating a HTML fragment ittt 501
6.27.6 Working with callbacks to generate content 501
6.27.7 Working with custom elementso 501
1S L e 502
6.28.1 APIdocUmMENtation v v v v v vt e e e e e e e e e e e e e e e e e 502
6.28.2 Loading i i e e e e e e e e e e e e e 502
6.28.3 Testing v e 502
6.28.4 Usage v i i e e e e e e e e e e e e 502
Intervals . . . e 503
6.29.1 APIdocUmentation v v v v v v vt e e e e e e e e e e e e e e e e e 503
6.29.2 Loading i i e e e e e e e e e e e e e e e e e e e 503
6.29.3 Testing v e 503
JAVA v e 503
6.30.1 APIdocumentation v v v v v v vt e e e e e e e e e e e e e e e e e e 504
6.30.2 Loading i i e e e e e e e e e 504
6.30.3 TeSting . . . v v v e 504
6.30.4 UsSagE v v i e e e e e e e e e e e e e e e 504
6.30.5 KNOWN ISSUES . . . v v v vt v e i e 504
JOON v e 504
6.31.1 APIdoCUmMENtatiON v v v v v v it e e e e e e e e e e e e e e e e e e 505
6.31.2 Loading o v v it e e e e e e e e e e e e e 505
6.31.3 Testing . . . v v v i e 505
6.31.4 Representation v v v v i i e 505
6.31.5 Encoding. o o i i e e e e e e e e e e 507
6.31.6 Decoding o i i e e e e e e e e e 508
6.31.7 KNOWNISSUES . . « . v v o v i e e i i e 508
10ggiNg . . . L e 508
6.32.1 APIdocumentation v v v v v v v e e e e e e e e e e e e e e e e e e e 508
6.32.2 Loading o i e e e e e e e e e e e e e e 508
100pS . .. e 508
6.33.1 APIdoCUmMENtation v v v v v it e e e e e e e e e e e e e e e e e e e 508
6.33.2 Loading o it e e e e e e e e e e e e e 509
6.33.3 TeSting . . . o v v e 509
0.33.4 USAZE . . ¢ v i i e 509
11 o= 509
6.34.1 APIdocUmMENtation v v v v v vt e 509
6.34.2 Loading i e e e e e e 509
6.34.3 Testing . . . o v v i e 509
60.34.4 USAZE . . ¢ v v v i i e 510
meta_compiler L e 510
6.35.1 APIdocumentation v v v v v it e e e e e e e e e e e e e e e e e e 510
6.35.2 LoadiNg v v it e e e e e e e e e e e e e e e 510
6.35.3 Testing . . . v v v i e e e e e e e e e e e e e e e e e e e 510
6.35.4 USAZE v i i e e e e e e e e e e e e e e 510
nested_dictionaries L e e e e e e e e e e 511
6.36.1 APIdocumentation v v v v v v vt e e e e e e e e e e e e e e e e e e 511
6.36.2 LoadiNg v v v i e e e e e e e e e e e e e e e e 511
6.36.3 Testing L e e e e e e e e e e e e e e e e 511
6.36.4 USAZEt i i e e e e e e e e e e e e e e e e e e 511
6.36.5 Curly term representation v v vttt e e e e e e e e e e e e e 512
optionals e 512
6.37.1 APIdoCUMENAtiON v v v v v i i e 512
6.37.2 Loading e e e e e e e e 512

6.38

6.39

6.40

6.41

6.42

6.43

6.44

6.45

6.46

6.47

6.48

6.37.3 Testing . . . v v v i e 513

60.37.4 USAZE . . ¢ o v v i i e e e e e e e e e e e e e e e e e e 513
6.37.5 Seealso e e e e e e e e e e 513
OPLIONS . v o e 513
6.38.1 APIdocumentation v i v v i i i e e e e e e e e e e e e e e e 513
6.38.2 Loading i i e e e e e e e e 514
6.38.3 TeSting . . . v v v e 514
6.38.4 Usage v v i i e e e e e e e e e e e e e 514
08 t t e 515
6.39.1 APl documentation v i v v i i i e e e e e e e e e e e e e e e 515
6.39.2 Loading e e e e e e e e 515
6.39.3 TeSting . . . v v v e 515
6.39.4 KNOWN iSSUES . . v v v v i v e e e et e 515
o = 1= 516
6.40.1 APIdocumentation v v v v i e et e e e e e e e e e e e e 516
6.40.2 Loading i i e e e e e e e e 516
6.40.3 TeSting . . . v v v i e 516
6.40.4 UsSagE v v i i e e e e e e e e e e e e e e e e e e e 516
=T 2o o] 11 OO 517
6.41.1 APl documentation v i v v it e e e e e e e e e e e e e e e 517
6.41.2 Loading i i e e e e e e e e e e e 517
6.41.3 TeStiNg v v vt e e e e e e e e e e e e e e e e 517
6.41.4 USAZE . . ¢ v v v i i e 517
LT o 1 OO 518
6.42.1 API documentation v v v v v v e e e e e e e e e e e e e e e e e e 518
6.42.2 Loading i e e e e e e e e e e 518
6.42.3 TeStiNg v v o et e e e e e e e e e e e e e e e e 518
redis e 518
6.43.1 APl documentation i i i i it e e e e e e e e e e e e e e e 518
6.43.2 Loading i . e e e e e e e e e 519
6.43.3 TeStiNg v v i e 519
6.43.4 CreditS o v i e e e e e e e e e e e e e 519
6.43.5 KNOWN iSSUES . . . v v v v i e e i e 519
SEES o i i e 519
6.44.1 APl documentation i v i i i e e e e e e e e e e e e e e e 519
6.44.2 Loading i i e e e e e e e e e 520
6.44.3 TeStiNg . . .« o v vt e e e e e e e e e e e e e e e e e e 520
6.44.4 USaZe . . .« v v it e e e e e e e e e e 520
6.44.5 CreditS v i e e e e e e e e e e e e e e e e e 521
statistics . . v v i i e e e e e e e e e e e e e e e e e 521
6.45.1 API docUmentation v v v v v v v e e e e e e e e e e e e e e e e e e e 521
6.45.2 Loading i i e e e e e e e e 522
6.45.3 TeSting o o it e e e e e e e e e e e e e e e e 522
TErM_10 & . et e 522
6.46.1 APIdocumentation i i i i i i et e e e e e e e e e e e e e e 522
6.46.2 Loading o i i e e e e e e e e e e 522
6.46.3 TeStiNG v v v i e 522
timeout L e e e e e e e e e e e e e e 522
6.47.1 APl documentation i v v i i it e e e e e e e e e e e e e e e 523
6.47.2 Loading i it e e e e e e e e e e e e e e e e e e 523
6.47.3 TestiNg o i e e e e e e e e e e e e e e e e e 523
6.47.4 KNOWILISSUES . . . & v v v i i e 523
LY PES o o e 523
6.48.1 APIdocumentation v i v v i i i e e e e e e e e e e e e e e 523

Xiv

6.48.2 Loading i i e e e e e e e e e e e e e e e
6.48.3 TeSting . . . v v v i e
6.48.4 Type-checking i i i e e e e e e e e e e e e
6.48.5 Defining NEW t¥PES o v v i i e e e e e e e e e e e e e e e e e e
6.48.6 Examples e e e e e e e e
6.49 unicode_data. L. e e e e e e e e e e e e e e
6.49.1 AUthOrs L e e e e e e e
6.49.2 LICENSE . . « . v v v it e
6.49.3 Website i e e e e e e e e e e e e e e e
6.49.4 Description v v i e e e e e e e e e e e e e e e e
6.49.5 RequUIremMents i i i i ittt e e e e e e e e e e e e
6.49.6 UsSage i i i e e e e e e e e e e e e e e e e e e
6.49.7 KNOWNISSUES v v v v vt e it et e e e e e e e e e e e e e e e e e
6.49.8 Acknowledgements L e e e e
6.49.9 Filesand APISUMMATIY« v v v v vttt e e e e e e e e e e e e e e e e e

6.50 ulid

6.50.1 APIdocumentation v v v v v vt e e e e e e e e e e e e e e
6.50.2 Loading i i e e e e e e e e e e e e e e e
6.50.3 Testing o v i e
6.50.4 Generating ULIDS o 0 o v i i ittt e e e e e e e
6.50.5 Type-checking ULIDS i i i i i i it e e e e e e e e e e e e e e e
6.51 union_find L e e e e e e e e e e
6.51.1 APIdocumentation v v v v v vttt e e e e e e e e e e e e e
6.51.2 Loading i i e e e e e e e e e e e e e e e
6.51.3 TeStiNg v i i e e e e e e e e e e e e e e e e e
6.51.4 USaZe . . .« v i it e e e e e e e e e e e e e

6.52 uuid

6.52.1 APIdocumentation v v v v v vt e e e e e e e e e e e e e e e
6.52.2 Loading o i e e e e e e e e e e e e e
6.52.3 Testing o i e
6.52.4 Generating version 1 UUIDs ittt it
6.52.5 Generating version4 UUIDs i i
6.52.6 Generatingthe null UUID i i ittt it ie e e e e
6.53 ZIpPerS . . . e e e e e e e e e e e e e e e
6.53.1 APIdocumentation i v v v i it e e e e e e e e e e e
6.53.2 Loading o v v it e e e e e e e e e e e e e e e
6.53.3 Testing i L e e e e e e e e e e e e e e e

7 Glossary
Bibliography

Index

XV

Xvi

CHAPTER
ONE

USER MANUAL

1.1 Declarative object-oriented programming

Logtalk is a declarative object-oriented logic programming language. This means that Logtalk shares key
concepts with other object-oriented programming languages but abstracts and reinterprets these concepts in
the context of declarative logic programming.

The key concepts in declarative object-oriented programming are encapsulation and reuse patterns. Notably,
the concept of mutable state, which is an imperative concept, is not a significant concept in declarative object-
oriented programming. Declarative object-oriented programming concepts can be materialized in both logic
and functional languages. In this section, we focus only in declarative object-oriented logic programming.

The first critical generalization of object-oriented programming concepts is the concept of object itself. What
an object encapsulates depends on the base programming paradigm where we apply object-oriented pro-
gramming concepts. When these concepts are applied to an imperative language, where mutable state and
destructive assignment are central, objects naturally encapsulate and abstract mutable state, providing dis-
ciplined access and modification. When these concepts are applied to a declarative logic language such as
Prolog, objects naturally encapsulate predicates. Therefore, an object can be seen as a theory, expressed by a
set of related predicates. Theories are usually static and thus Logtalk objects are static by default. This con-
trasts with imperative object-oriented languages where usually classes are static and objects are dynamic.
This view of an object as a set of predicates also forgo a distinction between data and procedures that is
central to imperative object-oriented languages but moot in declarative, homoiconic logic languages.

The second critical generalization concerns the relation between objects and other entities such as protocols
(interfaces) and ancestor objects. The idea is that entity relations define reuse patterns and the roles played
by the participating entities. A common reuse pattern is inheritance. In this case, an entity inherits, and
thus reuses, resources from an ancestor entity. In a reuse pattern, each participating entity plays a specific
role. The same entity, however, can play multiple roles depending on its relations with other entities. For
example, an object can play the role of a class for its instances, the role of a subclass for its superclasses, and
the role of an instance for its metaclass. Another common reuse pattern is protocol implementation. In this
case, an object implementing a protocol reuses its predicate declarations by providing an implementation for
those predicates and exposing those predicates to its clients. An essential consequence of this generalization
is that protocols, objects, and categories are first-class entities while e.g. prototype, parent, class, instance,
metaclass, subclass, superclass, or ancestor are just roles that an object can play. Moreover, a language can
provide multiple reuse patterns instead of selecting a set of patterns and supporting this set as a design choice
that excludes other reuse patterns. For example, most imperative object-oriented languages are either class-
based or prototype-based. In contrast, Logtalk naturally supports both classes and prototypes by providing
the corresponding reuse patterns using objects as first-class entities capable of playing multiple roles.

The Logtalk Handbook, Release v3.72.0

1.2 Main features

Several years ago, I decided that the best way to learn object-oriented programming was to build my own
object-oriented language. Prolog being always my favorite language, I chose to extend it with object-oriented
capabilities. Strong motivation also come from my frustration with Prolog shortcomings for writing large ap-
plications. Eventually this work has led to the Logtalk programming language as its know today. The first
system to use the name Logtalk appeared in February 1995. At that time, Logtalk was mainly an experiment
in computational reflection with a rudimentary runtime and no compiler. Based on feedback by users and
on the author subsequent work, the name was retained and Logtalk as created as a full programming lan-
guage focusing on using object-oriented concepts for code encapsulation and reuse. Development started
on January 1998 with the first public alpha version released in July 1998. The first stable release (2.0) was
published in February 1999. Development of the third generation of Logtalk started in 2012 with the first
public alpha version in August 2012 and the first stable release (3.0.0) in January 2015.

Logtalk provides the following features:

1.2.1 Integration of logic and object-oriented programming

Logtalk tries to bring together the main advantages of these two programming paradigms. On
one hand, the object orientation allows us to work with the same set of entities in the successive
phases of application development, giving us a way of organizing and encapsulating the knowl-
edge of each entity within a given domain. On the other hand, logic programming allows us
to represent, in a declarative way, the knowledge we have of each entity. Together, these two
advantages allow us to minimize the distance between an application and its problem domain,
turning the writing and maintenance of programming easier and more productive.

From a pragmatic perspective, Logtalk objects provide Prolog with the possibility of defining
several namespaces, instead of the traditional Prolog single database, addressing some of the
needs of large software projects.

1.2.2 Integration of event-driven and object-oriented programming

Event-driven programming enables the building of reactive systems, where computing which
takes place at each moment is a result of the observation of occurring events. This integration
complements object-oriented programming, in which each computing is initiated by the explicit
sending of a message to an object. The user dynamically defines what events are to be observed
and establishes monitors for these events. This is specially useful when representing relation-
ships between objects that imply constraints in the state of participating objects [Rumbaugh87],
[Rumbaugh88], [Fornarino et al 89], [Razek92]. Other common uses are reflective applica-
tions like code debugging or profiling [Maes87]. Predicates can be implicitly called when a spied
event occurs, allowing programming solutions which minimize object coupling. In addition,
events provide support for behavioral reflection and can be used to implement the concepts of
pointcut and advice found on Aspect-Oriented Programming.

2 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

1.2.3 Support for component-based programming

Predicates can be encapsulated inside categories which can be imported by any object, without
any code duplication and irrespective of object hierarchies. A category is a first-class encapsula-
tion entity, at the same level as objects and protocols, which can be used as a component when
building new objects. Thus, objects may be defined through composition of categories, which act
as fine-grained units of code reuse. Categories may also extend existing objects. Categories can
be used to implement mixins and aspects. Categories allows for code reuse between non-related
objects, independent of hierarchy relations, in the same vein as protocols allow for interface
reuse.

1.2.4 Support for both prototype and class-based systems

Almost any (if not all) object-oriented languages available today are either class-based or
prototype-based [Lieberman86], with a strong predominance of class-based languages. Logtalk
provides support for both hierarchy types. That is, we can have both prototype and class hi-
erarchies in the same application. Prototypes solve a problem of class-based systems where we
sometimes have to define a class that will have only one instance in order to reuse a piece of code.
Classes solves a dual problem in prototype based systems where it is not possible to encapsulate
some code to be reused by other objects but not by the encapsulating object. Stand-alone objects,
that is, objects that do not belong to any hierarchy, are a convenient solution to encapsulate code
that will be reused by several unrelated objects.

1.2.5 Support for multiple object hierarchies

Languages like Smalltalk-80 [Goldberg83], Objective-C [Cox86] and Java [Joy et al 00] define
a single hierarchy rooted in a class usually named Object. This makes it easy to ensure that
all objects share a common behavior but also tends to result in lengthy hierarchies where it is
difficult to express objects which represent exceptions to default behavior. In Logtalk we can
have multiple, independent, object hierarchies. Some of them can be prototype-based while
others can be class-based. Furthermore, stand-alone objects provide a simple way to encapsulate
utility predicates that do not need or fit in an object hierarchy.

1.2.6 Separation between interface and implementation

This is an expected (should we say standard ?) feature of almost any modern programming
language. Logtalk provides support for separating interface from implementation in a flexible
way: predicate directives can be contained in an object, a category or a protocol (first-order
entities in Logtalk) or can be spread in both objects, categories and protocols.

1.2.7 Private, protected and public inheritance

Logtalk supports private, protected and public inheritance in a similar way to C++
[Stroustrup86], enabling us to restrict the scope of inherited, imported or implemented pred-
icates (by default inheritance is public).

1.2. Main features 3

The Logtalk Handbook, Release v3.72.0

1.2.8 Private, protected and public object predicates

Logtalk supports data hiding by implementing private, protected and public object predicates in
a way similar to C++ [Stroustrup86]. Private predicates can only be called from the container
object. Protected predicates can be called by the container object or by the container descendants.
Public predicates can be called from any object.

1.2.9 Parametric objects

Object names can be compound terms (instead of atoms), providing a way to parameterize ob-
ject predicates. Parametric objects are implemented in a similar way to L& [McCabe92], OL (P)
[Fromherz93] or SICStus Objects [SICStus95] (however, access to parameter values is done via
a built-in method instead of making the parameters scope global over the whole object). Para-
metric objects allows us to treat any predicate clause as defining an instantiation of a parametric
object. Thus, a parametric object allows us to encapsulate and associate any number of predicates
with a compound term.

1.2.10 High level multi-threading programming support

High level multi-threading programming is available when running Logtalk with selected back-
end Prolog compilers, allowing objects to support both synchronous and asynchronous messages.
Logtalk allows programmers to take advantage of modern multi-processor and multi-core com-
puters without bothering with the details of creating and destroying threads, implement thread
communication, or synchronizing threads.

1.2.11 Smooth learning curve

Logtalk has a smooth learning curve, by adopting standard Prolog syntax and by enabling an
incremental learning and use of most of its features.

1.2.12 Compatibility with most Prolog systems and the ISO standard

The Logtalk system has been designed to be compatible with most Prolog compilers and, in
particular, with the ISO Prolog standard [ISO95]. It runs in almost any computer system with a
modern Prolog compiler.

1.2.13 Performance

The current Logtalk implementation works as a trans-compiler: Logtalk source files are first com-
piled to Prolog source files, which are then compiled by the chosen Prolog compiler. Therefore,
Logtalk performance necessarily depends on the backend Prolog compiler. The Logtalk compiler
preserves the programmers choices when writing efficient code that takes advantage of tail re-
cursion and first-argument indexing.

As an object-oriented language, Logtalk can use both static binding and dynamic binding for
matching messages and methods. Furthermore, Logtalk entities (objects, protocols, and cate-
gories) are independently compiled, allowing for a very flexible programming development. En-
tities can be edited, compiled, and loaded at runtime, without necessarily implying recompilation
of all related entities.

4 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

When dynamic binding is used, the Logtalk runtime engine implements caching of message
lookups (including messages to self and super calls), ensuring a performance level close to what
could be achieved when using static binding.

For more detailed information on performance, see its dedicated section.

1.2.14 Logtalk scope

Logtalk, being a superset of Prolog, shares with it the same preferred areas of application but also ex-
tends them with those areas where object-oriented features provide an advantage compared to plain Prolog.
Among these areas we have:

Logic and object-oriented programming teaching and researching

Logtalk smooth learning curve, combined with support for both prototype and class-based program-
ming, protocols, components or aspects via category-based composition, and other advanced object-
oriented features allow a smooth introduction to object-oriented programming to people with a back-
ground in Prolog programming. The distribution of Logtalk source code using an open-source license
provides a framework for people to learn and then modify to try out new ideas on object-oriented
programming research. In addition, the Logtalk distribution includes plenty of programming examples
that can be used in the classroom for teaching logic and object-oriented programming concepts.

Structured knowledge representations and knowledge-based systems
Logtalk objects, coupled with event-driven programming features, enable easy implementation of
frame-like systems and similar structured knowledge representations.

Blackboard systems, agent-based systems, and systems with complex object relationships
Logtalk support for event-driven programming can provide a basis for the dynamic and reactive nature
of blackboard type applications.

Highly portable applications
Logtalk is compatible with most modern Prolog systems that support official and de facto standards.
Used as a way to provide Prolog with namespaces, it avoids the porting problems of most Prolog
module systems. Platform, operating system, or compiler specific code can be isolated from the rest of
the code by encapsulating it in objects with well-defined interfaces.

Alternative to a Prolog module system
Logtalk can be used as an alternative to a Prolog compiler module system. Most Prolog applications that
use modules can be converted into Logtalk applications, improving portability across Prolog systems
and taking advantage of the stronger encapsulation and reuse framework provided by Logtalk object-
oriented features.

Integration with other programming languages
Logtalk support for most key object-oriented features helps users integrating Prolog with object-
oriented languages like C++, Java, or Smalltalk by facilitating a high-level mapping between the
two languages.

1.2. Main features 5

The Logtalk Handbook, Release v3.72.0

1.3 Nomenclature

Depending on your logic programming and object-oriented programming background (or lack of it), you may
find Logtalk nomenclature either familiar or at odds with the terms used in other languages. In addition,
being a superset of Prolog, terms such as predicate and method are often used interchangeably. Logtalk
inherits most of its nomenclature from Prolog and Smalltalk.

Note that the same terms can have different meanings in different languages. A good example is class. The
support for meta-classes in e.g. Smalltalk translates to a concept of class that is different in key aspects from
the concept of class in e.g. Java or C++. Other terms that can have different meanings are delegation and
forwarding. There are also cases where the same concept is found under different names in some languages
(e.g. self and this) but that can also mean different concepts in Logtalk and other languages. Always be
aware of these differences and be cautious with assumptions carried from other programming languages.

In this section, we map nomenclatures from Prolog and popular OOP languages such as Smalltalk, C+ +,
Java, and Python to the Logtalk nomenclature. The Logtalk distribution includes several examples of how
to implement common concepts found in other languages, complementing the information in this section.
This Handbook also features a Prolog interoperability section and an extensive glossary providing the exact
meaning of the names commonly used in Logtalk programming.

1.3.1 Prolog nomenclature

Being a superset of Prolog, Logtalk inherits its nomenclature. But Logtalk also aims to fix several Prolog
shortcomings, thus introducing new concepts and refining existing Prolog concepts. Logtalk object-oriented
nature also introduces names and concepts that are not common when discussing logic programming se-
mantics. We mention here the most relevant ones, notably those where semantics or common practice differ.
Further details can be found elsewhere in this Handbook.

arbitrary goals as directives
Although not ISO Prolog Core standard compliant, several Prolog systems accept using arbitrary goal
as directives. This is not supported in Logtalk source files. Always use an initialization/1 directive
to wrap those goals. This ensure that any initialization goals, which often have side-effects, are only
called if the source file is successfully compiled and loaded.

calling a predicate
Sending a message to an object is similar to calling a goal with the difference that the actual predicate
that is called is determined not just by the message term but also by the object receiving the message
and possibly its ancestors. This is also different from calling a Prolog module predicate: a message
may result e.g. in calling a predicate inherited by the object but calling a module predicate requires the
predicate to exist in (or be reexported by) the module.

closed world assumption semantics
Logtalk provides clear closed world assumption semantics: messages or calls for declared but undefined
predicates fail. Messages or calls for unknown (i.e. not declared) predicates throw an error. Crucially,
this semantics apply to both static and dynamic predicates. But in Prolog workarounds are required
to have a static predicate being known by the runtime without it being also defined (so that calling it
would fail instead of throwing a predicate existence error).

compiling and loading source files
Logtalk provides its own built-in predicates for compiling and loading source files. It also provides con-
venient top-level interpreter shorthands for these and other frequent operations. In general, the tra-
ditional Prolog built-in predicates and top-level interpreter shorthands cannot be used to load Logtalk
source files.

debugging
In most (if not all) Prolog systems, debugging support is a built-in feature made available using a

6 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

set of built-in predicates like trace/@ and spy/1. But in Logtalk the default debugger is a regular
application, implemented using a public reflection API. This means that the debugger must be explicitly
loaded (either automatically from a settings file at startup or from the top-level). It also means that the
debugger can be easily extended or replaced by an alternative application.

directive operators
Some Prolog systems declare directive names as operators (e.g. dynamic, multifile, ...). This is not
required by the ISO Prolog Core standard. It’s a practice that should be avoided as it makes code
non-portable.

encapsulation
Logtalk enforces encapsulation of object predicates, generating a permission error when a predicate is
not within the scope of the caller. In contrast, most Prolog module systems allow any module predicate
to be called by using explicit qualification, even if not exported. Worse, some Prolog systems also
allow defining clauses for a module predicate outside the module, without declaring the predicate as
multifile, by simply writing clauses with explicit module-qualified heads.

entity loading
When using Prolog modules, use_module/1-2 (or equivalent) directives both load the module files
and declare that the (implicitly or explicitly) imported predicates can be used with implicit module
qualification. But Logtalk separates entity (object, protocol, category, or module) predicate usage
declarations (via uses/1 and uses/2 or its own use_module/1 and use_module/2 directives) from loading
goals (using the logtalk load/1 and logtalk load/2 predicates), called using an explicit and disciplined
approach from loader files.

flags scope
The set_logtalk flag/2 directive is always local to the entity or source file that contains it. Only calls
to the set_logtalk flag/2 predicate set the global default value for a flag. This distinction is lacking in
Prolog (where directives usually have a global scope) and Prolog modules (where some flags are local
to modules in some systems and global in other systems).

meta-predicate call semantics
Logtalk provides consistent meta-predicate call semantics: meta-arguments are always called in the
meta-predicate calling context. This contrasts with Prolog module meta-predicates where the semantics
of implicitly qualified calls is different from explicitly qualified calls.

operators scope
Operators declared inside an entity (object, protocol, or category) are local to the entity. But operators
defined in a source file but outside and entity are global for compatibility with existing Prolog code.

predicates scope
In plain Prolog, all predicates are visible. In a Prolog module, a predicate can be exported or local. In
Logtalk, a predicate can be public, protected, private, or local.

predicate declaration
Logtalk provides a clear distinction between declaring a predicate and defining a predicate. This is a
fundamental requirement for the concept of protocol (aka interface) in Logtalk: we must be able to
declare a predicate without necessarily defining it. This clear distinction is missing in Prolog and Prolog
modules. Notably, it’s a compiler error for a module to try to export a predicate that it does not define.

predicate loading conflicts
Logtalk does not use predicate import/export semantics. Thus, there are never conflicts when loading
entities (objects, protocols, or categories) that declare the same public predicates. But attempting
to load two Prolog modules that export the same predicate results in a conflict, usually a compilation
error (this is specially problematic when the use_module/1 directive is used; e.g. adding a new exported
predicate can break applications that use the module but not the new predicate).

1.3. Nomenclature 7

The Logtalk Handbook, Release v3.72.0

1.3.2 Smalltalk nomenclature

The Logtalk name originates from a combination of the Prolog and Smalltalk names. Smalltalk had a signif-
icant influence in the design of Logtalk and thus inherits some of its ideas and nomenclature. The following
list relates the most commonly used Smalltalk terms with their Logtalk counterparts.

abstract class
Similar to Smalltalk, an abstract class is just a class not meant to be instantiated by not understanding
a message to create instances.

assignment statement
Logtalk, as a superset of Prolog, uses logic variables and unification and thus provides no equivalent to
the Smalltalk assignment statement.

block
Logtalk supports lambda expressions and meta-predicates, which can be used to provide similar func-
tionality to Smalltalk blocks.

class
In Logtalk, class is a just a role that an object can play. This is similar to Smalltalk where classes are
also objects.

class method
Class methods in Logtalk are simply instance methods declared and defined in the class metaclass.

class variable
Logtalk objects, which can play the roles of class and instance, encapsulate predicates, not state. Class
variables, which in Smalltalk are really shared instance variables, can be emulated in a class by defining
a predicate locally instead of defining it in the class instances.

inheritance
While Smalltalk only supports single inheritance, Logtalk supports single inheritance, multiple inheri-
tance, and multiple instantiation.

instance
While in Smalltalk every object is an instance of same class, objects in Logtalk can play different roles,
including the role of a prototype where the concepts of instance and class don’t apply. Moreover,
instances can be either created dynamically or defined statically.

instance method
Instance methods in Logtalk are simply predicates declared and defined in a class and thus inherited
by the class instances.

instance variable
Logtalk being a declarative language, objects encapsulate a set of predicates instead of encapsulating
state. But different objects may provide different definitions of the same predicates. Mutable internal
state as in Smalltalk can be emulated by using dynamic predicates.

message
Similar to Smalltalk, a message is a request for an operation, which is interpreted in Logtalk as a logic
query, asking for the construction of a proof that something is true.

message selector
Logtalk uses the predicate template (i.e. the predicate callable term with all its arguments unbound) as
message selector. The actual type of the message arguments is not considered. Like Smalltalk, Logtalk
uses single dispatch on the message receiver.

metaclass
Metaclasses are optional in Logtalk (except for a root class) and can be shared by several classes. When
metaclasses are used, infinite regression is simply avoided by making a class an instance of itself.

8 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

method
Same as in Smalltalk, a method is the actual code (i.e. predicate definition) that is run to answer a
message. Logtalk uses the words method and predicate interchangeably.

method categories
There is no support in Logtalk for partitioning the methods of an object in different categories. The
Logtalk concept of category (a first-class entity) was, however, partially inspired by Smalltalk method
categories.

object
Unlike Smalltalk, where everything is an object, Logtalk language constructs includes both terms (as in
Prolog representing e.g. numbers and structures) and three first-class entities: objects, protocols, and
categories.

pool variables*
Logtalk, as a superset of Prolog, uses predicates with no distinction between variables and methods.
Categories can be used to share a set of predicate definitions between any number of objects.

protocol
In Smalltalk, an object protocol is the set of messages it understands. The same concept applies in
Logtalk. But Logtalk also supports protocols as first-class entities where a protocol can be implemented
by multiple objects and an object can implement multiple protocols.

self
Logtalk uses the same definition of self found in Smalltalk: the object that received the message being
processed. Note, however, that self is not a keyword in Logtalk but implicit in the (::)/1 message to
self control construct.

subclass
Same definition in Logtalk.

super
As in Smalltalk, the idea of super is to allow calling an inherited predicate (that is usually being
redefined). Note, however, that super is not a keyword in Logtalk, which provides instead a (™ ™)/1
super call control construct.

superclass
Same definition in Logtalk. But while in Smalltalk a class can only have a single superclass, Logtalk
support for multiple inheritance allows a class to have multiple superclasses.

1.3.3 C++ nomenclature

There are several C+ + glossaries available on the Internet. The list that follows relates the most commonly
used C++ terms with their Logtalk equivalents.

abstract class
Logtalk uses an operational definition of abstract class: any class that does not inherit a method
for creating new instances can be considered an abstract class. Moreover, Logtalk supports inter-
faces/protocols, which are often a better way to provide the functionality of C++ abstract classes.

base class
Logtalk uses the term superclass with the same meaning.

data member
Logtalk uses predicates for representing both behavior and data.

constructor function
There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides a built-in

1.3. Nomenclature 9

The Logtalk Handbook, Release v3.72.0

predicate, create object/4, which can be used as a building block to define more sophisticated object
creation predicates.

derived class
Logtalk uses the term subclass with the same meaning.

destructor function
There are no special methods for deleting new objects in Logtalk. Instead, Logtalk provides a built-in
predicate, abolish_object/1, which is often used to define more sophisticated object deletion predicates.

friend function
Not supported in Logtalk. Nevertheless, see the User Manual section on meta-predicates.

instance
In Logtalk, an instance can be either created dynamically at runtime or defined statically in a source
file in the same way as classes.

member
Logtalk uses the term predicate.

member function
Logtalk uses predicates for representing both behavior and data.

namespace
Logtalk does not support multiple identifier namespaces. All Logtalk entity identifiers share the same
namespace (Logtalk entities are objects, categories, and protocols).

nested class
Logtalk does not support nested classes.

static member
Logtalk does not support a static keyword. But the equivalent to static members can be declared in a
class metaclass.

template
Logtalk supports parametric objects, which allows you to get the similar functionality of templates at
runtime.

this
Logtalk uses the built-in context method self/1 for retrieving the instance that received the message
being processed. Logtalk also provides a this/1 method but for returning the class containing the
method being executed. Why the name clashes? Well, the notion of self was inherited from Smalltalk,
which predates C+ +.

virtual member function
There is no virtual keyword in Logtalk. Any inherited or imported predicate can be redefined (either
overridden or specialized). Logtalk can use static binding or dynamic binding for locating both method
declarations and method definitions. Moreover, methods that are declared but not defined simply fail
when called (as per closed-world assumption).

10 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

1.3.4 Java nomenclature

There are several Java glossaries available on the Internet. The list that follows relates the most commonly
used Java terms with their Logtalk equivalents.

abstract class
Logtalk uses an operational definition of abstract class: any class that does not inherit a method for
creating new instances is an abstract class. I.e. there is no abstract keyword in Logtalk.

abstract method
In Logtalk, you may simply declare a method (predicate) in a class without defining it, leaving its
definition to some descendant subclass.

assertion
There is no assertion keyword in Logtalk. Assertions are supported using Logtalk compilation hooks
and developer tools.

class
Logtalk objects can play the role of classes, instances, or protocols (depending on their relations with
other objects).

extends
There is no extends keyword in Logtalk. Class inheritance is indicated using specialization relations.
Moreover, the extends relation is used in Logtalk to indicate protocol, category, or prototype extension.

interface
Logtalk uses the term protocol with similar meaning. But note that Logtalk objects and categories
declared as implementing a protocol are not required to provide definitions for the declared predicates
(closed-world assumption).

callback method
Logtalk supports event-driven programming, the most common usage context of callback methods.
Callback methods can also be implemented using meta-predicates.

constructor
There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides a built-in
predicate, create_object/4, which is often used to define more sophisticated object creation predicates.

final
There is no final keyword in Logtalk. Predicates can always be redeclared and redefined in subclasses
(and instances!).

inner class
Inner classes are not supported in Logtalk.

instance
In Logtalk, an instance can be either created dynamically at runtime or defined statically in a source
file in the same way as classes.

method
Logtalk uses the term predicate interchangeably with the term method.

method call
Logtalk usually uses the expression message sending for method calls, true to its Smalltalk heritage.

method signature
Logtalk selects the method/predicate to execute in order to answer a method call based only on the
method name and number of arguments. Logtalk (and Prolog) are not typed languages in the same
sense as Java.

1.3. Nomenclature 11

The Logtalk Handbook, Release v3.72.0

package
There is no concept of packages in Logtalk. All Logtalk entities (objects, protocols, categories) share a
single namespace. But Logtalk does support a concept of library that allows grouping of entities whose
source files share a common path prefix.

reflection
Logtalk features a white box API supporting structural reflection about entity contents, a black box API
supporting behavioral reflection about object protocols, and an events API for reasoning about messages
exchanged at runtime.

static
There is no static keyword in Logtalk. See the entries below on static method and static variable.

static method
Static methods may be implemented in Logtalk by using a metaclass for the class and defining the static
methods in the metaclass. I.e. static methods are simply instance methods of the class metaclass.

static variable
Static variables are shared instance variables and can simply be both declared and defined in a class.
The built-in database methods can be used to implement destructive updates if necessary by accessing
and updated a single clause of a dynamic predicate stored in the class.

super
Instead of a super keyword, Logtalk provides a super operator and control construct, (™ *~)/1, for
calling overridden methods.

synchronized
Logtalk supports multi-threading programming in selected Prolog compilers, including a synchronized/ 1
predicate directive. Logtalk allows you to synchronize a predicate or a set of predicates using per-
predicate or per-predicate-set mutexes.

this
Logtalk uses the built-in context method self/1 for retrieving the instance that received the message
being processed. Logtalk also provides a this/I method but for returning the class containing the
method being executed. Why the name clashes? Well, the notion of self was inherited from Smalltalk,
which predates C+ +.

1.3.5 Python nomenclature

The list that follows relates the commonly used Python concepts with their Logtalk equivalents.

abstract class
Logtalk uses a different definition of abstract class: a class that does not inherit a method for creating
new instances. Notably, the presence of abstract methods (i.e. predicates that are declared but not
defined) does not make a class abstract.

abstract method
Logtalk uses the term predicate interchangeably with method. Predicates can be declared without being
also defined in an object (or category).

class
Logtalk objects can play the role of classes, instances, or protocols (depending on their relations with
other objects).

dictionary
There is no native, built-in associative data type. But the library provides several implementations of a
dictionary protocol.

12 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

function
The closest equivalent is a predicate defined in user, a pseudo-object for predicates not defined in
regular objects, and thus callable from anywhere without requiring a scope directive.

function object
Predicates calls (goals) can be passed or returned from other predicates and unified with other terms
(e.g. variables).

import path
Logtalk uses the term library to refer to a directory of source files and supports defining aliases (sym-
bolic names) to library paths to abstract the actual locations.

lambda
Logtalk natively supports lambda expressions.

list
Lists are compound terms with native syntax support.

list comprehensions
There is no native, built-in support for list comprehensions. But the standard findall/3 predicate can
be used to construct a list by calling a goal that generates the list elements.

loader
Logtalk uses the term loader to refer to source files whose main or sole purpose is to load other source
files.

loop
There are no native loop control constructs based on a counter. But the library provides implementa-
tions of several loop predicates.

metaclass
Logtalk objects play the role of metaclasses when instantiated by objects that play the role of classes.

method
Logtalk uses the terms method and predicate interchangeably. Predicates can be defined in objects (and
categories). The value of self is implicit unlike in Python where it is the first parameter of any method.

method resolution order
Logtalk uses a depth-first algorithm to lookup method (predicate) declarations and definitions. It’s
possible to use predicate aliases to access predicate declarations and definitions other than the first
ones found by the lookup algorithm.

object
Objects are first-class entities that can play multiple roles, including prototype, class, instance, and
metaclass.

package
Logtalk uses the term library to refer to a directory of source files defining objects, categories, and
protocols.

set

There is no native, built-in set type. But the library provides set implementations.

string
The interpretation of text between double-quotes depends on the double_quotes flag. Depending on
this flag, double-quoted text can be interpreted as a list of characters, a list of character codes, or an
atom. Some backend Prolog compilers allow double-quoted text to be interpreted as a string in the
Python sense.

tuple
Compound terms can be used to represent tuples of any complexity.

1.3. Nomenclature 13

The Logtalk Handbook, Release v3.72.0

variable
Logtalk works with logical variables, which are close to the mathematical concept of variables and
distinct from variables in imperative or imperative-based OOP languages where they are symbolic
names for memory locations. Logical variables can be unified with any term, including other variables.

while loop
The built-in forall/2 predicate implements a generate-and-test loop.

1.4 Messages

Messages allows us to ask an object to prove a goal and must always match a declared predicate within the
scope of the sender object. Note that sending a message is fundamentally different from calling a predicate.
When calling a predicate, the caller decides implicitly which predicate definition will be executed. When
sending a message, it is the receiving object, not the sender, that decides which predicate definition (if any)
will be called to answer the message. The predicate definition that is actually used to answer a message
depends on the relations between the object and its imported categories and ancestor objects (if any). See
the Inheritance section for details on the predicate declaration and predicate definition lookup procedures.

When a message corresponds to a meta-predicate, the meta-arguments are always called in the context of the
object (or category) sending the message.

Logtalk uses nomenclature similar to in other object-oriented programming languages such as Smalltalk.
Therefore, the terms query and message are used interchangeably when referring to a declared predicate
that is part of an object interface. Likewise, the terms predicate and method are used interchangeably when
referring to the predicate definition (inside an object or category) that is called to answer a message.

1.4.1 Operators used in message sending

Logtalk declares the following operators for the message sending control constructs:

;- op(600, xfy, ::).
;- op(600, fy, ::).
:= op(600, fy, **).

It is assumed that these operators remain active (once the Logtalk compiler and runtime files are loaded)
until the end of the Prolog session (this is the usual behavior of most Prolog compilers). Note that these
operator definitions are compatible with the predefined operators in the Prolog ISO standard.

1.4.2 Sending a message to an object

Sending a message to an object is accomplished by using the (::)/2 control construct:

[..., Object: :Message, ...]

The message must match a public predicate declared for the receiving object. The message may also corre-
spond to a protected or private predicate if the sender matches the predicate scope container. If the predicate
is declared but not defined, the message simply fails (as per the closed-world assumption).

14 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

1.4.3 Delegating a message to an object

It is also possible to send a message to an object while preserving the original sender by using the []/1
delegation control construct:

[..., [Object: :Messagel,]

This control construct can only be used within objects and categories (in the top-level interpreter, the sender
is always the pseudo-object user so using this control construct would be equivalent to use the (::)/2
message sending control construct).

1.4.4 Sending a message to self

While defining a predicate, we sometimes need to send a message to self, i.e., to the same object that has
received the original message. This is done in Logtalk through the (::)/1 control construct:

[..., : :Message,]

The message must match either a public or protected predicate declared for the receiving object or a private
predicate within the scope of the sender otherwise an error will be thrown. If the message is sent from inside
a category or if we are using private inheritance, then the message may also match a private predicate. Again,
if the predicate is declared but not defined, the message simply fails (as per the closed-world assumption).

1.4.5 Broadcasting

In the Logtalk context, broadcasting is interpreted as the sending of several messages to the same object. This
can be achieved by using the message sending control construct described above. However, for convenience,
Logtalk implements an extended syntax for message sending that may improve program readability in some
cases. This extended syntax uses the (,)/2, (;)/2, and (->)/2 control constructs (plus the (x->)/2 soft-cut
control construct when provided by the backend Prolog compiler). For example, if we wish to send several
messages to the same object, we can write:

[l ?- Object::(Messagel, Message2, ...). J

This is semantically equivalent to:

[l ?- Object::Messagel, Object::Message2, }

This extended syntax may also be used with the (::)/1 message sending control construct.

1.4.6 Calling imported and inherited predicates

When redefining a predicate, sometimes we need to call the inherited definition in the new code. This
functionality, introduced by the Smalltalk language through the super primitive, is available in Logtalk using
the (™ ©)/1 control construct:

[..., **Predicate,]

Most of the time we will use this control construct by instantiating the pattern:

1.4. Messages 15

The Logtalk Handbook, Release v3.72.0

Predicate :-
. % do something
**Predicate, % call inherited definition
% do something more

This control construct is generalized in Logtalk where it may be used to call any imported or inherited
predicate definition. This control construct may be used within objects and categories. When combined with
static binding, this control construct allows imported and inherited predicates to be called with the same
performance of local predicates. As with the message sending control constructs, the (**)/1 call simply fails
when the predicate is declared but not defined (as per the closed-world assumption).

1.4.7 Message sending and event generation

Assuming the events flag is set to allow for the object (or category) sending a message using the (::)/2 control
construct, two events are generated, one before and one after the message execution. Messages that are sent
using the (::)/1 (message to self) control construct or the (™ ”)/1 super mechanism described above do not
generate any events. The rationale behind this distinction is that messages to self and super calls are only
used internally in the definition of methods or to execute additional messages with the same target object
(represented by self). In other words, events are only generated when using an object’s public interface; they
cannot be used to break object encapsulation.

If we need to generate events for a public message sent to self, then we just need to write something like:

Predicate :-
% get self reference
self(Self),
% send a message to self using (::)/2
Self: :Message,

If we also need the sender of the message to be other than the object containing the predicate definition, we
can write:

Predicate :-
% send a message to self using (::)/2
% sender will be the pseudo-object user
self(Self),
{Self: :Message},

When events are not used, is possible to turn off event generation globally or on a per entity basis by using the
events compiler flag to optimize message sending performance (see the Event-driven programming section
for more details).

16 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

1.4.8 Sending a message from a module

Messages can be sent to object from within a Prolog module. Depending on the backend Prolog system and
on the optimize flag being turned on, the messages will use static binding when possible. This optimization
requires the object to be compiled and loaded before the module. Note that the module can be user. This is
usually the case when sending the message from the top-level interpreter. Thus, the same conditions apply
in this case.

Warning: If you want to benchmark the performance of a message sending goal at the top-level inter-
preter, be careful to check first if the goal is pre-compiled to use static binding, otherwise you will also be
benchmarking the Logtalk compiler itself.

1.4.9 Message sending performance

For a detailed discussion on message sending performance, see the Performance section.

1.5 Objects

The main goal of Logtalk objects is the encapsulation and reuse of predicates. Instead of a single database
containing all your code, Logtalk objects provide separated namespaces or databases allowing the partition-
ing of code in more manageable parts. Logtalk is a declarative programming language and does not aim to
bring some sort of new dynamic state change concept to Logic Programming or Prolog.

Logtalk, defines two built-in objects, user and logtalk, which are described at the end of this section.

1.5.1 Objects, prototypes, classes, and instances

There are only three kinds of encapsulation entities in Logtalk: objects, protocols, and categories. Logtalk
uses the term object in a broad sense. The terms prototype, parent, class, subclass, superclass, metaclass, and
instance always designate an object. Different names are used to emphasize the role played by an object in a
particular context. I.e. we use a term other than object when we want to make the relationship with other
objects explicit. For example, an object with an instantiation relation with other object plays the role of an
instance, while the instantiated object plays the role of a class; an object with a specialization relation with
other object plays the role of a subclass, while the specialized object plays the role of a superclass; an object
with an extension relation with other object plays the role of a prototype, the same for the extended object.
A stand-alone object, i.e. an object with no relations with other objects, is always interpreted as a prototype.
In Logtalk, entity relations essentially define patterns of code reuse. An entity is compiled accordingly to the
roles it plays.

Logtalk allows you to work from standalone objects to any kind of hierarchy, either class-based or prototype-
based. You may use single or multiple inheritance, use or forgo metaclasses, implement reflective designs,
use parametric objects, and take advantage of protocols and categories (think components).

1.5. Objects 17

../../docs/user_0.html#user-0
../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.72.0

Prototypes

Prototypes are either self-defined objects or objects defined as extensions to other prototypes with whom they
share common properties. Prototypes are ideal for representing one-of-a-kind objects. Prototypes usually
represent concrete objects in the application domain. When linking prototypes using extension relations,
Logtalk uses the term prototype hierarchies although most authors prefer to use the term hierarchy only with
class generalization/specialization relations. In the context of logic programming, prototypes are often the
ideal replacement for modules.

Classes

Classes are used to represent abstractions of common properties of sets of objects. Classes often provide an
ideal structuring solution when you want to express hierarchies of abstractions or work with many similar
objects. Classes are used indirectly through instantiation. Contrary to most object-oriented programming
languages, instances can be created both dynamically at runtime or defined in a source file like other objects.
Using classes in requires defining at least one metaclass, as explained below.

1.5.2 Defining a new object

We can define a new object in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the object. By default, all Logtalk source files use
the extension .1gt but this is optional and can be set in the adapter files. Intermediate Prolog source files
(generated by the Logtalk compiler) have, by default, a _1gt suffix and a .pl extension. Again, this can be
set to match the needs of a particular Prolog compiler in the corresponding adapter file. For instance, we
may define an object named vehicle and save it in a vehicle.lgt source file which will be compiled to a
vehicle_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog files
may include a directory hash and a process identifier to prevent file name clashes when embedding Logtalk
applications or running parallel Logtalk processes).

Object names can be atoms or compound terms (when defining parametric objects, see below). Objects,
categories, and protocols share the same name space: we cannot have an object with the same name as a
protocol or a category.

Object code (directives and predicates) is textually encapsulated by using two Logtalk directives: object/1-5
and end _object/0. The most simple object will be one that is self-contained, not depending on any other
Logtalk entity:

:- object(Object).

:— end_object.

If an object implements one or more protocols then the opening directive will be:

:— object(Object,
implements([Protocoll, Protocol2, ...1)).

:- end_object.

An object can import one or more categories:

:— object(Object,
imports([Categoryl, Category2, ...])).
(continues on next page)

18 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

:— end_object.

If an object both implements protocols and imports categories then we will write:

:— object(Object,
implements([Protocoll, Protocol2, ...1),
imports([Categoryl, Category2, ...]1)).
:- end_object.

In object-oriented programming objects are usually organized in hierarchies that enable interface and code
sharing by inheritance. In Logtalk, we can construct prototype-based hierarchies by writing:

:— object(Prototype,
extends(Parent)).

:- end_object.

We can also have class-based hierarchies by defining instantiation and specialization relations between ob-
jects. To define an object as a class instance we will write:

:— object(Object,
instantiates(Class)).

:— end_object.

A class may specialize another class, its superclass:

:- object(Class,
specializes(Superclass)).

:- end_object.

If we are defining a reflexive system where every class is also an instance, we will probably be using the
following pattern:

:— object(Class,
instantiates(Metaclass),
specializes(Superclass)).

:— end_object.

In short, an object can be a stand-alone object or be part of an object hierarchy. The hierarchy can be
prototype-based (defined by extending other objects) or class-based (with instantiation and specialization
relations). An object may also implement one or more protocols or import one or more categories.

A stand-alone object (i.e. an object with no extension, instantiation, or specialization relations with other
objects) always plays the role of a prototype, that is, a self-describing object. If we want to use classes and
instances, then we will need to specify at least one instantiation or specialization relation. The best way to
do this is to define a set of objects that provide the basis of a reflective system [Cointe87], [Moura94]. For
example:

1.5. Objects 19

The Logtalk Handbook, Release v3.72.0

% avoid the inevitable unknown entity warnings as in a
% reflective system there will always be references to
% an entity that will be defined after the reference
.- set_logtalk_flag(unknown_entities, silent).

% default root of the inheritance graph

% providing predicates common to all objects

:- object(object,
instantiates(class)).

:- end_object.
% default metaclass for all classes providing
% predicates common to all instantiable classes
:- object(class,
instantiates(class),
specializes(abstract_class)).
:— end_object.
% default metaclass for all abstract classes
% providing predicates common to all classes
:- object(abstract_class,
instantiates(class),

specializes(object)).

:— end_object.

Note that with these instantiation and specialization relations, object, class, and abstract_class are, at
the same time, classes and instances of some class. In addition, each object inherits its own predicates and
the predicates of the other two objects without any inheritance loop.

When a full-blown reflective system solution is not needed, the above scheme can be simplified by making
an object an instance of itself, i.e. by making a class its own metaclass. For example:

:- object(class,
instantiates(class)).

:- end_object.

We can use, in the same application, both prototype and class-based hierarchies (and freely exchange mes-
sages between all objects). We cannot however mix the two types of hierarchies by, e.g., specializing an
object that extends another object in this current Logtalk version.

Logtalk also supports public, protected, and private inheritance. See the inheritance section for details.

20 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

1.5.3 Parametric objects

Parametric objects have a compound term as identifier where all the arguments of the compound term are
variables. These variables, the object parameters, can be instantiated when sending or as a consequence of
sending a message to the object, thus acting as object parameters. The object predicates can then be coded
to depend on those parameters, which are logical variables shared by all object predicates. When an object
state is set at object creation and never changed, parameters provide a better solution than using the object’s
database via asserts. Parametric objects can also be used to associate a set of predicates to terms that share
a common functor and arity.

In order to give access to an object parameter, Logtalk provides a parameter/2 built-in local method:

:- object(foo(_Bar, _Baz, ...)).

bar(Bar) :-
parameter(1, Bar).

baz :-
parameter (2, Baz),
baz(Baz),

An alternative solution is to use the built-in local method this/1. For example:

:— object(foo(_Bar, _Baz, ...)).
baz :-
this(foo(_, Baz, ...)),
baz(Baz),

Both solutions are equally efficient as calls to the methods this/1 and parameter/2 are usually compiled
inline into a clause head unification. The drawback of this second solution is that we must check all calls
of this/1 if we change the object name. Note that we can’t use these method with the message sending
operators ((::)/2, (::)/1,or (™ ~)/1).

A third alternative to access object parameters is to use parameter variables. Although parameter variables
introduce a concept of entity global variables, their unique syntax, _ParameterName_, avoids conflicts and
makes them easily recognizable. For example:

:- object(foo(Bar_, Baz_, ...)).

bar(_Bar_).

baz :-
baz(_Baz),

Note that using parameter variables doesn’t change the fact that entity parameters are logical variables.
Parameter variables simplify code maintenance by allowing parameters to be added, reordered, or removed
without having to specify or update parameter indexes.

When storing a parametric object in its own source file, the convention is to name the file after the object,

1.5. Objects 21

The Logtalk Handbook, Release v3.72.0

with the object arity appended. For instance, when defining an object named sort(Type), we may save it in
a sort_1.1gt text file. This way it is easy to avoid file name clashes when saving Logtalk entities that have
the same functor but different arity.

Compound terms with the same functor and with the same number of arguments as a parametric object
identifier may act as proxies to a parametric object. Proxies may be stored on the database as Prolog facts and
be used to represent different instantiations of a parametric object identifier. Logtalk provides a convenient
notation for accessing proxies represented as Prolog facts when sending a message:

[..., {Proxy}: :Message, ...]

In this context, the proxy argument is proved as a plain Prolog goal. If successful, the message is sent to
the corresponding parametric object. Typically, the proof allows retrieving of parameter instantiations. This
construct can either be used with a proxy argument that is sufficiently instantiated in order to unify with a
single Prolog fact or with a proxy argument that unifies with several facts on backtracking.

1.5.4 Finding defined objects

We can find, by backtracking, all defined objects by calling the current object/1 built-in predicate with a
unbound argument:

| ?- current_object(Object).
Object = logtalk ;
Object = user ;

This predicate can also be used to test if an object is defined by calling it with a valid object identifier (an
atom or a compound term).

1.5.5 Creating a new object in runtime

An object can be dynamically created at runtime by using the create_object/4 built-in predicate:

[l ?- create_object(Object, Relations, Directives, Clauses). J

The first argument should be either a variable or the name of the new object (a Prolog atom or compound
term, which must not match any existing entity name). The remaining three arguments correspond to the
relations described in the opening object directive and to the object code contents (directives and clauses).

For example, the call:

| ?- create_object(
foo,
[extends(bar)],
[public(foo/1)1,
[foo(1), foo(2)]
).

is equivalent to compiling and loading the object:

:— object(foo,
extends(bar)).

(continues on next page)

22 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

(continued from previous page)
:- dynamic.
;- public(foo/1).

foo(1).
foo(2).

:— end_object.

If we need to create a lot of (dynamic) objects at runtime, then is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate to make new objects. This predicate may provide
automatic object name generation, name checking, and accept object initialization options.

1.5.6 Abolishing an existing object

Dynamic objects can be abolished using the abolish_object/1 built-in predicate:

[l ?- abolish_object(Object). J

The argument must be an identifier of a defined dynamic object, otherwise an error will be thrown.

1.5.7 Object directives

Object directives are used to set initialization goals, define object properties, to document an object depen-
dencies on other Logtalk entities, and to load the contents of files into an object.

Object initialization

We can define a goal to be executed as soon as an object is (compiled and) loaded to memory with the
initialization/1 directive:

[;— initialization(Goal).]

The argument can be any valid Logtalk goal. For example, a call to a local predicate:

:- object(foo).

:— initialization(init).
;- private(init/0).

init :-

:- end_object.

Or a message to another object:

:— object(assembler).

(continues on next page)

1.5. Objects 23

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

;- initialization(control::start).

:- end_object.

Another common initialization goal is a message to self in order to call an inherited or imported predicate.
For example, assuming that we have a monitor category defining a reset/0 predicate, we could write:

.- object(profiler,
imports(monitor)).

;- initialization(: :reset).

:- end_object.

Note, however, that descendant objects do not inherit initialization directives. In this context, self denotes
the object that contains the directive. Also note that object initialization does not necessarily mean setting
an object dynamic state.

Dynamic objects

Similar to Prolog predicates, an object can be either static or dynamic. An object created during the execution
of a program is always dynamic. An object defined in a file can be either dynamic or static. Dynamic objects
are declared by using the dynamic/0 directive in the object source code:

[: - dynamic. J

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code
results in a performance hit when compared to static code. We should only use dynamic objects when these
need to be abolished during program execution. In addition, note that we can declare and define dynamic
predicates within a static object.

Object documentation

An object can be documented with arbitrary user-defined information by using the info/1 entity directive.
See the Documenting section for details.

Loading files into an object

The include/1 directive can be used to load the contents of a file into an object. A typical usage scenario is to
load a plain Prolog file into an object thus providing a simple way to encapsulate its contents. For example,
assume a cities.pl file defining facts for a city/4 predicate. We could define a wrapper for this database
by writing:

.- object(cities).
;= public(city/4).

:— include(dbs('cities.pl')).
(continues on next page)

24 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

‘:— end_object. ’

The include/1 directive can also be used when creating an object dynamically. For example:

[I ?- create_object(cities, [], [public(city/4), include(dbs('cities.pl'))]1, [1). J

Declaring object aliases

The uses/1 directive can be used to declare object aliases. The typical uses of this directive include short-
ening long object names, working consistently with specific parameterizations of parametric objects, and
simplifying experimenting with different object implementations of the same protocol when using explicit
message sending.

1.5.8 Object relationships

Logtalk provides six sets of built-in predicates that enable us to query the system about the possible relation-
ships that an object may have with other entities.

The instantiates class/2-3 built-in predicates can be used to query all instantiation relations:

[l ?- instantiates_class(Instance, Class). J

or, if we also want to know the instantiation scope:

[I ?- instantiates_class(Instance, Class, Scope).]

Specialization relations can be found by using the specializes class/2-3 built-in predicates:

[I ?- specializes_class(Class, Superclass).]

or, if we also want to know the specialization scope:

[I ?- specializes_class(Class, Superclass, Scope). J

For prototypes, we can query extension relations using with the extends _object/2-3 built-in predicates:

[I ?- extends_object(Object, Parent).]

or, if we also want to know the extension scope:

[I ?- extends_object(Object, Parent, Scope).]

In order to find which objects import which categories we can use the imports_category/2-3 built-in predi-
cates:

[I ?- imports_category(Object, Category).]

or, if we also want to know the importation scope:

[I ?- imports_category(Object, Category, Scope). }

1.5. Objects 25

The Logtalk Handbook, Release v3.72.0

To find which objects implements which protocols we can use the implements protocol/2-3 and
conforms_to_protocol/2-3 built-in predicates:

[l ?- implements_protocol (Object, Protocol, Scope). J

or, if we also want to consider inherited protocols:

[l ?- conforms_to_protocol(Object, Protocol, Scope). J

Note that, if we use a unbound first argument, we will need to use the current object/1 built-in predicate to
ensure that the entity returned is an object and not a category.

To find which objects are explicitly complemented by categories we can use the complements_object/2 built-in
predicate:

[I ?- complements_object(Category, Object). J

Note that more than one category may explicitly complement a single object and a single category can
complement several objects.

1.5.9 Object properties

We can find the properties of defined objects by calling the built-in predicate object property/2:

[l ?- object_property(Object, Property). J

The following object properties are supported:

static
The object is static

dynamic
The object is dynamic (and thus can be abolished in runtime by calling the abolish_object/1 built-in
predicate)

built_in
The object is a built-in object (and thus always available)

threaded
The object supports/makes multi-threading calls

file(Path)
Absolute path of the source file defining the object (if applicable)

file(Basename, Directory)
Basename and directory of the source file defining the object (if applicable); Directory always ends
with a /

lines(BeginLine, EndLine)
Source file begin and end lines of the object definition (if applicable)

context_switching_calls
The object supports context switching calls (i.e. can be used with the (<<)/2 debugging control
construct)

dynamic_declarations
The object supports dynamic declarations of predicates

26 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

events
Messages sent from the object generate events

source_data
Source data available for the object

complements(Permission)
The object supports complementing categories with the specified permission (allow or restrict)

complements
The object supports complementing categories

public(Resources)
List of public predicates and operators declared by the object

protected(Resources)
List of protected predicates and operators declared by the object

private(Resources)
List of private predicates and operators declared by the object

declares(Predicate, Properties)
List of properties for a predicate declared by the object

defines(Predicate, Properties)
List of properties for a predicate defined by the object

includes(Predicate, Entity, Properties)
List of properties for an object multifile predicate that are defined in the specified entity (the proper-
ties include number_of_clauses (Number), number_of_rules(Number), and line_count(Line) with Line
being the begin line of the first multifile predicate clause)

provides(Predicate, Entity, Properties)
List of properties for other entity multifile predicate that are defined in the object (the properties include
number_of_clauses(Number), number_of_rules(Number), and line_count(Line) with Line being the
begin line of the first multifile predicate clause)

alias(Predicate, Properties)
List of properties for a predicate alias declared by the object (the properties include for(Original),
from(Entity), non_terminal (NonTerminal), and line_count(Line) with Line being the begin line of
the alias directive)

calls(Call, Properties)
List of properties for predicate calls made by the object (Call is either a predicate indicator or a control
construct such as (::)/1-2 or (**)/1 with a predicate indicator as argument; note that Call may not
be ground in case of a call to a control construct where its argument is only know at runtime; the
properties include caller(Caller), alias(Alias), and line_count(Line) with both Caller and Alias
being predicate indicators and Line being the begin line of the predicate clause or directive making the
call)

updates(Predicate, Properties)

List of properties for dynamic predicate updates (and also access using the clause/2 predicate) made
by the object (Predicate is either a predicate indicator or a control construct such as (::)/1-2or (:)/2
with a predicate indicator as argument; note that Predicate may not be ground in case of a control
construct argument only know at runtime; the properties include updater(Updater), alias(Alias),
and line_count(Line) with Updater being a (possibly multifile) predicate indicator, Alias being a
predicate indicator, and Line being the begin line of the predicate clause or directive updating the
predicate)

number_of_clauses(Number)
Total number of predicate clauses defined in the object at compilation time (includes both user-defined

1.5. Objects 27

The Logtalk Handbook, Release v3.72.0

clauses and auxiliary clauses generated by the compiler or by the expansion hooks but does not in-
clude clauses for multifile predicates defined for other entities or clauses for the object own multifile
predicates contributed by other entities)

number_of_rules(Number)
Total number of predicate rules defined in the object at compilation time (includes both user-defined
rules and auxiliary rules generated by the compiler or by the expansion hooks but does not include
rules for multifile predicates defined for other entities or rules for the object own multifile predicates
contributed by other entities)

number_of_user_clauses(Number)
Total number of user-defined predicate clauses defined in the object at compilation time (does not
include clauses for multifile predicates defined for other entities or clauses for the object own multifile
predicates contributed by other entities)

number_of_user_rules(Number)
Total number of user-defined predicate rules defined in the object at compilation time (does not include
rules for multifile predicates defined for other entities or rules for the object own multifile predicates
contributed by other entities)

debugging
The object is compiled in debug mode

module
The object resulted from the compilation of a Prolog module

When a predicate is called from an initialization/1 directive, the argument of the caller/1 property is
:=/1.

Some properties such as line numbers are only available when the object is defined in a source file compiled
with the source_data flag turned on. Moreover, line numbers are only supported in backend Prolog compilers
that provide access to the start line of a read term. When such support is not available, the value -1 is
returned for the start and end lines.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the ob-
ject for both multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile
predicates contributed by other entities.

1.5.10 Built-in objects

Logtalk defines some built-in objects that are always available for any application.

The built-in pseudo-object user

The built-in user pseudo-object virtually contains all user predicate definitions not encapsulated in a Logtalk
entity (or a Prolog module for backends supporting a module system). These predicates are assumed to
be implicitly declared public. Messages sent from this pseudo-object, which includes messages sent from
the top-level interpreter, generate events when the default value of the events flag is set to allow. Defining
complementing categories for this pseudo-object is not supported.

With some of the backend Prolog compilers that support a module system, it is possible to load (the) Logtalk
(compiler/runtime) into a module other than the pseudo-module user. In this case, the Logtalk pseudo-
object user virtually contains all user predicate definitions defined in the module where Logtalk was loaded.

28 Chapter 1. User Manual

../../docs/user_0.html#user-0

The Logtalk Handbook, Release v3.72.0

The built-in object logtalk

The built-in logtalk object provides message printing predicates, question asking predicates, debug and trace
event predicates, predicates for accessing the internal database of loaded files and their properties, and also a
set of low-level utility predicates normally used when defining hook objects. Consult its API documentation
for details.

1.6 Protocols

Protocols enable the separation between interface and implementation: several objects can implement the
same protocol and an object can implement several protocols. Protocols may contain only predicate dec-
larations. In some languages the term interface is used with similar meaning. Logtalk allows predicate
declarations of any scope within protocols, contrary to some languages that only allow public declarations.

Logtalk defines three built-in protocols, monitoring, expanding, and forwarding, which are described at the
end of this section.

1.6.1 Defining a new protocol

We can define a new protocol in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the protocol. By default, all Logtalk source files
use the extension .1gt but this is optional and can be set in the adapter files. Intermediate Prolog source
files (generated by the Logtalk compiler) have, by default, a _1gt suffix and a .pl extension. Again, this can
be set to match the needs of a particular Prolog compiler in the corresponding adapter file. For example,
we may define a protocol named listp and save it in a 1listp.lgt source file that will be compiled to a
listp_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog files
may include a directory hash and a process identifier to prevent file name clashes when embedding Logtalk
applications or running parallel Logtalk processes).

Protocol names must be atoms. Objects, categories and protocols share the same namespace: we cannot
have a protocol with the same name as an object or a category.

Protocol directives are textually encapsulated by using two Logtalk directives: protocol/1-2 and
end_protocol/0. The most simple protocol will be one that is self-contained, not depending on any other
Logtalk entity:

:= protocol(Protocol).

:- end_protocol.

If a protocol extends one or more protocols, then the opening directive will be:

;= protocol(Protocol,
extends([Protocoll, Protocol2, ...1)).

:- end_protocol.

In order to maximize protocol reuse, all predicates specified in a protocol should relate to the same function-
ality. Therefore, the only recommended use of protocol extension is when you need both a minimal protocol
and an extended version of the same protocol with additional, convenient predicates.

1.6. Protocols 29

../../docs/logtalk_0.html#logtalk-0
../../docs/monitoring_0.html#monitoring-0
../../docs/expanding_0.html#expanding-0
../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.72.0

1.6.2 Finding defined protocols

We can find, by backtracking, all defined protocols by using the current protocol/1 built-in predicate with a
unbound argument:

[I ?- current_protocol (Protocol).]

This predicate can also be used to test if a protocol is defined by calling it with a valid protocol identifier (an
atom).

1.6.3 Creating a new protocol in runtime

We can create a new (dynamic) protocol at runtime by calling the Logtalk built-in predicate cre-
ate_protocol/3:

[l ?- create_protocol (Protocol, Relations, Directives). J

The first argument should be either a variable or the name of the new protocol (a Prolog atom, which must
not match an existing entity name). The remaining two arguments correspond to the relations described in
the opening protocol directive and to the protocol directives.

For instance, the call:

[I ?- create_protocol (ppp, [extends(gqq)], [public([foo/1, bar/11)1).]

is equivalent to compiling and loading the protocol:

;= protocol (ppp,
extends(qqq)) .

:- dynamic.

:= public([foo/1, bar/1]).

:- end_protocol.

If we need to create a lot of (dynamic) protocols at runtime, then is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate in order to provide more sophisticated behavior.

1.6.4 Abolishing an existing protocol

Dynamic protocols can be abolished using the abolish_protocol/1 built-in predicate:

[I ?- abolish_protocol (Protocol).]

The argument must be an identifier of a defined dynamic protocol, otherwise an error will be thrown.

30 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

1.6.5 Protocol directives

Protocol directives are used to define protocol properties and documentation.

Dynamic protocols

As usually happens with Prolog code, a protocol can be either static or dynamic. A protocol created during
the execution of a program is always dynamic. A protocol defined in a file can be either dynamic or static.
Dynamic protocols are declared by using the dynamic/0 directive in the protocol source code:

[: - dynamic.]

The directive must precede any predicate directives. Please be aware that using dynamic code results in a
performance hit when compared to static code. We should only use dynamic protocols when these need to
be abolished during program execution.

Protocol documentation

A protocol can be documented with arbitrary user-defined information by using the info/1 entity directive.
See the Documenting section for details.

Loading files into a protocol

The include/1 directive can be used to load the contents of a file into a protocol. See the Objects section for
an example of using this directive.

1.6.6 Protocol relationships
Logtalk provides two sets of built-in predicates that enable us to query the system about the possible rela-
tionships that a protocol have with other entities.

The extends_protocol/2-3 built-in predicates return all pairs of protocols so that the first one extends the
second:

[I ?- extends_protocol (Protocoll, Protocol2). J

or, if we also want to know the extension scope:

[I ?- extends_protocol (Protocoll, Protocol2, Scope).]

To find which objects or categories implement which protocols we can call the implements_protocol/2-3
built-in predicates:

[I ?- implements_protocol (ObjectOrCategory, Protocol).]

or, if we also want to know the implementation scope:

[I ?- implements_protocol (ObjectOrCategory, Protocol, Scope).]

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current_object/1
or current_category/1 built-in predicates to identify the kind of entity returned.

1.6. Protocols 31

The Logtalk Handbook, Release v3.72.0

1.6.7 Protocol properties

We can find the properties of defined protocols by calling the protocol property/2 built-in predicate:

[I ?- protocol_property(Protocol, Property).]

A protocol may have the property static, dynamic, or built_in. Dynamic protocols can be abolished in
runtime by calling the abolish_protocol/1 built-in predicate. Depending on the backend Prolog compiler, a
protocol may have additional properties related to the source file where it is defined.

The following protocol properties are supported:

static
The protocol is static

dynamic
The protocol is dynamic (and thus can be abolished in runtime by calling the abolish_category,/1 built-in
predicate)

built_in
The protocol is a built-in protocol (and thus always available)

source_data
Source data available for the protocol

file(Path)
Absolute path of the source file defining the protocol (if applicable)

file(Basename, Directory)
Basename and directory of the source file defining the protocol (if applicable); Directory always ends
with a /

lines(BeginLine, EndLine)
Source file begin and end lines of the protocol definition (if applicable)

public(Resources)
List of public predicates and operators declared by the protocol

protected(Resources)
List of protected predicates and operators declared by the protocol

private(Resources)
List of private predicates and operators declared by the protocol

declares(Predicate, Properties)
List of properties for a predicate declared by the protocol

alias(Predicate, Properties)
List of properties for a predicate alias declared by the protocol (the properties include for(Original),
from(Entity), non_terminal (NonTerminal), and line_count(Line) with Line being the begin line of
the alias directive)

Some of the properties such as line numbers are only available when the protocol is defined in a source file
compiled with the source data flag turned on.

32 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

1.6.8 Implementing protocols

Any number of objects or categories can implement a protocol. The syntax is very simple:

:— object(Object,
implements(Protocol)).

:- end_object.

or, in the case of a category:

.- category(Object,
implements(Protocol)).

:— end_category.

To make all public predicates declared via an implemented protocol protected or to make all public and
protected predicates private we prefix the protocol’s name with the corresponding keyword. For instance:

:— object(Object,
implements(private: :Protocol)).

:- end_object.

or:

:- object(Object,
implements(protected: :Protocol)).

:— end_object.

Omitting the scope keyword is equivalent to writing:

:— object(Object,
implements(public: :Protocol)).

:- end_object.

The same rules applies to protocols implemented by categories.

1.6. Protocols 33

The Logtalk Handbook, Release v3.72.0

1.6.9 Built-in protocols

Logtalk defines a set of built-in protocols that are always available for any application.

The built-in protocol expanding

The built-in expanding protocol declares the term_expansion/2 and goal expansion/2 predicates. See the
description of the hook compiler flag for more details.

The built-in protocol monitoring

The built-in monitoring protocol declares the before/3 and after,/3 public event handler predicates. See the
Event-driven programming section for more details.

The built-in protocol forwarding

The built-in forwarding protocol declares the forward/1 user-defined message forwarding handler, which is
automatically called (if defined) by the runtime for any message that the receiving object does not under-
stand. See also the []/1 control construct.

1.7 Categories

Categories are fine-grained units of code reuse and can be regarded as a dual concept of protocols. Categories
provide a way to encapsulate a set of related predicate declarations and definitions that do not represent a
complete object and that only make sense when composed with other predicates. Categories may also be
used to break a complex object in functional units. A category can be imported by several objects (without
code duplication), including objects participating in prototype or class-based hierarchies. This concept of cat-
egories shares some ideas with Smalltalk-80 functional categories [Goldberg83], Flavors mix-ins [Moon86]
(without necessarily implying multi-inheritance), and Objective-C categories [Cox86]. Categories may also
complement existing objects, thus providing a hot patching mechanism inspired by the Objective-C categories
functionality.

Logtalk defines a built-in category, core messages, which is described at the end of this section.

1.7.1 Defining a new category

We can define a new category in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the category. By default, all Logtalk source files
use the extension . 1gt but this is optional and can be set in the adapter files. Intermediate Prolog source files
(generated by the Logtalk compiler) have, by default, a _1gt suffix and a . pl extension. Again, this can be set
to match the needs of a particular Prolog compiler in the corresponding adapter file. For example, we may
define a category named documenting and save it in a documenting.lgt source file that will be compiled to a
documenting_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog
files may include a directory hash and a process identifier to prevent file name clashes when embedding
Logtalk applications or running parallel Logtalk processes).

Category names can be atoms or compound terms (when defining parametric categories). Objects, cate-
gories, and protocols share the same name space: we cannot have a category with the same name as an
object or a protocol.

34 Chapter 1. User Manual

../../docs/expanding_0.html#expanding-0
../../docs/monitoring_0.html#monitoring-0
../../docs/forwarding_0.html#forwarding-0
../../docs/core_messages_0.html#core-messages-0

The Logtalk Handbook, Release v3.72.0

Category code (directives and predicates) is textually encapsulated by using two Logtalk directives:
category/1-4 and end_category,/0. The most simple category will be one that is self-contained, not depending
on any other Logtalk entity:

.- category(Category).

:- end_category.

If a category implements one or more protocols then the opening directive will be:

;- category(Category,
implements([Protocoll, Protocol2, ...1)).

:- end_category.

A category may be defined as a composition of other categories by writing:

.- category(Category,
extends([Categoryl, Category2, ...1)).

:— end_category.

This feature should only be used when extending a category without breaking its functional cohesion (for
example, when a modified version of a category is needed for importing on several unrelated objects).
The preferred way of composing several categories is by importing them into an object. When a category
overrides a predicate defined in an extended category, the overridden definition can still be called by using
the (™ 7)/1 control construct.

Categories cannot inherit from objects. In addition, categories cannot define clauses for dynamic predicates.
This restriction applies because a category can be imported by several objects and because we cannot use
the database handling built-in methods with categories (messages can only be sent to objects). However,
categories may contain declarations for dynamic predicates and they can contain predicates which handle
dynamic predicates. For example:

;- category(attributes).

public(attribute/2).
public(set_attribute/2).
public(del_attribute/2).

private(attribute_/2).
dynamic(attribute_/2).

attribute(Attribute, Value) :-
% called in the context of "self"”
::attribute_(Attribute, Value).

set_attribute(Attribute, Value) :-
% retract old clauses in "self"”
::retractall(attribute_(Attribute, _)),
% assert new clause in "self”
::assertz(attribute_(Attribute, Value)).

del_attribute(Attribute, Value) :-

% retract clause in "self”
(continues on next page)

1.7. Categories 35

The Logtalk Handbook, Release v3.72.0

(continued from previous page)
::retract(attribute_(Attribute, Value)).

:— end_category.

Each object importing this category will have its own attribute_/2 private, dynamic predicate. The predi-
cates attribute/2, set_attribute/2, and del_attribute/2 always access and modify the dynamic predicate
contained in the object receiving the corresponding messages (i.e. self). But it’s also possible to define pred-
icates that handle dynamic predicates in the context of this instead of self. For example:

;- category(attributes).

public(attribute/2).
.- public(set_attribute/2).
public(del_attribute/2).

private(attribute_/2).
dynamic(attribute_/2).

attribute(Attribute, Value) :-
% call in the context of "this"
attribute_(Attribute, Value).

set_attribute(Attribute, Value) :-
% retract old clauses in "this"
retractall(attribute_(Attribute, _)),
% asserts clause in "this”
assertz(attribute_(Attribute, Value)).

del_attribute(Attribute, Value) :-
% retract clause in "this"

retract(attribute_(Attribute, Value)).

:- end_category.

When defining a category that declares and handles dynamic predicates, working in the context of this ties
those dynamic predicates to the object importing the category while working in the context of self allows
each object inheriting from the object that imports the category to have its own set of clauses for those
dynamic predicates.

1.7.2 Hot patching

A category may also explicitly complement one or more existing objects, thus providing hot patching func-
tionality inspired by Objective-C categories:

;- category(Category,
complements([Objectl, Object2,1)).

.- end_category.

This allows us to add missing directives (e.g. to define aliases for complemented object predicates), re-
place broken predicate definitions, add new predicates, and add protocols and categories to existing objects
without requiring access or modifications to their source code. Common scenarios are adding logging or

36 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

debugging predicates to a set of objects. Complemented objects need to be compiled with the complements
compiler flag set allow (to allow both patching and adding functionality) or restrict (to allow only adding
new functionality). A complementing category takes preference over a previously loaded complementing
category for the same object thus allowing patching a previous patch if necessary.

When replacing a predicate definition, it is possible to call the overriden definition in the object from the
new definition in the category by using the (@)/1 control construct. This construct is only meaningful when
used within categories and requires a compile time bound goal argument, which is called in this (i.e. in
the context of the complemented object or the object importing a category). As an example, consider the
following object:

:— object(bird).
.- set_logtalk_flag(complements, allow).
;- public(make_sound/0).
make_sound :-

write('Chirp, chirp!'), nl.

:- end_object.

We can use the (@)/1 control construct e.g. wrap the original make_sound/@ predicate definition by writing:

.- category(logging,
complements(bird)).

make_sound :-
write('Started making sound...'), nl,
@make_sound,
write('... finished making sound.'), nl.

:— end_category.

After loading the object and the category, calling the make_sound/@ predicate will result in the following
output:

| ?- bird::make_sound.

Started making sound...
Chirp, chirp!

. finished making sound.
yes

Note that super calls from predicates defined in complementing categories lookup inherited definitions as
if the calls were made from the complemented object instead of the category ancestors. This allows more
comprehensive object patching. But it also means that, if you want to patch an object so that it imports a
category that extends another category and uses super calls to access the extended category predicates, you
will need to define a (possibly empty) complementing category that extends the category that you want to
add.

An unfortunate consequence of allowing an object to be patched at runtime using a complementing category
is that it disables the use of static binding optimizations for messages sent to the complemented object as it
can always be later patched, thus rendering the static binding optimizations invalid.

Another important caveat is that, while a complementing category can replace a predicate definition, local
callers of the replaced predicate will still call the non-patched version of the predicate. This is a consequence

1.7. Categories 37

The Logtalk Handbook, Release v3.72.0

of the lack of a portable solution at the backend Prolog compiler level for replacing static predicate definitions.

1.7.3 Finding defined categories

We can find, by backtracking, all defined categories by using the current category/1 built-in predicate with a

unbound argument:

[| ?- current_category(Category).

J

This predicate can also be used to test if a category is defined by calling it with a valid category identifier

(an atom or a compound term).

1.7.4 Creating a new category in runtime

A category can be dynamically created at runtime by using the create category/4 built-in predicate:

[l ?- create_category(Category, Relations, Directives, Clauses).

)

The first argument should be either a variable or the name of the new category (a Prolog atom, which
must not match with an existing entity name). The remaining three arguments correspond to the relations
described in the opening category directive and to the category code contents (directives and clauses).

For example, the call:

| ?- create_category(
ccc,
Cimplements(ppp)],
[private(bar/1)1],
[(foo(X):-bar(X)), bar(1), bar(2)]
).

is equivalent to compiling and loading the category:

;- category(ccc,
implements(ppp)).

;- dynamic.
;- private(bar/1).

foo(X) :-
bar (X).

bar(1).
bar(2).

.- end_category.

If we need to create a lot of (dynamic) categories at runtime, then is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate in order to provide more sophisticated behavior.

38

Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

1.7.5 Abolishing an existing category

Dynamic categories can be abolished using the abolish_category/1 built-in predicate:

[I ?- abolish_category(Category).]

The argument must be an identifier of a defined dynamic category, otherwise an error will be thrown.

1.7.6 Category directives

Category directives are used to define category properties, to document a category dependencies on other
Logtalk entities, and to load the contents of files into a category.

Dynamic categories

As usually happens with Prolog code, a category can be either static or dynamic. A category created during
the execution of a program is always dynamic. A category defined in a file can be either dynamic or static.
Dynamic categories are declared by using the dynamic/0 directive in the category source code:

[:— dynamic. J

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code
results in a performance hit when compared to static code. We should only use dynamic categories when
these need to be abolished during program execution.

Category documentation

A category can be documented with arbitrary user-defined information by using the info/1 entity directive.
See the Documenting section for details.

Loading files into a category

The include/1 directive can be used to load the contents of a file into a category. See the Objects section for
an example of using this directive.

Declaring object aliases

The uses/1 directive can be used to declare object aliases. The typical uses of this directive is to shorten
long object names and to simplify experimenting with different object implementations of the same protocol
when using explicit message sending.

1.7. Categories 39

The Logtalk Handbook, Release v3.72.0

1.7.7 Category relationships
Logtalk provides two sets of built-in predicates that enable us to query the system about the possible rela-
tionships that a category can have with other entities.

The built-in predicates implements protocol/2-3 and conforms_to_protocol/2-3 allows us to find which cate-
gories implements which protocols:

[l ?- implements_protocol (Category, Protocol, Scope).]

or, if we also want to consider inherited protocols:

[l ?- conforms_to_protocol(Category, Protocol, Scope).]

Note that, if we use a unbound first argument, we will need to use the current category,/1 built-in predicate
to ensure that the returned entity is a category and not an object.

To find which objects import which categories we can use the imports_category,/2-3 built-in predicates:

[I ?- imports_category(Object, Category). J

or, if we also want to know the importation scope:

[l ?- imports_category(Object, Category, Scope).]

Note that a category may be imported by several objects.

To find which categories extend other categories we can use the extends _category/2-3 built-in predicates:

[I ?- extends_category(Categoryl, Category?2).]

or, if we also want to know the extension scope:

[I ?- extends_category(Categoryl, Category2, Scope).]

Note that a category may be extended by several categories.

To find which categories explicitly complement existing objects we can use the complements_object/2 built-in
predicate:

[I ?- complements_object(Category, Object).]

Note that a category may explicitly complement several objects.

1.7.8 Category properties

We can find the properties of defined categories by calling the built-in predicate category property/2:

[I ?- category_property(Category, Property).]

The following category properties are supported:

static
The category is static

dynamic
The category is dynamic (and thus can be abolished in runtime by calling the abolish_category/1 built-
in predicate)

40 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

built_in
The category is a built-in category (and thus always available)

file(Path)
Absolute path of the source file defining the category (if applicable)

file(Basename, Directory)
Basename and directory of the source file defining the category (if applicable); Directory always ends
with a /

lines(BeginLine, EndLine)
Source file begin and end lines of the category definition (if applicable)

events
Messages sent from the category generate events

source_data
Source data available for the category

public(Resources)
List of public predicates and operators declared by the category

protected(Resources)
List of protected predicates and operators declared by the category

private(Resources)
List of private predicates and operators declared by the category

declares(Predicate, Properties)
List of properties for a predicate declared by the category

defines(Predicate, Properties)
List of properties for a predicate defined by the category

includes(Predicate, Entity, Properties)
List of properties for an object multifile predicate that are defined in the specified entity (the proper-
ties include number_of_clauses (Number), number_of_rules(Number), and line_count(Line) with Line
being the begin line of the first multifile predicate clause)

provides(Predicate, Entity, Properties)
List of properties for other entity multifile predicate that are defined in the category (the properties in-
clude number_of_clauses(Number), number_of_rules(Number), and line_count(Line) with Line being
the begin line of the first multifile predicate clause)

alias(Predicate, Properties)
List of properties for a predicate alias declared by the category (the properties include for(Original),
from(Entity), non_terminal (NonTerminal), and line_count(Line) with Line being the begin line of
the alias directive)

calls(Call, Properties)
List of properties for predicate calls made by the category (Call is either a predicate indicator or a
control construct such as (::)/1-2 or (**)/1 with a predicate indicator as argument; note that Call
may not be ground in case of a call to a control construct where its argument is only know at runtime;
the properties include caller(Caller), alias(Alias), and line_count(Line) with both Caller and
Alias being predicate indicators and Line being the begin line of the predicate clause or directive
making the call)

updates(Predicate, Properties)
List of properties for dynamic predicate updates (and also access using the clause/2 predicate) made
by the object (Predicate is either a predicate indicator or a control construct such as (::)/1-2or (:)/2
with a predicate indicator as argument; note that Predicate may not be ground in case of a control

1.7. Categories 41

The Logtalk Handbook, Release v3.72.0

construct argument only know at runtime; the properties include updater(Updater), alias(Alias),
and line_count(Line) with Updater being a (possibly multifile) predicate indicator, Alias being a
predicate indicator, and Line being the begin line of the predicate clause or directive updating the
predicate)

number_of_clauses(Number)
Total number of predicate clauses defined in the category (includes both user-defined clauses and
auxiliary clauses generated by the compiler or by the expansion hooks but does not include clauses
for multifile predicates defined for other entities or clauses for the category own multifile predicates
contributed by other entities)

number_of_rules(Number)
Total number of predicate rules defined in the category (includes both user-defined rules and auxiliary
rules generated by the compiler or by the expansion hooks but does not include rules for multifile
predicates defined for other entities or rules for the category own multifile predicates contributed by
other entities)

number_of_user_clauses(Number)
Total number of user-defined predicate clauses defined in the category (does not include clauses for
multifile predicates defined for other entities or clauses for the category own multifile predicates con-
tributed by other entities)

number_of_user_rules(Number)
Total number of user-defined predicate rules defined in the category (does not include rules for multifile
predicates defined for other entities or rules for the category own multifile predicates contributed by
other entities)

Some properties such as line numbers are only available when the category is defined in a source file com-
piled with the source data flag turned on. Moreover, line numbers are only supported in backend Prolog
compilers that provide access to the start line of a read term. When such support is not available, the value
-1 is returned for the start and end lines.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the ob-
ject for both multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile
predicates contributed by other entities.

1.7.9 Importing categories

Any number of objects can import a category. In addition, an object may import any number of categories.
The syntax is very simple:

:— object(Object,
imports([Categoryl, Category2, ...1)).

:- end_object.

To make all public predicates imported via a category protected or to make all public and protected predicates
private we prefix the category’s name with the corresponding keyword:

:- object(Object,
imports(private::Category)).

:— end_object.

or:

42 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

:— object(Object,
imports(protected: :Category)).

:- end_object.

Omitting the scope keyword is equivalent to writing:

:- object(Object,
imports(public::Category)).

:— end_object.

1.7.10 Calling category predicates

Category predicates can be called from within an object by sending a message to self or using a super call.
Consider the following category:

.- category(output).
:= public(out/1).

out(X) :-
write(X), nl.

:- end_category.

The predicate out/1 can be called from within an object importing the category by simply sending a message
to self. For example:

;- object(worker,
imports(output)).

do(Task) :-
execute(Task, Result),
::out(Result).

:— end_object.

This is the recommended way of calling a category predicate that can be specialized/overridden in a descen-
dant object as the predicate definition lookup will start from self.

A direct call to a predicate definition found in an imported category can be made using the (™ ™)/1 control
construct. For example:

:- object(worker,
imports(output)).

do(Task) :-
execute(Task, Result),
**out (Result).
(continues on next page)

1.7. Categories 43

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

:— end_object.

This alternative should only be used when the user knows a priori that the category predicates will not
be specialized or redefined by descendant objects of the object importing the category. Its advantage is
that, when the optimize flag is turned on, the Logtalk compiler will try to optimize the calls by using static
binding. When dynamic binding is used due to e.g. the lack of sufficient information at compilation time, the
performance is similar to calling the category predicate using a message to self (in both cases a predicate
lookup caching mechanism is used).

1.7.11 Parametric categories

Category predicates can be parameterized in the same way as object predicates by using a compound term
as the category identifier where all the arguments of the compound term are variables. These variables,
the category parameters, can be accessed by calling the parameter/2 or this/1 built-in local methods in the
category predicate clauses or by using parameter variables. Category parameter values can be defined by the
importing objects. For example:

:— object(speech(Season, Event),
imports([dress(Season), speech(Event)]1)).

:- end_object.

Note that access to category parameters is only possible from within the category. In particular, calls to the
this/1 built-in local method from category predicates always access the importing object identifier (and thus
object parameters, not category parameters).

1.7.12 Built-in categories

Logtalk defines a built-in category that is always available for any application.

The built-in category core_messages

The built-in core_messages category provides default translations for all compiler and runtime printed mes-
sages such as warnings and errors. It does not define any public predicates.

1.8 Predicates

Predicate directives and clauses can be encapsulated inside objects and categories. Protocols can only contain
predicate directives. From the point-of-view of a traditional imperative object-oriented language, predicates
allows both object state and object behavior to be represented. Mutable object state can be represented using
dynamic object predicates but should only be used when strictly necessary as it breaks declarative semantics.

44 Chapter 1. User Manual

../../docs/core_messages_0.html#core-messages-0

The Logtalk Handbook, Release v3.72.0

1.8.1 Reserved predicate names

For practical and performance reasons, some predicate names have a fixed interpretation. These predicates
are declared in the built-protocols. They are: goal expansion/2 and term expansion/2, declared in the ex-
panding protocol; before/3 and after/3, declared in the monitoring protocol; and forward/1, declared in the
forwarding protocol. By default, the compiler prints a warning when a definition for one of these predicates
is found but the reference to the corresponding built-in protocol is missing.

1.8.2 Declaring predicates

Logtalk provides a clear distinction between declaring a predicate and defining a predicate and thus clear
closed-world assumption semantics. Messages or calls for declared but undefined predicates fail. Messages or
calls for unknown (i.e. non declared) predicates throw an error. Note that this is a fundamental requirement
for supporting protocols: we must be able to declare a predicate without necessarily defining it.

All object (or category) predicates that we want to access from other objects (or categories) must be explicitly
declared. A predicate declaration must contain, at least, a scope directive. Other directives may be used to
document the predicate or to ensure proper compilation of the predicate clauses.

Scope directives

A predicate scope directive specifies from where the predicate can be called, i.e. its visibility. Predicates can
be public, protected, private, or local. Public predicates can be called from any object. Protected predicates
can only be called from the container object or from a container descendant. Private predicates can only
be called from the container object. Predicates are local when they are not declared in a scope directive.
Local predicates, like private predicates, can only be called from the container object (or category) but
they are invisible to the reflection built-in methods (current predicate/1 and predicate property/2) and to the
message error handling mechanisms (i.e. sending a message corresponding to a local predicate results in a
predicate_declaration existence error instead of a scope error).

The scope declarations are made using the directives public/1, protected/1, and private/1. For example:

;= public(init/1).
:— protected(valid_init_option/1).

:— private(process_init_options/1).

If a predicate does not have a (local or inherited) scope declaration, it is assumed that the predicate is
local. Note that we do not need to write scope declarations for all defined predicates. One exception is
local dynamic predicates: declaring them as private predicates may allow the Logtalk compiler to generate
optimized code for asserting and retracting clauses.

Note that a predicate scope directive doesn’t specify where a predicate is, or can be, defined. For example,
a private predicate can only be called from an object holding its scope directive. But it can be defined in
descendant objects. A typical example is an object playing the role of a class defining a private (possibly
dynamic) predicate for its descendant instances. Only the class can call (and possibly assert/retract clauses
for) the predicate but its clauses can be found/defined in the instances themselves.

Scope directives may also be used to declare grammar rule non-terminals and operators. For example:

.= public(url//1).

:— public(op(800, fx, tag)).

1.8. Predicates 45

../../docs/expanding_0.html#expanding-0
../../docs/expanding_0.html#expanding-0
../../docs/monitoring_0.html#monitoring-0
../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.72.0

Note that, in the case of operators, the operator definitions don’t become global when the entity containing
the directives is compiled and loaded. This prevents an application breaking when e.g. an updated third-
party library adds new operators. It also allows loading entities that provide conflicting operator definitions.
Here the usual programming idiom is to copy the operator definitions to a uses/2 directive. For example,
the 1gtunit tool makes available a '=~='/2 predicate (for approximate float equality) that is intended to be
used as an infix operator:

.- uses(lgtunit, [
op(700, xfx, '=~='), '=~='/2
.

Thus, in practice, the solution to use library entity operators in client entities is the same for using library
entity predicates with implicit message sending.

Mode directive

Often predicates can only be called using specific argument patterns. The valid arguments and instantiation
modes of those arguments can be documented by using the mode/2 directive. For example:

[:— mode (member (?term, ?list), zero_or_more). J

The first directive argument describes a valid calling mode. The minimum information will be the instanti-
ation mode of each argument. The first four possible values are described in [ISO95]). The remaining two
can also be found in use in some Prolog systems.

+
Argument must be instantiated (but not necessarily ground).
Argument should be a free (non-instantiated) variable (when bound, the call will unify the returned
term with the given term).
?
Argument can either be instantiated or free.
Q
Argument will not be further instantiated (modified).
++

Argument must be ground.

Argument must be unbound. Used mainly when returning an opaque term.

These six mode atoms are also declared as prefix operators by the Logtalk compiler. This makes it possible to
include type information for each argument like in the example above. Some possible type values are: event,
object, category, protocol, callable, term, nonvar, var, atomic, atom, number, integer, float, compound,
and list. The first four are Logtalk specific. The remaining are common Prolog types. We can also use our
own types that can be either atoms or ground compound terms. See the types library documentation for
details.

The second directive argument documents the number of proofs, but not necessarily distinct solutions, for
the specified mode. As an example, the member (X, [1,1,1,1]) goal have only one distinct solution but four
proofs for that solution. Note that different modes for the same predicate often have different determinism.
The possible values are:

zero
Predicate always fails.

46 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

one
Predicate always succeeds once.

zero_or_one
Predicate either fails or succeeds.

zero_or_more
Predicate has zero or more proofs.

one_or_more
Predicate has one or more proofs.

zero_or_error
Predicate either fails or throws an error.

one_or_error
Predicate either succeeds once or throws an error.

zero_or_one_or_error
Predicate succeeds once or fails or throws an error.

zero_or_more_or_error
Predicate may fail or succeed multiple times or throw an error.

one_or_more_or_error
Predicate may succeed one or more times or throw an error.

error
Predicate will throw an error.

The last six values support documenting that some call modes may throw an error or will throw an error
despite the calls complying with the argument types and instantiation modes. As an example, consider the
open/3 ISO Prolog built-in predicate. We may write:

[:— mode (open(@source_sink, @io_mode, --stream), one_or_error).

)

In this case, the mode directive tells the user that a valid call can still throw an error (there may be e.g. a
permission error opening the specified source or sink).

Note that some predicates have more than one valid mode implying several mode directives. For example,
to document the possible use modes of the ISO Prolog atom_concat/3 built-in predicate we would write:

.- mode(atom_concat(?atom, ?atom, +atom), one_or_more).
.- mode(atom_concat(+atom, +atom, -atom), zero_or_one).

Some old Prolog compilers supported some sort of mode directives to improve performance. To the best of
my knowledge, there is no modern Prolog compiler supporting this kind of directive for that purpose. The
current Logtalk version simply parses this directive for collecting its information for use in the reflection API
(assuming the source_data flag is turned on). In any case, the use of mode directives is a good starting point
for documenting your predicates.

1.8. Predicates 47

The Logtalk Handbook, Release v3.72.0

Meta-predicate directive

Some predicates may have arguments that will be called as goals or interpreted as closures that will be used
for constructing goals. To ensure that these goals will be executed in the correct context (i.e. in the calling
context, not in the meta-predicate definition context) we need to use the meta predicate/1 directive. For
example:

:- meta_predicate(findall(x, 0, *)).
:- meta_predicate(map(2, *, *)).

The meta-predicate mode arguments in this directive have the following meaning:

0
Meta-argument that will be called as a goal.

N
Meta-argument that will be a closure used to construct a call by extending it with N arguments. The
value of N must be a positive integer.
Argument that is context-aware but that will not be called as a goal or a closure. It can contain,
however, sub-terms that will be called as goals or closures.
Goal that may be existentially quantified (Vars*Goal).

*

Normal argument.

The following meta-predicate mode arguments are for use only when writing backend Prolog adapter files to
deal with proprietary built-in meta-predicates and meta-directives:

/
Predicate indicator (Name/Arity), list of predicate indicators, or conjunction of predicate indicators.
//
Non-terminal indicator (Name//Arity), list of predicate indicators, or conjunction of predicate indica-
tors.
[e]
List of goals.
[N]
List of closures.
[/]

List of predicate indicators.

L//1
List of non-terminal indicators.

To the best of my knowledge, the use of non-negative integers to specify closures has first introduced on
Quintus Prolog for providing information for predicate cross-reference tools.

As each Logtalk entity is independently compiled, this directive must be included in every object or category
that contains a definition for the described meta-predicate, even if the meta-predicate declaration is inherited
from another entity, to ensure proper compilation of meta-arguments.

48 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

Discontiguous directive

The clause of an object (or category) predicate may not be contiguous. In that case, we must declare the
predicate discontiguous by using the discontiguous/1 directive:

[:- discontiguous(foo/1). J

This is a directive that we should avoid using: it makes your code harder to read and it is not supported by
some Prolog compilers.

As each Logtalk entity is compiled independently of other entities, this directive must be included in every
object or category that contains a definition for the described predicate (even if the predicate declaration is
inherited from other entity).

Dynamic directive

An object predicate can be static or dynamic. By default, all object predicates are static. To declare a dynamic
predicate we use the dynamic/1 directive:

[:— dynamic(foo/1). J

This directive may also be used to declare dynamic grammar rule non-terminals. As each Logtalk entity is
compiled independently from other entities, this directive must be included in every object that contains
a definition for the described predicate (even if the predicate declaration is inherited from other object
or imported from a category). If we omit the dynamic declaration then the predicate definition will be
compiled static. In the case of dynamic objects, static predicates cannot be redefined using the database
built-in methods (despite being internally compiled to dynamic code).

Dynamic predicates can be used to represent persistent mutable object state. Note that static objects may
declare and define dynamic predicates.

Operator directive

An object (or category) predicate can be declared as an operator using the familiar op/3 directive:

[:— op(Priority, Specifier, Operator).]

Operators are local to the object (or category) where they are declared. This means that, if you declare a
public predicate as an operator, you cannot use operator notation when sending to an object (where the
predicate is visible) the respective message (as this would imply visibility of the operator declaration in the
context of the sender of the message). If you want to declare global operators and, at the same time, use
them inside an entity, just write the corresponding directives at the top of your source file, before the entity
opening directive.

Note that operators can also be declared using a scope directive. Only these operators are visible to the
current_op/3 reflection method.

When the same operators are used on several entities within the same source file, the corresponding direc-
tives must either be repeated in each entity or appear before any entity that uses them. But in the later case,
this results in a global scope for the operators. If you prefer the operators to be local to the source file, just
undefine them at the end of the file. For example:

:— op(400, xfx, results).
(continues on next page)

1.8. Predicates 49

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

% after all entities that used the operator
;- op(0, xfx, results).

Global operators can be declared in the application loader file.

Uses directive

When a predicate makes heavy use of predicates defined on other objects, its predicate clauses can be verbose
due to all the necessary message sending goals. Consider the following example:

foo :-

findall(X, list::member(X, L), A),
list::append(A, B, C),
list::select(Y, C, R),

Logtalk provides a directive, uses/2, which allows us to simplify the code above. One of the usage templates
for this directive is:

.- uses(Object, [
Namel/Arity1, Name2/Arity2,

.

Rewriting the code above using this directive results in a simplified and more readable predicate definition:

;- uses(list, [
append/3, member/2, select/3
.

foo :-

findall (X, member(X, L), A),
append(A, B, ©),
select(Y, C, R),

Logtalk also supports an extended version of this directive that allows the declaration of predicate aliases
using the notation Predicate as Alias (or the alternative notation Predicate::Alias). For example:

.- uses(btrees, [new/1 as new_btree/1]).
.- uses(queues, [new/1 as new_queue/1]).

You may use this extended version for solving conflicts between predicates declared on several uses/2 direc-
tives or just for giving new names to the predicates that will be more meaningful on their using context. It’s
also possible to define predicate aliases that are also predicate shorthands. For example:

:— uses(pretty_printer, [
indent(4, Term) as indent(Term)

D.

50 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

See the directive documentation for details and other examples.

The uses/2 directive allows simpler predicate definitions as long as there are no conflicts between the predi-
cates declared in the directive and the predicates defined in the object (or category) containing the directive.
A predicate (or its alias if defined) cannot be listed in more than one uses/2 directive. In addition, a uses/2
directive cannot list a predicate (or its alias if defined) which is defined in the object (or category) containing
the directive. Any conflicts are reported by Logtalk as compilation errors.

The object identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category. In this case, dynamic binding will necessarily be used for all listed predicates
(and non-terminals). The parameter variable must be instantiated at runtime when the messages are sent.
This feature simplifies experimenting with multiple implementations of the same protocol (for example, to
evaluate the performance of each implementation for a particular case). It also simplifies writing tests that
check multiple implementations of the same protocol.

An object (or category) can make a predicate listed in a uses/2 (or use_module/2) directive part of its
protocol by simply adding a scope directive for the predicate. For example, in the statistics library we
have:

;= public(modes/?2).
:— uses(numberlist, [modes/2]).

Therefore, a goal such as sample::modes(Sample, Modes) implicitly calls numberlist::modes(Sample,
Modes) without requiring an explicit local definition for the modes/2 predicate (which would trigger a com-
pilation error).

Alias directive

Logtalk allows the definition of an alternative name for an inherited or imported predicate (or for an inher-
ited or imported grammar rule non-terminal) through the use of the alias/2 directive:

;- alias(Entity, [
Predicatel as AliasT,
Predicate2 as Alias2,

D.

This directive can be used in objects, protocols, or categories. The first argument, Entity, must be an entity
referenced in the opening directive of the entity containing the alias/2 directive. It can be an extended or
implemented protocol, an imported category, an extended prototype, an instantiated class, or a specialized
class. The second argument is a list of pairs of predicate indicators (or grammar rule non-terminal indicators)
using the as infix operator as connector.

A common use for the alias/2 directive is to give an alternative name to an inherited predicate in order to
improve readability. For example:

:- object(square,
extends(rectangle)).

.- alias(rectangle, [width/1 as side/11]).

:— end_object.

1.8. Predicates 51

The Logtalk Handbook, Release v3.72.0

The directive allows both width/1 and side/1 to be used as messages to the object square. Thus, using this
directive, there is no need to explicitly declare and define a “new” side/1 predicate. Note that the alias/2
directive does not rename a predicate, only provides an alternative, additional name; the original name
continues to be available (although it may be masked due to the default inheritance conflict mechanism).

Another common use for this directive is to solve conflicts when two inherited predicates have the same
name and arity. We may want to call the predicate which is masked out by the Logtalk lookup algorithm (see
the Inheritance section) or we may need to call both predicates. This is simply accomplished by using the
alias/2 directive to give alternative names to masked out or conflicting predicates. Consider the following
example:

:— object(my_data_structure,
extends(list, set)).

.- alias(list, [member/2 as list_member/2]).
:- alias(set, [member/2 as set_member/2]).

:- end_object.

Assuming that both list and set objects define a member/2 predicate, without the alias/2 directives, only
the definition of member/2 predicate in the object 1ist would be visible on the object my_data_structure, as
a result of the application of the Logtalk predicate lookup algorithm. By using the alias/2 directives, all the
following messages would be valid (assuming a public scope for the predicates):

% uses list member/2
| ?- my_data_structure::list_member(X, L).

% uses set member/2
| ?- my_data_structure::set_member(X, L).

% uses list member/2
| ?- my_data_structure: :member(X, L).

When used this way, the alias/2 directive provides functionality similar to programming constructs of other
object-oriented languages that support multi-inheritance (the most notable example probably being the re-
naming of inherited features in Eiffel).

Note that the alias/2 directive never hides a predicate which is visible on the entity containing the directive
as a result of the Logtalk lookup algorithm. However, it may be used to make visible a predicate which
otherwise would be masked by another predicate, as illustrated in the above example.

The alias/2 directive may also be used to give access to an inherited predicate, which otherwise would be
masked by another inherited predicate, while keeping the original name as follows:

:- object(my_data_structure,
extends(list, set)).

.- alias(list, [member/2 as list_member/2]).
.- alias(set, [member/2 as set_member/2]).

member (X, L) :-
*set_member(X, L).

(continues on next page)

52 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

:— end_object.

Thus, when sending the message member/2 to my_data_structure, the predicate definition in set will be
used instead of the one contained in list.

Documenting directive

A predicate can be documented with arbitrary user-defined information by using the info/2 directive:

[:— info(Name/Arity, List).]

The second argument is a list of Key is Value terms. See the Documenting section for details.

Multifile directive

A predicate can be declared multifile by using the multifile/1 directive:

[:— multifile(Name/Arity).]

This allows clauses for a predicate to be defined in several objects and/or categories. This is a directive that
should be used with care. It's commonly used in the definition of hook predicates. Multifile predicates (and
non-terminals) may also be declared dynamic using the same predicate (or non-terminal) notation (multifile
predicates are static by default).

Logtalk precludes using a multifile predicate for breaking object encapsulation by checking that the object
(or category) declaring the predicate (using a scope directive) defines it also as multifile. This entity is said
to contain the primary declaration for the multifile predicate. Entities containing primary multifile predicate
declarations must always be compiled before entities defining clauses for those multifile predicates. The
Logtalk compiler will print a warning if the scope directive is missing. Note also that the multifile/1
directive is mandatory when defining multifile predicates.

Consider the following simple example:

;- object(main).

:= public(a/1).
;- multifile(a/1).
a(l).

:- end_object.

After compiling and loading the main object, we can define other objects (or categories) that contribute with
clauses for the multifile predicate. For example:

:- object(other).

;- multifile(main::a/1).

main::a(2).
main::a(X) :-
b(X).

(continues on next page)

1.8. Predicates 53

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

b(3).
b(4).

:- end_object.

After compiling and loading the above objects, you can use queries such as:

| ?- main::a(X).

> X X X
I
A w N =

yes

Note that the order of multifile predicate clauses depend on several factors, including loading order and
compiler implementation details. Therefore, your code should never assume or rely on a specific order of
the multifile predicate clauses.

When a clause of a multifile predicate is a rule, its body is compiled within the context of the object or
category defining the clause. This allows clauses for multifile predicates to call local object or category
predicates. But the values of the sender, this, and self in the implicit execution context are passed from the
clause head to the clause body. This is necessary to ensure that these values are always valid and to allow
multifile predicate clauses to be defined in categories. A call to the parameter/2 execution context methods,
however, retrieves parameters of the entity defining the clause, not from the entity for which the clause is
defined. The parameters of the entity for which the clause is defined can be accessed by simple unification
at the clause head.

Multifile predicate rules should not contain cuts as these may prevent other clauses for the predicate for
being used by callers. The compiler prints by default a warning when a cut is found in a multifile predicate
definition.

Local calls to the database methods from multifile predicate clauses defined in an object take place in the
object own database instead of the database of the entity holding the multifile predicate primary declaration.
Similarly, local calls to the expand_term/2 and expand_goal/2 methods from a multifile predicate clause
look for clauses of the term_expansion/2 and goal_expansion/2 hook predicates starting from the entity
defining the clause instead of the entity holding the multifile predicate primary declaration. Local calls
to the current_predicate/1, predicate_property/2, and current_op/3 methods from multifile predicate
clauses defined in an object also lookup predicates and their properties in the object own database instead
of the database of the entity holding the multifile predicate primary declaration.

Coinductive directive

A predicate can be declared coinductive by using the coinductive/1 directive. For example:

[:- coinductive(comember/2).]

Logtalk support for coinductive predicates is experimental and requires a backend Prolog compiler with min-
imal support for cyclic terms. The value of the read-only coinduction flag is set to supported for the backend
Prolog compilers providing that support.

54 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

Synchronized directive

A predicate can be declared synchronized by using the synchronized/1 directive. For example:

:— synchronized(write_log_entry/2).
.= synchronized([produce/1, consume/1]).

See the section on synchronized predicates for details.

1.8.3 Defining predicates

Object predicates

We define object predicates as we have always defined Prolog predicates, the only difference be that we have
four more control structures (the three message sending operators plus the external call operator) to play
with. For example, if we wish to define an object containing common utility list predicates like append/2 or
member/2 we could write something like:

:— object(list).

;- public(append/3).
;= public(member/2).

append([], L, L).
append([H| T1, L, [H| T21) :-
append(T, L, T2).

member (H, [H] _1).
member(H, [_| T1) :-
member(H, T).

:- end_object.

Note that, abstracting from the opening and closing object directives and the scope directives, what we have
written is also valid Prolog code. Calls in a predicate definition body default to the local predicates, unless we
use the message sending operators or the external call operator. This enables easy conversion from Prolog
code to Logtalk objects: we just need to add the necessary encapsulation and scope directives to the old
code.

Category predicates

A category can only contain clauses for static predicates. But there are no restrictions in declaring and calling
dynamic predicates from inside a category. Because a category can be imported by multiple objects, dynamic
predicates must be called either in the context of self, using the message to self control structure, (::)/1, or
in the context of this (i.e. in the context of the object importing the category). For example, if we want to
define a category implementing attributes using the dynamic database of self we could write:

.- category(attributes).

;= public(get/2).
:- public(set/2).

(continues on next page)

1.8. Predicates 55

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

;- private(attribute_/2).
:— dynamic(attribute_/2).

get(Var, Value) :-
::attribute_(Var, Value).

set(Var, Value) :-
::retractall(attribute_(Var, _)),

::asserta(attribute_(Var, Value).

:- end_category.

In this case, the get/2 and set/2 predicates will always access/update the correct definition, contained in
the object receiving the messages.

In alternative, if we want a category implementing attributes using the dynamic database of this, we would
write instead:

;- category(attributes).

public(get/2).
;- public(set/2).

;- private(attribute_/2).
dynamic(attribute_/2).

get(Var, Value) :-
attribute_(Var, Value).

set(Var, Value) :-
retractall(attribute_(Var, _)),

asserta(attribute_(Var, Value).

.- end_category.

In this case, each object importing the category will have its own clauses for the attribute_/2 private
dynamic predicate.

Meta-predicates

Meta-predicates may be defined inside objects and categories as any other predicate. A meta-predicate is
declared using the meta_predicate/1 directive as described earlier on this section. When defining a meta-
predicate, the arguments in the clause heads corresponding to the meta-arguments must be variables. All
meta-arguments are called in the context of the object or category calling the meta-predicate. In particular,
when sending a message that corresponds to a meta-predicate, the meta-arguments are called in the context
of the object or category sending the message.

The most simple example is a meta-predicate with a meta-argument that is called as a goal. E.g. the ignore/1
built-in predicate could be defined as:

;= public(ignore/1).
:- meta_predicate(ignore(0)).

(continues on next page)

56 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

(continued from previous page)
ignore(Goal) :-
(Goal -> true; true).

The 0 in the meta-predicate template tells us that the meta-argument is a goal that will be called by the
meta-predicate.

Some meta-predicates have meta-arguments which are not goals but closures. Logtalk supports the definition
of meta-predicates that are called with closures instead of goals as long as the definition uses the call/1-N
built-in predicate to call the closure with the additional arguments. A classical example is a list mapping
predicate:

:= public(map/2).
;- meta_predicate(map(1, *)).

map(_, [1).

map(Closure, [Arg| Args]) :-
call(Closure, Arg),
map(Closure, Args).

Note that in this case the meta-predicate directive specifies that the closure will be extended with exactly one
additional argument. When calling a meta-predicate, a closure can correspond to a user-defined predicate,
a built-in predicate, a lambda expression, or a control construct.

In some cases, is not a meta-argument but one of its sub-terms that is called as a goal or used as a closure.
For example:

;= public(call_all/1).
:- meta_predicate(call_all(::)).

call_all([D).

call_all([Goal| Goals]) :-
call(Goal),
call_all(Goals).

The :: mode indicator in the meta-predicate template allows the corresponding argument in the meta-
predicate definiton to be a non-variable term and instructs the compiler to look into the argument sub-terms
for goal and closure meta-variables.

When a meta-predicate calls another meta-predicate, both predicates require meta_predicate/1 directives.
For example, the map/2 meta-predicate defined above is usually implemented by exchanging the argument
order to take advantage of first-argument indexing:

:- meta_predicate(map(1, *)).
map(Closure, List) :-
map_(List, Closure).

:— meta_predicate(map_(*, 1)).

map_([]1,).

map_([Head| Tail], Closure) :-
call(Closure, Head),
map_(Tail, Closure).

Note that Logtalk, unlike most Prolog module systems, is not based on a predicate prefixing mechanism.
Thus, the meta-argument calling context is not part of the meta-argument itself.

1.8. Predicates 57

The Logtalk Handbook, Release v3.72.0

Lambda expressions

The use of lambda expressions as meta-predicate goal and closure arguments often saves writing auxiliary
predicates for the sole purpose of calling the meta-predicates. A simple example of a lambda expression is:

| ?- meta::map([X,YI>>(Y is 2%X), [1,2,3], Ys).
Ys = [2,4,6]
yes

In this example, a lambda expression, [X,Y]>>(Y is 2xX), is used as an argument to the map/3 list mapping
predicate, defined in the library object meta, in order to double the elements of a list of integers. Using a
lambda expression avoids writing an auxiliary predicate for the sole purpose of doubling the list elements.
The lambda parameters are represented by the list [X, Y], which is connected to the lambda goal, (Y is
2xX), by the (>>)/2 operator.

Currying is supported. Le. it is possible to write a lambda expression whose goal is another lambda expres-
sion. The above example can be rewritten as:

| ?- meta::map([XI>>(LYI>>(Y is 2xX)), [1,2,3]1, Ys).
Ys = [2,4,6]
yes

Lambda expressions may also contain lambda free variables. I.e. variables that are global to the lambda
expression. For example, using GNU Prolog as the backend compiler, we can write:

| ?- meta::map({Z}/[X,YI>>(Z#=X+Y), [1,2,3], Zs).

Z = _#22(3..268435455)

Zs = [_#3(2..268435454), _#66(1..268435453),_#110(0..268435452)]
yes

The ISO Prolog construct {}/1 for representing the lambda free variables as this representation is often
associated with set representation. Note that the order of the free variables is of no consequence (on the
other hand, a list is used for the lambda parameters as their order does matter).

Both lambda free variables and lambda parameters can be any Prolog term. Consider the following example
by Markus Triska:

| ?- meta::map([A-B,B-A]>>true, [1-a,2-b,3-c], Zs).
Zs = [a-1,b-2,c-3]
yes

Lambda expressions can be used, as expected, in non-deterministic queries as in the following example using
SWI-Prolog as the backend compiler and Markus Triska’s CLP(FD) library:

| ?- meta::map({Z}/[X,YI>>(clpfd: (Z#=X+Y)), Xs, Ys).

Xs = [1],
Ys =[] ;
Xs = [_G1369],
Ys = [_G1378],

_G1369+_G1378#=Z ;
Xs = [_G1579, _G1582],
Ys = [_G1591, _G1594],
_G1582+_G1594#=7,
_G1579+_G1591#=Z ;
Xs = [_G1789, _G1792, _G1795],
(continues on next page)

58 Chapter 1. User Manual

https://en.wikipedia.org/wiki/Lambda_calculus

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

Ys = [_G1804, _G1807, _G1810],
_G1795+_G1810#=Z,
_G1792+_G1807#=Z,
_G1789+_G1804#=Z ;

As illustrated by the above examples, lambda expression syntax reuses the ISO Prolog construct {}/1 and
the standard operators (/)/2 and (>>)/2, thus avoiding defining new operators, which is always tricky for
a portable system such as Logtalk. The operator (>>)/2 was chosen as it suggests an arrow, similar to the
syntax used in other languages such as OCaml and Haskell to connect lambda parameters with lambda
functions. This syntax was also chosen in order to simplify parsing, error checking, and compilation of
lambda expressions. The full specification of the lambda expression syntax can be found in the the language
grammar.

The compiler checks whenever possible that all variables in a lambda expression are either classified as
free variables or as lambda parameters. Non-classified variables in a lambda expression should be regarded
as a programming error. The compiler also checks if a variable is classified as both a free variable and a
lambda parameter. There are a few cases where a variable playing a dual role is intended but, in general,
this also results from a programming error. A third check verifies that no lambda parameter variable is used
elsewhere in a clause. Such cases are either programming errors, when the variable appears before the
lambda expression, or bad programming style, when the variable is used after the lambda expression. These
linter warnings are controlled by the lambda_variables flag. Note, however, that the dynamic features of the
language and lack of sufficient information at compile time may prevent the compiler of checking all uses of
lambda expressions.

Warning: Variables listed in lambda parameters must not be shared with other goals in a clause.

An optimizing meta-predicate and lambda expression compiler, based on the term-expansion mechanism, is
provided as a standard library for practical performance.

Redefining built-in predicates

Logtalk built-in predicates and Prolog built-in predicates can be redefined inside objects and categories.
Although the redefinition of Logtalk built-in predicates should be avoided, the support for redefining Pro-
log built-in predicates is a practical requirement given the different sets of proprietary built-in predicates
provided by backend Prolog systems.

The compiler supports a redefined built_ins flag, whose default value is silent, that can be set to warning to
alert the user of any redefined Logtalk or Prolog built-in predicate.

The redefinition of Prolog built-in predicates can be combined with the conditional compilation directives
when writing portable applications where some of the supported backends don’t provide a built-in predicate
found in the other backends. As an example, consider the de facto standard list length predicate, length/
2. This predicate is provided as a built-in predicate in most but not all backends. The list library object
includes the code:

:— if(predicate_property(length(_, _), built_in)).

length(List, Length) :-
{length(List, Length)}.

(continues on next page)

1.8. Predicates 59

The Logtalk Handbook, Release v3.72.0

(continued from previous page)
:— else.

length(List, Length) :-

:- endif.

L.e. the object will use the built-in predicate when available. Otherwise, it will use the object provided
predicate definition.

The redefinition of built-in predicates can also be accomplished using predicate shorthands. This can be
useful when porting code while minimizing the changes. For example, assume that existing code uses the
format/2 de facto standard predicate for writing messages. To convert the code to use the message printing
mechanism we could write:

.- uses(logtalk, [
print_message(comment, core, Format+Arguments) as format(Format, Arguments)

.

process(Crate, Contents) :-
format('Processing crate ~w...', [Cratel),
format('Filing with ~w...', [Contents]),

The predicate shorthand instructs the compiler to rewrite all format/2 goals as logtalk: :print_message/3
goals, thus allowing us to reuse the code without changes.

1.8.4 Definite clause grammar rules

Definite clause grammar rules (DCGs) provide a convenient notation to represent the parsing and rewrite
rules common of most grammars in Prolog. In Logtalk, definite clause grammar rules can be encapsulated
in objects and categories. Currently, the ISO/IEC WG17 group is working on a draft specification for a
definite clause grammars Prolog standard. Therefore, in the mean time, Logtalk follows the common practice
of Prolog compilers supporting definite clause grammars, extending it to support calling grammar rules
contained in categories and objects. A common example of a definite clause grammar is the definition of a
set of rules for parsing simple arithmetic expressions:

:- object(calculator).
;- public(parse/2).

parse(Expression, Value) :-
phrase(expr(Value), Expression).

+

expr(Z) --> term(X), "+", expr(Y), {Z is X
expr(Z) --> term(X), "-", expr(Y), {Z is X
expr(X) --> term(X).

Y}.
Y}.

term(Z) --> number(X), "x", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) --> number(2).
(continues on next page)

60 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

number (C) --> "+", number(C).
number(C) --> "-", number(X), {C is -X3}.
number(X) --> [C], {0'0 =< C, C =< 0'9, X is C - 0'0}.

:- end_object.

The predicate phrase/2 called in the definition of predicate parse/2 above is a Logtalk built-in method,
similar to the predicate with the same name found on most Prolog compilers that support definite clause
grammars. After compiling and loading this object, we can test the grammar rules with calls such as the
following one:

| ?- calculator::parse(”1+2-3%4", Result).

Result = -9
yes

In most cases, the predicates resulting from the translation of the grammar rules to regular clauses are not
declared. Instead, these predicates are usually called by using the built-in methods phrase/2 and phrase/3 as
shown in the example above. When we want to use the built-in methods phrase/2 and phrase/3, the non-
terminal used as first argument must be within the scope of the sender. For the above example, assuming
that we want the predicate corresponding to the expr//1 non-terminal to be public, the corresponding scope
directive would be:

[: - public(expr//1).

The // infix operator used above tells the Logtalk compiler that the scope directive refers to a grammar rule
non-terminal, not to a predicate. The idea is that the predicate corresponding to the translation of the expr/
/1 non-terminal will have a number of arguments equal to one plus the number of additional arguments
necessary for processing the implicit difference list of tokens.

In the body of a grammar rule, we can call rules that are inherited from ancestor objects, imported from
categories, or contained in other objects. This is accomplished by using non-terminals as messages. Using a
non-terminal as a message to self allows us to call grammar rules in categories and ancestor objects. To call
grammar rules encapsulated in other objects, we use a non-terminal as a message to those objects. Consider
the following example, containing grammar rules for parsing natural language sentences:

:— object(sentence,
imports(determiners, nouns, verbs)).

;= public(parse/2).
parse(List, true) :-

phrase(sentence, List).
parse(_, false).

sentence --> noun_phrase, verb_phrase.

noun_phrase --> ::determiner, ::noun.
noun_phrase --> ::noun.

verb_phrase --> ::verb.
verb_phrase --> ::verb, noun_phrase.

(continues on next page)

1.8. Predicates 61

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

:— end_object.

The categories imported by the object would contain the necessary grammar rules for parsing determiners,
nouns, and verbs. For example:

;- category(determiners).
:— private(determiner//0).

determiner --> [the].
determiner --> [a].

:- end_category.

Along with the message sending operators ((::)/1, (::)/2, and (**)/1), we may also use other control
constructs such as (\+)/1, /0, (;)/2, (->)/2, and {}/1 in the body of a grammar. When using a backend
Prolog compiler that supports modules, we may also use the (:)/2 control construct. In addition, grammar
rules may contain meta-calls (a variable taking the place of a non-terminal), which are translated to calls of
the built-in method phrase/3.

You may have noticed that Logtalk defines {}/1 as a control construct for bypassing the compiler when
compiling a clause body goal. As exemplified above, this is the same control construct that is used in
grammar rules for bypassing the expansion of rule body goals when a rule is converted into a clause. Both
control constructs can be combined in order to call a goal from a grammar rule body, while bypassing at the
same time the Logtalk compiler. Consider the following example:

bar :-

write('bar predicate called'), nl.
:- object(bypass).

.= public(foo//0).

foo --> {{bar}}.

:- end_object.

After compiling and loading this code, we may try the following query:

| ?- logtalk << phrase(bypass::foo, _, _).

bar predicate called
yes

This is the expected result as the expansion of the grammar rule into a clause leaves the {bar} goal un-
touched, which, in turn, is converted into the goal bar when the clause is compiled. Note that we tested the
bypass: : foo//@ non-terminal by calling the phrase/3 built-in method in the context of the logtalk built-in
object. This workaround is necessary due to the Prolog backend implementation of the phrase/3 predicate
no being aware of the Logtalk : : /2 message-sending control construct semantics.

A grammar rule non-terminal may be declared as dynamic or discontiguous, as any object predicate, using
the same Name//Arity notation illustrated above for the scope directives. In addition, grammar rule non-

62 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

terminals can be documented using the info/2 directive, as in the following example:

.- public(sentence//0).

:— info(sentence//0, [
comment is 'Rewrites sentence into noun and verb phrases.'

D.

Note: Future Logtalk versions may compile grammar rules differently from Prolog traditional compilation
to prevent name clases between non-terminals and predicates. Therefore, you should always call non-
terminals from predicates using the phrase/2-3 built-in methods and always call predicates from grammar
rules using the call//1 built-in method. This recommended practice, besides making your code forward
compatible with future Logtalk versions, also make the code more clear. The linter prints warnings when
these guidelines are not followed.

1.8.5 Built-in methods

Built-in methods are built-in object and category predicates. These include methods to access message
execution context, to find sets of solutions, to inspect objects, for database handling, for term and goal
expansion, and for printing messages. Some of them are counterparts to standard Prolog built-in predicates
that take into account Logtalk semantics. Similar to Prolog built-in predicates, built-in methods cannot not
be redefined.

Logic and control methods

The !/0, true/0, fail/0, false/0, and repeat/0 standard control constructs and logic predicates are interpreted
as built-in public methods and thus can be used as messages to any object. In practice, they are only used as
messages when sending multiple messages to the same object (see the section on message broadcasting).

Execution context methods

Logtalk defines five built-in private methods to access an object execution context. These methods are in
the common usage scenarios translated to a single unification performed at compile time with a clause
head context argument. Therefore, they can be freely used without worrying about performance penalties.
When called from inside a category, these methods refer to the execution context of the object importing the
category. These methods are private and cannot be used as messages to objects.

To find the object that received the message under execution we may use the self/1 method. We may also
retrieve the object that has sent the message under execution using the sender,/1 method.

The method this/1 enables us to retrieve the name of the object for which the predicate clause whose body
is being executed is defined instead of using the name directly. This helps to avoid breaking the code if we
decide to change the object name and forget to change the name references. This method may also be used
from within a category. In this case, the method returns the object importing the category on whose behalf
the predicate clause is being executed.

Here is a short example including calls to these three object execution context methods:

:— object(test).

;- public(test/0).

(continues on next page)

1.8. Predicates 63

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

test :-
this(This),
write('Calling predicate definition in "),
writeq(This), nl,
self(Self),
write('to answer a message received by '),
writeq(Self), nl,
sender (Sender),
write('that was sent by '),
writeq(Sender), nl, nl.

:— end_object.
:- object(descendant,
extends(test)).

:— end_object.

After compiling and loading these two objects, we can try the following goal:

| ?- descendant::test.

Calling predicate definition in test

to answer a message received by descendant
that was sent by user

yes

Note that the goals self(Self), sender(Sender), and this(This), being translated to unifications with the
clause head context arguments at compile time, are effectively removed from the clause body. Therefore, a
clause such as:

predicate(Arg) :-
self(Self),
atom(Arg),

is compiled with the goal atom(Arg) as the first condition on the clause body. As such, the use of these context
execution methods do not interfere with the optimizations that some Prolog compilers perform when the first
clause body condition is a call to a built-in type-test predicate or a comparison operator.

For parametric objects and categories, the method parameter,/2 enables us to retrieve current parameter
values (see the section on parametric objects for a detailed description). For example:

:— object(block(_Color)).
:- public(test/0).

test :-
parameter (1, Color),
write('Color parameter value is '),
writeq(Color), nl.
(continues on next page)

64 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

:— end_object.

An alternative to the parameter/2 predicate is to use parameter variables:

:— object(block(_Color_)).
;- public(test/0).
test :-
write('Color parameter value is '),

writeq(_Color_), nl.

:- end_object.

After compiling and loading either version of the object, we can try the following goal:

| ?- block(blue)::test.

Color parameter value is blue
yes

Calls to the parameter/2 method are translated to a compile time unification when the second argument is
a variable. When the second argument is bound, the calls are translated to a call to the built-in predicate
arg/3.

When type-checking predicate arguments, it is often useful to include the predicate execution context when
reporting an argument error. The context/1 method provides access to that context. For example, assume
a predicate foo/2 that takes an atom and an integer as arguments. We could type-check the arguments by
writing (using the library type object):

foo(A, N) :-
% type-check arguments
context(Context),
type: :check(atom, A, Context),
type: :check(integer, N, Context),
% arguments are fine; go ahead

1.8. Predicates 65

The Logtalk Handbook, Release v3.72.0

Error handling and throwing methods

Besides the catch/3 and throw/1 methods inherited from Prolog, Logtalk also provides a set of
convenience methods to throw standard error/2 exception terms: instantiation error/0, uninstantia-
tion_error/1, type_error/2, domain_error/2, existence error/2, permission_error/3, representation_error/1,
evaluation_error/1, resource_error/1, syntax_error/1, and system_error/0.

Database methods

Logtalk provides a set of built-in methods for object database handling similar to the usual database Prolog
predicates: abolish/1, asserta/1, assertz/1, clause/2, retract/1, and retractall/1. These methods always oper-
ate on the database of the object receiving the corresponding message. When called locally, these predicates
take into account any uses/2 or use_module/2 directives that refer to the dynamic predicate being handled.
For example, in the following object, the clauses for the data/1 predicate are retracted and asserted in user
due to the uses/2 directive:

:- object(an_object).
:— uses(user, [data/1]).
.- public(some_predicate/1).
some_predicate(Arg) :-
retractall(data()),
assertz(data(Arg)).

:— end_object.

When working with dynamic grammar rule non-terminals, you may use the built-in method expand_term/2
convert a grammar rule into a clause that can then be used with the database methods.

Meta-call methods

Logtalk supports the generalized call/1-N meta-predicate. This built-in private meta-predicate must be used
in the implementation of meta-predicates which work with closures instead of goals. In addition, Logtalk
supports the built-in private meta-predicates ignore/1, once/1, and (\+)/1. These methods cannot be used
as messages to objects.

All solutions methods

The usual all solutions meta-predicates are built-in private methods in Logtalk: bagof/3, findall/3, findall/4,
and setof/3. There is also a forall/2 method that implements generate-and-test loops. These methods cannot
be used as messages to objects.

66 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

Reflection methods

Logtalk provides a comprehensive set of built-in predicates and built-in methods for querying about entities
and predicates. Some of the information, however, requires that the source files are compiled with the
source_data flag turned on.

The reflection API supports two different views on entities and their contents, which we may call the trans-
parent box view and the black box view. In the transparent box view, we look into an entity disregarding how
it will be used and returning all information available on it, including predicate declarations and predicate
definitions. This view is supported by the entity property built-in predicates. In the black box view, we
look into an entity from a usage point-of-view using built-in methods for inspecting object operators and
predicates that are within scope from where we are making the call: current op/3, which returns operator
specifications, predicate property/2, which returns predicate properties, and current_predicate/1, which en-
ables us to query about user-defined predicate definitions. See below for a more detailed description of these
methods.

Definite clause grammar parsing methods and non-terminals

Logtalk supports two definite clause grammar parsing built-in private methods, phrase/2 and phrase/3, with
definitions similar to the predicates with the same name found on most Prolog compilers that support definite
clause grammars. These methods cannot be used as messages to objects.

Logtalk also supports phrase//1, call//1-N, and eos//0 built-in non-terminals. The call//1-N non-terminals
takes a closure (which can be a lambda expression) plus zero or more additional arguments and are processed
by appending the input list of tokens and the list of remaining tokens to the arguments.

1.8.6 Predicate properties

We can find the properties of visible predicates by calling the predicate property/2 built-in method. For
example:

[l ?- bar::predicate_property(foo(_), Property).

Note that this method takes into account the predicate’s scope declarations. In the above example, the call
will only return properties for public predicates.

An object’s set of visible predicates is the union of all the predicates declared for the object with all the
built-in methods and all the Logtalk and Prolog built-in predicates.

The following predicate properties are supported:

scope(Scope)
The predicate scope (useful for finding the predicate scope with a single call to predicate_property/2)

public, protected, private
The predicate scope (useful for testing if a predicate have a specific scope)

static, dynamic
All predicates are either static or dynamic (note, however, that a dynamic predicate can only be abol-
ished if it was dynamically declared)

logtalk, prolog, foreign
A predicate can be defined in Logtalk source code, Prolog code, or in foreign code (e.g. in C)

built_in
The predicate is a built-in predicate

1.8. Predicates 67

The Logtalk Handbook, Release v3.72.0

multifile
The predicate is declared multifile (i.e. it can have clauses defined in multiple files or entities)

meta_predicate(Template)
The predicate is declared as a meta-predicate with the specified template

coinductive(Template)
The predicate is declared as a coinductive predicate with the specified template

declared_in(Entity)
The predicate is declared (using a scope directive) in the specified entity

defined_in(Entity)
The predicate definition is looked up in the specified entity (note that this property does not necessarily
imply that clauses for the predicate exist in Entity; the predicate can simply be false as per the closed-
world assumption)

redefined_from(Entity)
The predicate is a redefinition of a predicate definition inherited from the specified entity

non_terminal (NonTerminal//Arity)
The predicate resulted from the compilation of the specified grammar rule non-terminal

alias_of(Predicate)
The predicate (name) is an alias for the specified predicate

alias_declared_in(Entity)
The predicate alias is declared in the specified entity

synchronized
The predicate is declared as synchronized (i.e. it’s a deterministic predicate synchronized using a mutex
when using a backend Prolog compiler supporting a compatible multi-threading implementation)

Some properties are only available when the entities are defined in source files and when those source files
are compiled with the source_data flag turned on:
inline
The predicate definition is inlined
auxiliary

The predicate is not user-defined but rather automatically generated by the compiler or the term-
expansion mechanism

mode(Mode, Solutions)
Instantiation, type, and determinism mode for the predicate (which can have multiple modes)

info(ListOfPairs)
Documentation key-value pairs as specified in the user-defined info/2 directive

number_of_clauses(N)
The number of clauses for the predicate existing at compilation time (note that this property is not
updated at runtime when asserting and retracting clauses for dynamic predicates)

number_of_rules(N)
The number of rules for the predicate existing at compilation time (note that this property is not
updated at runtime when asserting and retracting clauses for dynamic predicates)

declared_in(Entity, Line)
The predicate is declared (using a scope directive) in the specified entity in a source file at the specified
line (if applicable)

defined_in(Entity, Line)
The predicate is defined in the specified entity in a source file at the specified line (if applicable)

68 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

redefined_from(Entity, Line)
The predicate is a redefinition of a predicate definition inherited from the specified entity, which is
defined in a source file at the specified line (if applicable)

alias_declared_in(Entity, Line)
The predicate alias is declared in the specified entity in a source file at the specified line (if applicable)

The properties declared_in/1-2, defined_in/1-2, and redefined_from/1-2 do not apply to built-in methods
and Logtalk or Prolog built-in predicates. Note that if a predicate is declared in a category imported by
the object, it will be the category name — not the object name — that will be returned by the property
declared_in/1. The same is true for protocol declared predicates.

Some properties such as line numbers are only available when the entity holding the predicates is defined
in a source file compiled with the source_data flag turned on. Moreover, line numbers are only supported
in backend Prolog compilers that provide access to the start line of a read term. When such support is not
available, the value -1 is returned for the start and end lines.

1.8.7 Finding declared predicates

We can find, by backtracking, all visible user predicates by calling the current predicate/1 built-in method.
This method takes into account predicate scope declarations. For example, the following call will only return
user predicates that are declared public:

[l ?- some_object::current_predicate(Name/Arity). J

The predicate property non_terminal/1 may be used to retrieve all grammar rule non-terminals declared for
an object. For example:

current_non_terminal (Object, Name//Args) :-
Object: :current_predicate(Name/Arity),
functor(Predicate, Functor, Arity),
Object: :predicate_property(Predicate, non_terminal(Name//Args)).

Usually, the non-terminal and the corresponding predicate share the same functor but users should not rely
on this always being true.

1.8.8 Calling Prolog predicates

Logtalk is designed for both robustness and portability. In the context of calling Prolog predicates, robustness
requires that the compilation of Logtalk source code must not have accidental dependencies on Prolog code
that happens to be loaded at the time of the compilation. One immediate consequence is that only Prolog
built-in predicates are visible from within objects and categories. But Prolog systems provide a widely di-
verse set of built-in predicates, easily rising portability issues. Relying on non-standard predicates is often
unavoidable, however, due to the narrow scope of Prolog standards. Logtalk applications may also require
calling user-defined Prolog predicates, either in user or in Prolog modules.

1.8. Predicates 69

The Logtalk Handbook, Release v3.72.0

Calling Prolog built-in predicates

In predicate clauses and object initialization/1 directives, predicate calls that are not prefixed with a
message sending, super call, or module qualification operator (::, **, or :), are compiled to either calls to
local predicates or as calls to Logtalk/Prolog built-in predicates. A predicate call is compiled as a call to a
local predicate if the object (or category) contains a scope directive, a multifile directive, a dynamic directive,
or a definition for the called predicate. When that is not the case, the compiler checks if the call corresponds
to a Logtalk or Prolog built-in predicate. Consider the following example:

foo :-

°

write(bar),

The call to the write/1 predicate will be compiled as a call to the corresponding Prolog standard built-in
predicate unless the object (or category) containing the above definition also contains a predicate named
write/1 or a directive for the predicate.

When calling non-standard Prolog built-in predicates or using non-standard Prolog arithmetic functions, we
may run into portability problems while trying your applications with different backend Prolog compilers. We
can use the compiler portability flag to generate warnings for calls to non-standard predicates and arithmetic
functions. We can also help document those calls using the uses/2 directive. For example, a few Prolog
systems provide an atom_string/2 non-standard predicate. We can write (in the object or category calling
the predicate):

[:— uses(user, [atom_string/2])]

This directive is based on the fact that built-in predicates are visible in plain Prolog (i.e. in user). Besides
helping to document the dependency on a non-standard built-in predicate, this directive will also silence the
compiler portability warning.

Calling Prolog non-standard built-in meta-predicates

Prolog built-in meta-predicates may only be called locally within objects or categories, i.e. they cannot be
used as messages. Compiling calls to non-standard, Prolog built-in meta-predicates can be tricky, however,
as there is no standard way of checking if a built-in predicate is also a meta-predicate and finding out which
are its meta-arguments. But Logtalk supports overriding the original meta-predicate template when not
programmatically available or usable. For example, assume a det_call/1 Prolog built-in meta-predicate that
takes a goal as argument. We can add to the object (or category) calling it the directive:

[:— meta_predicate(user: :det_call(2)). J

Another solution is to explicitly declare all non-standard built-in Prolog meta-predicates in the corresponding
adapter file using the internal predicate '$1gt_prolog_meta_predicate'/3. For example:

['$1gt_prolog_meta_predicate‘(det_call(,), det_call(@), predicate).]

The third argument can be either the atom predicate or the atom control_construct, a distinction that is
useful when compiling in debug mode.

70 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

Calling Prolog foreign predicates

Prolog systems often support defining foreign predicates, i.e. predicates defined using languages other than
Prolog using a foreign language interface. There isn’t, however, any standard for defining, making available,
and recognizing foreign predicates. From a Logtalk perspective, the two most common scenarios are calling
a foreign predicate (from within an object or a category) and making a set of foreign predicates available as
part of an object (or category) protocol. Assuming, as this is the most common case, that foreign predicates
are globally visible once made available (using a Prolog system specific loading or linking procedure), we can
simply call them as user-defined plain predicates, as explained in the next section. When defining an object
(or category) that makes available foreign predicates, the advisable solution is to name the predicates after
the object (or category) and then define object (or category) predicates that call the foreign predicates. Most
backend adapter files include support for recognizing foreign predicates that allows the Logtalk compiler to
inline calls to the predicates (thus avoiding call indirection overheads).

Calling Prolog user-defined plain predicates

User-defined Prolog plain predicates (i.e. predicates that are not defined in a Prolog module) can be called
from within objects or categories by sending the corresponding message to user. For example:

foo :-

ey

user: :bar,

In alternative, we can use the uses/2 directive and write:

.- uses(user, [bar/0]).

foo :-

.« .y

bar,

Note that user is a pseudo-object in Logtalk containing all predicate definitions that are not encapsulated
(either in a Logtalk entity or a Prolog module).

When the Prolog predicate is not a meta-predicate, we can also use the {}/1 compiler bypass control con-
struct. For example:

foo :-

bar),

But note that in this case the reflection API will not record the dependency of the foo/@ predicate on the
Prolog bar/e predicate as we are effectively bypassing the compiler.

1.8. Predicates 71

The Logtalk Handbook, Release v3.72.0

Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by using explicit qualification. For
example:

foo :-

)

module:bar,

You can also use in alternative the use_module/2 directive to call the module predicates using implicit quali-
fication:

.- use_module(module, [bar/0]).

foo :-

L]

bar,

Note that the first argument of the use_module/2 directive, when used within an object or a category, is a
module name, not a file specification (also be aware that Prolog modules are sometimes defined in files with
names that differ from the module names).

As loading a Prolog module varies between Prolog systems, the actual loading directive or goal is preferably
done from the application loader file. An advantage of this approach is that it contributes to a clean separation
between loading and using a resource with the loader file being the central point that loads all application
resources (complex applications often use a hierarchy of loader files but the main idea remains the same).

As an example, assume that we need to call predicates defined in a CLP(FD) Prolog library, which can be
loaded using library(clpfd) as the file specification. In the loader file, we would add:

[:— use_module(library(clpfd), [1).]

Specifying an empty import list is often used to avoid adding the module exported predicates to plain Prolog.
In the objects and categories we can then call the library predicates, using implicit or explicit qualification,
as explained. For example:

;- object(puzzle).
;= public(puzzle/T).

.- use_module(clpfd, [
all_different/1, ins/2, label/T,
#=)/2, (#\=)/2,
op(700, xfx, #=), op(700, xfx, #\=)
.

puzzle([S,E,N,D] + [M,0,R,E] = [M,O,N,E,Y]) :-
vVars = [S,E,N,D,M,0,R,Y],
Vars ins 0..9,
all_different(Vars),
S*x1000 + Ex100 + Nx10 + D +
M*x1000 + 0*x100 + R*10 + E @2
M*x10000 + 0%1000 + Nx100 + Ex10 + Y,

(continues on next page)

72 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

(continued from previous page)
M #\=0, S H\= o,
label([M,0,N,E,Y]).

:- end_object.

Warning: The actual module code must be loaded prior to compilation of Logtalk source code that uses
it. In particular, programmers should not expect that the module be auto-loaded (including when using
a backend Prolog compiler that supports an auto-loading mechanism).

The module identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category. In this case, dynamic binding will necessarily be used for all listed predicates
(and non-terminals). The parameter variable must be instantiated at runtime when the calls are made.

Calling Prolog module meta-predicates

The Logtalk library provides implementations of common meta-predicates, which can be used in place of
module meta-predicates (e.g. list mapping meta-predicates). If that is not the case, the Logtalk compiler
may need help to understand the module meta-predicate templates. Despite some recent progress in stan-
dardization of the syntax of meta_predicate/1 directives and of the meta_predicate/1 property returned
by the predicate_property/2 reflection predicate, portability is still a major problem. Thus, Logtalk allows
the original meta_predicate/1 directive to be overridden with a local directive that Logtalk can make sense
of. Note that Logtalk is not based on a predicate prefixing mechanism as found in module systems. This
fundamental difference precludes an automated solution at the Logtalk compiler level.

As an example, assume that you want to call from an object (or a category) a module meta-predicate with
the following meta-predicate directive:

:— module(foo, [bar/2]).

:- meta_predicate(bar(*, :)).

The : meta-argument specifier is ambiguous. It tell us that the second argument of the meta-predicate is
module sensitive but it does not tell us how. Some legacy module libraries and some Prolog systems use : to
mean 0 (i.e. a meta-argument that will be meta-called). Some others use : for meta-arguments that are not
meta-called but that still need to be augmented with module information. Whichever the case, the Logtalk
compiler doesn’t have enough information to unambiguously parse the directive and correctly compile the
meta-arguments in the meta-predicate call. Therefore, the Logtalk compiler will generate an error stating
that : is not a valid meta-argument specifier when trying to compile a foo:bar/2 goal. There are two
alternative solutions for this problem. The advised solution is to override the meta-predicate directive by
writing, inside the object (or category) where the meta-predicate is called:

[:- meta_predicate(foo:bar(*, *)).]

or:

[:- meta_predicate(foo:bar(x, 0)). J

depending on the true meaning of the second meta-argument. The second alternative, only usable when
the meta-argument can be handled as a normal argument, is to simply use the {}/1 compiler bypass control
construct to call the meta-predicate as-is:

1.8. Predicates 73

The Logtalk Handbook, Release v3.72.0

:= {foo:bar(..., ...)}, ... J

The downside of this alternative is that it hides the dependency on the module library from the reflection
API and thus from the developer tools.

1.8.9 Defining Prolog multifile predicates

Some Prolog module libraries, e.g. constraint packages, expect clauses for some library predicates to be
defined in other modules. This is accomplished by declaring the library predicate multifile and by explicitly
prefixing predicate clause heads with the library module identifier. For example:

;- multifile(clpfd:run_propagator/2).
clpfd:run_propagator(..., ...) :-

Logtalk supports the definition of Prolog module multifile predicates in objects and categories. While the
clause head is compiled as-is, the clause body is compiled in the same way as a regular object or category
predicate, thus allowing calls to local object or category predicates. For example:

;- object(...).
;- multifile(clpfd:run_propagator/2).

clpfd:run_propagator(..., ...) :-
% calls to local object predicates

:- end_object.

The Logtalk compiler will print a warning if the multifile/1 directive is missing. These multifile predicates
may also be declared dynamic using the same Module:Name/Arity notation.

1.8.10 Asserting and retracting Prolog predicates

To assert and retract clauses for Prolog dynamic predicates, we can use an explicitly qualified module argu-
ment. For example:

:— object(...).
;= dynamic(m:bar/1).
foo(X) :-

retractall(m:bar()),
assertz(m:bar (X)),

:- end_object.

In alternative, we can use use_module/2 directives to declare the module predicates. For example:

:— object(...).

;- use_module(m, [bar/11]).
(continues on next page)

74 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

(continued from previous page)

:= dynamic(m:bar/1).

foo(X) :-
% retract and assert bar/1 clauses in module m
retractall(bar()),
assertz(bar(X)),

:- end_object.

When the Prolog dynamic predicates are defined in user, the recommended and most portable practice (as
not all backends support a module system) is to use a uses/2 directive:

;- object(...).

:— uses(user, [bar/1]).
:- dynamic(user::bar/1).

foo(X) :-
% retract and assert bar/1 clauses in user
retractall(bar()),
assertz(bar(X)),

:- end_object.

Note that in the alternatives using uses/2 or use_module/2 directives, the argument of the database handling
predicates must be know at compile time. If that is not the case, you must use instead either an explicitly-
qualified argument or the {}/1 control construct. For example:

:- object(...).

add(X) :-
% assert clause X in module m
assertz(m:X),

remove(Y) :-
% retract all clauses in user whose head unifies with Y
{retractall(Y)},

:— end_object.

1.8. Predicates 75

The Logtalk Handbook, Release v3.72.0

1.9 Inheritance

The inheritance mechanisms found on object-oriented programming languages allow the specialization of
previously defined objects, avoiding the unnecessary repetition of code and allowing the definition of com-
mon functionality for sets of objects. In the context of logic programming, we can interpret inheritance as
a form of theory extension: an object will virtually contain, besides its own predicates, all the predicates
inherited from other objects that are not redefined locally. Inheritance is not, however, the only mechanism
for theory extension. Logtalk also supports composition using categories.

Logtalk uses a depth-first lookup procedure for finding predicate declarations and predicate definitions, as
explained below, when a message is sent to an object. The lookup procedures locate the entity holding the
predicate declaration and the entity holding the predicate definition using the predicate name and arity. The
alias/2 predicate directive may be used for defining alternative names for inherited predicates, for solving
inheritance conflicts, and for giving access to all inherited definitions (thus overriding the default lookup
procedure).

The lookup procedures are used when sending a message (using the (::)/2, (::)/1, and []/1 control con-
structs) and when making super calls (using the (™ ™)/1 control construct). The exact details of the lookup
procedures depend on the role played by the object receiving the message or making the super call, as
explained next. The lookup procedures are also used by the current predicate/1 and predicate property/2
reflection predicates.

1.9.1 Protocol inheritance

Protocol inheritance refers to the inheritance of predicate declarations (scope directives). These can be con-
tained in objects, protocols, or categories. Logtalk supports single and multi-inheritance of protocols: an
object or a category may implement several protocols and a protocol may extend several protocols.

Lookup order for prototype hierarchies

The lookup order for predicate declarations is first the object, second the implemented protocols (and the
protocols that these may extend), third the imported categories (and the protocols that they may implement),
and finally the objects that the object extends (following their declaration order). This lookup is performed
in depth-first order. When an object inherits two different declarations for the same predicate, by default,
only the first one will be considered.

Lookup order for class hierarchies

The lookup order for predicate declarations is first the object classes (following their declaration order), sec-
ond the classes implemented protocols (and the protocols that these may extend), third the classes imported
categories (and the protocols that they may implement), and finally the superclasses of the object classes.
This lookup is performed in depth-first order. If the object inherits two different declarations for the same
predicate, by default, only the first one will be considered.

76 Chapter 1. User Manual

The Logtalk Handbook, Release v3.72.0

1.9.2 Implementation inheritance

Implementation inheritance refers to the inheritance of predicate definitions. These can be contained in
objects or in categories. Logtalk supports multi-inheritance of implementation: an object may import several
categories or extend, specialize, or instantiate several objects.

Lookup order for prototype hierarchies

The lookup order for predicate definitions is similar to the lookup for predicate declarations except that
implemented protocols are ignored (as they can only contain predicate directives).

Lookup order for class hierarchies

The lookup order for predicate definitions is similar to the lookup for predicate declarations except that
implemented protocols are ignored (as they can only contain predicate directives) and that the lookup starts
at the instance itself (that received the message) before proceeding, if no predicate definition is found there,
to the instance classes imported categories and then to the class superclasses.

Redefining inherited predicate definitions

When we define a predicate that is already inherited from an ancestor object or an imported category, the
inherited definition is hidden by the new definition. This is called inheritance overriding: a local definition
overrides any inherited definitions. For example, assume that we have the following two objects:

:- object(root).

:— public(bar/1).
bar(root) .

;= public(foo/1).
foo(root).

:— end_object.

object(descendant,
extends(root)).

foo(descendant) .

:- end_object.

After compiling and loading these objects, we can check the overriding behavior by trying the following
queries:

| ?- ro