The Logtalk Handbook
Release v3.60.0

Paulo Moura

Nov 15, 2022

CONTENTS

1 User Manual 1
1.1 Declarative object-oriented programming oottt e 1
1.2 Mainfeatures. v v i i e e e e e e e e e e e e e e 2

1.2.1 Integration of logic and object-oriented programming 2
1.2.2 Integration of event-driven and object-oriented programming 2
1.2.3 Support for component-based programming 3
1.2.4 Support for both prototype and class-based systems 3
1.2.5 Support for multiple object hierarchies 3
1.2.6 Separation between interface and implementation 3
1.2.7 Private, protected and public inheritanceo o o L 3
1.2.8 Private, protected and public object predicates, 4
1.2.9 Parametric ObJeCts L L e e e e e e e e e e e e e e e 4
1.2.10 High level multi-threading programming support 4
1.2.11 Smooth learning curve e e e e e 4
1.2.12 Compatibility with most Prolog systems and the ISO standard 4
1.2.13 Performance v o i i e 4
1.2.14 Logtalk SCOPE . . . v v v v e e e e e e e e e e e e e e e e e 5
1.3 Nomenclature i i i it e e e e e e e e e e e e 6
1.3.1 Prolognomenclature v v i i i it e e e e e e e e e 6
1.3.2 Smalltalk nomenclature e 8
1.3.3 CH++nomenclature L. e e e e 9
1.3.4 Javanomenclatureot e e e e e 11
1.3.5 Pythonnomenclature o i i i e e e e e e e 12
1.4 MESSAZES .« v v v v i e e e e e e e e e e e e e e e e e e e 14
1.4.1 Operators used in message sendingo e 14
1.4.2 Sending amessagetoanobject e e e e 14
1.4.3 Delegating amessagetoanobject 15
1.4.4 Sending amessage toselft e e e e e e e e e 15
1.4.5 Broadcasting e e e e e e e e e e e e 15
1.4.6 Calling imported and inherited predicates 15
1.4.7 Message sending and event generation 16
1.4.8 Sending a message fromamodule, 17
1.4.9 Message sending performance i it it e e e e e e e e e 17
1.5 Objects . . . o o i e e e e e e e e e e e 17
1.5.1 Objects, prototypes, classes, and instances 17
1.5.2 Defininganewobject. e e e e e e 18
1.5.3 Parametric 0bJECtS i i e e e e e e e e e e e e e e e e e e 21
1.5.4 Finding defined objects L e e e 22
1.5.5 Creating a new object in runtimettt e . 22
1.5.6 Abolishing an existingobject 23

1.5.7 Objectdirectives o v i i i e e e e e e e e e e e e 23

1.5.8 Objectrelationships o i e e e e e e 25
1.5.9 Object properties v v vt it e e e e e e e e e e 26
1.5.10 Built-inobjects e e e e e e e 28
1.6 Protocols i e e e e e e e e e e e e e 29
1.6.1 Defining a new protocol e e e e e e 29
1.6.2 Finding defined protocols e e e e 30
1.6.3 Creating a new protocol inruntime 0oL, 30
1.6.4 Abolishing an existing protocol L. 30
1.6.5 Protocol direCtives v v v v v i e e e e e e e e e e e e e e e e e e 31
1.6.6 Protocol relationships. o i i e e e e e 31
1.6.7 Protocol properties v v v i i e e e e e e e e e e e e e e e e e 32
1.6.8 Implementing protocols e e e e e e 33
1.6.9 Built-in protocols L e e e e e e 34
1.7 QategOri€S . . . v v v i e 34
1.7.1 Defining anew category o ottt e e e e e e e e e e e e e 34
1.7.2 Hotpatching i e e e e e e 36
1.7.3 Finding defined categorieso e e e e e e e e 38
1.7.4 Creating a new category inruntime oo v v v it e e 38
1.7.5 Abolishing an existing category« c v v v it e e e e e e e 39
1.7.6 Category direCtiVes ot i v i it i e e e e e e e e e e e e e e e 39
1.7.7 Category relationships e 40
1.7.8 Category ProPerties v v v v v e 40
1.7.9 Importing categories v v v v i v it e e e e e e e e e e e e e e 42
1.7.10 Calling category predicates o i i vttt e e e e e e e e 43
1.7.11 Parametric Cate€gOTi€S« v v v v v it e e e e e e e e e e e e e e e 44
1.7.12 Built-in categories e e e e e e e e e e e 44
1.8 PrediCateS. v v i i e e e e e e e e e 44
1.8.1 Reserved predicate NAMES v v v v v v v e e et e e e e e e e e e e e 45
1.8.2 Declaring predicates e e e e e e 45
1.8.3 Defining predicates L. e e e e e e e 55
1.8.4 Definite clause grammarrules L 60
1.8.5 Built-inmethods 63
1.8.6 Predicate properties. v v v i i e e e e e e e e e e e e e e e 67
1.8.7 Finding declared predicates 68
1.8.8 Calling Prolog predicates oo i i i i e e e e e e e e 69
1.8.9 Defining Prolog multifile predicates 73
1.8.10 Asserting and retracting Prolog predicates 74
1.9 Inheritance L e e e e e 75
1.9.1 Protocol inheritance e e e e e 75
1.9.2 Implementation inheritance 76
1.9.3 Public, protected, and private inheritanceo oo L oL 79
1.9.4 Multiple inheritance e e 80
1.9.5 Composition versus multiple inheritance 80
1.10 Event-driven programming v v v v v ittt e e e e e e e e e e e e e e e e e e 81
1.10.1 Definitions v v i e e e e e e e e e e e e e e e e e e e 81
1.10.2 Event generation v i v ittt e e e e e e e e 82
1.10.3 Communicating events to MONItOrS v v v v v v v v v e e et e e e et e e 82
1.10.4 Performance CONCEINS . . « ¢ v v v v v v vt b e e e e e e e e e e e e e e e e 83
1.10.5 Monitor SemantiCs v v v v i e e e e e e e e e e 83
1.10.6 Activation order of MONItOrs v i i e e e e e e 83
1.10.7 Eventhandling e e e e e e 83
1.11 Multi-threading programming 0 it 86
1.11.1 Enabling multi-threading support i it 86

1.11.2 Enabling objects to make multi-threading calls 86

1.11.3 Multi-threading built-in predicates 86
1.11.4 Ome-way asynchronouscalls 89
1.11.5 Asynchronous calls and synchronized predicates 89
1.11.6 Synchronizing threads through notifications 91
1.11.7 Threaded engines o i e e e e e 91
1.11.8 Multi-threading performance ittt 92
1.12 Error handling i e e e e e e e e e e e e 93
1.12.1 Raising EXCeptions o v i i i i i e e e e e e e 93
1.12.2 Type-checking o o e e e e e e e e 93
1.12.3 Expected tEITNS . . « v v v v v v e 94
1.12.4 Compiler warnings and €ITorS o i vt i e e e e e e e e e e e e e e 94
1.12.5 RUDtME ITOTS .+ ¢ v v v v v v v v v v e e e e e e e e e e e e e e e e 97
1.13 Reflection o o i e e e e e e e e e e e e 98
1.13.1 Structural reflection e e e e e e e 98
1.13.2 Behavioral reflection e 99
1.14 Writing and running applications e e e e e . 99
1.14.1 Starting Logtalk e e e e e e e e e 99
1.14.2 Running parallel Logtalk processes 99
1.14.3 Source files i e e e e e e e e e e e 100
1.14.4 Multi-passcompiler L e e e e e 101
1.14.5 Compiling and loading your applications 101
1.14.6 Loaderfiles i i i i i e e e e 102
1.14.7 Librariesof sourcefiles L 104
1.14.8 Settingsfiles e e e e e e e e 104
1.14.9 Compilerlinter e e e e e e 105
1.14.10Compiler flags« o e e e e e e 106
1.14.11Reloading source files. e e e e 112
1.14.12Batch processing o v v i i e e e e e e e e e e e e e 113
1.14.13 Optimizing performance o i i i it e e e e e e e 113
1.14.14 Portable applications i e e e e e e 113
1.14.15Conditional compilation e 114
1.14.16 Avoiding COMMON €ITOTS &+ & v v v v v v v e 114
1.14.17 Coding style guidelines i . i e e e e e e 114
1.15 Printing messages and asking questions oo e e e 114
1.15.1 Printing MeSSAZES « » « v ¢ v v v v e 115
1.15.2 Message tOKeNization v v v v v v i e e e e e e e e e e e e e e e e 116
1.15.3 Meta-meSSages . . .« v v v v vt e e e e e e e e e e e e e e e 117
1.15.4 Intercepting MeSSAZES . « v v v v v v v v e e e e e e e e e e e e e e e e e e 117
1.15.5 Asking qUESHIONS v v i v v e 118
1.15.6 Intercepting QUESTIONS . . . « v v v v v v v v vt e e e e e e e e e e e e e e e e 119
1.16 Term and goal expansion i v ittt e e e e e e e e e e e e 120
1.16.1 Defining eXpansions v v v vttt e e e e e e e e e e e e e e e 120
1.16.2 Expanding grammar rules i ittt e e e e e e e e e e e 122
1.16.3 BypasSing eXpansSiOnsS . . . v v v v v v v v v e 122
1.16.4 Hookobjects e e e e e 122
1.16.5 Virtual source file terms and loading context 124
1.16.6 Default compiler expansion workflow o L ... 125
1.16.7 User defined expansion workflows. 125
1.16.8 Using Prolog defined expansions. i v v v i i v v it e e 125
1.16.9 Debugging eXpansions vttt bt e e e e e e e e e e e e e e e 126
1.17 DOCUmMENtING . . . ¢ v v v o v it e 127
1.17.1 Documenting directives o o i i i e e e e e e e 128
1.17.2 Processing and viewing documenting files L. 131

1.17.3 Inline formatting in cOMmMEeNtsS teXt v v v v v v v v b e e e e e e e . 132

1.17.4 Diagrams . . . v v v v v e 133

1.18 Debugg@ing i e e e e e e e e e e e e e e e 133
1.18.1 Compiling source filesin debugmode 133
1.18.2 Procedureboxmodel 134
1.18.3 Defining Spy POINtS . . « . v v v v v e 135
1.18.4 Tracing program €XeCULION v v v v v v v v e e e e e e e e e e e e e e e 137
1.18.5 Debugging Using spy POINtS . . .« v v v v v v v e e e e e e e e e e e e e e 138
1.18.6 Debugging commandst e e e e e e e 138
1.18.7 Customizing term Writing o v v vt e e e 140
1.18.8 Context-switchingcalls 141
1.18.9 Debugging MeSSAZES . . .« v v v v v v e e e e e e e e e e e e e e e e e e e 142
1.18.10 Using the term-expansion mechanism for debugging 144
1.18.11Ports profiling o o i e e e e e e e e e e e e e e 144
1.18.12Debug and trace €VENLS . . . v v v v v v v e 144

1.19 Performance v v i it e 144
1.19.1 Source code compilationmodes 144
1.19.2 Local predicatecalls i e e e e e e e 145
1.19.3 Calls to imported or inherited predicates 145
1.19.4 Callsto module predicates i e e e e 145
1.19.5 MESSAZES .« v v v v v e 145
1.19.6 Automatic expansion of built-in meta-predicates 145
1.19.7 Inlining i e e e e e e e e e e e e e e e e e e 146
1.19.8 Generated code simplification and optimizations 146
1.19.9 Size of the generatedcode e 146
1.19.10Debug mode overhead 146
1.19.11 Other considerations o v vt i i i i e e e e e e e 147

1.20 Installing Logtalk i i o i e e e e e e e e e e e e e 147
1.20.1 Hardware and software reQUIr€mMents« v v v v v v v v v e e e e 147
1.20.2 Logtalkinstallers e e 148
1.20.3 Source distribution e e e e e e e e e e e e 148
1.20.4 Distribution OVerview oo i e e e e e e e e e e e e e 148

1.21 Prolog integration and migrationo e e 151
1.21.1 Source files with both Prolog code and Logtalkcode 151
1.21.2 Encapsulating plain Prolog codeinobjects 151
1.21.3 Converting Prolog modulesintoobjects 152
1.21.4 Compiling Prolog modules as objects 153
1.21.5 Dealing with proprietary Prolog directives and predicates 156
1.21.6 Calling Prolog module predicates v it 157
1.21.7 Loading converted Prolog applications, 157

2 Reference Manual 159
21 Grammar v v e e e e e e e e e e e e e e e e e e e 159
2. 1.1 ENtities. . . . o v o i e 159

2.1.2 Objectdefinition e e e e 159

2.1.3 Category definition i e e e e e e e 160

2.1.4 Protocol definition e 161

2.1.5 Entityrelations e e e e e e e e e e e e e 161

2.1.6 Entity identifiers e e e e e e e e e 166

2.1.7 Sourcefilenames e e e e e e e e e e 168

2.1.8 Terms e e e e e e e e e e e e e e 168

2.1.9 DIrectives o vt v i e e e e e e e e e e e e e e e 169
2.1.10 Clausesand goals 0 i i i e e e e e e e e e e e e e 179
2.1.11 Lambda eXpressSions v v v v v v vt e e e e e e e e e e e e e e e e e e 180

2.1.12 Entity properties v v v v i e 181

2.1.13 Predicate Properti€S v v v v v v e 184
2.1.14 Compilerflags L e e 185

2.2 Control CONSITUCES « & v v v v v e 185
2.2.1 Message sending oo e e e e e e e e e e e e e e e 185

2.2.2 Messagedelegation e 187

2.2.3 Calling imported and inherited predicates 189

2.2.4 Calling external predicates e e e 190

2.2.5 Contextswitchingcalls 192

2.3 DIreCHVES v i i e 193
2.3.1 Sourcefiledirectives 193

2.3.2 Conditional compilation directives i i e 198

2.3.3 Entity directives v i e e e e e e e e e e e e e e e e e 202

2.3.4 Predicate dir€CtiVes ot i i i e e e e e e e e e e e e e e 215

2.4 Built-in predicates e e e e e e e e e 231
2.4.1 Enumerating objects, categories and protocols, 231

2.4.2 Enumerating objects, categories and protocols properties 234

2.4.3 Creating new objects, categories and protocols 236

2.4.4 Abolishing objects, categories and protocols 241

2.4.5 Obijects, categories, and protocols relations 243

2.4.6 Eventhandling 253

2.4.7 Multi-threading o e e 255

2.4.8 Multi-threading engines 0t i i it it e e e e e e e 265

2.4.9 Compiling and loading source files, 273
2400 Flags . . . o o i i e e e e e e e e e e e e e e e e 286
2411 LINter o e e e e e e e e e e e e e e e e e e e 289

2.5 Built-inmethods e e 289
2.5.1 Logicand control e e e e e e e e e e e e 289

2.5.2 EXeCUtion CONtEXL . . . v ¢ v v v v v vt et e e e e e e e e e e e e e e e e e e e 293

2.5.3 Reflection e e e e 298

2.5/4 Database e e e e e e e 301

2.5.5 Meta-calls L e e 310

2.5.6 Errorhandling. e 314

2.5.7 Allsolutions e e e e e e e e e e 328

2.5.8 Eventhandling e 333

2.5.9 Message forwardingl e e e e e e e e e 335
2.5.10 Definite clause grammarrules e e e 336
2.5.11 Termand goal expansion o i v ittt e 340
2.5.12 Coinduction hooks e 344
2.5.13 Message Printing v v it i e 345
2.5.14 Questionasking e e e e e 350

3 Tutorial 353
3.1 Listpredicates v v v e 353
3.1.1 Defining alistobject e e 353

3.1.2 Defining a list protocol e e e e e e 354

3.1.3 SUMMATY .« .t vt ot e 356

3.2 Dynamic object attributes e e e e e e e e e e e 356
3.2.1 Defining a category v v v v i e 356

3.2.2 Importing the category o o v i e e e e e e e e e 357

3.2.3 SUMMAIY v ot e e e e e e e e e e e e e e e e 358

3.3 Areflective class-based system L e e e e e e e e e 358
3.3.1 Definingthebase classes o i i i i e e e e e e 358

3.3.2 SUMMATY o o e 359

3.4

FAQ
4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

Profiling programs e e e e e e e e e e e e e e e 359

3.4.1 MesSages as €VENLS . .« . v v v it e 360
3.4.2 Profilers as MONItOIS v v v v i e e e e e e e e e e e e e 360
3.4.3 SUMMArY i e 362
363
General e 363
4.1.1 Why are all versions of Logtalk numbered 2.xor3.x? 363
4.1.2 Why do I need a Prolog compiler to use Logtalk? 363
4.1.3 Is the Logtalk implementation based on Prolog modules? 363
4.1.4 Does the Logtalk implementation use term-expansion? 364
Compatibility o e e e e e e e e e e e e e e 364
4.2.1 What are the backend Prolog compiler requirements to run Logtalk? 364
4.2.2 Can I use constraint-based packages with Logtalk? 364
4.2.3 Can I use Logtalk objects and Prolog modules at the same time? 364
Installation e e e 364
4.3.1 The integration scripts/shortcuts are not working! 364
4.3.2 1 get errors when starting up Logtalk after upgrading to the latest version! 365
Portability o e e e e e 365
4.4.1 Are my Logtalk applications portable across Prolog compilers? 365
4.4.2 Are my Logtalk applications portable across operating systems? 365
Programming e 365
4.5.1 Should I use prototypes or classes in my application? 366
4.5.2 Can use both classes and prototypes in the same application? 366
4.5.3 Can I mix classes and prototypes in the same hierarchy? 366
4.5.4 Can I use a protocol or a category with both prototypes and classes? 366
4.5.5 What support is provided in Logtalk for defining and using components? 366
4.5.6 What support is provided in Logtalk for reflective programming? 366
Troubleshooting e e e e e e 366

4.6.1 Using compiler options on calls to the Logtalk compiling and loading predicates do
not work! . . oL L e e e e 367

4.6.2 Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when brows-
ing XML documenting files! 367

4.6.3 Compiling a source file results in errors or warnings but the Logtalk compiler reports
a successful compilation with zero errors and zero warnings! 367
Usability o e e e e 367
4.7.1 Is there a shortcut for compiling and loading source files? 367
4.7.2 Is there an equivalent directive to the ensure_loaded/1 Prolog directive? 368
4.7.3 Are there shortcuts for the make functionality? 368
Deployment e e e e e e e e e e e e e e e e e e 368
4.8.1 Canl create standalone applications with Logtalk? 368
Performance e e e e e e e 368
4.9.1 Is Logtalk implemented as a meta-interpreter? v v v v v v v v 368

4.9.2 What kind of code Logtalk generates when compiling objects? Dynamic code? Static
COdE? . . e e e e 369

4.9.3 How about message-sending performance? Does Logtalk use static binding or dy-
namic binding? e e e e e 369
4.9.4 Which Prolog-dependent factors are most crucial for good Logtalk performance? . . . 369
4.9.5 How does Logtalk performance compare with plain Prolog and with Prolog modules? 369
LICENSING o o v e 369
4.10.1 What'’s the Logtalk distribution license? 370
4.10.2 Can Logtalk be used in commercial applications? 370
4.10.3 What’s the final license for a combination of Logtalk with a Prolog compiler? 370
SUPPOTT . . . o o e 370

Vi

4.11.1 Are there professional consulting, training and supporting services? 370

5 Developer Tools 371
51 OVEIVIEW . .« v it i e 371
5.1.1 Loading the developertools @ i i it 372

5.1.2 Toolsdocumentation e e e e e 372

5.1.3 Toolscommonflags e e 372

5.1.4 ToOlS reqUITEMENTS v v v v v e 372

5.2 asdf . oL e e e e e e e e e 374
5.3 assertions e e e e e e e 374
5.3.1 APIdocumentation v v v v v it e e e e e e e e e e 375

5.3.2 Loading i i e e e e e e e e e e e e e e 375

5.3.3 Testing i i e 375

5.3.4 Adding assertions to your source codeo i e e e e e e 375

5.3.5 Automatically adding file and line context information to assertions 375

5.3.6 Suppressing assertion calls from sourcecode 376

5.3.7 Redirecting assertion failure messages 376

5.3.8 Converting assertion failures into errors 376

5.4 code_metriCs. . . o v i i i i e e e e e e e e e e e e e e e e e 377
5.4.1 APIdocumentation ¢ v v v v vt e e e e e e e e e e e e e 377

542 Loading ¢ i i i e e e e e e e e e e e e e e 377

543 TestinNg . . . o v o i e 377

5.4.4 Availablemetrics e e e e e e 377

545 Usage . . . o it i e e e e e e e e e e e 379

5.4.6 Defining new metrics« o it e e e e e e e e e e e 379

5.4.7 Third-party tools e e e e e 379

5.4.8 Applying metrics to Prologmodules o e 379

5.4.9 Applying metrics to plain Prologcode 379

5.5 dead_code_scanner Lo e 380
5.5.1 APIdocumentation v v v v v v it e e e e e e e e e e e e e e e e 380

552 Loading o i i i e e e e e e e e e e 381

553 Testing . . . v v v i e 381

5.54 USAZE . . v v v e 381

5.5.5 Integration with themaketool 381

556 Caveats i e 382

5.5.7 Scanning Prologmodules e 382

5.5.8 Scanning plain Prologfiles e 382

5.6 debug_messSages i e 382
5.6.1 APIdocumentation v v v i i v vttt e e e e e e 383

562 Loading i e e e e e e e e e 383

5.6.3 Testing oo e e e e e e e e e e e e e e 383

5.614 Usage . . . o i it e e e 383

5.7 debugger e 384
5.7.1 APIdocumentation v v v i it e e e e e e e e e e 384

5.7.2 Loading i e e e e e e e e 384

5.7.3 TestiNg« o it e e e e e e e e e e e e e e e e 385

5.74 Usageo e e e e e e e e e e 385

5.7.5 Alternative debuggertools e e e e 385

5.7.6 KNOWNISSUES v o v v v i it e e e e e e e e e e e e e e e e e 386

5.8 diagrams e e e e e e e e e e e e e e e e e e 386
5.8.1 ReqUITEMENtS v v v vt et e 386

5.8.2 APIdocUumentation v v v v v vt e e e e e e e e e e e e 387

583 Loading i i i i e e e e e e e e e 387

584 Testing . . . o . v i e 387

vii

5.9

5.10

5.11

5.12

5.13

5.8.5 Supported diagrams e e e e e e e e e e e e e e e e 388

5.8.6 Graphelements i i i i i i e e e e e e e e e e e e e 388
5.8.7 Supported graph languages L e 390
5.8.8 CuStomization ot it e 391
5.8.9 Linking diagrams e e e 395
5.8.10 Creating diagrams for Prolog module applications 396
5.8.11 Creating diagrams for plain Prologfiles 396
5.8.12 Othernotes i i i e e e e e e e 396
doclet . . . L e e e e e e e e e e e e e 397
5.9.1 APIdocumentation ¢ v v v v v vt e e e e e e e e e e e e e e e e 397
592 Loading i i e e e e e e 397
5.9.3 Automating running doclets e e 397
5.9.4 Integration with themaketool. 397
eI . o o e e e e e e e e e e e e e e e e e 398
5.10.1 APIdocumentation ¢ v v v v v vt e e e e e e e e e e e e e e e e e 398
5.10.2 LoadiNg . . . o v v vt e 398
5.10.3 Testing o v v i e 398
5.10.4 Supported Operating-SySteImS . . . v v v v v v v e e e e e e e e e e e e e e e e e 398
5.10.5 Usage . . . v v i i e 398
5.10.6 Experimental features o v i i i i i e e e e e e e 398
5.10.7 KNOWN ISSUES . . « v v v v i e e i e 399
IssUe_Creator o i i e e e e e e e e e e e e e 399
5.11.1 Requirements v v v v i v it e e e e e e e e e e e e e e e e e e e 400
511.2 Loading v o v vt i e e e e e e e e e e e e e e e e e 400
5.11.3 Usage . . o o o o e e e e e e e 400
5.11.4 KnOwWn iSSUES v v i v it e et e e e e e e e e e e e e e e e e 401
lgtdoc . . . L e e e e e e e e e e e e e e e e 401
5.12.1 APIdocumentation ¢ v i v v v it e e e e e e e e e e e e e 401
5.12.2 Loading o v i e e e e e e e e e e e e e e e e 401
5123 Testing v v v i e 402
5.12.4 Documenting source code L et e e e e e e 402
5.12.5 Generating documentationt vttt e e e e e e e e e 402
5.12.6 Documentation linterchecks L e 403
Lgtunit & . e 403
5.13.1 Mainfiles e e e e e e e e 404
5.13.2 APIdocUmentation v v v v v v v e e e e e e e e e e e e e e e e e e 404
5.13.3 Loading . . . v v v it e 404
5.13.4 TeStiNg .« v v v v e 404
5.13.5 Writing and loading tests i e e e e e e e e e e 404
5.13.6 RUNNING UNItLESES v v v it et e 405
5.13.7 Parametric teSt ODjects L ... e e e e e e e 406
5.13.8 Testdialects v v v i i e e e e e e e e e e e e e e e e 407
5.13.9 User-defined testdialects i e 409
5.13.10QuickCheck e e e e e e e e e 410
5. 13,11 SKIPPING ESES & v & v v v o o e 414
5.13.12Checking test goal results L. e 415
5.13.13 Testing local predicates o v v i i e e e e e e e e e e e e 416
5.13.14 Testing non-deterministic predicates 416
5.13.15Testing ZeNerators v v v v v v v bt e e e e e e e e e e e e e e e e e e e 416
5.13.16 Testing input/output predicates v v v v v it e e e e e e e e e 417
5.13.17 Suppressing tested predicates OULPUL v v v v v v v v v b b e e e e e 418
5.13.18 Tests with timeout limits i i et e e e e 418
5.13.19Setup and cleanup goals 419
5.13.20Test aNNOtAtiONS - « « .« « ¢ v v v e v i e 419

viii

5.14

5.15

5.16

5.17

5.13.21 Working with testdatafiles i i e 419

5.13.22Flaky testS . . v v v it e 420
5.13.23 Debugging failed tests e e e 420
5.13.24C0d€ COVETAZE . .« « v v v v o e 421
5.13.25Automating running testSt ot i e e e e e e e e e e e 422
5.13.26 Utility predicates o i e e e e e e e 423
5.13.27 Exporting test results in xUnit XML format 424
5.13.28 Exporting test results in the TAP output format. 425
5.13.29 Generating Allure 1eports L i i e e e e e e e e e 425
5.13.30 Exporting code coverage results in XML format 427
5.13.31 Automatically creating bug reports at issue trackers, 428
5.13.32 Minimizing test results OUtPUL v v v v v e e e e e e e e e e e e e e 428
S5.13.33KNOWNnisSues . . v v v v v e e e e e e e e e 428
linter . oo . e e e e 428
5.14.1 Mainlinter checks e e 428
5.14.2 Helponlinter warnings o i ittt i 430
5.14.3 Extending thelinter. e 430
5.14.4 Linting Prologmodules e e e e e 430
5.14.5 Linting plain Prolog files e 430
MAKE © o v v e 431
5.15.1 APIdocumentationt i it ittt e e e e e e 431
PACKS o v i e 431
5.16.1 Requirements v v v v i v it e 431
5.16.2 APIdocumentationttt e 432
5.16.3 Loading o i i e e e e e e e e e e e 432
5.16.4 TeStiNg . . . v v v v v e 432
5.16.5 USaZe . . ¢ v v v i et e e e e e e e e e e e e e e e 433
5.16.6 Registries and packs StOTage v v v v i it e e e e e e e e e e e e e e 433
5.16.7 Virtual environments ittt e e e e e e e e 433
5.16.8 Registry specification e e e e e e e e 434
5.16.9 Registryhandling e 436
5.16.10Registry development L e e e e 437
5.16.11Pack specification o i e e e e e e e e e 437
5.16.12Pack VErsions o v i i i i e e e e e e e e e 438
5.16.13Pack dependencies e e e e e 438
5.16.14Pack portability e e e e e e 439
5.16.15Pack development i L e e e e e e e e e 440
5.16.16Packhandling e 440
5.16.17Pack documentationttt e e e e 442
5.16.18 Pinning registries and packs L. e e e e e e e e 442
5.16.19Testing packs i e e e e e e e e e 443
5.16.20 Security considerations i i e e e e e e e e e e e e e e e 443
5.16.21Best PractiCes . . . v v v v v v v e i e e e e e e e e e e e e e e e e e e e 444
5.16.22Installing Prolog packs i i i e e e e e e e e e e e e 444
S5.16.23KNOWNISSUES « . v v v v v s e e e e e e e e e 444
pPorts_profiler i e e e e e e e e e e e e e e e e e 445
5.17.1 APIdocumentation ¢ v v v v v v vt e e e e e e e e e e e e e e e 445
5.17.2 Loading o v i e e e e e e e e e 445
5.17.3 Testing o o i i e e e e e e e e e e e e e e e e e 446
5.17.4 Compiling source files for port profiling, 446
5.17.5 Generating profilingdata. e e 446
5.17.6 Printing profiling datareports e e 446
5.17.7 Interpreting profilingdata e 448
5.17.8 Profiling Prolog modules e 448

5.17.9 Profiling plain Prologcode e 448

5.17.10KNOWN ISSUES . . v v v v v e 449
5.18 profiler . . o i e 449
5.18.1 Loading o v i i e e e e e e e e e e e 449
5.18.2 Testing o v o i i e 449
5.18.3 Supported backend Prolog compilers o o 449
5.18.4 Compiling source code for profiling 450
5.19 tutor . .. e 450
5.19.1 APIdocumentation i i i i i i et e e e e e e e e e e e e e e 451
5.19.2 Loading o i i e e e e e e e e 451
5.19.3 Usage o i e e e e e e e e e e e e e 451
5.20 WrapPer . v v v e 451
5.20.1 APIdocumentation v v v v v v v i e e e e e e e e e e e e e e e e e 451
5.20.2 Loading o i e e e e e e e e e e e 451
5.20.3 WOrkflows e e e e e e e e e e e e 452
5.20.4 CuStomization v v v v i e 452
5.20.5 Current imitations ¢ o v v i i e e e e e e e e e e e e e e e 452
Libraries 453
6.1 OVEIVIEW . . . vt i e i e 453
6.1.1 Library documentation v v i v vt e e e e e e e e e e e e e e e e e 453
6.1.2 Loading libraries i 0 i i e e e e e e e e e e e e 453
6.1.3 Testing libraries e e e e 454
6.1.4 Credits v i e e e e e e e e e e e e e e e e e e e 454
6.1.5 Othernotes i i i i i it e e e e e e e e e e e 454
6.2 arbitrary ..o e e e e e e e e e e e e e e e e e e e 454
6.2.1 APIdocumentation v v v v v it e e e e e e e e e e e e e e e e e e e 455
6.2.2 Loading i i e e e e e e e e e e e e e e e 455
6.2.3 Testing e e e e e e e e e e e e e e e e 455
6.2.4 USAZE« i i e e e e e e e e e e 455
6.2.5 Examples e e e e e 457
6.2.6 KNOWNISSUES . . v v v v v e 457
6.3 ASSIgNVAIrS . . v i e 457
6.3.1 APIdocumentation it i i i it e e e e e e e e e e e e 457
6.3.2 LoadiNg v v it e e e e e e e e e e e e e e e 457
6.3.3 Testing e e e e e e e e e e e 458
0.4 basebd ... e 458
6.4.1 APIdocumentation v v v v v v i e e e e e e e e e e e e e e e e e e 458
6.4.2 Loading ¢ i i e e e e e e e e e e e e e 458
6.4.3 TestiNg ot e e e e e e e e e e e e e e e e e e 458
6.4.4 Encoding. i e e e e e e e e 458
6.4.5 DecodinNg v v i i e e e e e e e e e e e e 459
6.5 basic _types e 459
6.5.1 APIdocumentation v v v v vt i e e e e e e e e e e e e e e e e 460
6.5.2 Loading o v v it e e e e e e e e e e e e e 460
6.5.3 Testing i e e e e e e e e e e e e e e e e e 460
6.6 coroutining e e e e e e e e e e e e e 460
6.6.1 APIdocumentation v v v v v it e e e e e e e e e e e e e e e e e 460
6.6.2 Loading i i i e e e e e e e e e e e e 460
6.6.3 Testingo e e e e e e e e e e e e e e e e e 460
6.7 ChOr . . . e e e e e e e e e e e 461
6.7.1 Representation it e e e e e e e e e e 461
6.7.2 Encoding. i e e e e e e e e e e e e 462

6.7.3 DecodiNg ¢ i i i e e e e e e e e e e e e e e e 462

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.7.4 API documentation v v v v vt e e e e e e e e e e e e e e e e e e 462

6.7.5 Loading i . i e e e e e e e e e e e 462
6.7.6 TeStiNg o v i e 462
COM v v v e e e e e e e e e e e e e e e 462
6.8.1 APIdocumentation v i v v i i i e e e e e e e e e e e e e 463
6.8.2 Loading i e e e e 463
6.8.3 Testing v e 463
SV e 463
6.9.1 API documentation v v v v v v v e e e e e e e e e e e e e e e e e e 463
6.9.2 Loading i e e e e e e e e 463
6.9.3 Testing i e e e e e e e e e e e e e e e e e e 464
6.9.4 USAZE . . . o i i i e e e e e e e e e e e e e e e e e 464
dates . . o e 465
6.10.1 APIdocumentation i v it i i e e e e e e e e e e e e e e e e 465
6.10.2 LoadiNg v v v it e 465
dependents . . . L i L e 466
6.11.1 APIdocumentation« i v v i v i e et e e e e e e e e e e e e 466
6.11.2 Loading v o vt e e e e e e e e e e e e e e e e e e e 466
dictionaries i i i i i e 466
6.12.1 APl documentation v v v v it e e e e e e e e e e e e e e e 466
6.12.2 Loading i i e e e e e e e e e 466
6.12.3 TeStiNg . . . v v v v e 466
0.12.4 USAEe . . . v v i e 467
6.12.5 CreditS v i e e e e e e e e e e e e e e e e e 467
o 1 468
6.13.1 APl documentation v v v v i i it e e e e e e e e e e e e 468
6.13.2 Loading i e e e e e e e e e 468
6.13.3 Testing v v i e 468
BACE . . L e 468
6.14.1 APIdocumentation i i it i i e e e e e e e e e e e e e e e 469
6.14.2 Loading i i e e e e e e e e e e 469
6.14.3 TeStiNg v v v i e e e e e e e e e e e e e e e e e e 469
6.14.4 UsSage v v v it e e e e e e e e e e e 469
6.14.5 IntroducCtion v i i i e e e e e e e e e e e e e e e e e e 470
0.14.6 SYNAX . . . v v v i e 470
6.14.7 Declaration of Predicates v i i e e e e e e e e e e e 470
6.14.8 Declaration of Accumulators e e e e e e e e e e 471
6.14.9 Declaration of Passed Argumentsttt 471
6.14.10 Additional documentation e e e e e e e e e 471
BVENES o i e 472
6.15.1 API docUmentation v v v v v v vt e e e e e e e e e e e e e e e e e 472
6.15.2 LoadiNg v v vt e e e e e e e e e e e e e e e e e e 472
expand_library_alias_paths. e e e 472
6.16.1 APIdocumentation i v v i i it et e e e e e e e e e e e e e 472
6.16.2 Loading i i e e e e e e e e e e e e e e e e e e 472
60.16.3 Usage v e 472
EXPECTEAS . . i e 473
6.17.1 APl documentation v i v v i i it e e e e e e e e e e e e e 473
6.17.2 Loading o v i i e e e e e e e e e e e e e e e 473
6.17.3 Testing v v i e 473
0.17.4 UsSage i e 473
6.17.5 Seealso e e e e e e 474
format e e e e e e e e e e e e e e e 474
6.18.1 Portability 474

Xi

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.18.2 API docUmMeNntation v v v v v v v e e e e e e e e e e e e e e e e e e e 474

6.18.3 Loading i i e e e e e e e e e e e e e e 474
0.18.4 Testing o v i i e 475
ENSYIM o v v v e 475
6.19.1 APIdocUmeNntation ¢ v v v v v v e e e e e e e e e e e e e e e e e e 475
6.19.2 Loading i i e e e e e e e e 475
6.19.3 Testing . . . v v v v i e 475
60.19.4 Usage i i i e 475
CENINT . o e 475
6.20.1 APIdocumentation v v v v v v i e e e e e e e e e e e e e e e e e e e 476
6.20.2 Loading i i e e e e e e e 476
6.20.3 Testing . . . v v v i e 476
60.20.4 USAZE . . v v i e 476
=T 476
6.21.1 APIdocumentation v v v v v v vt e e e e e e e e e e e e e e e e e e 476
6.21.2 Loading o i e e e e e e e e e e e 476
6.21.3 Testing . . . v v v i e 477
0.21.4 USAZE . . . v v i e 477
Lo =111 = o 478
6.22.1 APIdocumentation v v v v v v v v e e e e e e e e e e e e e e e e e e e 478
6.22.2 Loading i e e e e e e e e e 478
6.22.3 TeStiNg v ot e e e e e e e e e e e e e e e e 478
0.22.4 USALZE . v v v v i e 478
NEaAPS o o i i e e e e e e e e e e 478
6.23.1 APl documentation i v i i i e e e e e e e e e e e e e e e e 479
6.23.2 Loading v v it e e e e e e e e e e e e e e e e e e 479
6.23.3 Testing o e e e e e e e e e e e e e e e e e e e 479
6.23.4 Credits v v v i e e e e e e e e e e e e e e e e 479
hierarchies i i i i e e e e e e e e e e e e e e e e e e 479
6.24.1 APIdocumentation v v v v v vt i e e e e e e e e e e e e e e e e e 479
6.24.2 Loading i i e e e e e e e e e e 479
6.24.3 TeStiNg . . .« o v o e 479
hOOK _TLOWS . & v vt e 480
6.25.1 APIdocumentation v v v v v i it e e e e e e e e e e e e e 480
6.25.2 Loading i i e e e e e e e e e e e e e e 480
6.25.3 Testing i i i e e e e e e e e e e e e e e e e e e e 480
6.25.4 USaZe . . .« i it e e e e e e e e e e e e e 480
hook_objects o i e e e e e e e e e e e e e e 481
6.26.1 APIdocumentation v v v v v vttt e e e e e e e e e e e e e 481
6.26.2 Loading i i e e e e e e e e e e e e e e e e 481
6.26.3 TestiNg i i e e e e e e e e e e e e e e e e e e e 481
6.26.4 USAZE . . . v v v i e e e e e e e e e e e e e e e e e e 481
ML . . e 484
6.27.1 APIdocumentation v v v v v it e e e e e e e e e e e e e e 485
6.27.2 Loading i i e e e e e e e e e e e e e e e e e 485
6.27.3 Testing o i e 485
6.27.4 Generatinga HTML document oot v v vt vttt i et e e e e e 485
6.27.5 Generating a HTML fragmentot v v vt v i i it ie e e et 485
6.27.6 Working with callbacks to generate content 486
6.27.7 Working with custom elements 486
intervals . . . L e e e e e e e e e e e e e e e e e e 487
6.28.1 APIdocumentation v v v v v v v i e e e e e e e e e e e e e e e e e e e 487
6.28.2 LoadiNg v v i i e e e e e e e e e e e e e e e e e 487
6.28.3 TeStiNg . . . v v o o e e e e e e e e e e e e e e e e e 487

Xii

6.29

6.30

6.31

6.32

6.33

6.34

6.35

6.36

6.37

6.38

JAVA « e 487
6.29.1 APIdocumentationt i i v i i i e e e e e e e e e e e e e e 487
6.29.2 Loading i i e e e e e e e e e e e e e e e e e 488
6.29.3 TeStINg v i i e e e e e e e e e e e e e e e e e e 488
6.29.4 USAZE . . . v v it e e e e e e e e e e e e e e e e 488
6.29.5 KNOWIN iSSUES . . v v v v v i e e i e 488
JSON & e e e e e e e e e e e e e e e e e e e 488
6.30.1 APIdocumentation« . i v i i i i e e e e e e e e e e e e e e e e e 489
6.30.2 Loading i i e e e e e e e e e e e e e e 489
6.30.3 Testing i i e 489
6.30.4 Representation i i ittt e e e e e e e e e e 489
6.30.5 Encoding. o o i i i e e e e e e e e e e e e e 491
6.30.6 Decoding ¢ v v v i e e e e e e e e e e e e e e e e 492
6.30.7 KNOWINiSSUES . . v v v v i v e et e 492
L0gEINE « v o e e e e e e e e e 492
6.31.1 APIdocumentation v i v v i i i e e e e e e e e e e e e e e 492
6.31.2 Loading i i e e e e e e e e e e e e e e e 492
100PS . . e 492
6.32.1 APl documentation i i i i i e e e e e e e e e e e e e e e 492
6.32.2 LoadiNg v v it e e e e e e e e e e e e e e e e 493
6.32.3 Testing i i i e e e e e e e e e e e e e e e e e e 493
6.32.4 USAZE . . . v v v it e e e e e e e e e e e e 493
MEETA & v vt e 493
6.33.1 APl documentation i i it i e e e e e e e e e e e e e e e e 493
6.33.2 Loading i i e e e e e e e e e 493
6.33.3 TeSHING . & v v v v e 493
6.33.4 Usage o i it e e e e e e e 494
meta_compiler e e e e e e e e e e e e e e e e 494
6.34.1 APl documentation i i i i it e e e e e e e e e e e e e e e 494
6.34.2 Loading i i e e e e e e e e e e e e e e 494
6.34.3 TeStiNg . . .« « v vt e e e e e e e e e e e e e e e e e e e 494
6.34.4 USaZe . . .« v i it e e e e e e e e e e e e e e 494
nested_dictionaries i i i i i e e e e e e e e e e e e e e e e e e 495
6.35.1 APl documentation i v i i it e e e e e e e e e e e e e e 495
6.35.2 Loading i i e e e e e e e e e e e e e 495
6.35.3 Testing i i i e e e e e e e e e e e e e e e e e e e 495
6.35.4 USaZe . . . i i i e e e e e e e e e e e e 495
6.35.5 Curly term representation v v v i i e e e e e e e e e e e e e e e e 496
oPtIoNAls e e e e e e e e e e e e e e 496
6.36.1 APl documentation i i i i i i e e e e e e e e e e e e e e e 496
6.36.2 Loading i . e e e e e e e 496
6.36.3 Testing i i e 497
6.36.4 USaZe o i it e e e e e e e e e e e e 497
6.36.5 Seealso e e e e e e e 497
OPLIONS o o v o e 497
6.37.1 APl documentation i i i i i i e e e e e e e e e e e e e e 497
6.37.2 Loading i i e e e e e e e e e e e e 498
6.37.3 TeStiNg o o o i e e e e e e e e e e e e e e e 498
6.37.4 UsSage v v it e e e e e e e e e e e 498
o = 499
6.38.1 APIdocumentation i i i i i i e e e e e e e e e e e e e 499
6.38.2 Loading i i e e e e e e e e 499
6.38.3 Testing i i e e e e e e e e e e e e e e e e e e e 499
6.38.4 KNOWI iSSUES . + v v v v v e 499

6.39

6.40

6.41

6.42

6.43

6.44

6.45

6.46

6.47

6.48

QUEUES v v v v e 500
6.39.1 APIdocumentation i i i i i i e e e e e e e e e e e e e e e e 500
6.39.2 Loading i i e e e e e e e e e e e e e e e 500
6.39.3 TeStINg i e e e e e e e e e e e e e e e e e e 500
6.39.4 USaZe i it e e e e e e e e e e e e e e 500
Fandom . . . o o e 501
6.40.1 APIdocumentationt i v v i i it e e e e e e e e e e e e e e e 501
6.40.2 Loading i i e e e e e e e e e e e e e e e e e e 501
6.40.3 TeStiNg i i e e e e e e e e e e e e e e e e e 501
6.40.4 USAZE . . .« v v it e e e e e e e e e e e e e 501
FEAdEr . . i i i e 502
6.41.1 APIdocumentation i v v i i it e e e e e e e e e e e e e e 502
6.41.2 Loading i i i e e e e e e e e e e e e e e e e e e 502
0.41.3 Testing o o i e 502
Fedis . . i i e 502
6.42.1 APl documentation v i v v i i i e e e e e e e e e e e e 502
6.42.2 Loading i i e e e e e e e e e e e e e e e e e e 503
6.42.3 TeStiNg . . . v v v e 503
6.42.4 CreditS v i e 503
6.42.5 KNOWNISSUES o v v i i e 503
SEES & i i e e e e e e e e e e e e e e e e e e e 503
6.43.1 APl documentation v i v v i i i e e e e e e e e e e e e 503
6.43.2 Loading i i e e e e e e e e e e e e e e e e 504
6.43.3 Testing o i e 504
6.43.4 USAZE . . . v v v i e e e e e e e e e e e e e e e e e 504
6.43.5 CreditS . . . v v v v i e e e e e e e e e e e 505
statistics o e e e e e e e e e e e e 505
6.44.1 APl documentation v i v v i i i e e e e e e e e e e e e e e 505
6.44.2 Loading i it e e e e e e e e e e e e e e 506
6.44.3 TeStINE v v i i e 506
TErM_10 . & o o i e 506
6.45.1 APl documentation v i v v i i i e e e e e e e e e e e e e 506
6.45.2 Loading v i i e e e e e e e e e e e e 506
6.45.3 TeStiNg . . . o v v i e 506
TIMEOUT & v v e et e 506
6.46.1 APl documentation v i v v it et e e e e e e e e e e e e e 507
6.46.2 Loading o i e e e e e e e 507
6.46.3 TeSting v vt e e e e e e e e e e e e e e e 507
BYPES o o e 507
6.47.1 APl documentation i i it i i e e e e e e e e e e e e e e e e 507
6.47.2 Loading i e e e e e e e e 507
6.47.3 TeStiNg . . .« o v v e e e e e e e e e e e e e e e e e e e 508
6.47.4 Type-checking e 508
6.47.5 Defining NeW LYPES . . . & v v v i i e 508
6.47.6 Examples e e e e e e e e e e e e e e e e 509
unicode_data. L e 509
6.48.1 AUthOTrs e e e e e e 509
6.48.2 LICENSE . . & v v o i i e 509
6.48.3 Website e e e e e e e e e e e e 509
6.48.4 DesCription v v v i e 509
6.48.5 RequIrements o v i i i v i it e e e e e e e e e e e e e e e 510
6.48.6 Usage i i i e e e e e e e e e e e 510
6.48.7 KNOWI ISSUES . & v v v v v e 510
6.48.8 Acknowledgements e e e 510

Xiv

6.48.9 Filesand API SUMMATY ¢ v v v v i e e e e e e e e e e e e e e e e e e e
6.49 union_find e
6.49.1 APIdocumentation v v v v v v v i e e e e e e e e e e e e e e e e e e
6.49.2 Loading i i e e e e e e e e
6.49.3 TeStiNg v v vt e e e e e e e e e e e e e e e e e e
6.49.4 Usage o v v it e e e e e e e e e e

6.50 uuid

6.50.1 APIdocumentation o v v v v it e e e e e e e e e e e e
6.50.2 Loading i . e e e e e e e e e
6.50.3 Testing i i e
6.50.4 Generatingversion 1 UUIDs it
6.50.5 Generating version 4 UUIDS i v i i i i e e e e e e e e e e e e
6.50.6 Generating the null UUID i i ittt e it e et e e
6.51 ZIpPerS . . . e e e e e e e e e e e e e e e e e e
6.51.1 APIdocumentation ¢ v v v v vt e e e e e e e e e e e e e e e
6.51.2 Loading v v vt e e e e e e e e e e e e e e e e
6.51.3 Testing i i e e e e e e e e e e e e e e e e e e

7 Glossary
Bibliography

Index

XV

Xvi

CHAPTER
ONE

USER MANUAL

1.1 Declarative object-oriented programming

Logtalk is a declarative object-oriented logic programming language. This means that Logtalk shares key
concepts with other object-oriented programming languages but abstracts and reinterprets these concepts in
the context of declarative logic programming.

The key concepts in declarative object-oriented programming are encapsulation and reuse patterns. Notably,
the concept of mutable state, which is an imperative concept, is not a significant concept in declarative object-
oriented programming. Declarative object-oriented programming concepts can be materialized in both logic
and functional languages. In this section, we focus only in declarative object-oriented logic programming.

The first critical generalization of object-oriented programming concepts is the concept of object itself. What
an object encapsulates depends on the base programming paradigm where we apply object-oriented pro-
gramming concepts. When these concepts are applied to an imperative language, where mutable state and
destructive assignment are central, objects naturally encapsulate and abstract mutable state, providing dis-
ciplined access and modification. When these concepts are applied to a declarative logic language such as
Prolog, objects naturally encapsulate predicates. Therefore, an object can be seen as a theory, expressed by a
set of related predicates. Theories are usually static and thus Logtalk objects are static by default. This con-
trasts with imperative object-oriented languages where usually classes are static and objects are dynamic.
This view of an object as a set of predicates also forgo a distinction between data and procedures that is
central to imperative object-oriented languages but moot in declarative, homoiconic logic languages.

The second critical generalization concerns the relation between objects and other entities such as protocols
(interfaces) and ancestor objects. The idea is that entity relations define reuse patterns and the roles played
by the participating entities. A common reuse pattern is inheritance. In this case, an entity inherits, and
thus reuses, resources from an ancestor entity. In a reuse pattern, each participating entity plays a specific
role. The same entity, however, can play multiple roles depending on its relations with other entities. For
example, an object can play the role of a class for its instances, the role of a subclass for its superclasses, and
the role of an instance for its metaclass. Another common reuse pattern is protocol implementation. In this
case, an object implementing a protocol reuses its predicate declarations by providing an implementation for
those predicates and exposing those predicates to its clients. An essential consequence of this generalization
is that protocols, objects, and categories are first-class entities while e.g. prototype, parent, class, instance,
metaclass, subclass, superclass, or ancestor are just roles that an object can play. Moreover, a language can
provide multiple reuse patterns instead of selecting a set of patterns and supporting this set as a design choice
that excludes other reuse patterns. For example, most imperative object-oriented languages are either class-
based or prototype-based. In contrast, Logtalk naturally supports both classes and prototypes by providing
the corresponding reuse patterns using objects as first-class entities capable of playing multiple roles.

The Logtalk Handbook, Release v3.60.0

1.2 Main features

Several years ago, I decided that the best way to learn object-oriented programming was to build my own
object-oriented language. Prolog being always my favorite language, I chose to extend it with object-oriented
capabilities. Strong motivation also come from my frustration with Prolog shortcomings for writing large ap-
plications. Eventually this work has led to the Logtalk programming language as its know today. The first
system to use the name Logtalk appeared in February 1995. At that time, Logtalk was mainly an experiment
in computational reflection with a rudimentary runtime and no compiler. Based on feedback by users and
on the author subsequent work, the name was retained and Logtalk as created as a full programming lan-
guage focusing on using object-oriented concepts for code encapsulation and reuse. Development started
on January 1998 with the first public alpha version released in July 1998. The first stable release (2.0) was
published in February 1999. Development of the third generation of Logtalk started in 2012 with the first
public alpha version in August 2012 and the first stable release (3.0.0) in January 2015.

Logtalk provides the following features:

1.2.1 Integration of logic and object-oriented programming

Logtalk tries to bring together the main advantages of these two programming paradigms. On
one hand, the object orientation allows us to work with the same set of entities in the successive
phases of application development, giving us a way of organizing and encapsulating the knowl-
edge of each entity within a given domain. On the other hand, logic programming allows us
to represent, in a declarative way, the knowledge we have of each entity. Together, these two
advantages allow us to minimize the distance between an application and its problem domain,
turning the writing and maintenance of programming easier and more productive.

From a pragmatic perspective, Logtalk objects provide Prolog with the possibility of defining
several namespaces, instead of the traditional Prolog single database, addressing some of the
needs of large software projects.

1.2.2 Integration of event-driven and object-oriented programming

Event-driven programming enables the building of reactive systems, where computing which
takes place at each moment is a result of the observation of occurring events. This integration
complements object-oriented programming, in which each computing is initiated by the explicit
sending of a message to an object. The user dynamically defines what events are to be observed
and establishes monitors for these events. This is specially useful when representing relation-
ships between objects that imply constraints in the state of participating objects [Rumbaugh87],
[Rumbaugh88], [Fornarino et al 89], [Razek92]. Other common uses are reflective applica-
tions like code debugging or profiling [Maes87]. Predicates can be implicitly called when a spied
event occurs, allowing programming solutions which minimize object coupling. In addition,
events provide support for behavioral reflection and can be used to implement the concepts of
pointcut and advice found on Aspect-Oriented Programming.

2 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

1.2.3 Support for component-based programming

Predicates can be encapsulated inside categories which can be imported by any object, without
any code duplication and irrespective of object hierarchies. A category is a first-class encapsula-
tion entity, at the same level as objects and protocols, which can be used as a component when
building new objects. Thus, objects may be defined through composition of categories, which act
as fine-grained units of code reuse. Categories may also extend existing objects. Categories can
be used to implement mixins and aspects. Categories allows for code reuse between non-related
objects, independent of hierarchy relations, in the same vein as protocols allow for interface
reuse.

1.2.4 Support for both prototype and class-based systems

Almost any (if not all) object-oriented languages available today are either class-based or
prototype-based [Lieberman86], with a strong predominance of class-based languages. Logtalk
provides support for both hierarchy types. That is, we can have both prototype and class hi-
erarchies in the same application. Prototypes solve a problem of class-based systems where we
sometimes have to define a class that will have only one instance in order to reuse a piece of code.
Classes solves a dual problem in prototype based systems where it is not possible to encapsulate
some code to be reused by other objects but not by the encapsulating object. Stand-alone objects,
that is, objects that do not belong to any hierarchy, are a convenient solution to encapsulate code
that will be reused by several unrelated objects.

1.2.5 Support for multiple object hierarchies

Languages like Smalltalk-80 [Goldberg83], Objective-C [Cox86] and Java [Joy et al 00] define
a single hierarchy rooted in a class usually named Object. This makes it easy to ensure that
all objects share a common behavior but also tends to result in lengthy hierarchies where it is
difficult to express objects which represent exceptions to default behavior. In Logtalk we can
have multiple, independent, object hierarchies. Some of them can be prototype-based while
others can be class-based. Furthermore, stand-alone objects provide a simple way to encapsulate
utility predicates that do not need or fit in an object hierarchy.

1.2.6 Separation between interface and implementation

This is an expected (should we say standard ?) feature of almost any modern programming
language. Logtalk provides support for separating interface from implementation in a flexible
way: predicate directives can be contained in an object, a category or a protocol (first-order
entities in Logtalk) or can be spread in both objects, categories and protocols.

1.2.7 Private, protected and public inheritance

Logtalk supports private, protected and public inheritance in a similar way to C++
[Stroustrup86], enabling us to restrict the scope of inherited, imported or implemented pred-
icates (by default inheritance is public).

1.2. Main features 3

The Logtalk Handbook, Release v3.60.0

1.2.8 Private, protected and public object predicates

Logtalk supports data hiding by implementing private, protected and public object predicates in
a way similar to C++ [Stroustrup86]. Private predicates can only be called from the container
object. Protected predicates can be called by the container object or by the container descendants.
Public predicates can be called from any object.

1.2.9 Parametric objects

Object names can be compound terms (instead of atoms), providing a way to parameterize ob-
ject predicates. Parametric objects are implemented in a similar way to L& [McCabe92], OL (P)
[Fromherz93] or SICStus Objects [SICStus95] (however, access to parameter values is done via
a built-in method instead of making the parameters scope global over the whole object). Para-
metric objects allows us to treat any predicate clause as defining an instantiation of a parametric
object. Thus, a parametric object allows us to encapsulate and associate any number of predicates
with a compound term.

1.2.10 High level multi-threading programming support

High level multi-threading programming is available when running Logtalk with selected back-
end Prolog compilers, allowing objects to support both synchronous and asynchronous messages.
Logtalk allows programmers to take advantage of modern multi-processor and multi-core com-
puters without bothering with the details of creating and destroying threads, implement thread
communication, or synchronizing threads.

1.2.11 Smooth learning curve

Logtalk has a smooth learning curve, by adopting standard Prolog syntax and by enabling an
incremental learning and use of most of its features.

1.2.12 Compatibility with most Prolog systems and the ISO standard

The Logtalk system has been designed to be compatible with most Prolog compilers and, in
particular, with the ISO Prolog standard [ISO95]. It runs in almost any computer system with a
modern Prolog compiler.

1.2.13 Performance

The current Logtalk implementation works as a trans-compiler: Logtalk source files are first com-
piled to Prolog source files, which are then compiled by the chosen Prolog compiler. Therefore,
Logtalk performance necessarily depends on the backend Prolog compiler. The Logtalk compiler
preserves the programmers choices when writing efficient code that takes advantage of tail re-
cursion and first-argument indexing.

As an object-oriented language, Logtalk can use both static binding and dynamic binding for
matching messages and methods. Furthermore, Logtalk entities (objects, protocols, and cate-
gories) are independently compiled, allowing for a very flexible programming development. En-
tities can be edited, compiled, and loaded at runtime, without necessarily implying recompilation
of all related entities.

4 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

When dynamic binding is used, the Logtalk runtime engine implements caching of message
lookups (including messages to self and super calls), ensuring a performance level close to what
could be achieved when using static binding.

For more detailed information on performance, see its dedicated section.

1.2.14 Logtalk scope

Logtalk, being a superset of Prolog, shares with it the same preferred areas of application but also ex-
tends them with those areas where object-oriented features provide an advantage compared to plain Prolog.
Among these areas we have:

Logic and object-oriented programming teaching and researching

Logtalk smooth learning curve, combined with support for both prototype and class-based program-
ming, protocols, components or aspects via category-based composition, and other advanced object-
oriented features allow a smooth introduction to object-oriented programming to people with a back-
ground in Prolog programming. The distribution of Logtalk source code using an open-source license
provides a framework for people to learn and then modify to try out new ideas on object-oriented
programming research. In addition, the Logtalk distribution includes plenty of programming examples
that can be used in the classroom for teaching logic and object-oriented programming concepts.

Structured knowledge representations and knowledge-based systems
Logtalk objects, coupled with event-driven programming features, enable easy implementation of
frame-like systems and similar structured knowledge representations.

Blackboard systems, agent-based systems, and systems with complex object relationships
Logtalk support for event-driven programming can provide a basis for the dynamic and reactive nature
of blackboard type applications.

Highly portable applications
Logtalk is compatible with most modern Prolog systems that support official and de facto standards.
Used as a way to provide Prolog with namespaces, it avoids the porting problems of most Prolog
module systems. Platform, operating system, or compiler specific code can be isolated from the rest of
the code by encapsulating it in objects with well-defined interfaces.

Alternative to a Prolog module system
Logtalk can be used as an alternative to a Prolog compiler module system. Most Prolog applications that
use modules can be converted into Logtalk applications, improving portability across Prolog systems
and taking advantage of the stronger encapsulation and reuse framework provided by Logtalk object-
oriented features.

Integration with other programming languages
Logtalk support for most key object-oriented features helps users integrating Prolog with object-
oriented languages like C++, Java, or Smalltalk by facilitating a high-level mapping between the
two languages.

1.2. Main features 5

The Logtalk Handbook, Release v3.60.0

1.3 Nomenclature

Depending on your logic programming and object-oriented programming background (or lack of it), you may
find Logtalk nomenclature either familiar or at odds with the terms used in other languages. In addition,
being a superset of Prolog, terms such as predicate and method are often used interchangeably. Logtalk
inherits most of its nomenclature from Prolog and Smalltalk.

Note that the same terms can have different meanings in different languages. A good example is class. The
support for meta-classes in e.g. Smalltalk translates to a concept of class that is different in key aspects from
the concept of class in e.g. Java or C++. Other terms that can have different meanings are delegation and
forwarding. There are also cases where the same concept is found under different names in some languages
(e.g. self and this) but that can also mean different concepts in Logtalk and other languages. Always be
aware of these differences and be cautious with assumptions carried from other programming languages.

In this section, we map nomenclatures from Prolog and popular OOP languages such as Smalltalk, C+ +,
Java, and Python to the Logtalk nomenclature. The Logtalk distribution includes several examples of how
to implement common concepts found in other languages, complementing the information in this section.
This Handbook also features a Prolog interoperability section and an extensive glossary providing the exact
meaning of the names commonly used in Logtalk programming.

1.3.1 Prolog nomenclature

Being a superset of Prolog, Logtalk inherits its nomenclature. But Logtalk also aims to fix several Prolog
shortcomings, thus introducing new concepts and refining existing Prolog concepts. Logtalk object-oriented
nature also introduces names and concepts that are not common when discussing logic programming se-
mantics. We mention here the most relevant ones, notably those where semantics or common practice differ.
Further details can be found elsewhere in this Handbook.

arbitrary goals as directives
Although not ISO Prolog Core standard compliant, several Prolog systems accept using arbitrary goal
as directives. This is not supported in Logtalk source files. Always use an initialization/1 directive
to wrap those goals. This ensure that any initialization goals, which often have side-effects, are only
called if the source file is successfully compiled and loaded.

calling a predicate
Sending a message to an object is similar to calling a goal with the difference that the actual predicate
that is called is determined not just by the message term but also by the object receiving the message
and possibly its ancestors. This is also different from calling a Prolog module predicate: a message
may result e.g. in calling a predicate inherited by the object but calling a module predicate requires the
predicate to exist in (or be reexported by) the module.

closed world assumption semantics
Logtalk provides clear closed world assumption semantics: messages or calls for declared but undefined
predicates fail. Messages or calls for unknown (i.e. not declared) predicates throw an error. Crucially,
this semantics apply to both static and dynamic predicates. But in Prolog workarounds are required
to have a static predicate being known by the runtime without it being also defined (so that calling it
would fail instead of throwing a predicate existence error).

compiling and loading source files
Logtalk provides its own built-in predicates for compiling and loading source files. It also provides con-
venient top-level interpreter shorthands for these and other frequent operations. In general, the tra-
ditional Prolog built-in predicates and top-level interpreter shorthands cannot be used to load Logtalk
source files.

debugging
In most (if not all) Prolog systems, debugging support is a built-in feature made available using a

6 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

set of built-in predicates like trace/@ and spy/1. But in Logtalk the default debugger is a regular
application, implemented using a public reflection API. This means that the debugger must be explicitly
loaded (either automatically from a settings file at startup or from the top-level). It also means that the
debugger can be easily extended or replaced by an alternative application.

directive operators
Some Prolog systems declare directive names as operators (e.g. dynamic, multifile, ...). This is not
required by the ISO Prolog Core standard. It’s a practice that should be avoided as it makes code
non-portable.

encapsulation
Logtalk enforces encapsulation of object predicates, generating a permission error when a predicate is
not within the scope of the caller. In contrast, most Prolog module systems allow any module predicate
to be called by using explicit qualification, even if not exported. Worse, some Prolog systems also
allow defining clauses for a module predicate outside the module, without declaring the predicate as
multifile, by simply writing clauses with explicit module-qualified heads.

entity loading
When using Prolog modules, use_module/1-2 (or equivalent) directives both load the module files
and declare that the (implicitly or explicitly) imported predicates can be used with implicit module
qualification. But Logtalk separates entity (object, protocol, category, or module) predicate usage
declarations (via uses/1 and uses/2 or its own use_module/1 and use_module/2 directives) from loading
goals (using the logtalk load/1 and logtalk load/2 predicates), called using an explicit and disciplined
approach from loader files.

flags scope
The set_logtalk flag/2 directive is always local to the entity or source file that contains it. Only calls
to the set_logtalk flag/2 predicate set the global default value for a flag. This distinction is lacking in
Prolog (where directives usually have a global scope) and Prolog modules (where some flags are local
to modules in some systems and global in other systems).

meta-predicate call semantics
Logtalk provides consistent meta-predicate call semantics: meta-arguments are always called in the
meta-predicate calling context. This contrasts with Prolog module meta-predicates where the semantics
of implicitly qualified calls is different from explicitly qualified calls.

operators scope
Operators declared inside an entity (object, protocol, or category) are local to the entity. But operators
defined in a source file but outside and entity are global for compatibility with existing Prolog code.

predicates scope
In plain Prolog, all predicates are visible. In a Prolog module, a predicate can be exported or local. In
Logtalk, a predicate can be public, protected, private, or local.

predicate declaration
Logtalk provides a clear distinction between declaring a predicate and defining a predicate. This is a
fundamental requirement for the concept of protocol (aka interface) in Logtalk: we must be able to
declare a predicate without necessarily defining it. This clear distinction is missing in Prolog and Prolog
modules. Notably, it’s a compiler error for a module to try to export a predicate that it does not define.

predicate loading conflicts
Logtalk does not use predicate import/export semantics. Thus, there are never conflicts when loading
entities (objects, protocols, or categories) that declare the same public predicates. But attempting
to load two Prolog modules that export the same predicate results in a conflict, usually a compilation
error (this is specially problematic when the use_module/1 directive is used; e.g. adding a new exported
predicate can break applications that use the module but not the new predicate).

1.3. Nomenclature 7

The Logtalk Handbook, Release v3.60.0

1.3.2 Smalltalk nomenclature

The Logtalk name originates from a combination of the Prolog and Smalltalk names. Smalltalk had a signif-
icant influence in the design of Logtalk and thus inherits some of its ideas and nomenclature. The following
list relates the most commonly used Smalltalk terms with their Logtalk counterparts.

abstract class
Similar to Smalltalk, an abstract class is just a class not meant to be instantiated by not understanding
a message to create instances.

assignment statement
Logtalk, as a superset of Prolog, uses logic variables and unification and thus provides no equivalent to
the Smalltalk assignment statement.

block
Logtalk supports lambda expressions and meta-predicates, which can be used to provide similar func-
tionality to Smalltalk blocks.

class
In Logtalk, class is a just a role that an object can play. This is similar to Smalltalk where classes are
also objects.

class method
Class methods in Logtalk are simply instance methods declared and defined in the class metaclass.

class variable
Logtalk objects, which can play the roles of class and instance, encapsulate predicates, not state. Class
variables, which in Smalltalk are really shared instance variables, can be emulated in a class by defining
a predicate locally instead of defining it in the class instances.

inheritance
While Smalltalk only supports single inheritance, Logtalk supports single inheritance, multiple inheri-
tance, and multiple instantiation.

instance
While in Smalltalk every object is an instance of same class, objects in Logtalk can play different roles,
including the role of a prototype where the concepts of instance and class don’t apply. Moreover,
instances can be either created dynamically or defined statically.

instance method
Instance methods in Logtalk are simply predicates declared and defined in a class and thus inherited
by the class instances.

instance variable
Logtalk being a declarative language, objects encapsulate a set of predicates instead of encapsulating
state. But different objects may provide different definitions of the same predicates. Mutable internal
state as in Smalltalk can be emulated by using dynamic predicates.

message
Similar to Smalltalk, a message is a request for an operation, which is interpreted in Logtalk as a logic
query, asking for the construction of a proof that something is true.

message selector
Logtalk uses the predicate template (i.e. the predicate callable term with all its arguments unbound) as
message selector. The actual type of the message arguments is not considered. Like Smalltalk, Logtalk
uses single dispatch on the message receiver.

metaclass
Metaclasses are optional in Logtalk (except for a root class) and can be shared by several classes. When
metaclasses are used, infinite regression is simply avoided by making a class an instance of itself.

8 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

method
Same as in Smalltalk, a method is the actual code (i.e. predicate definition) that is run to answer a
message. Logtalk uses the words method and predicate interchangeably.

method categories
There is no support in Logtalk for partitioning the methods of an object in different categories. The
Logtalk concept of category (a first-class entity) was, however, partially inspired by Smalltalk method
categories.

object
Unlike Smalltalk, where everything is an object, Logtalk language constructs includes both terms (as in
Prolog representing e.g. numbers and structures) and three first-class entities: objects, protocols, and
categories.

pool variables*
Logtalk, as a superset of Prolog, uses predicates with no distinction between variables and methods.
Categories can be used to share a set of predicate definitions between any number of objects.

protocol
In Smalltalk, an object protocol is the set of messages it understands. The same concept applies in
Logtalk. But Logtalk also supports protocols as first-class entities where a protocol can be implemented
by multiple objects and an object can implement multiple protocols.

self
Logtalk uses the same definition of self found in Smalltalk: the object that received the message being
processed. Note, however, that self is not a keyword in Logtalk but implicit in the (::)/1 message to
self control construct.

subclass
Same definition in Logtalk.

super
As in Smalltalk, the idea of super is to allow calling an inherited predicate (that is usually being
redefined). Note, however, that super is not a keyword in Logtalk, which provides instead a (™ ™)/1
super call control construct.

superclass
Same definition in Logtalk. But while in Smalltalk a class can only have a single superclass, Logtalk
support for multiple inheritance allows a class to have multiple superclasses.

1.3.3 C++ nomenclature

There are several C+ + glossaries available on the Internet. The list that follows relates the most commonly
used C++ terms with their Logtalk equivalents.

abstract class
Logtalk uses an operational definition of abstract class: any class that does not inherit a method
for creating new instances can be considered an abstract class. Moreover, Logtalk supports inter-
faces/protocols, which are often a better way to provide the functionality of C++ abstract classes.

base class
Logtalk uses the term superclass with the same meaning.

data member
Logtalk uses predicates for representing both behavior and data.

constructor function
There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides a built-in

1.3. Nomenclature 9

The Logtalk Handbook, Release v3.60.0

predicate, create object/4, which can be used as a building block to define more sophisticated object
creation predicates.

derived class
Logtalk uses the term subclass with the same meaning.

destructor function
There are no special methods for deleting new objects in Logtalk. Instead, Logtalk provides a built-in
predicate, abolish_object/1, which is often used to define more sophisticated object deletion predicates.

friend function
Not supported in Logtalk. Nevertheless, see the User Manual section on meta-predicates.

instance
In Logtalk, an instance can be either created dynamically at runtime or defined statically in a source
file in the same way as classes.

member
Logtalk uses the term predicate.

member function
Logtalk uses predicates for representing both behavior and data.

namespace
Logtalk does not support multiple identifier namespaces. All Logtalk entity identifiers share the same
namespace (Logtalk entities are objects, categories, and protocols).

nested class
Logtalk does not support nested classes.

static member
Logtalk does not support a static keyword. But the equivalent to static members can be declared in a
class metaclass.

template
Logtalk supports parametric objects, which allows you to get the similar functionality of templates at
runtime.

this
Logtalk uses the built-in context method self/1 for retrieving the instance that received the message
being processed. Logtalk also provides a this/1 method but for returning the class containing the
method being executed. Why the name clashes? Well, the notion of self was inherited from Smalltalk,
which predates C+ +.

virtual member function
There is no virtual keyword in Logtalk. Any inherited or imported predicate can be redefined (either
overridden or specialized). Logtalk can use static binding or dynamic binding for locating both method
declarations and method definitions. Moreover, methods that are declared but not defined simply fail
when called (as per closed-world assumption).

10 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

1.3.4 Java nomenclature

There are several Java glossaries available on the Internet. The list that follows relates the most commonly
used Java terms with their Logtalk equivalents.

abstract class
Logtalk uses an operational definition of abstract class: any class that does not inherit a method for
creating new instances is an abstract class. I.e. there is no abstract keyword in Logtalk.

abstract method
In Logtalk, you may simply declare a method (predicate) in a class without defining it, leaving its
definition to some descendant subclass.

assertion
There is no assertion keyword in Logtalk. Assertions are supported using Logtalk compilation hooks
and developer tools.

class
Logtalk objects can play the role of classes, instances, or protocols (depending on their relations with
other objects).

extends
There is no extends keyword in Logtalk. Class inheritance is indicated using specialization relations.
Moreover, the extends relation is used in Logtalk to indicate protocol, category, or prototype extension.

interface
Logtalk uses the term protocol with similar meaning. But note that Logtalk objects and categories
declared as implementing a protocol are not required to provide definitions for the declared predicates
(closed-world assumption).

callback method
Logtalk supports event-driven programming, the most common usage context of callback methods.
Callback methods can also be implemented using meta-predicates.

constructor
There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides a built-in
predicate, create_object/4, which is often used to define more sophisticated object creation predicates.

final
There is no final keyword in Logtalk. Predicates can always be redeclared and redefined in subclasses
(and instances!).

inner class
Inner classes are not supported in Logtalk.

instance
In Logtalk, an instance can be either created dynamically at runtime or defined statically in a source
file in the same way as classes.

method
Logtalk uses the term predicate interchangeably with the term method.

method call
Logtalk usually uses the expression message sending for method calls, true to its Smalltalk heritage.

method signature
Logtalk selects the method/predicate to execute in order to answer a method call based only on the
method name and number of arguments. Logtalk (and Prolog) are not typed languages in the same
sense as Java.

1.3. Nomenclature 11

The Logtalk Handbook, Release v3.60.0

package
There is no concept of packages in Logtalk. All Logtalk entities (objects, protocols, categories) share a
single namespace. But Logtalk does support a concept of library that allows grouping of entities whose
source files share a common path prefix.

reflection
Logtalk features a white box API supporting structural reflection about entity contents, a black box API
supporting behavioral reflection about object protocols, and an events API for reasoning about messages
exchanged at runtime.

static
There is no static keyword in Logtalk. See the entries below on static method and static variable.

static method
Static methods may be implemented in Logtalk by using a metaclass for the class and defining the static
methods in the metaclass. I.e. static methods are simply instance methods of the class metaclass.

static variable
Static variables are shared instance variables and can simply be both declared and defined in a class.
The built-in database methods can be used to implement destructive updates if necessary by accessing
and updated a single clause of a dynamic predicate stored in the class.

super
Instead of a super keyword, Logtalk provides a super operator and control construct, (™ *~)/1, for
calling overridden methods.

synchronized
Logtalk supports multi-threading programming in selected Prolog compilers, including a synchronized/ 1
predicate directive. Logtalk allows you to synchronize a predicate or a set of predicates using per-
predicate or per-predicate-set mutexes.

this
Logtalk uses the built-in context method self/1 for retrieving the instance that received the message
being processed. Logtalk also provides a this/I method but for returning the class containing the
method being executed. Why the name clashes? Well, the notion of self was inherited from Smalltalk,
which predates C+ +.

1.3.5 Python nomenclature

The list that follows relates the commonly used Python concepts with their Logtalk equivalents.

abstract class
Logtalk uses a different definition of abstract class: a class that does not inherit a method for creating
new instances. Notably, the presence of abstract methods (i.e. predicates that are declared but not
defined) does not make a class abstract.

abstract method
Logtalk uses the term predicate interchangeably with method. Predicates can be declared without being
also defined in an object (or category).

class
Logtalk objects can play the role of classes, instances, or protocols (depending on their relations with
other objects).

dictionary
There is no native, built-in associative data type. But the library provides several implementations of a
dictionary protocol.

12 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

function
The closest equivalent is a predicate defined in user, a pseudo-object for predicates not defined in
regular objects, and thus callable from anywhere without requiring a scope directive.

function object
Predicates calls (goals) can be passed or returned from other predicates and unified with other terms
(e.g. variables).

import path
Logtalk uses the term library to refer to a directory of source files and supports defining aliases (sym-
bolic names) to library paths to abstract the actual locations.

lambda
Logtalk natively supports lambda expressions.

list
Lists are compound terms with native syntax support.

list comprehensions
There is no native, built-in support for list comprehensions. But the standard findall/3 predicate can
be used to construct a list by calling a goal that generates the list elements.

loader
Logtalk uses the term loader to refer to source files whose main or sole purpose is to load other source
files.

loop
There are no native loop control constructs based on a counter. But the library provides implementa-
tions of several loop predicates.

metaclass
Logtalk objects play the role of metaclasses when instantiated by objects that play the role of classes.

method
Logtalk uses the terms method and predicate interchangeably. Predicates can be defined in objects (and
categories). The value of self is implicit unlike in Python where it is the first parameter of any method.

method resolution order
Logtalk uses a depth-first algorithm to lookup method (predicate) declarations and definitions. It’s
possible to use predicate aliases to access predicate declarations and definitions other than the first
ones found by the lookup algorithm.

object
Objects are first-class entities that can play multiple roles, including prototype, class, instance, and
metaclass.

package
Logtalk uses the term library to refer to a directory of source files defining objects, categories, and
protocols.

set

There is no native, built-in set type. But the library provides set implementations.

string
The interpretation of text between double-quotes depends on the double_quotes flag. Depending on
this flag, double-quoted text can be interpreted as a list of characters, a list of character codes, or an
atom. Some backend Prolog compilers allow double-quoted text to be interpreted as a string in the
Python sense.

tuple
Compound terms can be used to represent tuples of any complexity.

1.3. Nomenclature 13

The Logtalk Handbook, Release v3.60.0

variable
Logtalk works with logical variables, which are close to the mathematical concept of variables and
distinct from variables in imperative or imperative-based OOP languages where they are symbolic
names for memory locations. Logical variables can be unified with any term, including other variables.

while loop
The built-in forall/2 predicate implements a generate-and-test loop.

1.4 Messages

Messages allows us to ask an object to prove a goal and must always match a declared predicate within the
scope of the sender object. Note that sending a message is fundamentally different from calling a predicate.
When calling a predicate, the caller decides implicitly which predicate definition will be executed. When
sending a message, it is the receiving object, not the sender, that decides which predicate definition (if any)
will be called to answer the message. The predicate definition that is actually used to answer a message
depends on the relations between the object and its imported categories and ancestor objects (if any). See
the Inheritance section for details on the predicate declaration and predicate definition lookup procedures.

When a message corresponds to a meta-predicate, the meta-arguments are always called in the context of the
object (or category) sending the message.

Logtalk uses nomenclature similar to in other object-oriented programming languages such as Smalltalk.
Therefore, the terms query and message are used interchangeably when referring to a declared predicate
that is part of an object interface. Likewise, the terms predicate and method are used interchangeably when
referring to the predicate definition (inside an object or category) that is called to answer a message.

1.4.1 Operators used in message sending

Logtalk declares the following operators for the message sending control constructs:

:- op(600, xfy, ::).
;- op(600, fy, ::).
:= op(600, fy, **).

It is assumed that these operators remain active (once the Logtalk compiler and runtime files are loaded)
until the end of the Prolog session (this is the usual behavior of most Prolog compilers). Note that these
operator definitions are compatible with the predefined operators in the Prolog ISO standard.

1.4.2 Sending a message to an object

Sending a message to an object is accomplished by using the (::)/2 control construct:

., Object::Message,

The message must match a public predicate declared for the receiving object. The message may also corre-
spond to a protected or private predicate if the sender matches the predicate scope container. If the predicate
is declared but not defined, the message simply fails (as per the closed-world assumption).

14 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

1.4.3 Delegating a message to an object

It is also possible to send a message to an object while preserving the original sender by using the []/1
delegation control construct:

., [Object: :Message],

This control construct can only be used within objects and categories (in the top-level interpreter, the sender
is always the pseudo-object user so using this control construct would be equivalent to use the (::)/2
message sending control construct).

1.4.4 Sending a message to self

While defining a predicate, we sometimes need to send a message to self, i.e., to the same object that has
received the original message. This is done in Logtalk through the (::)/1 control construct:

., ::Message,

The message must match either a public or protected predicate declared for the receiving object or a private
predicate within the scope of the sender otherwise an error will be thrown. If the message is sent from inside
a category or if we are using private inheritance, then the message may also match a private predicate. Again,
if the predicate is declared but not defined, the message simply fails (as per the closed-world assumption).

1.4.5 Broadcasting

In the Logtalk context, broadcasting is interpreted as the sending of several messages to the same object. This
can be achieved by using the message sending control construct described above. However, for convenience,
Logtalk implements an extended syntax for message sending that may improve program readability in some
cases. This extended syntax uses the (,)/2, (;)/2, and (->)/2 control constructs (plus the (x->)/2 soft-cut
control construct when provided by the backend Prolog compiler). For example, if we wish to send several
messages to the same object, we can write:

| ?- Object::(Messagel, Message2, ...).

This is semantically equivalent to:

| ?- Object::Messagel, Object::Message2,

This extended syntax may also be used with the (::)/1 message sending control construct.

1.4.6 Calling imported and inherited predicates

When redefining a predicate, sometimes we need to call the inherited definition in the new code. This
functionality, introduced by the Smalltalk language through the super primitive, is available in Logtalk using
the (™ 7)/1 control construct:

., "“"Predicate,

Most of the time we will use this control construct by instantiating the pattern:

1.4. Messages 15

The Logtalk Handbook, Release v3.60.0

Predicate :-
. % do something
**Predicate, % call inherited definition
% do something more

This control construct is generalized in Logtalk where it may be used to call any imported or inherited
predicate definition. This control construct may be used within objects and categories. When combined with
static binding, this control construct allows imported and inherited predicates to be called with the same
performance of local predicates. As with the message sending control constructs, the (**)/1 call simply fails
when the predicate is declared but not defined (as per the closed-world assumption).

1.4.7 Message sending and event generation

Assuming the events flag is set to allow for the object (or category) sending a message using the (::)/2 control
construct, two events are generated, one before and one after the message execution. Messages that are sent
using the (::)/1 (message to self) control construct or the (™ ”)/1 super mechanism described above do not
generate any events. The rationale behind this distinction is that messages to self and super calls are only
used internally in the definition of methods or to execute additional messages with the same target object
(represented by self). In other words, events are only generated when using an object’s public interface; they
cannot be used to break object encapsulation.

If we need to generate events for a public message sent to self, then we just need to write something like:

Predicate :-
% get self reference
self(Self),
% send a message to self using (::)/2
Self: :Message,

If we also need the sender of the message to be other than the object containing the predicate definition, we
can write:

Predicate :-
% send a message to self using (::)/2
% sender will be the pseudo-object user
self(Self),
{Self: :Message},

When events are not used, is possible to turn off event generation globally or on a per entity basis by using the
events compiler flag to optimize message sending performance (see the Event-driven programming section
for more details).

16 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

1.4.8 Sending a message from a module

Messages can be sent to object from within a Prolog module. Depending on the backend Prolog system and
on the optimize flag being turned on, the messages will use static binding when possible. This optimization
requires the object to be compiled and loaded before the module. Note that the module can be user. This is
usually the case when sending the message from the top-level interpreter. Thus, the same conditions apply
in this case.

Warning: If you want to benchmark the performance of a message sending goal at the top-level inter-
preter, be careful to check first if the goal is pre-compiled to use static binding, otherwise you will also be
benchmarking the Logtalk compiler itself.

1.4.9 Message sending performance

For a detailed discussion on message sending performance, see the Performance section.

1.5 Objects

The main goal of Logtalk objects is the encapsulation and reuse of predicates. Instead of a single database
containing all your code, Logtalk objects provide separated namespaces or databases allowing the partition-
ing of code in more manageable parts. Logtalk is a declarative programming language and does not aim to
bring some sort of new dynamic state change concept to Logic Programming or Prolog.

Logtalk, defines two built-in objects, user and logtalk, which are described at the end of this section.

1.5.1 Objects, prototypes, classes, and instances

There are only three kinds of encapsulation entities in Logtalk: objects, protocols, and categories. Logtalk
uses the term object in a broad sense. The terms prototype, parent, class, subclass, superclass, metaclass, and
instance always designate an object. Different names are used to emphasize the role played by an object in a
particular context. I.e. we use a term other than object when we want to make the relationship with other
objects explicit. For example, an object with an instantiation relation with other object plays the role of an
instance, while the instantiated object plays the role of a class; an object with a specialization relation with
other object plays the role of a subclass, while the specialized object plays the role of a superclass; an object
with an extension relation with other object plays the role of a prototype, the same for the extended object.
A stand-alone object, i.e. an object with no relations with other objects, is always interpreted as a prototype.
In Logtalk, entity relations essentially define patterns of code reuse. An entity is compiled accordingly to the
roles it plays.

Logtalk allows you to work from standalone objects to any kind of hierarchy, either class-based or prototype-
based. You may use single or multiple inheritance, use or forgo metaclasses, implement reflective designs,
use parametric objects, and take advantage of protocols and categories (think components).

1.5. Objects 17

../../docs/user_0.html#user-0
../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.60.0

Prototypes

Prototypes are either self-defined objects or objects defined as extensions to other prototypes with whom they
share common properties. Prototypes are ideal for representing one-of-a-kind objects. Prototypes usually
represent concrete objects in the application domain. When linking prototypes using extension relations,
Logtalk uses the term prototype hierarchies although most authors prefer to use the term hierarchy only with
class generalization/specialization relations. In the context of logic programming, prototypes are often the
ideal replacement for modules.

Classes

Classes are used to represent abstractions of common properties of sets of objects. Classes often provide an
ideal structuring solution when you want to express hierarchies of abstractions or work with many similar
objects. Classes are used indirectly through instantiation. Contrary to most object-oriented programming
languages, instances can be created both dynamically at runtime or defined in a source file like other objects.
Using classes in requires defining at least one metaclass, as explained below.

1.5.2 Defining a new object

We can define a new object in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the object. By default, all Logtalk source files use
the extension .1gt but this is optional and can be set in the adapter files. Intermediate Prolog source files
(generated by the Logtalk compiler) have, by default, a _1gt suffix and a .pl extension. Again, this can be
set to match the needs of a particular Prolog compiler in the corresponding adapter file. For instance, we
may define an object named vehicle and save it in a vehicle.lgt source file which will be compiled to a
vehicle_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog files
may include a directory hash and a process identifier to prevent file name clashes when embedding Logtalk
applications or running parallel Logtalk processes).

Object names can be atoms or compound terms (when defining parametric objects, see below). Objects,
categories, and protocols share the same name space: we cannot have an object with the same name as a
protocol or a category.

Object code (directives and predicates) is textually encapsulated by using two Logtalk directives: object/1-5
and end _object/0. The most simple object will be one that is self-contained, not depending on any other
Logtalk entity:

:- object(Object).

:— end_object.

If an object implements one or more protocols then the opening directive will be:

:— object(Object,
implements([Protocoll, Protocol2, ...1)).

:- end_object.

An object can import one or more categories:

;- object(Object,
imports([Categoryl, Category2, ...J]1)).

(continues on next page)

18 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

:- end_object.

If an object both implements protocols and imports categories then we will write:

:- object(Object,
implements([Protocoll, Protocol2, ...1),
imports([Categoryl, Category2, ...J1)).
:— end_object.

In object-oriented programming objects are usually organized in hierarchies that enable interface and code
sharing by inheritance. In Logtalk, we can construct prototype-based hierarchies by writing:

:— object(Prototype,
extends(Parent)).

:- end_object.

We can also have class-based hierarchies by defining instantiation and specialization relations between ob-
jects. To define an object as a class instance we will write:

:- object(Object,
instantiates(Class)).

:- end_object.

A class may specialize another class, its superclass:

:- object(Class,
specializes(Superclass)).

:- end_object.

If we are defining a reflexive system where every class is also an instance, we will probably be using the
following pattern:

:- object(Class,
instantiates(Metaclass),
specializes(Superclass)).

:- end_object.

In short, an object can be a stand-alone object or be part of an object hierarchy. The hierarchy can be
prototype-based (defined by extending other objects) or class-based (with instantiation and specialization
relations). An object may also implement one or more protocols or import one or more categories.

A stand-alone object (i.e. an object with no extension, instantiation, or specialization relations with other
objects) always plays the role of a prototype, that is, a self-describing object. If we want to use classes and
instances, then we will need to specify at least one instantiation or specialization relation. The best way to
do this is to define a set of objects that provide the basis of a reflective system [Cointe87], [Moura94]. For
example:

1.5. Objects 19

The Logtalk Handbook, Release v3.60.0

% avoid the inevitable unknown entity warnings as in a
% reflective system there will always be references to
% an entity that will be defined after the reference
;- set_logtalk_flag(unknown_entities, silent).

% default root of the inheritance graph

% providing predicates common to all objects

:- object(object,
instantiates(class)).

:- end_object.
% default metaclass for all classes providing
% predicates common to all instantiable classes
:- object(class,
instantiates(class),
specializes(abstract_class)).
:- end_object.
% default metaclass for all abstract classes
% providing predicates common to all classes
:- object(abstract_class,
instantiates(class),

specializes(object)).

:— end_object.

Note that with these instantiation and specialization relations, object, class, and abstract_class are, at
the same time, classes and instances of some class. In addition, each object inherits its own predicates and
the predicates of the other two objects without any inheritance loop.

When a full-blown reflective system solution is not needed, the above scheme can be simplified by making
an object an instance of itself, i.e. by making a class its own metaclass. For example:

:- object(class,
instantiates(class)).

:- end_object.

We can use, in the same application, both prototype and class-based hierarchies (and freely exchange mes-
sages between all objects). We cannot however mix the two types of hierarchies by, e.g., specializing an
object that extends another object in this current Logtalk version.

Logtalk also supports public, protected, and private inheritance. See the inheritance section for details.

20 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

1.5.3 Parametric objects

Parametric objects have a compound term as identifier where all the arguments of the compound term are
variables. These variables, the object parameters, can be instantiated when sending or as a consequence of
sending a message to the object, thus acting as object parameters. The object predicates can then be coded
to depend on those parameters, which are logical variables shared by all object predicates. When an object
state is set at object creation and never changed, parameters provide a better solution than using the object’s
database via asserts. Parametric objects can also be used to associate a set of predicates to terms that share
a common functor and arity.

In order to give access to an object parameter, Logtalk provides a parameter/2 built-in local method:

.- object(foo(_Bar, _Baz, ...)).

bar(Bar) :-
parameter(1, Bar).

baz :-
parameter (2, Baz),
baz(Baz),

An alternative solution is to use the built-in local method this/1. For example:

:— object(foo(_Bar, _Baz, ...)).
baz :-
this(foo(_, Baz, ...)),
baz(Baz),

Both solutions are equally efficient as calls to the methods this/1 and parameter/2 are usually compiled
inline into a clause head unification. The drawback of this second solution is that we must check all calls
of this/1 if we change the object name. Note that we can’t use these method with the message sending
operators ((::)/2, (::)/1,or (™ ~)/1).

A third alternative to access object parameters is to use parameter variables. Although parameter variables
introduce a concept of entity global variables, their unique syntax, _ParameterName_, avoids conflicts and
makes them easily recognizable. For example:

;- object(foo(Bar_, Baz_, ...)).

bar(_Bar_).

baz :-
baz(_Baz_),

Note that using parameter variables doesn’t change the fact that entity parameters are logical variables.
Parameter variables simplify code maintenance by allowing parameters to be added, reordered, or removed
without having to specify or update parameter indexes.

When storing a parametric object in its own source file, the convention is to name the file after the object,

1.5. Objects 21

The Logtalk Handbook, Release v3.60.0

with the object arity appended. For instance, when defining an object named sort(Type), we may save it in
a sort_1.1gt text file. This way it is easy to avoid file name clashes when saving Logtalk entities that have
the same functor but different arity.

Compound terms with the same functor and with the same number of arguments as a parametric object
identifier may act as proxies to a parametric object. Proxies may be stored on the database as Prolog facts and
be used to represent different instantiations of a parametric object identifier. Logtalk provides a convenient
notation for accessing proxies represented as Prolog facts when sending a message:

., {Proxy}::Message,

In this context, the proxy argument is proved as a plain Prolog goal. If successful, the message is sent to
the corresponding parametric object. Typically, the proof allows retrieving of parameter instantiations. This
construct can either be used with a proxy argument that is sufficiently instantiated in order to unify with a
single Prolog fact or with a proxy argument that unifies with several facts on backtracking.

1.5.4 Finding defined objects

We can find, by backtracking, all defined objects by calling the current object/1 built-in predicate with a
unbound argument:

| ?- current_object(Object).
Object = logtalk ;
Object = user ;

This predicate can also be used to test if an object is defined by calling it with a valid object identifier (an
atom or a compound term).

1.5.5 Creating a new object in runtime

An object can be dynamically created at runtime by using the create_object/4 built-in predicate:

| ?- create_object(Object, Relations, Directives, Clauses).

The first argument should be either a variable or the name of the new object (a Prolog atom or compound
term, which must not match any existing entity name). The remaining three arguments correspond to the
relations described in the opening object directive and to the object code contents (directives and clauses).

For example, the call:

| ?- create_object(
foo,
[extends(bar)],
[public(foo/1)1],
[foo(1), foo(2)]
).

is equivalent to compiling and loading the object:

;- object(foo,
extends(bar)).

(continues on next page)

22 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

:— dynamic.

;= public(foo/1).
foo(1).

foo(2).

:- end_object.

If we need to create a lot of (dynamic) objects at runtime, then is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate to make new objects. This predicate may provide
automatic object name generation, name checking, and accept object initialization options.

1.5.6 Abolishing an existing object

Dynamic objects can be abolished using the abolish_object/1 built-in predicate:

| ?- abolish_object(Object).

The argument must be an identifier of a defined dynamic object, otherwise an error will be thrown.

1.5.7 Object directives

Object directives are used to set initialization goals, define object properties, to document an object depen-
dencies on other Logtalk entities, and to load the contents of files into an object.

Object initialization

We can define a goal to be executed as soon as an object is (compiled and) loaded to memory with the
initialization/1 directive:

;- initialization(Goal).

The argument can be any valid Logtalk goal. For example, a call to a local predicate:

:— object(foo).

;- initialization(init).
;- private(init/0).

init :-

:— end_object.

Or a message to another object:

:- object(assembler).

(continues on next page)

1.5. Objects 23

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

;- initialization(control::start).

:- end_object.

Another common initialization goal is a message to self in order to call an inherited or imported predicate.
For example, assuming that we have a monitor category defining a reset/0 predicate, we could write:

:- object(profiler,
imports(monitor)).

;- initialization(::reset).

:- end_object.

Note, however, that descendant objects do not inherit initialization directives. In this context, self denotes
the object that contains the directive. Also note that object initialization does not necessarily mean setting
an object dynamic state.

Dynamic objects

Similar to Prolog predicates, an object can be either static or dynamic. An object created during the execution
of a program is always dynamic. An object defined in a file can be either dynamic or static. Dynamic objects
are declared by using the dynamic/0 directive in the object source code:

;- dynamic.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code
results in a performance hit when compared to static code. We should only use dynamic objects when these
need to be abolished during program execution. In addition, note that we can declare and define dynamic
predicates within a static object.

Object documentation

An object can be documented with arbitrary user-defined information by using the info/1 entity directive.
See the Documenting section for details.

Loading files into an object

The include/1 directive can be used to load the contents of a file into an object. A typical usage scenario is to
load a plain Prolog file into an object thus providing a simple way to encapsulate its contents. For example,
assume a cities.pl file defining facts for a city/4 predicate. We could define a wrapper for this database
by writing:

:- object(cities).
;- public(city/4).

;= include(dbs('cities.pl")).

(continues on next page)

24 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

:- end_object.

The include/1 directive can also be used when creating an object dynamically. For example:

| ?- create_object(cities, [J], [public(city/4), include(dbs('cities.pl'))]1, [1).

Declaring object aliases

The uses/1 directive can be used to declare object aliases. The typical uses of this directive include short-
ening long object names, working consistently with specific parameterizations of parametric objects, and
simplifying experimenting with different object implementations of the same protocol when using explicit
message sending.

1.5.8 Object relationships

Logtalk provides six sets of built-in predicates that enable us to query the system about the possible relation-
ships that an object may have with other entities.

The instantiates_class/2-3 built-in predicates can be used to query all instantiation relations:

| ?- instantiates_class(Instance, Class).

or, if we also want to know the instantiation scope:

| ?- instantiates_class(Instance, Class, Scope).

Specialization relations can be found by using the specializes class/2-3 built-in predicates:

| ?- specializes_class(Class, Superclass).

or, if we also want to know the specialization scope:

| ?- specializes_class(Class, Superclass, Scope).

For prototypes, we can query extension relations using with the extends object/2-3 built-in predicates:

| ?- extends_object(Object, Parent).

or, if we also want to know the extension scope:

| ?- extends_object(Object, Parent, Scope).

In order to find which objects import which categories we can use the imports_category/2-3 built-in predi-
cates:

| ?- imports_category(Object, Category).

or, if we also want to know the importation scope:

| ?- imports_category(Object, Category, Scope).

1.5. Objects 25

The Logtalk Handbook, Release v3.60.0

To find which objects implements which protocols we can use the implements protocol/2-3 and
conforms_to_protocol/2-3 built-in predicates:

| ?- implements_protocol(Object, Protocol, Scope).

or, if we also want to consider inherited protocols:

| ?- conforms_to_protocol(Object, Protocol, Scope).

Note that, if we use a unbound first argument, we will need to use the current object/1 built-in predicate to
ensure that the entity returned is an object and not a category.

To find which objects are explicitly complemented by categories we can use the complements_object/2 built-in
predicate:

| ?- complements_object(Category, Object).

Note that more than one category may explicitly complement a single object and a single category can
complement several objects.

1.5.9 Object properties

We can find the properties of defined objects by calling the built-in predicate object property/2:

| ?- object_property(Object, Property).

The following object properties are supported:

static
The object is static

dynamic
The object is dynamic (and thus can be abolished in runtime by calling the abolish_object/1 built-in
predicate)

built_in
The object is a built-in object (and thus always available)

threaded
The object supports/makes multi-threading calls

file(Path)
Absolute path of the source file defining the object (if applicable)

file(Basename, Directory)
Basename and directory of the source file defining the object (if applicable); Directory always ends
with a /

lines(BeginLine, EndLine)
Source file begin and end lines of the object definition (if applicable)

context_switching_calls
The object supports context switching calls (i.e. can be used with the (<<)/2 debugging control
construct)

dynamic_declarations
The object supports dynamic declarations of predicates

26 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

events
Messages sent from the object generate events

source_data
Source data available for the object

complements(Permission)
The object supports complementing categories with the specified permission (allow or restrict)

complements
The object supports complementing categories

public(Resources)
List of public predicates and operators declared by the object

protected(Resources)
List of protected predicates and operators declared by the object

private(Resources)
List of private predicates and operators declared by the object

declares(Predicate, Properties)
List of properties for a predicate declared by the object

defines(Predicate, Properties)
List of properties for a predicate defined by the object

includes(Predicate, Entity, Properties)
List of properties for an object multifile predicate that are defined in the specified entity (the proper-
ties include number_of_clauses (Number), number_of_rules(Number), and line_count(Line) with Line
being the begin line of the first multifile predicate clause)

provides(Predicate, Entity, Properties)
List of properties for other entity multifile predicate that are defined in the object (the properties include
number_of_clauses(Number), number_of_rules(Number), and line_count(Line) with Line being the
begin line of the first multifile predicate clause)

alias(Predicate, Properties)
List of properties for a predicate alias declared by the object (the properties include for(Original),
from(Entity), non_terminal (NonTerminal), and line_count(Line) with Line being the begin line of
the alias directive)

calls(Call, Properties)
List of properties for predicate calls made by the object (Call is either a predicate indicator or a control
construct such as (::)/1-2 or (**)/1 with a predicate indicator as argument; note that Call may not
be ground in case of a call to a control construct where its argument is only know at runtime; the
properties include caller(Caller), alias(Alias), and line_count(Line) with both Caller and Alias
being predicate indicators and Line being the begin line of the predicate clause or directive making the
call)

updates(Predicate, Properties)

List of properties for dynamic predicate updates (and also access using the clause/2 predicate) made
by the object (Predicate is either a predicate indicator or a control construct such as (::)/1-2or (:)/2
with a predicate indicator as argument; note that Predicate may not be ground in case of a control
construct argument only know at runtime; the properties include updater(Updater), alias(Alias),
and line_count(Line) with Updater being a (possibly multifile) predicate indicator, Alias being a
predicate indicator, and Line being the begin line of the predicate clause or directive updating the
predicate)

number_of_clauses(Number)
Total number of predicate clauses defined in the object at compilation time (includes both user-defined

1.5. Objects 27

The Logtalk Handbook, Release v3.60.0

clauses and auxiliary clauses generated by the compiler or by the expansion hooks but does not in-
clude clauses for multifile predicates defined for other entities or clauses for the object own multifile
predicates contributed by other entities)

number_of_rules(Number)
Total number of predicate rules defined in the object at compilation time (includes both user-defined
rules and auxiliary rules generated by the compiler or by the expansion hooks but does not include
rules for multifile predicates defined for other entities or rules for the object own multifile predicates
contributed by other entities)

number_of_user_clauses(Number)
Total number of user-defined predicate clauses defined in the object at compilation time (does not
include clauses for multifile predicates defined for other entities or clauses for the object own multifile
predicates contributed by other entities)

number_of_user_rules(Number)
Total number of user-defined predicate rules defined in the object at compilation time (does not include
rules for multifile predicates defined for other entities or rules for the object own multifile predicates
contributed by other entities)

debugging
The object is compiled in debug mode

module
The object resulted from the compilation of a Prolog module

When a predicate is called from an initialization/1 directive, the argument of the caller/1 property is
:=/1.

Some properties such as line numbers are only available when the object is defined in a source file compiled
with the source_data flag turned on. Moreover, line numbers are only supported in backend Prolog compilers
that provide access to the start line of a read term. When such support is not available, the value -1 is
returned for the start and end lines.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the ob-
ject for both multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile
predicates contributed by other entities.

1.5.10 Built-in objects

Logtalk defines some built-in objects that are always available for any application.

The built-in pseudo-object user

The built-in user pseudo-object virtually contains all user predicate definitions not encapsulated in a Logtalk
entity (or a Prolog module for backends supporting a module system). These predicates are assumed to
be implicitly declared public. Messages sent from this pseudo-object, which includes messages sent from
the top-level interpreter, generate events when the default value of the events flag is set to allow. Defining
complementing categories for this pseudo-object is not supported.

With some of the backend Prolog compilers that support a module system, it is possible to load (the) Logtalk
(compiler/runtime) into a module other than the pseudo-module user. In this case, the Logtalk pseudo-
object user virtually contains all user predicate definitions defined in the module where Logtalk was loaded.

28 Chapter 1. User Manual

../../docs/user_0.html#user-0

The Logtalk Handbook, Release v3.60.0

The built-in object logtalk

The built-in logtalk object provides message printing predicates, question asking predicates, debug and trace
event predicates, predicates for accessing the internal database of loaded files and their properties, and also a
set of low-level utility predicates normally used when defining hook objects. Consult its API documentation
for details.

1.6 Protocols

Protocols enable the separation between interface and implementation: several objects can implement the
same protocol and an object can implement several protocols. Protocols may contain only predicate dec-
larations. In some languages the term interface is used with similar meaning. Logtalk allows predicate
declarations of any scope within protocols, contrary to some languages that only allow public declarations.

Logtalk defines three built-in protocols, monitoring, expanding, and forwarding, which are described at the
end of this section.

1.6.1 Defining a new protocol

We can define a new protocol in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the protocol. By default, all Logtalk source files
use the extension .1gt but this is optional and can be set in the adapter files. Intermediate Prolog source
files (generated by the Logtalk compiler) have, by default, a _1gt suffix and a .pl extension. Again, this can
be set to match the needs of a particular Prolog compiler in the corresponding adapter file. For example,
we may define a protocol named listp and save it in a 1listp.lgt source file that will be compiled to a
listp_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog files
may include a directory hash and a process identifier to prevent file name clashes when embedding Logtalk
applications or running parallel Logtalk processes).

Protocol names must be atoms. Objects, categories and protocols share the same namespace: we cannot
have a protocol with the same name as an object or a category.

Protocol directives are textually encapsulated by using two Logtalk directives: protocol/1-2 and
end_protocol/0. The most simple protocol will be one that is self-contained, not depending on any other
Logtalk entity:

.= protocol(Protocol).

:- end_protocol.

If a protocol extends one or more protocols, then the opening directive will be:

:= protocol(Protocol,
extends([Protocoll, Protocol2, ...1)).

:- end_protocol.

In order to maximize protocol reuse, all predicates specified in a protocol should relate to the same function-
ality. Therefore, the only recommended use of protocol extension is when you need both a minimal protocol
and an extended version of the same protocol with additional, convenient predicates.

1.6. Protocols 29

../../docs/logtalk_0.html#logtalk-0
../../docs/monitoring_0.html#monitoring-0
../../docs/expanding_0.html#expanding-0
../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.60.0

1.6.2 Finding defined protocols

We can find, by backtracking, all defined protocols by using the current protocol/1 built-in predicate with a
unbound argument:

| ?- current_protocol(Protocol).

This predicate can also be used to test if a protocol is defined by calling it with a valid protocol identifier (an
atom).

1.6.3 Creating a new protocol in runtime

We can create a new (dynamic) protocol at runtime by calling the Logtalk built-in predicate cre-
ate_protocol/3:

| ?- create_protocol(Protocol, Relations, Directives).

The first argument should be either a variable or the name of the new protocol (a Prolog atom, which must
not match an existing entity name). The remaining two arguments correspond to the relations described in
the opening protocol directive and to the protocol directives.

For instance, the call:

| ?- create_protocol(ppp, [extends(qqq)l, [public([foo/1, bar/11)1).

is equivalent to compiling and loading the protocol:

.- protocol (ppp,
extends(qqq)).

:- dynamic.
;= public([foo/1, bar/11).

:- end_protocol.

If we need to create a lot of (dynamic) protocols at runtime, then is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate in order to provide more sophisticated behavior.

1.6.4 Abolishing an existing protocol

Dynamic protocols can be abolished using the abolish_protocol/1 built-in predicate:

| ?- abolish_protocol(Protocol).

The argument must be an identifier of a defined dynamic protocol, otherwise an error will be thrown.

30 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

1.6.5 Protocol directives

Protocol directives are used to define protocol properties and documentation.

Dynamic protocols

As usually happens with Prolog code, a protocol can be either static or dynamic. A protocol created during
the execution of a program is always dynamic. A protocol defined in a file can be either dynamic or static.
Dynamic protocols are declared by using the dynamic/0 directive in the protocol source code:

:— dynamic.

The directive must precede any predicate directives. Please be aware that using dynamic code results in a
performance hit when compared to static code. We should only use dynamic protocols when these need to
be abolished during program execution.

Protocol documentation

A protocol can be documented with arbitrary user-defined information by using the info/1 entity directive.
See the Documenting section for details.

Loading files into a protocol

The include/1 directive can be used to load the contents of a file into a protocol. See the Objects section for
an example of using this directive.

1.6.6 Protocol relationships
Logtalk provides two sets of built-in predicates that enable us to query the system about the possible rela-
tionships that a protocol have with other entities.

The extends_protocol/2-3 built-in predicates return all pairs of protocols so that the first one extends the
second:

| ?- extends_protocol(Protocoll, Protocol2).

or, if we also want to know the extension scope:

| ?- extends_protocol(Protocoll, Protocol2, Scope).

To find which objects or categories implement which protocols we can call the implements_protocol/2-3
built-in predicates:

| ?- implements_protocol(ObjectOrCategory, Protocol).

or, if we also want to know the implementation scope:

| ?- implements_protocol(ObjectOrCategory, Protocol, Scope).

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current_object/1
or current_category/1 built-in predicates to identify the kind of entity returned.

1.6. Protocols 31

The Logtalk Handbook, Release v3.60.0

1.6.7 Protocol properties

We can find the properties of defined protocols by calling the protocol property/2 built-in predicate:

| ?- protocol_property(Protocol, Property).

A protocol may have the property static, dynamic, or built_in. Dynamic protocols can be abolished in
runtime by calling the abolish_protocol/1 built-in predicate. Depending on the backend Prolog compiler, a
protocol may have additional properties related to the source file where it is defined.

The following protocol properties are supported:

static
The protocol is static

dynamic
The protocol is dynamic (and thus can be abolished in runtime by calling the abolish_category,/1 built-in
predicate)

built_in
The protocol is a built-in protocol (and thus always available)

source_data
Source data available for the protocol

file(Path)
Absolute path of the source file defining the protocol (if applicable)

file(Basename, Directory)
Basename and directory of the source file defining the protocol (if applicable); Directory always ends
with a /

lines(BeginLine, EndLine)
Source file begin and end lines of the protocol definition (if applicable)

public(Resources)
List of public predicates and operators declared by the protocol

protected(Resources)
List of protected predicates and operators declared by the protocol

private(Resources)
List of private predicates and operators declared by the protocol

declares(Predicate, Properties)
List of properties for a predicate declared by the protocol

alias(Predicate, Properties)
List of properties for a predicate alias declared by the protocol (the properties include for(Original),
from(Entity), non_terminal (NonTerminal), and line_count(Line) with Line being the begin line of
the alias directive)

Some of the properties such as line numbers are only available when the protocol is defined in a source file
compiled with the source data flag turned on.

32 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

1.6.8 Implementing protocols

Any number of objects or categories can implement a protocol. The syntax is very simple:

:— object(Object,
implements(Protocol)).

:- end_object.

or, in the case of a category:

.- category(Object,
implements(Protocol)).

:— end_category.

To make all public predicates declared via an implemented protocol protected or to make all public and
protected predicates private we prefix the protocol’s name with the corresponding keyword. For instance:

:— object(Object,
implements(private: :Protocol)).

:- end_object.

or:

:- object(Object,
implements(protected: :Protocol)).

:- end_object.

Omitting the scope keyword is equivalent to writing:

:— object(Object,
implements(public: :Protocol)).

:- end_object.

The same rules applies to protocols implemented by categories.

1.6. Protocols 33

The Logtalk Handbook, Release v3.60.0

1.6.9 Built-in protocols

Logtalk defines a set of built-in protocols that are always available for any application.

The built-in protocol expanding

The built-in expanding protocol declares the term_expansion/2 and goal expansion/2 predicates. See the
description of the hook compiler flag for more details.

The built-in protocol monitoring

The built-in monitoring protocol declares the before/3 and after,/3 public event handler predicates. See the
Event-driven programming section for more details.

The built-in protocol forwarding

The built-in forwarding protocol declares the forward/1 user-defined message forwarding handler, which is
automatically called (if defined) by the runtime for any message that the receiving object does not under-
stand. See also the []/1 control construct.

1.7 Categories

Categories are fine-grained units of code reuse and can be regarded as a dual concept of protocols. Categories
provide a way to encapsulate a set of related predicate declarations and definitions that do not represent a
complete object and that only make sense when composed with other predicates. Categories may also be
used to break a complex object in functional units. A category can be imported by several objects (without
code duplication), including objects participating in prototype or class-based hierarchies. This concept of cat-
egories shares some ideas with Smalltalk-80 functional categories [Goldberg83], Flavors mix-ins [Moon86]
(without necessarily implying multi-inheritance), and Objective-C categories [Cox86]. Categories may also
complement existing objects, thus providing a hot patching mechanism inspired by the Objective-C categories
functionality.

Logtalk defines a built-in category, core messages, which is described at the end of this section.

1.7.1 Defining a new category

We can define a new category in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the category. By default, all Logtalk source files
use the extension . 1gt but this is optional and can be set in the adapter files. Intermediate Prolog source files
(generated by the Logtalk compiler) have, by default, a _1gt suffix and a . pl extension. Again, this can be set
to match the needs of a particular Prolog compiler in the corresponding adapter file. For example, we may
define a category named documenting and save it in a documenting.lgt source file that will be compiled to a
documenting_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog
files may include a directory hash and a process identifier to prevent file name clashes when embedding
Logtalk applications or running parallel Logtalk processes).

Category names can be atoms or compound terms (when defining parametric categories). Objects, cate-
gories, and protocols share the same name space: we cannot have a category with the same name as an
object or a protocol.

34 Chapter 1. User Manual

../../docs/expanding_0.html#expanding-0
../../docs/monitoring_0.html#monitoring-0
../../docs/forwarding_0.html#forwarding-0
../../docs/core_messages_0.html#core-messages-0

The Logtalk Handbook, Release v3.60.0

Category code (directives and predicates) is textually encapsulated by using two Logtalk directives:
category/1-4 and end_category,/0. The most simple category will be one that is self-contained, not depending
on any other Logtalk entity:

;- category(Category).

:- end_category.

If a category implements one or more protocols then the opening directive will be:

.- category(Category,
implements([Protocoll, Protocol2, ...1)).

:- end_category.

A category may be defined as a composition of other categories by writing:

;- category(Category,
extends([Categoryl, Category2, ...1)).

;- end_category.

This feature should only be used when extending a category without breaking its functional cohesion (for
example, when a modified version of a category is needed for importing on several unrelated objects).
The preferred way of composing several categories is by importing them into an object. When a category
overrides a predicate defined in an extended category, the overridden definition can still be called by using
the (™ 7)/1 control construct.

Categories cannot inherit from objects. In addition, categories cannot define clauses for dynamic predicates.
This restriction applies because a category can be imported by several objects and because we cannot use
the database handling built-in methods with categories (messages can only be sent to objects). However,
categories may contain declarations for dynamic predicates and they can contain predicates which handle
dynamic predicates. For example:

;- category(attributes).

public(attribute/2).
;- public(set_attribute/2).
public(del_attribute/2).

private(attribute_/2).
dynamic(attribute_/2).

attribute(Attribute, Value) :-
% called in the context of "self”
crattribute_(Attribute, Value).

set_attribute(Attribute, Value) :-
% retract old clauses in "self"
::retractall(attribute_(Attribute, _)),
% assert new clause in "self”
::assertz(attribute_(Attribute, Value)).

del_attribute(Attribute, Value) :-

(continues on next page)

1.7. Categories 35

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

% retract clause in "self"
::retract(attribute_(Attribute, Value)).

:- end_category.

Each object importing this category will have its own attribute_/2 private, dynamic predicate. The predi-
cates attribute/2, set_attribute/2, and del_attribute/2 always access and modify the dynamic predicate
contained in the object receiving the corresponding messages (i.e. self). But it’s also possible to define pred-
icates that handle dynamic predicates in the context of this instead of self. For example:

;- category(attributes).

public(attribute/2).
;- public(set_attribute/2).
public(del_attribute/2).

private(attribute_/2).
dynamic(attribute_/2).

attribute(Attribute, Value) :-
% call in the context of "this"
attribute_(Attribute, Value).

set_attribute(Attribute, Value) :-
% retract old clauses in "this"
retractall(attribute_(Attribute, _)),
% asserts clause in "this”
assertz(attribute_(Attribute, Value)).

del_attribute(Attribute, Value) :-
% retract clause in "this"

retract(attribute_(Attribute, Value)).

:- end_category.

When defining a category that declares and handles dynamic predicates, working in the context of this ties
those dynamic predicates to the object importing the category while working in the context of self allows
each object inheriting from the object that imports the category to have its own set of clauses for those
dynamic predicates.

1.7.2 Hot patching

A category may also explicitly complement one or more existing objects, thus providing hot patching func-
tionality inspired by Objective-C categories:

.- category(Category,
complements([Objectl, Object2,1)).

:— end_category.

This allows us to add missing directives (e.g. to define aliases for complemented object predicates), re-
place broken predicate definitions, add new predicates, and add protocols and categories to existing objects

36 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

without requiring access or modifications to their source code. Common scenarios are adding logging or
debugging predicates to a set of objects. Complemented objects need to be compiled with the complements
compiler flag set allow (to allow both patching and adding functionality) or restrict (to allow only adding
new functionality). A complementing category takes preference over a previously loaded complementing
category for the same object thus allowing patching a previous patch if necessary.

When replacing a predicate definition, it is possible to call the overriden definition in the object from the new
definition in the category by annoting the goal with the experimental @ prefix operator. This goal annotation
is only valid in the context of a complementing category and for compile time bound goals. As an example,
consider the following object:

;- object(bird).
.- set_logtalk_flag(complements, allow).
;- public(make_sound/0).
make_sound :-

write('Chirp, chirp!'), nl.

:- end_object.

We can use the @ goal annotation to e.g. wrap the original make_sound/@ predicate definition by writing:

.- category(logging,
complements(bird)).

make_sound :-
write('Started making sound...'), nl,
@make_sound,
write('... finished making sound.'), nl.

:— end_category.

After loading the object and the category, calling the make_sound/@ predicate will result in the following
output:

| ?- bird::make_sound.

Started making sound...
Chirp, chirp!

. finished making sound.
yes

Note that super calls from predicates defined in complementing categories lookup inherited definitions as
if the calls were made from the complemented object instead of the category ancestors. This allows more
comprehensive object patching. But it also means that, if you want to patch an object so that it imports a
category that extends another category and uses super calls to access the extended category predicates, you
will need to define a (possibly empty) complementing category that extends the category that you want to
add.

An unfortunate consequence of allowing an object to be patched at runtime using a complementing category
is that it disables the use of static binding optimizations for messages sent to the complemented object as it
can always be later patched, thus rendering the static binding optimizations invalid.

Another important caveat is that, while a complementing category can replace a predicate definition, local
callers of the replaced predicate will still call the non-patched version of the predicate. This is a consequence

1.7. Categories 37

The Logtalk Handbook, Release v3.60.0

of the lack of a portable solution at the backend Prolog compiler level for replacing static predicate definitions.

1.7.3 Finding defined categories

We can find, by backtracking, all defined categories by using the current category/1 built-in predicate with a
unbound argument:

| ?- current_category(Category).

This predicate can also be used to test if a category is defined by calling it with a valid category identifier
(an atom or a compound term).

1.7.4 Creating a new category in runtime

A category can be dynamically created at runtime by using the create category/4 built-in predicate:

| ?- create_category(Category, Relations, Directives, Clauses).

The first argument should be either a variable or the name of the new category (a Prolog atom, which
must not match with an existing entity name). The remaining three arguments correspond to the relations
described in the opening category directive and to the category code contents (directives and clauses).

For example, the call:

| ?- create_category(
ccc,
Limplements(ppp)],
[private(bar/1)1,
[(foo(X):-bar(X)), bar(1), bar(2)]
).

is equivalent to compiling and loading the category:

:- category(ccc,
implements(ppp)).

;- dynamic.
;- private(bar/1).

foo(X) :-
bar(X).

bar(1).
bar(2).

:- end_category.

If we need to create a lot of (dynamic) categories at runtime, then is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate in order to provide more sophisticated behavior.

38 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

1.7.5 Abolishing an existing category

Dynamic categories can be abolished using the abolish_category/1 built-in predicate:

| ?- abolish_category(Category).

The argument must be an identifier of a defined dynamic category, otherwise an error will be thrown.

1.7.6 Category directives

Category directives are used to define category properties, to document a category dependencies on other
Logtalk entities, and to load the contents of files into a category.

Dynamic categories

As usually happens with Prolog code, a category can be either static or dynamic. A category created during
the execution of a program is always dynamic. A category defined in a file can be either dynamic or static.
Dynamic categories are declared by using the dynamic/0 directive in the category source code:

;- dynamic.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code
results in a performance hit when compared to static code. We should only use dynamic categories when
these need to be abolished during program execution.

Category documentation

A category can be documented with arbitrary user-defined information by using the info/1 entity directive.
See the Documenting section for details.

Loading files into a category

The include/1 directive can be used to load the contents of a file into a category. See the Objects section for
an example of using this directive.

Declaring object aliases

The uses/1 directive can be used to declare object aliases. The typical uses of this directive is to shorten
long object names and to simplify experimenting with different object implementations of the same protocol
when using explicit message sending.

1.7. Categories 39

The Logtalk Handbook, Release v3.60.0

1.7.7 Category relationships
Logtalk provides two sets of built-in predicates that enable us to query the system about the possible rela-
tionships that a category can have with other entities.

The built-in predicates implements protocol/2-3 and conforms_to_protocol/2-3 allows us to find which cate-
gories implements which protocols:

| ?- implements_protocol(Category, Protocol, Scope).

or, if we also want to consider inherited protocols:

| ?- conforms_to_protocol(Category, Protocol, Scope).

Note that, if we use a unbound first argument, we will need to use the current category,/1 built-in predicate
to ensure that the returned entity is a category and not an object.

To find which objects import which categories we can use the imports_category,/2-3 built-in predicates:

| ?- imports_category(Object, Category).

or, if we also want to know the importation scope:

| ?- imports_category(Object, Category, Scope).

Note that a category may be imported by several objects.

To find which categories extend other categories we can use the extends category/2-3 built-in predicates:

| ?- extends_category(Categoryl, Category2).

or, if we also want to know the extension scope:

| ?- extends_category(Categoryl, Category2, Scope).

Note that a category may be extended by several categories.

To find which categories explicitly complement existing objects we can use the complements_object/2 built-in
predicate:

| ?- complements_object(Category, Object).

Note that a category may explicitly complement several objects.

1.7.8 Category properties

We can find the properties of defined categories by calling the built-in predicate category property/2:

| ?- category_property(Category, Property).

The following category properties are supported:

static
The category is static

dynamic
The category is dynamic (and thus can be abolished in runtime by calling the abolish_category/1 built-
in predicate)

40 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

built_in
The category is a built-in category (and thus always available)

file(Path)
Absolute path of the source file defining the category (if applicable)

file(Basename, Directory)
Basename and directory of the source file defining the category (if applicable); Directory always ends
with a /

lines(BeginLine, EndLine)
Source file begin and end lines of the category definition (if applicable)

events
Messages sent from the category generate events

source_data
Source data available for the category

public(Resources)
List of public predicates and operators declared by the category

protected(Resources)
List of protected predicates and operators declared by the category

private(Resources)
List of private predicates and operators declared by the category

declares(Predicate, Properties)
List of properties for a predicate declared by the category

defines(Predicate, Properties)
List of properties for a predicate defined by the category

includes(Predicate, Entity, Properties)
List of properties for an object multifile predicate that are defined in the specified entity (the proper-
ties include number_of_clauses (Number), number_of_rules(Number), and line_count(Line) with Line
being the begin line of the first multifile predicate clause)

provides(Predicate, Entity, Properties)
List of properties for other entity multifile predicate that are defined in the category (the properties in-
clude number_of_clauses(Number), number_of_rules(Number), and line_count(Line) with Line being
the begin line of the first multifile predicate clause)

alias(Predicate, Properties)
List of properties for a predicate alias declared by the category (the properties include for(Original),
from(Entity), non_terminal (NonTerminal), and line_count(Line) with Line being the begin line of
the alias directive)

calls(Call, Properties)
List of properties for predicate calls made by the category (Call is either a predicate indicator or a
control construct such as (::)/1-2 or (**)/1 with a predicate indicator as argument; note that Call
may not be ground in case of a call to a control construct where its argument is only know at runtime;
the properties include caller(Caller), alias(Alias), and line_count(Line) with both Caller and
Alias being predicate indicators and Line being the begin line of the predicate clause or directive
making the call)

updates(Predicate, Properties)
List of properties for dynamic predicate updates (and also access using the clause/2 predicate) made
by the object (Predicate is either a predicate indicator or a control construct such as (::)/1-2or (:)/2
with a predicate indicator as argument; note that Predicate may not be ground in case of a control

1.7. Categories 41

The Logtalk Handbook, Release v3.60.0

construct argument only know at runtime; the properties include updater(Updater), alias(Alias),
and line_count(Line) with Updater being a (possibly multifile) predicate indicator, Alias being a
predicate indicator, and Line being the begin line of the predicate clause or directive updating the
predicate)

number_of_clauses(Number)
Total number of predicate clauses defined in the category (includes both user-defined clauses and
auxiliary clauses generated by the compiler or by the expansion hooks but does not include clauses
for multifile predicates defined for other entities or clauses for the category own multifile predicates
contributed by other entities)

number_of_rules(Number)
Total number of predicate rules defined in the category (includes both user-defined rules and auxiliary
rules generated by the compiler or by the expansion hooks but does not include rules for multifile
predicates defined for other entities or rules for the category own multifile predicates contributed by
other entities)

number_of_user_clauses(Number)
Total number of user-defined predicate clauses defined in the category (does not include clauses for
multifile predicates defined for other entities or clauses for the category own multifile predicates con-
tributed by other entities)

number_of_user_rules(Number)
Total number of user-defined predicate rules defined in the category (does not include rules for multifile
predicates defined for other entities or rules for the category own multifile predicates contributed by
other entities)

Some properties such as line numbers are only available when the category is defined in a source file com-
piled with the source data flag turned on. Moreover, line numbers are only supported in backend Prolog
compilers that provide access to the start line of a read term. When such support is not available, the value
-1 is returned for the start and end lines.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the ob-
ject for both multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile
predicates contributed by other entities.

1.7.9 Importing categories

Any number of objects can import a category. In addition, an object may import any number of categories.
The syntax is very simple:

:— object(Object,
imports([Categoryl, Category2, ...1]1)).

:- end_object.

To make all public predicates imported via a category protected or to make all public and protected predicates
private we prefix the category’s name with the corresponding keyword:

:- object(Object,
imports(private::Category)).

:— end_object.

or:

42 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

:- object(Object,
imports(protected: :Category)).

:- end_object.

Omitting the scope keyword is equivalent to writing:

:- object(Object,
imports(public::Category)).

:- end_object.

1.7.10 Calling category predicates

Category predicates can be called from within an object by sending a message to self or using a super call.
Consider the following category:

;- category(output).
;= public(out/1).

out(X) :-
write(X), nl.

:- end_category.

The predicate out/1 can be called from within an object importing the category by simply sending a message
to self. For example:

;- object(worker,
imports(output)).

do(Task) :-
execute(Task, Result),
::out(Result).

:- end_object.

This is the recommended way of calling a category predicate that can be specialized/overridden in a descen-
dant object as the predicate definition lookup will start from self.

A direct call to a predicate definition found in an imported category can be made using the (™ ©)/1 control
construct. For example:

:- object(worker,
imports(output)).

do(Task) :-
execute(Task, Result),
**out(Result).

(continues on next page)

1.7. Categories 43

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

:- end_object.

This alternative should only be used when the user knows a priori that the category predicates will not
be specialized or redefined by descendant objects of the object importing the category. Its advantage is
that, when the optimize flag is turned on, the Logtalk compiler will try to optimize the calls by using static
binding. When dynamic binding is used due to e.g. the lack of sufficient information at compilation time, the
performance is similar to calling the category predicate using a message to self (in both cases a predicate
lookup caching mechanism is used).

1.7.11 Parametric categories

Category predicates can be parameterized in the same way as object predicates by using a compound term
as the category identifier where all the arguments of the compound term are variables. These variables,
the category parameters, can be accessed by calling the parameter/2 or this/1 built-in local methods in the
category predicate clauses or by using parameter variables. Category parameter values can be defined by the
importing objects. For example:

.- object(speech(Season, Event),
imports([dress(Season), speech(Event)])).

:— end_object.

Note that access to category parameters is only possible from within the category. In particular, calls to the
this/1 built-in local method from category predicates always access the importing object identifier (and thus
object parameters, not category parameters).

1.7.12 Built-in categories

Logtalk defines a built-in category that is always available for any application.

The built-in category core_messages

The built-in core_messages category provides default translations for all compiler and runtime printed mes-
sages such as warnings and errors. It does not define any public predicates.

1.8 Predicates

Predicate directives and clauses can be encapsulated inside objects and categories. Protocols can only contain
predicate directives. From the point-of-view of a traditional imperative object-oriented language, predicates
allows both object state and object behavior to be represented. Mutable object state can be represented using
dynamic object predicates but should only be used when strictly necessary as it breaks declarative semantics.

44 Chapter 1. User Manual

../../docs/core_messages_0.html#core-messages-0

The Logtalk Handbook, Release v3.60.0

1.8.1 Reserved predicate names

For practical and performance reasons, some predicate names have a fixed interpretation. These predicates
are declared in the built-protocols. They are: goal expansion/2 and term expansion/2, declared in the ex-
panding protocol; before/3 and after/3, declared in the monitoring protocol; and forward/1, declared in the
forwarding protocol. By default, the compiler prints a warning when a definition for one of these predicates
is found but the reference to the corresponding built-in protocol is missing.

1.8.2 Declaring predicates

Logtalk provides a clear distinction between declaring a predicate and defining a predicate and thus clear
closed-world assumption semantics. Messages or calls for declared but undefined predicates fail. Messages or
calls for unknown (i.e. non declared) predicates throw an error. Note that this is a fundamental requirement
for supporting protocols: we must be able to declare a predicate without necessarily defining it.

All object (or category) predicates that we want to access from other objects (or categories) must be explicitly
declared. A predicate declaration must contain, at least, a scope directive. Other directives may be used to
document the predicate or to ensure proper compilation of the predicate clauses.

Scope directives

A predicate scope directive specifies from where the predicate can be called, i.e. its visibility. Predicates can
be public, protected, private, or local. Public predicates can be called from any object. Protected predicates
can only be called from the container object or from a container descendant. Private predicates can only
be called from the container object. Predicates are local when they are not declared in a scope directive.
Local predicates, like private predicates, can only be called from the container object (or category) but
they are invisible to the reflection built-in methods (current predicate/1 and predicate property/2) and to the
message error handling mechanisms (i.e. sending a message corresponding to a local predicate results in a
predicate_declaration existence error instead of a scope error).

The scope declarations are made using the directives public/1, protected/1, and private/1. For example:

;= public(init/1).
:— protected(valid_init_option/1).

;- private(process_init_options/1).

If a predicate does not have a (local or inherited) scope declaration, it is assumed that the predicate is
local. Note that we do not need to write scope declarations for all defined predicates. One exception is
local dynamic predicates: declaring them as private predicates may allow the Logtalk compiler to generate
optimized code for asserting and retracting clauses.

Note that a predicate scope directive doesn’t specify where a predicate is, or can be, defined. For example,
a private predicate can only be called from an object holding its scope directive. But it can be defined in
descendant objects. A typical example is an object playing the role of a class defining a private (possibly
dynamic) predicate for its descendant instances. Only the class can call (and possibly assert/retract clauses
for) the predicate but its clauses can be found/defined in the instances themselves.

Scope directives may also be used to declare grammar rule non-terminals and operators. For example:

;= public(url//1).

;- public(op(800, fx, tag)).

1.8. Predicates 45

../../docs/expanding_0.html#expanding-0
../../docs/expanding_0.html#expanding-0
../../docs/monitoring_0.html#monitoring-0
../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.60.0

Note that, in the case of operators, the operator definitions don’t become global when the entity containing
the directives is compiled and loaded. This prevents an application breaking when e.g. an updated third-
party library adds new operators. It also allows loading entities that provide conflicting operator definitions.
Here the usual programming idiom is to copy the operator definitions to a uses/2 directive. For example,
the 1gtunit tool makes available a '=~='/2 predicate (for approximate float equality) that is intended to be
used as an infix operator:

:- uses(lgtunit, [
0p(7®®’ XfX, ':"’:'), '=~="'/2
.

Thus, in practice, the solution to use library entity operators in client entities is the same for using library
entity predicates with implicit message sending.

Mode directive

Often predicates can only be called using specific argument patterns. The valid arguments and instantiation
modes of those arguments can be documented by using the mode/2 directive. For example:

;- mode(member(?term, ?list), zero_or_more).

The first directive argument describes a valid calling mode. The minimum information will be the instanti-
ation mode of each argument. The first four possible values are described in [ISO95]). The remaining two
can also be found in use in some Prolog systems.

+
Argument must be instantiated (but not necessarily ground).
Argument should be a free (non-instantiated) variable (when bound, the call will unify the returned
term with the given term).
?
Argument can either be instantiated or free.
Q
Argument will not be further instantiated (modified).
++

Argument must be ground.

Argument must be unbound. Used mainly when returning an opaque term.

These six mode atoms are also declared as prefix operators by the Logtalk compiler. This makes it possible to
include type information for each argument like in the example above. Some possible type values are: event,
object, category, protocol, callable, term, nonvar, var, atomic, atom, number, integer, float, compound,
and list. The first four are Logtalk specific. The remaining are common Prolog types. We can also use our
own types that can be either atoms or ground compound terms. See the types library documentation for
details.

The second directive argument documents the number of proofs, but not necessarily distinct solutions, for
the specified mode. As an example, the member (X, [1,1,1,1]) goal have only one distinct solution but four
proofs for that solution. Note that different modes for the same predicate often have different determinism.
The possible values are:

zero
Predicate always fails.

46 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

one
Predicate always succeeds once.

zero_or_one
Predicate either fails or succeeds.

zero_or_more
Predicate has zero or more proofs.

one_or_more
Predicate has one or more proofs.

zero_or_error
Predicate either fails or throws an error (see below).

one_or_error
Predicate either succeeds once or throws an error (see below).

zero_or_one_or_error
Predicate either succeeds once or fails or throws an error (see below).

error
Predicate will throw an error.

Mode declarations can also be used to document that some call modes will throw an error. For instance,
regarding the arg/3 and open/3 ISO Prolog built-in predicates, we may write:

:- mode(arg(-, -, +), error).
:- mode(open(@, @, --), one_or_error).

Note that most predicates have more than one valid mode implying several mode directives. For example,
to document the possible use modes of the atom_concat/3 ISO built-in predicate we would write:

:- mode(atom_concat(?atom, ?atom, +atom), one_or_more).
:- mode(atom_concat(+atom, +atom, -atom), zero_or_one).

Some old Prolog compilers supported some sort of mode directives to improve performance. To the best of
my knowledge, there is no modern Prolog compiler supporting this kind of directive for that purpose. The
current Logtalk version simply parses this directive for collecting its information for use in the reflection API
(assuming the source_data flag is turned on). In any case, the use of mode directives is a good starting point
for documenting your predicates.

Meta-predicate directive

Some predicates may have arguments that will be called as goals or interpreted as closures that will be used
for constructing goals. To ensure that these goals will be executed in the correct context (i.e. in the calling
context, not in the meta-predicate definition context) we need to use the meta predicate/1 directive. For
example:

:— meta_predicate(findall(x, 0, *)).
.- meta_predicate(map(2, *, *)).

The meta-predicate mode arguments in this directive have the following meaning:

0
Meta-argument that will be called as a goal.

1.8. Predicates 47

The Logtalk Handbook, Release v3.60.0

N
Meta-argument that will be a closure used to construct a call by extending it with N arguments. The
value of N must be a positive integer.
Argument that is context-aware but that will not be called as a goal or a closure. It can contain,
however, sub-terms that will be called as goals or closures.

A
Goal that may be existentially quantified (Vars*Goal).

*

Normal argument.

The following meta-predicate mode arguments are for use only when writing backend Prolog adapter files to
deal with proprietary built-in meta-predicates and meta-directives:

/
Predicate indicator (Name/Arity), list of predicate indicators, or conjunction of predicate indicators.
//
Non-terminal indicator (Name//Arity), list of predicate indicators, or conjunction of predicate indica-
tors.
[e]
List of goals.
[N]
List of closures.
[/]

List of predicate indicators.

L//1
List of non-terminal indicators.

To the best of my knowledge, the use of non-negative integers to specify closures has first introduced on
Quintus Prolog for providing information for predicate cross-reference tools.

As each Logtalk entity is independently compiled, this directive must be included in every object or category
that contains a definition for the described meta-predicate, even if the meta-predicate declaration is inherited
from another entity, to ensure proper compilation of meta-arguments.

Discontiguous directive

The clause of an object (or category) predicate may not be contiguous. In that case, we must declare the
predicate discontiguous by using the discontiguous/1 directive:

:— discontiguous(foo/1).

This is a directive that we should avoid using: it makes your code harder to read and it is not supported by
some Prolog compilers.

As each Logtalk entity is compiled independently of other entities, this directive must be included in every
object or category that contains a definition for the described predicate (even if the predicate declaration is
inherited from other entity).

48 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

Dynamic directive

An object predicate can be static or dynamic. By default, all object predicates are static. To declare a dynamic
predicate we use the dynamic/1 directive:

.= dynamic(foo/1).

This directive may also be used to declare dynamic grammar rule non-terminals. As each Logtalk entity is
compiled independently from other entities, this directive must be included in every object that contains
a definition for the described predicate (even if the predicate declaration is inherited from other object
or imported from a category). If we omit the dynamic declaration then the predicate definition will be
compiled static. In the case of dynamic objects, static predicates cannot be redefined using the database
built-in methods (despite being internally compiled to dynamic code).

Dynamic predicates can be used to represent persistent mutable object state. Note that static objects may
declare and define dynamic predicates.

Operator directive

An object (or category) predicate can be declared as an operator using the familiar op/3 directive:

:- op(Priority, Specifier, Operator).

Operators are local to the object (or category) where they are declared. This means that, if you declare a
public predicate as an operator, you cannot use operator notation when sending to an object (where the
predicate is visible) the respective message (as this would imply visibility of the operator declaration in the
context of the sender of the message). If you want to declare global operators and, at the same time, use
them inside an entity, just write the corresponding directives at the top of your source file, before the entity
opening directive.

Note that operators can also be declared using a scope directive. Only these operators are visible to the
current_op/3 reflection method.

When the same operators are used on several entities within the same source file, the corresponding direc-
tives must either be repeated in each entity or appear before any entity that uses them. But in the later case,
this results in a global scope for the operators. If you prefer the operators to be local to the source file, just
undefine them at the end of the file. For example:

:- op(400, xfx, results).

;- op(0, xfx, results).

Global operators can be declared in the application loader file.

1.8. Predicates 49

The Logtalk Handbook, Release v3.60.0

Uses directive

When a predicate makes heavy use of predicates defined on other objects, its predicate clauses can be verbose
due to all the necessary message sending goals. Consider the following example:

foo :-

findall(X, list::member(X, L), A),
list::append(A, B, C),
list::select(Y, C, R),

Logtalk provides a directive, uses/2, which allows us to simplify the code above. One of the usage templates
for this directive is:

;- uses(Object, [
Namel/Arity1, Name2/Arity2,
D.

Rewriting the code above using this directive results in a simplified and more readable predicate definition:

;- uses(list, [
append/3, member/2, select/3
.

foo :-
findall(X, member(X, L), A),

append(A, B, ©),
select(Y, C, R),

Logtalk also supports an extended version of this directive that allows the declaration of predicate aliases
using the notation Predicate as Alias (or the alternative notation Predicate: :Alias). For example:

.- uses(btrees, [new/1 as new_btree/1]).
.- uses(queues, [new/1 as new_queue/1]).

You may use this extended version for solving conflicts between predicates declared on several uses/2 direc-
tives or just for giving new names to the predicates that will be more meaningful on their using context. It’s
also possible to define predicate aliases that are also predicate shorthands. For example:

;- uses(pretty_printer, [
indent (4, Term) as indent(Term)

D.

See the directive documentation for details and other examples.

The uses/2 directive allows simpler predicate definitions as long as there are no conflicts between the predi-
cates declared in the directive and the predicates defined in the object (or category) containing the directive.
A predicate (or its alias if defined) cannot be listed in more than one uses/2 directive. In addition, a uses/2
directive cannot list a predicate (or its alias if defined) which is defined in the object (or category) containing
the directive. Any conflicts are reported by Logtalk as compilation errors.

The object identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category. In this case, dynamic binding will necessarily be used for all listed predicates

50 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

(and non-terminals). The parameter variable must be instantiated at runtime when the messages are sent.
This feature simplifies experimenting with multiple implementations of the same protocol (for example, to
evaluate the performance of each implementation for a particular case). It also simplifies writing tests that
check multiple implementations of the same protocol.

An object (or category) can make a predicate listed in a uses/2 (or use_module/2) directive part of its
protocol by simply adding a scope directive for the predicate. For example, in the statistics library we
have:

:= public(modes/2).
;- uses(numberlist, [modes/2]).

Therefore, a goal such as sample::modes(Sample, Modes) implicitly calls numberlist::modes(Sample,
Modes) without requiring an explicit local definition for the modes/2 predicate (which would trigger a com-
pilation error).

Alias directive

Logtalk allows the definition of an alternative name for an inherited or imported predicate (or for an inher-
ited or imported grammar rule non-terminal) through the use of the alias/2 directive:

;- alias(Entity, [
Predicatel as Aliasl,
Predicate2 as Alias2,

D.

This directive can be used in objects, protocols, or categories. The first argument, Entity, must be an entity
referenced in the opening directive of the entity containing the alias/2 directive. It can be an extended or
implemented protocol, an imported category, an extended prototype, an instantiated class, or a specialized
class. The second argument is a list of pairs of predicate indicators (or grammar rule non-terminal indicators)
using the as infix operator as connector.

A common use for the alias/2 directive is to give an alternative name to an inherited predicate in order to
improve readability. For example:

:— object(square,
extends(rectangle)).

.- alias(rectangle, [width/1 as side/11]).

:- end_object.

The directive allows both width/1 and side/1 to be used as messages to the object square. Thus, using this
directive, there is no need to explicitly declare and define a “new” side/1 predicate. Note that the alias/2
directive does not rename a predicate, only provides an alternative, additional name; the original name
continues to be available (although it may be masked due to the default inheritance conflict mechanism).

Another common use for this directive is to solve conflicts when two inherited predicates have the same
name and arity. We may want to call the predicate which is masked out by the Logtalk lookup algorithm (see
the Inheritance section) or we may need to call both predicates. This is simply accomplished by using the
alias/2 directive to give alternative names to masked out or conflicting predicates. Consider the following
example:

1.8. Predicates 51

The Logtalk Handbook, Release v3.60.0

:- object(my_data_structure,
extends(list, set)).

.- alias(list, [member/2 as list_member/2]).
.- alias(set, [member/2 as set_member/2]).

:- end_object.

Assuming that both list and set objects define a member/2 predicate, without the alias/2 directives, only
the definition of member/2 predicate in the object 1ist would be visible on the object my_data_structure, as
a result of the application of the Logtalk predicate lookup algorithm. By using the alias/2 directives, all the
following messages would be valid (assuming a public scope for the predicates):

% uses list member/2
| ?- my_data_structure::list_member(X, L).

% uses set member/2
| ?- my_data_structure::set_member(X, L).

% uses list member/2
| ?- my_data_structure::member(X, L).

When used this way, the alias/2 directive provides functionality similar to programming constructs of other
object-oriented languages that support multi-inheritance (the most notable example probably being the re-
naming of inherited features in Eiffel).

Note that the alias/2 directive never hides a predicate which is visible on the entity containing the directive
as a result of the Logtalk lookup algorithm. However, it may be used to make visible a predicate which
otherwise would be masked by another predicate, as illustrated in the above example.

The alias/2 directive may also be used to give access to an inherited predicate, which otherwise would be
masked by another inherited predicate, while keeping the original name as follows:

;- object(my_data_structure,
extends(list, set)).

.- alias(list, [member/2 as list_member/2]).
.- alias(set, [member/2 as set_member/2]).

member (X, L) :-
*“set_member (X, L).

:- end_object.

Thus, when sending the message member/2 to my_data_structure, the predicate definition in set will be
used instead of the one contained in list.

52 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

Documenting directive

A predicate can be documented with arbitrary user-defined information by using the info/2 directive:

;= info(Name/Arity, List).

The second argument is a list of Key is Value terms. See the Documenting section for details.

Multifile directive

A predicate can be declared multifile by using the multifile/1 directive:

;- multifile(Name/Arity).

This allows clauses for a predicate to be defined in several objects and/or categories. This is a directive that
should be used with care. It’s commonly used in the definition of hook predicates. Multifile predicates (and
non-terminals) may also be declared dynamic using the same predicate (or non-terminal) notation (multifile
predicates are static by default).

Logtalk precludes using a multifile predicate for breaking object encapsulation by checking that the object
(or category) declaring the predicate (using a scope directive) defines it also as multifile. This entity is said
to contain the primary declaration for the multifile predicate. Entities containing primary multifile predicate
declarations must always be compiled before entities defining clauses for those multifile predicates. The
Logtalk compiler will print a warning if the scope directive is missing. Note also that the multifile/1
directive is mandatory when defining multifile predicates.

Consider the following simple example:

;- object(main).

;- public(a/1).
;- multifile(a/1).
a(l).

:- end_object.

After compiling and loading the main object, we can define other objects (or categories) that contribute with
clauses for the multifile predicate. For example:

:- object(other).

;- multifile(main::a/1).
main::a(2).
main::a(X) :-

b(X).

b(3).
b(4).

:- end_object.

After compiling and loading the above objects, you can use queries such as:

1.8. Predicates 53

The Logtalk Handbook, Release v3.60.0

Note that the order of multifile predicate clauses depend on several factors, including loading order and
compiler implementation details. Therefore, your code should never assume or rely on a specific order of
the multifile predicate clauses.

When a clause of a multifile predicate is a rule, its body is compiled within the context of the object or
category defining the clause. This allows clauses for multifile predicates to call local object or category
predicates. But the values of the sender, this, and self in the implicit execution context are passed from the
clause head to the clause body. This is necessary to ensure that these values are always valid and to allow
multifile predicate clauses to be defined in categories. A call to the parameter/2 execution context methods,
however, retrieves parameters of the entity defining the clause, not from the entity for which the clause is
defined. The parameters of the entity for which the clause is defined can be accessed by simple unification
at the clause head.

Multifile predicate rules should not contain cuts as these may prevent other clauses for the predicate for
being used by callers. The compiler prints by default a warning when a cut is found in a multifile predicate
definition.

Local calls to the database methods from multifile predicate clauses defined in an object take place in the
object own database instead of the database of the entity holding the multifile predicate primary declaration.
Similarly, local calls to the expand_term/2 and expand_goal/2 methods from a multifile predicate clause
look for clauses of the term_expansion/2 and goal_expansion/2 hook predicates starting from the entity
defining the clause instead of the entity holding the multifile predicate primary declaration. Local calls
to the current_predicate/1, predicate_property/2, and current_op/3 methods from multifile predicate
clauses defined in an object also lookup predicates and their properties in the object own database instead
of the database of the entity holding the multifile predicate primary declaration.

Coinductive directive

A predicate can be declared coinductive by using the coinductive/1 directive. For example:

;= coinductive(comember/2).

Logtalk support for coinductive predicates is experimental and requires a backend Prolog compiler with min-
imal support for cyclic terms. The value of the read-only coinduction flag is set to supported for the backend
Prolog compilers providing that support.

54 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

Synchronized directive

A predicate can be declared synchronized by using the synchronized/1 directive. For example:

:= synchronized(write_log_entry/2).
.- synchronized([produce/1, consume/1]).

See the section on synchronized predicates for details.

1.8.3 Defining predicates

Object predicates

We define object predicates as we have always defined Prolog predicates, the only difference be that we have
four more control structures (the three message sending operators plus the external call operator) to play
with. For example, if we wish to define an object containing common utility list predicates like append/2 or
member/2 we could write something like:

;- object(list).

;- public(append/3).
;= public(member/2).

append([], L, L).
append([H| T1, L, [H| T21) :-
append(T, L, T2).

member (H, [H] _1).
member(H, [_| T1) :-
member(H, T).

:- end_object.

Note that, abstracting from the opening and closing object directives and the scope directives, what we have
written is also valid Prolog code. Calls in a predicate definition body default to the local predicates, unless we
use the message sending operators or the external call operator. This enables easy conversion from Prolog
code to Logtalk objects: we just need to add the necessary encapsulation and scope directives to the old
code.

Category predicates

A category can only contain clauses for static predicates. But there are no restrictions in declaring and calling
dynamic predicates from inside a category. Because a category can be imported by multiple objects, dynamic
predicates must be called either in the context of self, using the message to self control structure, (::)/1, or
in the context of this (i.e. in the context of the object importing the category). For example, if we want to
define a category implementing attributes using the dynamic database of self we could write:

;- category(attributes).

;= public(get/2).
;- public(set/2).

(continues on next page)

1.8. Predicates 55

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

;- private(attribute_/2).
;- dynamic(attribute_/2).

get(Var, Value) :-
::attribute_(Var, Value).

set(Var, Value) :-
::retractall(attribute_(Var, _)),

::asserta(attribute_(Var, Value).

:— end_category.

In this case, the get/2 and set/2 predicates will always access/update the correct definition, contained in
the object receiving the messages.

In alternative, if we want a category implementing attributes using the dynamic database of this, we would
write instead:

;- category(attributes).

public(get/2).
public(set/2).

private(attribute_/2).
dynamic(attribute_/2).

get(Var, Value) :-
attribute_(Var, Value).

set(Var, Value) :-
retractall(attribute_(Var, _.)),

asserta(attribute_(Var, Value).

:- end_category.

In this case, each object importing the category will have its own clauses for the attribute_/2 private
dynamic predicate.

Meta-predicates

Meta-predicates may be defined inside objects and categories as any other predicate. A meta-predicate is
declared using the meta predicate/1 directive as described earlier on this section. When defining a meta-
predicate, the arguments in the clause heads corresponding to the meta-arguments must be variables. All
meta-arguments are called in the context of the object or category calling the meta-predicate. In particular,
when sending a message that corresponds to a meta-predicate, the meta-arguments are called in the context
of the object or category sending the message.

The most simple example is a meta-predicate with a meta-argument that is called as a goal. E.g. the ignore/1
built-in predicate could be defined as:

:— public(ignore/1).
.- meta_predicate(ignore(0)).

(continues on next page)

56 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

ignore(Goal) :-
(Goal -> true; true).

The 0 in the meta-predicate template tells us that the meta-argument is a goal that will be called by the
meta-predicate.

Some meta-predicates have meta-arguments which are not goals but closures. Logtalk supports the definition
of meta-predicates that are called with closures instead of goals as long as the definition uses the call/1-N
built-in predicate to call the closure with the additional arguments. A classical example is a list mapping
predicate:

;= public(map/2).
;- meta_predicate(map(1, *)).

map(_, [1).

map(Closure, [Arg| Args]) :-
call(Closure, Arg),
map(Closure, Args).

Note that in this case the meta-predicate directive specifies that the closure will be extended with exactly one
additional argument. When calling a meta-predicate, a closure can correspond to a user-defined predicate,
a built-in predicate, a lambda expression, or a control construct.

In some cases, is not a meta-argument but one of its sub-terms that is called as a goal or used as a closure.
For example:

;- public(call_all/1).
;- meta_predicate(call_all(::)).

call_all([D).

call_all([Goal| Goals]) :-
call(Goal),
call_all(Goals).

The :: mode indicator in the meta-predicate template allows the corresponding argument in the meta-
predicate definiton to be a non-variable term and instructs the compiler to look into the argument sub-terms
for goal and closure meta-variables.

When a meta-predicate calls another meta-predicate, both predicates require meta_predicate/1 directives.
For example, the map/2 meta-predicate defined above is usually implemented by exchanging the argument
order to take advantage of first-argument indexing:

.- meta_predicate(map(1, *)).
map(Closure, List) :-
map_(List, Closure).

;- meta_predicate(map_(*, 1)).

map_(L],).

map_([Head| Taill, Closure) :-
call(Closure, Head),
map_(Tail, Closure).

Note that Logtalk, unlike most Prolog module systems, is not based on a predicate prefixing mechanism.
Thus, the meta-argument calling context is not part of the meta-argument itself.

1.8. Predicates 57

The Logtalk Handbook, Release v3.60.0

Lambda expressions

The use of lambda expressions as meta-predicate goal and closure arguments often saves writing auxiliary
predicates for the sole purpose of calling the meta-predicates. A simple example of a lambda expression is:

| ?- meta::map([X,YI>>(Y is 2%X), [1,2,3], Ys).
Ys = [2,4,6]
yes

In this example, a lambda expression, [X,Y]>>(Y is 2xX), is used as an argument to the map/3 list mapping
predicate, defined in the library object meta, in order to double the elements of a list of integers. Using a
lambda expression avoids writing an auxiliary predicate for the sole purpose of doubling the list elements.
The lambda parameters are represented by the list [X, Y], which is connected to the lambda goal, (Y is
2xX), by the (>>)/2 operator.

Currying is supported. Le. it is possible to write a lambda expression whose goal is another lambda expres-
sion. The above example can be rewritten as:

| ?- meta::map([XI>>(LYI>>(Y is 2xX)), [1,2,3]1, Ys).
Ys = [2,4,6]
yes

Lambda expressions may also contain lambda free variables. I.e. variables that are global to the lambda
expression. For example, using GNU Prolog as the backend compiler, we can write:

| ?- meta::map({Z}/[X,YI>>(Z#=X+Y), [1,2,3], Zs).

Z = _#22(3..268435455)

Zs = [_#3(2..268435454), _#66(1..268435453),_#110(0..268435452)]
yes

The ISO Prolog construct {}/1 for representing the lambda free variables as this representation is often
associated with set representation. Note that the order of the free variables is of no consequence (on the
other hand, a list is used for the lambda parameters as their order does matter).

Both lambda free variables and lambda parameters can be any Prolog term. Consider the following example
by Markus Triska:

| ?- meta::map([A-B,B-A]>>true, [1-a,2-b,3-c]1, Zs).
Zs = [a-1,b-2,c-3]
yes

Lambda expressions can be used, as expected, in non-deterministic queries as in the following example using
SWI-Prolog as the backend compiler and Markus Triska’s CLP(FD) library:

| ?- meta::map({Z}/[X,YI>>(clpfd: (Z#=X+Y)), Xs, Ys).

Xs = [1],
Ys =[] ;
Xs = [_G1369],
Ys = [_G1378],

_G1369+_G1378#=Z ;
Xs = [_G1579, _G1582],

Ys = [_G1591, _G15941,
_G1582+_G1594#=Z,
_G1579+_G15914=Z ;

Xs = [_G1789, _G1792, _G17957,

(continues on next page)

58 Chapter 1. User Manual

https://en.wikipedia.org/wiki/Lambda_calculus

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

Ys = [_G1804, _G1807, _G181@],
_G1795+_G1810#=Z,
_G1792+_G1807#=Z,
_G1789+_G1804#=7 ;

As illustrated by the above examples, lambda expression syntax reuses the ISO Prolog construct {}/1 and
the standard operators (/)/2 and (>>)/2, thus avoiding defining new operators, which is always tricky for
a portable system such as Logtalk. The operator (>>)/2 was chosen as it suggests an arrow, similar to the
syntax used in other languages such as OCaml and Haskell to connect lambda parameters with lambda
functions. This syntax was also chosen in order to simplify parsing, error checking, and compilation of
lambda expressions. The full specification of the lambda expression syntax can be found in the the language
grammar.

The compiler checks whenever possible that all variables in a lambda expression are either classified as
free variables or as lambda parameters. Non-classified variables in a lambda expression should be regarded
as a programming error. The compiler also checks if a variable is classified as both a free variable and a
lambda parameter. There are a few cases where a variable playing a dual role is intended but, in general,
this also results from a programming error. A third check verifies that no lambda parameter variable is used
elsewhere in a clause. Such cases are either programming errors, when the variable appears before the
lambda expression, or bad programming style, when the variable is used after the lambda expression. These
linter warnings are controlled by the lambda_variables flag. Note, however, that the dynamic features of the
language and lack of sufficient information at compile time may prevent the compiler of checking all uses of
lambda expressions.

Warning: Variables listed in lambda parameters must not be shared with other goals in a clause.

An optimizing meta-predicate and lambda expression compiler, based on the term-expansion mechanism, is
provided as a standard library for practical performance.

Redefining built-in predicates

Logtalk built-in predicates and Prolog built-in predicates can be redefined inside objects and categories.
Although the redefinition of Logtalk built-in predicates should be avoided, the support for redefining Pro-
log built-in predicates is a practical requirement given the different sets of proprietary built-in predicates
provided by backend Prolog systems.

The compiler supports a redefined_built_ins flag, whose default value is silent, that can be set to warning to
alert the user of any redefined Logtalk or Prolog built-in predicate.

The redefinition of Prolog built-in predicates can be combined with the conditional compilation directives
when writing portable applications where some of the supported backends don’t provide a built-in predicate
found in the other backends. As an example, consider the de facto standard list length predicate, length/
2. This predicate is provided as a built-in predicate in most but not all backends. The list library object
includes the code:

.- if(predicate_property(length(_,), built_in)).

length(List, Length) :-
{length(List, Length)}.

(continues on next page)

1.8. Predicates 59

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

.- else.

length(List, Length) :-

;- endif.

L.e. the object will use the built-in predicate when available. Otherwise, it will use the object provided
predicate definition.

The redefinition of built-in predicates can also be accomplished using predicate shorthands. This can be
useful when porting code while minimizing the changes. For example, assume that existing code uses the
format/2 de facto standard predicate for writing messages. To convert the code to use the message printing
mechanism we could write:

.- uses(logtalk, [
print_message(comment, core, Format+Arguments) as format(Format, Arguments)

.

process(Crate, Contents) :-
format('Processing crate ~w...', [Cratel),
format('Filing with ~w..."', [Contents]),

The predicate shorthand instructs the compiler to rewrite all format/2 goals as logtalk: :print_message/3
goals, thus allowing us to reuse the code without changes.

1.8.4 Definite clause grammar rules

Definite clause grammar rules (DCGs) provide a convenient notation to represent the rewrite rules common
of most grammars in Prolog. In Logtalk, definite clause grammar rules can be encapsulated in objects and
categories. Currently, the ISO/IEC WG17 group is working on a draft specification for a definite clause
grammars Prolog standard. Therefore, in the mean time, Logtalk follows the common practice of Prolog
compilers supporting definite clause grammars, extending it to support calling grammar rules contained in
categories and objects. A common example of a definite clause grammar is the definition of a set of rules for
parsing simple arithmetic expressions:

:- object(calculator).
.- public(parse/2).

parse(Expression, Value) :-
phrase(expr(Value), Expression).

+

expr(Z) --> term(X), "+", expr(Y), {Z is X
expr(Z) --> term(X), "-", expr(Y), {Z is X
expr(X) --> term(X).

Y}.
Y}.

term(Z) --> number(X), "x", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) --> number (7).

(continues on next page)

60 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

number(C) --> "+", number(C).
number(C) --> "-", number(X), {C is -X}.
number(X) --> [C], {0'0 =< C, C =< 0'9, X is C - 0'0}.

:— end_object.

The predicate phrase/2 called in the definition of predicate parse/2 above is a Logtalk built-in method,
similar to the predicate with the same name found on most Prolog compilers that support definite clause
grammars. After compiling and loading this object, we can test the grammar rules with calls such as the
following one:

| ?- calculator::parse("1+2-3%4", Result).

Result = -9
yes

In most cases, the predicates resulting from the translation of the grammar rules to regular clauses are not
declared. Instead, these predicates are usually called by using the built-in methods phrase/2 and phrase/3 as
shown in the example above. When we want to use the built-in methods phrase/2 and phrase/3, the non-
terminal used as first argument must be within the scope of the sender. For the above example, assuming
that we want the predicate corresponding to the expr//1 non-terminal to be public, the corresponding scope
directive would be:

1= public(expr//1).

The // infix operator used above tells the Logtalk compiler that the scope directive refers to a grammar rule
non-terminal, not to a predicate. The idea is that the predicate corresponding to the translation of the expr/
/1 non-terminal will have a number of arguments equal to one plus the number of additional arguments
necessary for processing the implicit difference list of tokens.

In the body of a grammar rule, we can call rules that are inherited from ancestor objects, imported from
categories, or contained in other objects. This is accomplished by using non-terminals as messages. Using a
non-terminal as a message to self allows us to call grammar rules in categories and ancestor objects. To call
grammar rules encapsulated in other objects, we use a non-terminal as a message to those objects. Consider
the following example, containing grammar rules for parsing natural language sentences:

.- object(sentence,
imports(determiners, nouns, verbs)).

;- public(parse/2).
parse(List, true) :-

phrase(sentence, List).
parse(_, false).

sentence --> noun_phrase, verb_phrase.

noun_phrase --> ::determiner, ::noun.
noun_phrase --> ::noun.

verb_phrase --> ::verb.
verb_phrase --> ::verb, noun_phrase.

(continues on next page)

1.8. Predicates 61

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

:- end_object.

The categories imported by the object would contain the necessary grammar rules for parsing determiners,
nouns, and verbs. For example:

.- category(determiners).
;- private(determiner//0).

determiner --> [the].
determiner --> [a].

:- end_category.

Along with the message sending operators ((::)/1, (::)/2, and (**)/1), we may also use other control
constructs such as (\+)/1, /0, (;)/2, (->)/2, and {}/1 in the body of a grammar. When using a backend
Prolog compiler that supports modules, we may also use the (:)/2 control construct. In addition, grammar
rules may contain meta-calls (a variable taking the place of a non-terminal), which are translated to calls of
the built-in method phrase/3.

You may have noticed that Logtalk defines {}/1 as a control construct for bypassing the compiler when
compiling a clause body goal. As exemplified above, this is the same control construct that is used in
grammar rules for bypassing the expansion of rule body goals when a rule is converted into a clause. Both
control constructs can be combined in order to call a goal from a grammar rule body, while bypassing at the
same time the Logtalk compiler. Consider the following example:

bar :-

write('bar predicate called'), nl.
:— object(bypass).

;= public(foo//0).

foo -—> {{bar}}.

:- end_object.

After compiling and loading this code, we may try the following query:

| ?- logtalk << phrase(bypass::foo, _, _).

bar predicate called
yes

This is the expected result as the expansion of the grammar rule into a clause leaves the {bar} goal un-
touched, which, in turn, is converted into the goal bar when the clause is compiled. Note that we tested the
bypass: : foo//@ non-terminal by calling the phrase/3 built-in method in the context of the logtalk built-in
object. This workaround is necessary due to the Prolog backend implementation of the phrase/3 predicate
no being aware of the Logtalk : : /2 message-sending control construct semantics.

A grammar rule non-terminal may be declared as dynamic or discontiguous, as any object predicate, using
the same Name//Arity notation illustrated above for the scope directives. In addition, grammar rule non-

62 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

terminals can be documented using the info/2 directive, as in the following example:

;- public(sentence//0).

:- info(sentence//0, [
comment is 'Rewrites sentence into noun and verb phrases.']).

1.8.5 Built-in methods

Built-in methods are built-in object and category predicates. These include methods to access message
execution context, to find sets of solutions, to inspect objects, for database handling, for term and goal
expansion, and for printing messages. Some of them are counterparts to standard Prolog built-in predicates
that take into account Logtalk semantics. Similar to Prolog built-in predicates, built-in methods cannot not
be redefined.

Logic and control methods

The !/0, true/0, fail/0, false/0, and repeat/0 standard control constructs and logic predicates are interpreted
as built-in public methods and thus can be used as messages to any object. In practice, they are only used as
messages when sending multiple messages to the same object (see the section on message broadcasting).

Execution context methods

Logtalk defines five built-in private methods to access an object execution context. These methods are in
the common usage scenarios translated to a single unification performed at compile time with a clause
head context argument. Therefore, they can be freely used without worrying about performance penalties.
When called from inside a category, these methods refer to the execution context of the object importing the
category. These methods are private and cannot be used as messages to objects.

To find the object that received the message under execution we may use the self/1 method. We may also
retrieve the object that has sent the message under execution using the sender,/1 method.

The method this/1 enables us to retrieve the name of the object for which the predicate clause whose body
is being executed is defined instead of using the name directly. This helps to avoid breaking the code if we
decide to change the object name and forget to change the name references. This method may also be used
from within a category. In this case, the method returns the object importing the category on whose behalf
the predicate clause is being executed.

Here is a short example including calls to these three object execution context methods:

:— object(test).
;- public(test/0).

test :-
this(This),
write('Calling predicate definition in "),
writeq(This), nl,
self(Self),
write('to answer a message received by '),
writeq(Self), nl,
sender (Sender),

(continues on next page)

1.8. Predicates 63

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

write('that was sent by '),
writeq(Sender), nl, nl.

:- end_object.
:- object(descendant,
extends(test)).

:- end_object.

After compiling and loading these two objects, we can try the following goal:

| ?- descendant::test.

Calling predicate definition in test

to answer a message received by descendant
that was sent by user

yes

Note that the goals self(Self), sender(Sender), and this(This), being translated to unifications with the
clause head context arguments at compile time, are effectively removed from the clause body. Therefore, a
clause such as:

predicate(Arg) :-
self(Self),
atom(Arg),

is compiled with the goal atom(Arg) as the first condition on the clause body. As such, the use of these context
execution methods do not interfere with the optimizations that some Prolog compilers perform when the first
clause body condition is a call to a built-in type-test predicate or a comparison operator.

For parametric objects and categories, the method parameter/2 enables us to retrieve current parameter
values (see the section on parametric objects for a detailed description). For example:

;= object(block(_Color)).
;- public(test/0).
test :-
parameter (1, Color),
write('Color parameter value is '),

writeq(Color), nl.

:- end_object.

An alternative to the parameter/2 predicate is to use parameter variables:

:= object(block(_Color_)).

;- public(test/0).

(continues on next page)

64 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

test :-
write('Color parameter value is '),
writeq(_Color_), nl.

:- end_object.

After compiling and loading either version of the object, we can try the following goal:

| ?- block(blue)::test.

Color parameter value is blue
yes

Calls to the parameter/2 method are translated to a compile time unification when the second argument is
a variable. When the second argument is bound, the calls are translated to a call to the built-in predicate
arg/3.

When type-checking predicate arguments, it is often useful to include the predicate execution context when
reporting an argument error. The context/1 method provides access to that context. For example, assume
a predicate foo/2 that takes an atom and an integer as arguments. We could type-check the arguments by
writing (using the library type object):

foo(A, N) :-
% type-check arguments
context(Context),
type: :check(atom, A, Context),
type: :check(integer, N, Context),
% arguments are fine; go ahead

Error handling and throwing methods

Besides the catch/3 and throw/1 methods inherited from Prolog, Logtalk also provides a set of
convenience methods to throw standard error/2 exception terms: instantiation error/0, uninstantia-
tion_error/1, type_error/2, domain_error/2, existence error/2, permission_error/3, representation_error/1,
evaluation_error/1, resource_error/1, syntax_error/1, and system_error/0.

Database methods

Logtalk provides a set of built-in methods for object database handling similar to the usual database Prolog
predicates: abolish/1, asserta/1, assertz/1, clause/2, retract/1, and retractall/1. These methods always oper-
ate on the database of the object receiving the corresponding message. When called locally, these predicates
take into account any uses/2 or use_module/2 directives that refer to the dynamic predicate being handled.
For example, in the following object, the clauses for the data/1 predicate are retracted and asserted in user
due to the uses/2 directive:

:— object(an_object).
.- uses(user, [data/1]).

;= public(some_predicate/1).

(continues on next page)

1.8. Predicates 65

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

some_predicate(Arg) :-
retractall(data()),
assertz(data(Arg)).

:- end_object.

When working with dynamic grammar rule non-terminals, you may use the built-in method expand_term/2
convert a grammar rule into a clause that can then be used with the database methods.

Meta-call methods

Logtalk supports the generalized call/1-N meta-predicate. This built-in private meta-predicate must be used
in the implementation of meta-predicates which work with closures instead of goals. In addition, Logtalk
supports the built-in private meta-predicates ignore/1, once/1, and (\+)/1. These methods cannot be used
as messages to objects.

All solutions methods

The usual all solutions meta-predicates are built-in private methods in Logtalk: bagof/3, findall/3, findall/4,
and setof/3. There is also a forall/2 method that implements generate-and-test loops. These methods cannot
be used as messages to objects.

Reflection methods

Logtalk provides a comprehensive set of built-in predicates and built-in methods for querying about entities
and predicates. Some of the information, however, requires that the source files are compiled with the
source_data flag turned on.

The reflection API supports two different views on entities and their contents, which we may call the trans-
parent box view and the black box view. In the transparent box view, we look into an entity disregarding how
it will be used and returning all information available on it, including predicate declarations and predicate
definitions. This view is supported by the entity property built-in predicates. In the black box view, we
look into an entity from a usage point-of-view using built-in methods for inspecting object operators and
predicates that are within scope from where we are making the call: current op/3, which returns operator
specifications, predicate property/2, which returns predicate properties, and current_predicate/1, which en-
ables us to query about user-defined predicate definitions. See below for a more detailed description of these
methods.

Definite clause grammar parsing methods and non-terminals

Logtalk supports two definite clause grammar parsing built-in private methods, phrase/2 and phrase/3, with
definitions similar to the predicates with the same name found on most Prolog compilers that support definite
clause grammars. These methods cannot be used as messages to objects.

Logtalk also supports phrase//1, call//1-N, and eos//0 built-in non-terminals. The call//1-N non-terminals
takes a closure (which can be a lambda expression) plus zero or more additional arguments and are processed
by appending the input list of tokens and the list of remaining tokens to the arguments.

66 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

1.8.6 Predicate properties

We can find the properties of visible predicates by calling the predicate property/2 built-in method. For
example:

| ?- bar::predicate_property(foo(_), Property).

Note that this method takes into account the predicate’s scope declarations. In the above example, the call
will only return properties for public predicates.

An object’s set of visible predicates is the union of all the predicates declared for the object with all the
built-in methods and all the Logtalk and Prolog built-in predicates.

The following predicate properties are supported:

scope(Scope)
The predicate scope (useful for finding the predicate scope with a single call to predicate_property/2)

public, protected, private
The predicate scope (useful for testing if a predicate have a specific scope)

static, dynamic
All predicates are either static or dynamic (note, however, that a dynamic predicate can only be abol-
ished if it was dynamically declared)

logtalk, prolog, foreign
A predicate can be defined in Logtalk source code, Prolog code, or in foreign code (e.g. in C)

built_in
The predicate is a built-in predicate

multifile
The predicate is declared multifile (i.e. it can have clauses defined in multiple files or entities)

meta_predicate(Template)
The predicate is declared as a meta-predicate with the specified template

coinductive(Template)
The predicate is declared as a coinductive predicate with the specified template

declared_in(Entity)
The predicate is declared (using a scope directive) in the specified entity

defined_in(Entity)
The predicate definition is looked up in the specified entity (note that this property does not necessarily
imply that clauses for the predicate exist in Entity; the predicate can simply be false as per the closed-
world assumption)

redefined_from(Entity)
The predicate is a redefinition of a predicate definition inherited from the specified entity

non_terminal (NonTerminal//Arity)
The predicate resulted from the compilation of the specified grammar rule non-terminal

alias_of (Predicate)
The predicate (name) is an alias for the specified predicate

alias_declared_in(Entity)
The predicate alias is declared in the specified entity

synchronized
The predicate is declared as synchronized (i.e. it’s a deterministic predicate synchronized using a mutex
when using a backend Prolog compiler supporting a compatible multi-threading implementation)

1.8. Predicates 67

The Logtalk Handbook, Release v3.60.0

Some properties are only available when the entities are defined in source files and when those source files
are compiled with the source_data flag turned on:
inline
The predicate definition is inlined
auxiliary

The predicate is not user-defined but rather automatically generated by the compiler or the term-
expansion mechanism

mode (Mode, Solutions)
Instantiation, type, and determinism mode for the predicate (which can have multiple modes)

info(ListOfPairs)
Documentation key-value pairs as specified in the user-defined info/2 directive

number_of_clauses(N)
The number of clauses for the predicate existing at compilation time (note that this property is not
updated at runtime when asserting and retracting clauses for dynamic predicates)

number_of_rules(N)
The number of rules for the predicate existing at compilation time (note that this property is not
updated at runtime when asserting and retracting clauses for dynamic predicates)

declared_in(Entity, Line)
The predicate is declared (using a scope directive) in the specified entity in a source file at the specified
line (if applicable)

defined_in(Entity, Line)
The predicate is defined in the specified entity in a source file at the specified line (if applicable)

redefined_from(Entity, Line)
The predicate is a redefinition of a predicate definition inherited from the specified entity, which is
defined in a source file at the specified line (if applicable)

alias_declared_in(Entity, Line)
The predicate alias is declared in the specified entity in a source file at the specified line (if applicable)

The properties declared_in/1-2, defined_in/1-2, and redefined_from/1-2 do not apply to built-in methods
and Logtalk or Prolog built-in predicates. Note that if a predicate is declared in a category imported by
the object, it will be the category name — not the object name — that will be returned by the property
declared_in/1. The same is true for protocol declared predicates.

Some properties such as line numbers are only available when the entity holding the predicates is defined
in a source file compiled with the source data flag turned on. Moreover, line numbers are only supported
in backend Prolog compilers that provide access to the start line of a read term. When such support is not
available, the value -1 is returned for the start and end lines.

1.8.7 Finding declared predicates

We can find, by backtracking, all visible user predicates by calling the current predicate/1 built-in method.
This method takes into account predicate scope declarations. For example, the following call will only return
user predicates that are declared public:

| ?- some_object::current_predicate(Name/Arity).

The predicate property non_terminal/1 may be used to retrieve all grammar rule non-terminals declared for
an object. For example:

68 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

current_non_terminal (Object, Name//Args) :-
Object::current_predicate(Name/Arity),
functor(Predicate, Functor, Arity),
Object::predicate_property(Predicate, non_terminal(Name//Args)).

Usually, the non-terminal and the corresponding predicate share the same functor but users should not rely
on this always being true.

1.8.8 Calling Prolog predicates

Logtalk is designed for both robustness and portability. In the context of calling Prolog predicates, robustness
requires that the compilation of Logtalk source code must not have accidental dependencies on Prolog code
that happens to be loaded at the time of the compilation. One immediate consequence is that only Prolog
built-in predicates are visible from within objects and categories. But Prolog systems provide a widely di-
verse set of built-in predicates, easily rising portability issues. Relying on non-standard predicates is often
unavoidable, however, due to the narrow scope of Prolog standards. Logtalk applications may also require
calling user-defined Prolog predicates, either in user or in Prolog modules.

Calling Prolog built-in predicates

In predicate clauses and object initialization/1 directives, predicate calls that are not prefixed with a
message sending, super call, or module qualification operator (::, **, or :), are compiled to either calls to
local predicates or as calls to Logtalk/Prolog built-in predicates. A predicate call is compiled as a call to a
local predicate if the object (or category) contains a scope directive, a multifile directive, a dynamic directive,
or a definition for the called predicate. When that is not the case, the compiler checks if the call corresponds
to a Logtalk or Prolog built-in predicate. Consider the following example:

foo :-

L

write(bar),

The call to the write/1 predicate will be compiled as a call to the corresponding Prolog standard built-in
predicate unless the object (or category) containing the above definition also contains a predicate named
write/1 or a directive for the predicate.

When calling non-standard Prolog built-in predicates or using non-standard Prolog arithmetic functions, we
may run into portability problems while trying your applications with different backend Prolog compilers. We
can use the compiler portability flag to generate warnings for calls to non-standard predicates and arithmetic
functions. We can also help document those calls using the uses/2 directive. For example, a few Prolog
systems provide an atom_string/2 non-standard predicate. We can write (in the object or category calling
the predicate):

.- uses(user, [atom_string/21])

This directive is based on the fact that built-in predicates are visible in plain Prolog (i.e. in user). Besides
helping to document the dependency on a non-standard built-in predicate, this directive will also silence the
compiler portability warning.

1.8. Predicates 69

The Logtalk Handbook, Release v3.60.0

Calling Prolog non-standard built-in meta-predicates

Prolog built-in meta-predicates may only be called locally within objects or categories, i.e. they cannot be
used as messages. Compiling calls to non-standard, Prolog built-in meta-predicates can be tricky, however,
as there is no standard way of checking if a built-in predicate is also a meta-predicate and finding out which
are its meta-arguments. But Logtalk supports overriding the original meta-predicate template when not
programmatically available or usable. For example, assume a det_call/1 Prolog built-in meta-predicate that
takes a goal as argument. We can add to the object (or category) calling it the directive:

;- meta_predicate(user::det_call(0)).

Another solution is to explicitly declare all non-standard built-in Prolog meta-predicates in the corresponding
adapter file using the internal predicate '$1gt_prolog_meta_predicate'/3. For example:

'$lgt_prolog_meta_predicate' (det_call(_), det_call(?), predicate).

The third argument can be either the atom predicate or the atom control_construct, a distinction that is
useful when compiling in debug mode.

Calling Prolog foreign predicates

Prolog systems often support defining foreign predicates, i.e. predicates defined using languages other than
Prolog using a foreign language interface. There isn’t, however, any standard for defining, making available,
and recognizing foreign predicates. From a Logtalk perspective, the two most common scenarios are calling
a foreign predicate (from within an object or a category) and making a set of foreign predicates available as
part of an object (or category) protocol. Assuming, as this is the most common case, that foreign predicates
are globally visible once made available (using a Prolog system specific loading or linking procedure), we can
simply call them as user-defined plain predicates, as explained in the next section. When defining an object
(or category) that makes available foreign predicates, the advisable solution is to name the predicates after
the object (or category) and then define object (or category) predicates that call the foreign predicates. Most
backend adapter files include support for recognizing foreign predicates that allows the Logtalk compiler to
inline calls to the predicates (thus avoiding call indirection overheads).

Calling Prolog user-defined plain predicates

User-defined Prolog plain predicates (i.e. predicates that are not defined in a Prolog module) can be called
from within objects or categories by sending the corresponding message to user. For example:

foo :-

L

user: :bar,

In alternative, we can use the uses/2 directive and write:

.- uses(user, [bar/0]).

foo :-

)

bar,

70 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

Note that user is a pseudo-object in Logtalk containing all predicate definitions that are not encapsulated
(either in a Logtalk entity or a Prolog module).

When the Prolog predicate is not a meta-predicate, we can also use the {}/1 compiler bypass control con-
struct. For example:

foo :-

{bar},

But note that in this case the reflection API will not record the dependency of the foo/@ predicate on the
Prolog bar/e predicate as we are effectively bypassing the compiler.

Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by using explicit qualification. For
example:

foo :-

0

module:bar,

You can also use in alternative the use _module/2 directive to call the module predicates using implicit quali-
fication:

;- use_module(module, [bar/0]).

foo :-

L

bar,

Note that the first argument of the use_module/2 directive, when used within an object or a category, is a
module name, not a file specification (also be aware that Prolog modules are sometimes defined in files with
names that differ from the module names).

As loading a Prolog module varies between Prolog systems, the actual loading directive or goal is preferably
done from the application loader file. An advantage of this approach is that it contributes to a clean separation
between loading and using a resource with the loader file being the central point that loads all application
resources (complex applications often use a hierarchy of loader files but the main idea remains the same).

As an example, assume that we need to call predicates defined in a CLP(FD) Prolog library, which can be
loaded using library(clpfd) as the file specification. In the loader file, we would add:

:- use_module(library(clpfd), [1).

Specifying an empty import list is often used to avoid adding the module exported predicates to plain Prolog.
In the objects and categories we can then call the library predicates, using implicit or explicit qualification,
as explained. For example:

;- object(puzzle).

;= public(puzzle/1).

(continues on next page)

1.8. Predicates 71

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

;= use_module(clpfd, [
all_different/1, ins/2, label/1,
(#=)/2, (#\=)/2,
op(700, xfx, #=), op(700, xfx, #\=)
D.

puzzle([S,E,N,D] + [M,0,R,E] = [M,O,N,E,Y]) :-
vars = [S,E,N,D,M,0,R,Y],
Vars ins 0..9,
all_different(Vars),
Sx1000 + Ex100 + Nx10 + D +
Mx1000 + 0x100 + Rx10 + E #=
M*x10000 + 0%1000 + Nx100 + Ex10 + Y,
M#\=0, S #\= 0,
label([M,0,N,E,Y]).

;- end_object.

Warning: The actual module code must be loaded prior to compilation of Logtalk source code that uses
it. In particular, programmers should not expect that the module be auto-loaded (including when using
a backend Prolog compiler that supports an auto-loading mechanism).

The module identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category. In this case, dynamic binding will necessarily be used for all listed predicates
(and non-terminals). The parameter variable must be instantiated at runtime when the calls are made.

Calling Prolog module meta-predicates

The Logtalk library provides implementations of common meta-predicates, which can be used in place of
module meta-predicates (e.g. list mapping meta-predicates). If that is not the case, the Logtalk compiler
may need help to understand the module meta-predicate templates. Despite some recent progress in stan-
dardization of the syntax of meta_predicate/1 directives and of the meta_predicate/1 property returned
by the predicate_property/2 reflection predicate, portability is still a major problem. Thus, Logtalk allows
the original meta_predicate/1 directive to be overridden with a local directive that Logtalk can make sense
of. Note that Logtalk is not based on a predicate prefixing mechanism as found in module systems. This
fundamental difference precludes an automated solution at the Logtalk compiler level.

As an example, assume that you want to call from an object (or a category) a module meta-predicate with
the following meta-predicate directive:

;= module(foo, [bar/2]1).

;- meta_predicate(bar(*, :)).

The : meta-argument specifier is ambiguous. It tell us that the second argument of the meta-predicate is
module sensitive but it does not tell us how. Some legacy module libraries and some Prolog systems use : to
mean 0 (i.e. a meta-argument that will be meta-called). Some others use : for meta-arguments that are not
meta-called but that still need to be augmented with module information. Whichever the case, the Logtalk
compiler doesn’t have enough information to unambiguously parse the directive and correctly compile the
meta-arguments in the meta-predicate call. Therefore, the Logtalk compiler will generate an error stating

72 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

that : is not a valid meta-argument specifier when trying to compile a foo:bar/2 goal. There are two
alternative solutions for this problem. The advised solution is to override the meta-predicate directive by
writing, inside the object (or category) where the meta-predicate is called:

;- meta_predicate(foo:bar(*, *)).

or:

:- meta_predicate(foo:bar(*, 0)).

depending on the true meaning of the second meta-argument. The second alternative, only usable when
the meta-argument can be handled as a normal argument, is to simply use the {}/1 compiler bypass control
construct to call the meta-predicate as-is:

;= {foo:bar(..., ...)},

The downside of this alternative is that it hides the dependency on the module library from the reflection
API and thus from the developer tools.

1.8.9 Defining Prolog multifile predicates

Some Prolog module libraries, e.g. constraint packages, expect clauses for some library predicates to be
defined in other modules. This is accomplished by declaring the library predicate multifile and by explicitly
prefixing predicate clause heads with the library module identifier. For example:

:— multifile(clpfd:run_propagator/2).
clpfd:run_propagator(..., ...) :-

Logtalk supports the definition of Prolog module multifile predicates in objects and categories. While the
clause head is compiled as-is, the clause body is compiled in the same way as a regular object or category
predicate, thus allowing calls to local object or category predicates. For example:

;- object(...).

;- multifile(clpfd:run_propagator/2).
clpfd:run_propagator(..., ...) :-

:- end_object.

The Logtalk compiler will print a warning if the multifile/1 directive is missing. These multifile predicates
may also be declared dynamic using the same Module:Name/Arity notation.

1.8. Predicates 73

The Logtalk Handbook, Release v3.60.0

1.8.10 Asserting and retracting Prolog predicates

To assert and retract clauses for Prolog dynamic predicates, we can use an explicitly qualified module argu-
ment. For example:

:- object(...).
;= dynamic(m:bar/1).
foo(X) :-

retractall(m:bar()),
assertz(m:bar (X)),

:- end_object.

In alternative, we can use use_module/2 directives to declare the module predicates. For example:

:— object(...).

:— use_module(m, [bar/1]).
;= dynamic(m:bar/1).

foo(X) :-
% retract and assert bar/1 clauses in module m
retractall(bar()),
assertz(bar(X)),

:— end_object.

When the Prolog dynamic predicates are defined in user, the recommended and most portable practice (as
not all backends support a module system) is to use a uses/2 directive:

:- object(...).

.- uses(user, [bar/1]).
;- dynamic(user::bar/1).

foo(X) :-
% retract and assert bar/1 clauses in user
retractall(bar()),
assertz(bar (X)),

:- end_object.

Note that in the alternatives using uses/2 or use_module/2 directives, the argument of the database handling
predicates must be know at compile time. If that is not the case, you must use instead either an explicitly-
qualified argument or the {}/1 control construct. For example:

:- object(...).

add(X) :-

(continues on next page)

74 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

% assert clause X in module m
assertz(m:X),

remove(Y) :-
% retract all clauses in user whose head unifies with Y
{retractall(Y)},

:- end_object.

1.9 Inheritance

The inheritance mechanisms found on object-oriented programming languages allow the specialization of
previously defined objects, avoiding the unnecessary repetition of code and allowing the definition of com-
mon functionality for sets of objects. In the context of logic programming, we can interpret inheritance as
a form of theory extension: an object will virtually contain, besides its own predicates, all the predicates
inherited from other objects that are not redefined locally. Inheritance is not, however, the only mechanism
for theory extension. Logtalk also supports composition using categories.

Logtalk uses a depth-first lookup procedure for finding predicate declarations and predicate definitions, as
explained below, when a message is sent to an object. The lookup procedures locate the entity holding the
predicate declaration and the entity holding the predicate definition using the predicate name and arity. The
alias/2 predicate directive may be used for defining alternative names for inherited predicates, for solving
inheritance conflicts, and for giving access to all inherited definitions (thus overriding the default lookup
procedure).

The lookup procedures are used when sending a message (using the (::)/2, (::)/1, and []/1 control con-
structs) and when making super calls (using the (™ ™)/1 control construct). The exact details of the lookup
procedures depend on the role played by the object receiving the message or making the super call, as
explained next. The lookup procedures are also used by the current predicate/1 and predicate property/2
reflection predicates.

1.9.1 Protocol inheritance

Protocol inheritance refers to the inheritance of predicate declarations (scope directives). These can be con-
tained in objects, protocols, or categories. Logtalk supports single and multi-inheritance of protocols: an
object or a category may implement several protocols and a protocol may extend several protocols.

Lookup order for prototype hierarchies

The lookup order for predicate declarations is first the object, second the implemented protocols (and the
protocols that these may extend), third the imported categories (and the protocols that they may implement),
and finally the objects that the object extends (following their declaration order). This lookup is performed
in depth-first order. When an object inherits two different declarations for the same predicate, by default,
only the first one will be considered.

1.9. Inheritance 75

The Logtalk Handbook, Release v3.60.0

Lookup order for class hierarchies

The lookup order for predicate declarations is first the object classes (following their declaration order), sec-
ond the classes implemented protocols (and the protocols that these may extend), third the classes imported
categories (and the protocols that they may implement), and finally the superclasses of the object classes.
This lookup is performed in depth-first order. If the object inherits two different declarations for the same
predicate, by default, only the first one will be considered.

1.9.2 Implementation inheritance

Implementation inheritance refers to the inheritance of predicate definitions. These can be contained in
objects or in categories. Logtalk supports multi-inheritance of implementation: an object may import several
categories or extend, specialize, or instantiate several objects.

Lookup order for prototype hierarchies

The lookup order for predicate definitions is similar to the lookup for predicate declarations except that
implemented protocols are ignored (as they can only contain predicate directives).

Lookup order for class hierarchies

The lookup order for predicate definitions is similar to the lookup for predicate declarations except that
implemented protocols are ignored (as they can only contain predicate directives) and that the lookup starts
at the instance itself (that received the message) before proceeding, if no predicate definition is found there,
to the instance classes imported categories and then to the class superclasses.

Redefining inherited predicate definitions

When we define a predicate that is already inherited from an ancestor object or an imported category, the
inherited definition is hidden by the new definition. This is called inheritance overriding: a local definition
overrides any inherited definitions. For example, assume that we have the following two objects:

:- object(root).

;= public(bar/1).
bar(root).

;= public(foo/1).
foo(root).

:- end_object.

:- object(descendant,
extends(root)).
foo(descendant) .

:- end_object.

76 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

After compiling and loading these objects, we can check the overriding behavior by trying the following

queries:

| ?- root::(bar(Bar), foo(Foo0)).

Bar = root
Foo = root
yes

| ?- descendant:: (bar(Bar), foo(Foo)).

Bar = root
Foo = descendant
yes

However, we can explicitly code other behaviors. Some examples follow.

Specializing inherited predicate definitions

Specialization of inherited definitions: the new definition calls the inherited definition and makes additional
calls. This is accomplished by calling the (™ ™)/1 super call operator in the new definition. For example,
assume a init/@ predicate that must account for object specific initializations along the inheritance chain:

:- object(root).
;= public(init/0).

init :-
write('root init'), nl.

end_object.

:- object(descendant,
extends(root)).

init :-
write('descendant init'), nl,
Ainit.

end_object.

| ?- descendant::init.

descendant init
root init
yes

1.9. Inheritance

77

The Logtalk Handbook, Release v3.60.0

Union of inherited and local predicate definitions

Union of the new with the inherited definitions: all the definitions are taken into account, the calling order
being defined by the inheritance mechanisms. This can be accomplished by writing a clause that just calls,
using the (™ 7)/1 super call operator, the inherited definitions. The relative position of this clause among
the other definition clauses sets the calling order for the local and inherited definitions. For example:

object(root).
;- public(foo/1).

foo(1).
foo(2).

:— end_object.

:- object(descendant,
extends(root)).
foo(3).
foo(Foo) :-

**foo(Foo).

:- end_object.

| ?- descendant::foo(Foo).

Foo = 3 ;
Foo =1 ;
Foo = 2 ;
no

Selective inheritance of predicate definitions

The selective inheritance of predicate definitions (also known as differential inheritance) is normally used in
the representation of exceptions to inherited default definitions. We can use the (™ ™)/1 super call operator
to test and possibly reject some of the inherited definitions. A common example is representing flightless
birds:

object(bird).
;= public(mode/1).

mode (walks).
mode(flies).

end_object.

object(penguin,
extends(bird)).

(continues on next page)

78 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

mode (swims).

mode (Mode) :-
**mode (Mode),
Mode \== flies.

:- end_object.

| ?- penguin::mode(Mode).

Mode = swims ;
Mode = walks ;
no

1.9.3 Public, protected, and private inheritance

To make all public predicates declared via implemented protocols, imported categories, or ancestor objects
protected predicates or to make all public and protected predicates private predicates we prefix the entity’s

name with the corresponding keyword. For example:

:— object(Object,
implements(private: :Protocol)).

% all the Protocol public and protected

% predicates become private predicates
% for the Object clients

:- end_object.

or:

:- object(Class,
specializes(protected: :Superclass)).

% all the Superclass public predicates become
% protected predicates for the Class clients

:— end_object.

Omitting the scope keyword is equivalent to using the public scope keyword. For example:

:— object(Object,
imports(public::Category)).

:- end_object.

1.9. Inheritance 79

The Logtalk Handbook, Release v3.60.0

This is the same as:

:- object(Object,
imports(Category)).

:- end_object.

This way we ensure backward compatibility with older Logtalk versions and a simplified syntax when pro-
tected or private inheritance are not used.

1.9.4 Multiple inheritance

Logtalk supports multi-inheritance by enabling an object to extend, instantiate, or specialize more than one
object. Likewise, a protocol may extends multiple protocols and a category may extend multiple categories.
In this case, the depth-first lookup algorithms described above traverse the list of entities per relation from
left to right. Consider as an example the following object opening directive:

:- object(foo,
extends((bar, baz))).

The lookup procedure will look first into the parent object bar and its related entities before looking into the
parent object baz. The alias/2 predicate directive can always be used to solve multi-inheritance conflicts.
It should also be noted that the multi-inheritance support does not affect performance when we use single-
inheritance.

1.9.5 Composition versus multiple inheritance

It is not possible to discuss inheritance mechanisms without referring to the long and probably endless de-
bate on single versus multiple inheritance. The single inheritance mechanism can be implemented efficiently
but it imposes several limitations on reusing, even if the multiple characteristics we intend to inherit are or-
thogonal. On the other hand, the multiple inheritance mechanisms are attractive in their apparent capability
of modeling complex situations. However, they include a potential for conflict between inherited definitions
whose variety does not allow a single and satisfactory solution for all the cases.

No solution that we might consider satisfactory for all the problems presented by the multiple inheritance
mechanisms has been found. From the simplicity of some extensions that use the Prolog search strategy
like [McCabe92] or [Moss94] and to the sophisticated algorithms of CLOS [Bobrow et al 88], there is no
adequate solution for all the situations. Besides, the use of multiple inheritance carries some complex prob-
lems in the domain of software engineering, particularly in the reuse and maintenance of the applications.
All these problems are substantially reduced if we preferably use in our software development composition
mechanisms instead of specialization mechanisms [Taenzer89]. Multiple inheritance is best used as an anal-
ysis and project abstraction, rather than as an implementation technique [Shan et al 93]. Note that Logtalk
provides first-class support for composition using categories.

80 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

1.10 Event-driven programming

The addition of event-driven programming capacities to the Logtalk language [Moura94] is based on a simple
but powerful idea:

The computations must result, not only from message sending, but also from the observation of
message sending.

The need to associate computations to the occurrence of events was very early recognized in knowl-
edge representation languages, programming languages [Stefik et al 86], [Moon86], operative systems
[Tanenbaum87], and graphical user interfaces.

With the integration between object-oriented and event-driven programming, we intend to achieve the fol-
lowing goals:

* Minimize the coupling between objects. An object should only contain what is intrinsic to it. If an
object observes another object, that means that it should depend only on the public protocol of the
object observed and not on the implementation of that protocol.

* Provide a mechanism for building reflexive systems in Logtalk based on the dynamic behavior of objects
in complement to the reflective information on object predicates and relations.

* Provide a mechanism for easily defining method pre- and post-conditions that can be toggled using the
events compiler flag. The pre- and post-conditions may be defined in the same object containing the
methods or distributed between several objects acting as method monitors.

* Provide a publish-subscribe mechanism where public messages play the role of events.

1.10.1 Definitions

The words event and monitor have multiple meanings in computer science. To avoid misunderstandings, we
start by defining them in the Logtalk context.

Event

In an object-oriented system, all computations start through message sending. It thus becomes quite natural
to declare that the only event that can occur in this kind of system is precisely the sending of a message. An
event can thus be represented by the ordered tuple (Object, Message, Sender).

If we consider message processing an indivisible activity, we can interpret the sending of a message and the
return of the control to the object that has sent the message as two distinct events. This distinction allows us
to have a more precise control over a system dynamic behavior. In Logtalk, these two types of events have
been named before and after, respectively for sending a message and for returning of control to the sender.
Therefore, we refine our event representation using the ordered tuple (Event, Object, Message, Sender).

The implementation of events in Logtalk enjoys the following properties:

Independence between the two types of events
We can choose to watch only one event type or to process each one of the events associated to a
message sending in an independent way.

All events are automatically generated by the message sending mechanism
The task of generating events is transparently accomplished by the message sending mechanism. The
user only needs to define the events that will be monitored.

The events watched at any moment can be dynamically changed during program execution
The notion of event allows the user not only to have the possibility of observing, but also of controlling
and modifying an application behavior, namely by dynamically changing the observed events during

1.10. Event-driven programming 81

The Logtalk Handbook, Release v3.60.0

program execution. It is our goal to provide the user with the possibility of modeling the largest
number of situations.

Monitor

Complementary to the notion of event is the notion of monitor. A monitor is an object that is automatically
notified by the message sending mechanism whenever a registered event occurs. Any object that defines the
event-handling predicates can play the role of a monitor.

The implementation of monitors in Logtalk enjoys the following properties:

Any object can act as a monitor
The monitor status is a role that any object can perform during its existence. The minimum protocol
necessary is declared in the built-in monitoring protocol. Strictly speaking, the reference to this proto-
col is only needed when specializing event handlers. Nevertheless, it is considered good programming
practice to always refer the protocol when defining event handlers.

Unlimited number of monitors for each event
Several monitors can observe the same event because of distinct reasons. Therefore, the number of
monitors per event is bounded only by the available computing resources.

The monitor status of an object can be dynamically changed in runtime
This property does not imply that an object must be dynamic to act as a monitor (the monitor status of
an object is not stored in the object).

Event handlers cannot modify the event arguments
Notably, if the message contains unbound variables, these cannot be bound by the calls to the monitor
event handlers.

1.10.2 Event generation

Assuming that the events flag is set to allow for the object (or category) sending the messages we want to
observe, for each message that is sent using the (::)/2 control construct, the runtime system automatically
generates two events. The first — before event — is generated when the message is sent. The second — after
event — is generated after the message has successfully been executed.

Note that self messages (using the (::)/1 control construct) or super calls (using the (™ ™)/1 control con-
struct) don’t generate events.

1.10.3 Communicating events to monitors

Whenever a spied event occurs, the message sending mechanism calls the corresponding event handlers
directly for all registered monitors. These calls are internally made bypassing the message sending primitives
in order to avoid potential endless loops. The event handlers consist in user definitions for the public
predicates declared in the built-in monitoring protocol (see below for more details).

82 Chapter 1. User Manual

../../docs/monitoring_0.html#monitoring-0
../../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.60.0

1.10.4 Performance concerns

Ideally, the existence of monitored messages should not affect the processing of the remaining messages.
On the other hand, for each message that has been sent, the system must verify if its respective event is
monitored. Whenever possible, this verification should be performed in constant time and independently of
the number of monitored events. The events representation takes advantage of the first argument indexing
performed by most Prolog compilers, which ensure — in the general case — access in constant time.

Event-support can be turned off on a per-object (or per-category) basis using the events compiler flag. With
event-support turned off, Logtalk uses optimized code for processing message sending calls that skips the
checking of monitored events, resulting in a small but measurable performance improvement.

1.10.5 Monitor semantics

The established semantics for monitors actions consists on considering its success as a necessary condition
so that a message can succeed:

* All actions associated to events of type before must succeed, so that the message processing can start.

* All actions associated to events of type after also have to succeed so that the message itself succeeds.
The failure of any action associated to an event of type after forces backtracking over the message
execution (the failure of a monitor never causes backtracking over the preceding monitor actions).

Note that this is the most general choice. If we wish a transparent presence of monitors in a message
processing, we just have to define the monitor actions in such a way that they never fail (which is very
simple to accomplish).

1.10.6 Activation order of monitors

Ideally, whenever there are several monitors defined for the same event, the calling order should not inter-
fere with the result. However, this is not always possible. In the case of an event of type before, the failure
of a monitor prevents a message from being sent and prevents the execution of the remaining monitors. In
case of an event of type after, a monitor failure will force backtracking over message execution. Differ-
ent orders of monitor activation can therefore lead to different results if the monitor actions imply object
modifications unrecoverable in case of backtracking. Therefore, the order for monitor activation should be
assumed as arbitrary. In effect, to assume or to try to impose a specific sequence requires a global knowledge
of an application dynamics, which is not always possible. Furthermore, that knowledge can reveal itself as
incorrect if there is any changing in the execution conditions. Note that, given the independence between
monitors, it does not make sense that a failure forces backtracking over the actions previously executed.

1.10.7 Event handling

Logtalk provides three built-in predicates for event handling. These predicates support defining, enumerat-
ing, and abolishing events. Applications that use events extensively usually define a set of objects that use
these built-in predicates to implement more sophisticated and higher-level behavior.

1.10. Event-driven programming 83

The Logtalk Handbook, Release v3.60.0

Defining new events

New events can be defined using the define_events/5 built-in predicate:

| ?- define_events(Event, Object, Message, Sender, Monitor).

Note that if any of the Event, Object, Message, and Sender arguments is a free variable or contains free
variables, this call will define a set of matching events.

Abolishing defined events

Events that are no longer needed may be abolished using the abolish_events/5 built-in predicate:

| ?- abolish_events(Event, Object, Message, Sender, Monitor).

If called with free variables, this goal will remove all matching events.

Finding defined events

The events that are currently defined can be retrieved using the current event/5 built-in predicate:

| ?- current_event(Event, Object, Message, Sender, Monitor).

Note that this predicate will return sets of matching events if some of the returned arguments are free
variables or contain free variables.

Defining event handlers

The monitoring built-in protocol declares two public predicates, before/3 and after/3, that are automatically
called to handle before and after events. Any object that plays the role of monitor must define one or both
of these event handler methods:

before(Object, Message, Sender) :-

after(Object, Message, Sender) :-

The arguments in both methods are instantiated by the message sending mechanism when a monitored event
occurs. For example, assume that we want to define a monitor called tracer that will track any message
sent to an object by printing a describing text to the standard output. Its definition could be something like:

.- object(tracer,
% built-in protocol for event handler methods
implements(monitoring)).

before(Object, Message, Sender) :-
write('call: '), writeq(Object),
write(' <-- '), writeq(Message),
write(' from '), writeq(Sender), nl.

after(Object, Message, Sender) :-

(continues on next page)

84 Chapter 1. User Manual

../../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

write('exit: '), writeq(Object),
write(' <-- '), writeq(Message),
write(' from '), writeq(Sender), nl.

:- end_object.

Assume that we also have the following object:

:- object(any).

.= public(bar/1).
bar(bar).

;= public(foo/1).
foo(foo).

:- end_object.

After compiling and loading both objects and setting the events flag to allow, we can start tracing every
message sent to any object by calling the define_events/5 built-in predicate:

| ?- set_logtalk_flag(events, allow).
yes
| ?- define_events(_, _, _, _, tracer).

yes

From now on, every message sent from user to any object will be traced to the standard output stream:

| ?- any::bar(X).
call: any <-- bar(X) from user
exit: any <-- bar(bar) from user

X = bar

yes

To stop tracing, we can use the abolish _events/5 built-in predicate:

| ?- abolish_events(_, _, _, _, tracer).

yes

The monitoring protocol declares the event handlers as public predicates. If necessary, protected or private
implementation of the protocol may be used in order to change the scope of the event handler predicates.
Note that the message sending processing mechanism is able to call the event handlers irrespective of their
scope. Nevertheless, the scope of the event handlers may be restricted in order to prevent other objects from
calling them.

The pseudo-object user can also act as a monitor. This object expects the before/3 and after/3 predicates to
be defined in the plain Prolog database. To avoid predicate existence errors when setting user as a monitor,

1.10. Event-driven programming 85

../../docs/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.60.0

this object declares the predicates multifile. Thus, any plain Prolog code defining the predicates should
include the directives:

;- multifile(before/3).
;- multifile(after/3).

1.11 Multi-threading programming

Logtalk provides experimental support for multi-threading programming on selected Prolog compilers.
Logtalk makes use of the low-level Prolog built-in predicates that implement message queues and interface
with POSIX threads and mutexes (or a suitable emulation), providing a small set of high-level predicates and
directives that allows programmers to easily take advantage of modern multi-processor and multi-core com-
puters without worrying about the tricky details of creating, synchronizing, or communicating with threads,
mutexes, and message queues. Logtalk multi-threading programming integrates with object-oriented pro-
gramming providing a threaded engines API, enabling objects and categories to prove goals concurrently, and
supporting synchronous and asynchronous messages.

1.11.1 Enabling multi-threading support

Multi-threading support may be disabled by default. It can be enabled on the Prolog adapter files of sup-
ported compilers by setting the read-only threads compiler flag to supported.

1.11.2 Enabling objects to make multi-threading calls

The threaded/0 object directive is used to enable an object to make multi-threading calls:

.- threaded.

1.11.3 Multi-threading built-in predicates

Logtalk provides a small set of built-in predicates for multi-threading programming. For simple tasks where
you simply want to prove a set of goals, each one in its own thread, Logtalk provides a threaded/1 built-in
predicate. The remaining predicates allow for fine-grained control, including postponing retrieving of thread
goal results at a later time, supporting non-deterministic thread goals, and making one-way asynchronous
calls. Together, these predicates provide high-level support for multi-threading programming, covering most
common use cases.

Proving goals concurrently using threads

A set of goals may be proved concurrently by calling the Logtalk built-in predicate threaded/1. Each goal in
the set runs in its own thread.

When the threaded/1 predicate argument is a conjunction of goals, the predicate call is akin to and-
parallelism. For example, assume that we want to find all the prime numbers in a given interval, [N, M].
We can split the interval in two parts and then span two threads to compute the prime numbers in each
sub-interval:

86 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

prime_numbers(N, M, Primes) :-
M >N,
N1 is N+ (M - N) // 2,
N2 is N1 + 1,
threaded((
prime_numbers(N2, M, [], Acc),
prime_numbers(N, N1, Acc, Primes)

).

prime_numbers(N, M, Acc, Primes) :-

The threaded/1 call terminates when the two implicit threads terminate. In a computer with two or more
processors (or with a processor with two or more cores) the code above can be expected to provide better
computation times when compared with single-threaded code for sufficiently large intervals.

When the threaded/1 predicate argument is a disjunction of goals, the predicate call is akin to or-parallelism,
here reinterpreted as a set of goals competing to find a solution. For example, consider the different methods
that we can use to find the roots of real functions. Depending on the function, some methods will faster than
others. Some methods will converge into the solution while others may diverge and never find it. We can
try all the methods simultaneously by writing:

find_root(Function, A, B, Error, Zero) :-
threaded((
bisection: :find_root(Function, A, B, Error, Zero)
; newton: :find_root(Function, A, B, Error, Zero)
; muller::find_root(Function, A, B, Error, Zero)

).

The above threaded/1 goal succeeds when one of the implicit threads succeeds in finding the function root,
leading to the termination of all the remaining competing threads.

The threaded/1 built-in predicate is most useful for lengthy, independent deterministic computations where
the computational costs of each goal outweigh the overhead of the implicit thread creation and management.

Proving goals asynchronously using threads

A goal may be proved asynchronously using a new thread by calling the threaded call/1-2 built-in predicate
. Calls to this predicate are always true and return immediately (assuming a callable argument). The term
representing the goal is copied, not shared with the thread. The thread computes the first solution to the
goal, posts it to the implicit message queue of the object from where the threaded_call/1 predicate was
called, and suspends waiting for either a request for an alternative solution or for the program to commit to
the current solution.

The results of proving a goal asynchronously in a new thread may be later retrieved by calling the
threaded_exit/1-2 built-in predicate within the same object where the call to the threaded_call/1 predi-
cate was made. The threaded_exit/1 calls suspend execution until the results of the threaded_call/1 calls
are sent back to the object message queue.

The threaded_exit/1 predicate allow us to retrieve alternative solutions through backtracking (if you want
to commit to the first solution, you may use the threaded once/1-2 predicate instead of the threaded_call/1
predicate). For example, assuming a lists object implementing the usual member/2 predicate, we could
write:

1.11. Multi-threading programming 87

The Logtalk Handbook, Release v3.60.0

| ?- threaded_call(lists::member(X, [1,2,31)).

X = _G189
yes

| ?- threaded_exit(lists::member(X, [1,2,31)).

> X X
1
N

no

In this case, the threaded_call/1 and the threaded_exit/1 calls are made within the pseudo-object user.
The implicit thread running the lists: :member/2 goal suspends itself after providing a solution, waiting for
a request to an alternative solution; the thread is automatically terminated when the runtime engine detects
that backtracking to the threaded_exit/1 call is no longer possible.

Calls to the threaded_exit/1 predicate block the caller until the object message queue receives the reply to
the asynchronous call. The predicate threaded peek/1-2 may be used to check if a reply is already available
without removing it from the thread queue. The threaded_peek/1 predicate call succeeds or fails immedi-
ately without blocking the caller. However, keep in mind that repeated use of this predicate is equivalent to
polling a message queue, which may hurt performance.

Be careful when using the threaded_exit/1 predicate inside failure-driven loops. When all the solutions
have been found (and the thread generating them is therefore terminated), re-calling the predicate will
generate an exception. Note that failing instead of throwing an exception is not an acceptable solution as it
could be misinterpreted as a failure of the threaded_call/1 argument.

The example on the previous section with prime numbers could be rewritten using the threaded_call/1 and
threaded_exit/1 predicates:

prime_numbers(N, M, Primes) :-

M >N,
NT is N+ (M - N) // 2,
N2 is N1 + 1,

threaded_call (prime_numbers(N2, M, [], Acc)),
threaded_call(prime_numbers(N, N1, Acc, Primes)),
threaded_exit (prime_numbers(N2, M, [], Acc)),
threaded_exit(prime_numbers(N, N1, Acc, Primes)).

prime_numbers(N, M, Acc, Primes) :-

When using asynchronous calls, the link between a threaded_exit/1 call and the corresponding
threaded_call/1 call is established using unification. If there are multiple threaded_call/1 calls for a
matching threaded_exit/1 call, the connection can potentially be established with any of them (this is
akin to what happens with tabling). Nevertheless, you can easily use a call tag by using in alternative
threaded call/2, threaded_once/2, and threaded_exit/2 built-in predicates. For example:

?- threaded_call(member(X, [1,2,3]), Tag).

Tag = 1
yes

(continues on next page)

88 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

?- threaded_call(member(X, [1,2,31), Tag).

Tag = 2
yes

?- threaded_exit(member(X, [1,2,31), 2).

>x< X< X
1
N

When using these predicates, the tags shall be considered as an opaque term; users shall not rely on its type.
Tagged asynchronous calls can be canceled by using the threaded cancel/1 predicate.

1.11.4 One-way asynchronous calls

Sometimes we want to prove a goal in a new thread without caring about the results. This may be accom-
plished by using the built-in predicate threaded ignore/1. For example, assume that we are developing a
multi-agent application where an agent may send an “happy birthday” message to another agent. We could
write:

., threaded_ignore(agent: :happy_birthday),

The call succeeds with no reply of the goal success, failure, or even exception ever being sent back to the
object making the call. Note that this predicate implicitly performs a deterministic call of its argument.

1.11.5 Asynchronous calls and synchronized predicates

Proving a goal asynchronously using a new thread may lead to problems when the goal results in side
effects such as input/output operations or modifications to an object database. For example, if a new thread
is started with the same goal before the first one finished its job, we may end up with mixed output, a
corrupted database, or unexpected goal failures. In order to solve this problem, predicates (and grammar
rule non-terminals) with side effects can be declared as synchronized by using the synchronized/1 predicate
directive. Proving a query to a synchronized predicate (or synchronized non-terminal) is internally protected
by a mutex, thus allowing for easy thread synchronization. For example:

:= synchronized(db_update/1).

db_update(Update) :-

A second example: assume an object defining two predicates for writing, respectively, even and odd numbers
in a given interval to the standard output. Given a large interval, a goal such as:

| ?- threaded_call(obj::odd_numbers(1,100)),
threaded_call(obj: :even_numbers(1,100)).

(continues on next page)

1.11. Multi-threading programming 89

The Logtalk Handbook, Release v3.60.0

(continued from previous page)

1324685710 ...

will most likely result in a mixed up output. By declaring the odd_numbers/2 and even_numbers/2 predicates
synchronized:

;- synchronized([
odd_numbers/2,
even_numbers/2]).

one goal will only start after the other one finished:

| ?- threaded_ignore(obj::odd_numbers(1,99)),
threaded_ignore(obj: :even_numbers(1,99)).

13579 M

24681012 ...

Note that, in a more realistic scenario, the two threaded_ignore/1 calls would be made concurrently from
different objects. Using the same synchronized directive for a set of predicates imply that they all use the
same mutex, as required for this example.

As each Logtalk entity is independently compiled, this directive must be included in every object or category
that contains a definition for the described predicate, even if the predicate declaration is inherited from
another entity, in order to ensure proper compilation. Note that a synchronized predicate cannot be declared
dynamic. To ensure atomic updates of a dynamic predicate, declare as synchronized the predicate performing
the update.

Synchronized predicates may be used as wrappers to messages sent to objects that are not multi-threading
aware. For example, assume a log object defining a write_log_entry/2 predicate that writes log entries to a
file, thus using side effects on its implementation. We can specify and define e.g. a sync_write_log_entry/2
predicate as follows:

;- synchronized(sync_write_log_entry/2).

sync_write_log_entry(File, Entry) :-
log::write_log_entry(File, Entry).

and then call the sync_write_log_entry/2 predicate instead of the write_log_entry/2 predicate from multi-
threaded code.

The synchronization directive may be used when defining objects that may be reused in both single-threaded
and multi-threaded Logtalk applications. The directive simply make calls to the synchronized predicates
deterministic when the objects are used in a single-threaded application.

90 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

1.11.6 Synchronizing threads through notifications

Declaring a set of predicates as synchronized can only ensure that they are not executed at the same time
by different threads. Sometimes we need to suspend a thread not on a synchronization lock but on some
condition that must hold true for a thread goal to proceed. l.e. we want a thread goal to be suspended
until a condition becomes true instead of simply failing. The built-in predicate threaded wait/1 allows us
to suspend a predicate execution (running in its own thread) until a notification is received. Notifications
are posted using the built-in predicate threaded notify/1. A notification is a Prolog term that a programmer
chooses to represent some condition becoming true. Any Prolog term can be used as a notification argument
for these predicates. Related calls to the threaded_wait/1 and threaded_notify/1 must be made within the
same object, this, as the object message queue is used internally for posting and retrieving notifications.

Each notification posted by a call to the threaded_notify/1 predicate is consumed by a single
threaded_wait/1 predicate call (i.e. these predicates implement a peer-to-peer mechanism). Care should be
taken to avoid deadlocks when two (or more) threads both wait and post notifications to each other.

1.11.7 Threaded engines

Threaded engines provide an alternative to the multi-threading predicates described in the previous sections.
An engine is a computing thread whose solutions can be lazily computed and retrieved. In addition, an engine
also supports a term queue that allows passing arbitrary terms to the engine.

An engine is created by calling the threaded engine create/3 built-in predicate. For example:

| ?- threaded_engine_create(X, member(X, [1,2,3]), worker).
yes

The first argument is an answer template to be used for retrieving solution bindings. The user can name
the engine, as in this example where the atom worker is used, or have the runtime generate a name, which
should be treated as an opaque term.

Engines are scoped by the object within which the threaded_engine_create/3 call takes place. Thus, differ-
ent objects can create engines with the same names with no conflicts. Moreover, engines share the visible
predicates of the object creating them.

The engine computes the first solution of its goal argument and suspends waiting for it to be retrieved.
Solutions can be retrieved one at a time using the threaded engine next/2 built-in predicate:

| ?- threaded_engine_next(worker, X).

The call blocks until a solution is available and fails if there are no solutions left. After returning a solution,
this predicate signals the engine to start computing the next one. Note that this predicate is deterministic.
In contrast with the threaded_exit/1-2 built-in predicates, retrieving the next solution requires calling the
predicate again instead of by backtracking into its call. For example:

collect_all(Engine, [Answer]| Answers]) :-

threaded_engine_next(Engine, Answer),
]

collect_all(Engine, Answers).
collect_all(, [1).

There is also a reified alternative version of the predicate, threaded engine next reified/2, which returns
the(Answer), no, and exception(Error) terms as answers. Using this predicate, collecting all solutions to an
engine uses a different programming pattern:

1.11. Multi-threading programming 91

The Logtalk Handbook, Release v3.60.0

threaded_engine_next_reified(Engine, Reified),
collect_all_reified(Reified, Engine, Answers),

collect_all_reified(no, _, [1).

collect_all_reified(the(Answer), Engine, [Answer| Answers]) :-
threaded_engine_next_reified(Engine, Reified),
collect_all_reified(Reified, Engine, Answers).

Engines must be explicitly terminated using the threaded engine destroy/1 built-in predicate:

| ?- threaded_engine_destroy(worker).
yes

A common usage pattern for engines is to define a recursive predicate that uses the engine term queue to
retrieve a task to be performed. For example, assume we define the following predicate:

loop :-
threaded_engine_fetch(Task),
handle(Task),
loop.

The threaded engine_fetch/1 built-in predicate fetches a task for the engine term queue. The engine clients
would use the threaded engine_post/2 built-in predicate to post tasks into the engine term queue. The engine
would be created using the call:

| ?- threaded_engine_create(none, loop, worker).

yes

The handle/1 predicate, after performing a task, can use the threaded engine yield/1 built-in pred-
icate to make the task results available for consumption using the threaded_engine_next/2 and
threaded_engine_next_reified/2 built-in predicates. Blocking semantics are used by these two predi-
cates: the threaded_engine_yield/1 predicate blocks until the returned solution is consumed while the
threaded_engine_next/2 predicate blocks until a solution becomes available.

1.11.8 Multi-threading performance

The performance of multi-threading applications is highly dependent on the backend Prolog compiler, on the
operating-system, and on the use of dynamic binding and dynamic predicates. All compatible backend Prolog
compilers that support multi-threading features make use of POSIX threads or pthreads. The performance of
the underlying pthreads implementation can exhibit significant differences between operating systems. An
important point is synchronized access to dynamic predicates. As different threads may try to simultaneously
access and update dynamic predicates, these operations may used a lock-free algorithm or be protected by a
lock, usually implemented using a mutex. In the latter case, poor mutex lock operating-system performance,
combined with a large number of collisions by several threads trying to acquire the same lock, can result
in severe performance penalties. Thus, whenever possible, avoid using dynamic predicates and dynamic
binding.

92 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

1.12 Error handling

Error handling is accomplished in Logtalk by using the standard catch/3 and throw/1 predicates [ISO95]
together with a set of built-in methods that simplify generating errors decorated with expected context.

Errors thrown by Logtalk have, whenever possible, the following format:

error(Error, logtalk(Goal, ExecutionContext))

In this exception term, Goal is the goal that triggered the error Error and ExecutionContext is the context
in which Goal is called. For example:

error(
permission_error(modify,private_predicate,p),
logtalk(foo: :abolish(p/0),)

)

Note, however, that Goal and ExecutionContext can be unbound or only partially instantiated when the
corresponding information is not available (e.g. due to compiler optimizations that throw away the necessary
error context information). The ExecutionContext argument is an opaque term that can be decoded using
the logtalk::execution context/7 predicate.

1.12.1 Raising Exceptions

The error handling section in the reference manual lists a set of convenient built-in methods that generate
error/2 exception terms with the expected context argument. For example, instead of manually constructing
a type error as in:

context(Context),
throw(error(type_error(atom, 42), Context)).

we can simply write:

L

type_error(atom, 42).

The provided error built-in methods cover all standard error types found in the ISO Prolog Core standard.

1.12.2 Type-checking

One of the most common case where errors may be generated is when type-checking predicate arguments
and input data before processing it. The standard library includes a type object that defines an extensive set
of types, together with predicates for validating and checking terms. The set of types is user extensible and
new types can be defined by adding clauses for the type/1 and check/2 multifile predicates. For example,
assume that we want to be able to check temperatures expressed in Celsius, Fahrenheit, or Kelvin scales. We
start by declaring (in an object or category) the new type:

;- multifile(type: :type/1).
type: :type(temperature(_Unit)).

Next, we need to define the actual code that would verify that a temperature is valid. As the different scales
use a different value for absolute zero, we can write:

1.12. Error handling 93

../../docs/logtalk_0.html#logtalk-0-execution-context-7
../../docs/type_0.html#type-0

The Logtalk Handbook, Release v3.60.0

;- multifile(type::check/2).
type: :check(temperature(Unit), Term) :-
check_temperature(Unit, Term).

% given that temperature has only a lower bound, we make use of the library
% property/2 type to define the necessary test expression for each unit
check_temperature(celsius, Term) :-

type: :check(property(float, [Temperaturel>>(Temperature >= -273.15)), Term).
check_temperature(fahrenheit, Term) :-

type: :check(property(float, [Temperaturel>>(Temperature >= -459.67)), Term).
check_temperature(kelvin, Term) :-

type: :check(property(float, [Temperaturel>>(Temperature >= 0.0)), Term).

With this definition, a term is first checked that it is a float value before checking that it is in the expected
open interval. But how do we use this new type? If we want just to test if a temperature is valid, we can
write:

., type::valid(temperature(celsius), 42.0),

The type::valid/2 predicate succeeds or fails depending on the second argument being of the type specified
in the first argument. If instead of success or failure we want to generate an error for invalid values, we can
use the type::check/2 predicate instead:

., type::check(temperature(celsius), 42.0),

If we require an error/2 exception term with the error context, we can use instead the type::check/3 predi-
cate:

context(Context),
type: :check(temperature(celsius), 42.0, Context),

Note that context/1 calls are inlined and messages to the library type object use static binding when com-
piling with the optimize flag turned on, thus enabling efficient type-checking.

1.12.3 Expected terms

Support for representing and handling expected terms is provided by the expecteds library. Expected terms
allows defering errors to later stages of an application in alternative to raising an exception as soon as an
error is detected.

1.12.4 Compiler warnings and errors

The current Logtalk compiler uses the standard read_term/3 built-in predicate to read and compile a Logtalk
source file. This improves the compatibility with backend Prolog compilers and their proprietary syntax
extensions and standard compliance quirks. But one consequence of this design choice is that invalid Prolog
terms or syntax errors may abort the compilation process with limited information given to the user (due to
the inherent limitations of the read_term/3 predicate).

Assuming that all the terms in a source file are valid, there is a set of errors and potential errors, described
below, that the compiler will try to detect and report, depending on the used compiler flags (see the Compiler
flags section of this manual on lint flags for details).

94 Chapter 1. User Manual

../../docs/type_0.html#type-0-valid-2
../../docs/type_0.html#type-0-check-2
../../docs/type_0.html#type-0-check-3

The Logtalk Handbook, Release v3.60.0

Unknown entities

The Logtalk compiler warns about any referenced entity that is not currently loaded. The warning may
reveal a misspell entity name or just an entity that it will be loaded later. Out-of-oder loading should be
avoided when possible as it prevents some code optimizations such as static binding of messages to methods.

Singleton variables

Singleton variables in a clause are often misspell variables and, as such, one of the most common errors
when programming in Prolog. Assuming that the backend Prolog compiler implementation of the read_term/
3 predicate supports the standard singletons/1 option, the compiler warns about any singleton variable
found while compiling a source file.

Redefinition of Prolog built-in predicates
The Logtalk compiler will warn us of any redefinition of a Prolog built-in predicate inside an object or
category. Sometimes the redefinition is intended. In other cases, the user may not be aware that a particular

backend Prolog compiler may already provide the predicate as a built-in predicate or may want to ensure
code portability among several Prolog compilers with different sets of built-in predicates.

Redefinition of Logtalk built-in predicates

Similar to the redefinition of Prolog built-in predicates, the Logtalk compiler will warn us if we try to redefine
a Logtalk built-in. But the redefinition will probably be an error in most (if not all) cases.

Redefinition of Logtalk built-in methods

An error will be thrown if we attempt to redefine a Logtalk built-in method inside an entity. The default
behavior is to report the error and abort the compilation of the offending entity.

Misspell calls of local predicates

A warning will be reported if Logtalk finds (in the body of a predicate definition) a call to a local predicate
that is not defined, built-in (either in Prolog or in Logtalk) or declared dynamic. In most cases these calls are
simple misspell errors.

Portability warnings

A warning will be reported if a predicate clause contains a call to a non-standard built-in predicate or
arithmetic function, Portability warnings are also reported for non-standard flags or flag values. These
warnings often cannot be avoided due to the limited scope of the ISO Prolog standard.

1.12. Error handling 95

The Logtalk Handbook, Release v3.60.0

Deprecated elements
A warning will be reported if a deprecated directive, control construct, or predicate is used. These warnings

should be fixed as soon as possible as support for any deprecated features will likely be discontinued in
future versions.

Missing directives

A warning will be reported for any missing dynamic, discontiguous, meta-predicate, and public predicate
directive.

Duplicated directives
A warning will be reported for any duplicated scope, multifile, dynamic, discontiguous, meta-predicate, and

meta-non-terminal directives. Note that conflicting directives for the same predicate are handled as errors,
not as duplicated directive warnings.

Duplicated clauses

A warning will be reported for any duplicated entity clauses. This check is computationally heavy, however,
and usually turned off by default.

Goals that are always true or false

A warning will be reported for any goal that is always true or false. This is usually caused by typos in the
code. For example, writing X == y instead of X == V.

Trivial fails

A warning will be reported for any call to a local static predicate with no matching clause.

Suspicious calls

A warning will be reported for calls that are syntactically correct but most likely a semantic error. An example
is (::)/1 calls in clauses that apparently are meant to implement recursive predicate definitions where the
user intention is to call the local predicate definition.

Lambda variables

A warning will be reported for lambda expressions with unclassified variables (not listed as either lambda free
or [ambda parameter variables), for variables playing a dual role (as both lambda free and lambda parameter
variables), and for lambda parameters used elsewhere in a clause.

96 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

Redefinition of predicates declared in uses/2 or use_module/2 directives

A error will be reported for any attempt to define locally a predicate that is already declared in an uses/2 or
use_module/2 directive.

Other warnings and errors

The Logtalk compiler will throw an error if it finds a predicate clause or a directive that cannot be parsed.
The default behavior is to report the error and abort the compilation.

1.12.5 Runtime errors

This section briefly describes runtime errors that result from misuse of Logtalk built-in predicates, built-in
methods or from message sending. For a complete and detailed description of runtime errors please consult
the Reference Manual.

Logtalk built-in predicates

Most Logtalk built-in predicates checks the type and mode of the calling arguments, throwing an exception
in case of misuse.

Logtalk built-in methods

Most Logtalk built-in method checks the type and mode of the calling arguments, throwing an exception in
case of misuse.

Message sending

The message sending mechanisms always check if the receiver of a message is a defined object and if the
message corresponds to a declared predicate within the scope of the sender. The built-in protocol forwarding
declares a predicate, forward/1, which is automatically called (if defined) by the runtime for any message
that the receiving object does not understand. The usual definition for this error handler is to delegate or
forward the message to another object that might be able to answer it:

forward(Message) :-
% forward the message while preserving the sender
[Object: :Message].

If preserving the original sender is not required, this definition can be simplified to:

forward(Message) :-
Object: :Message.

More sophisticated definitions are, of course, possible.

1.12. Error handling 97

../../docs/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.60.0

1.13 Reflection

Logtalk provides support for both structural and behavioral reflection. Structural reflection supports compu-
tations over an application structure while behavioral reflection computations over what an application does
while running. The structural and behavioral reflection APIs are used by all the developer tools, which are
regular applications.

1.13.1 Structural reflection

Structural reflection allows querying the properties of objects, categories, protocols, and predicates. This API
provides two views on the structure of an application: a transparent-box view and a black-box view, described
next.

Transparent-box view

The transparent-box view provides a structural view of the contents and properties of entities, predicates,
and source files akin to accessing the corresponding source code. Le. this is the view we use when asking
questions such as: What predicates are declared in this protocol? Which predicates are called by this predicate?
Where are clauses for this multifile predicate defined?

For entities, built-in predicates are provided for enumerating entities, enumerating entity properties (includ-
ing entity declared, defined, called, and updated predicates; i.e. full predicate cross-referencing data), and
enumerating entity relations (for full entity cross-referencing data). For a detailed description of the sup-
ported entity properties, see the sections on object properties, protocol properties, and category properties. For
examples of querying entity relations, see the sections on object relations, protocol relations, and category
relations.

Note: Some entity and predicate properties are only available when the source files are compiled with the
source_data flag turned on.

The logtalk built-in object provides predicates for querying loaded source files and their properties.

Black-box view

The black-box view provides a view that takes into account entity encapsulation and thus only allow querying
about predicates and operators that are within scope of the entity calling the reflection methods. This is the
view we use and asking questions such as: What messages can be sent to this object?

Built-in methods are provided for querying the predicates that are declared and can be called or used as
messages and for querying the predicate properties. It is also possible to enumerate entity operators. See the
sections on finding declared predicates and on predicate properties for more details.

98 Chapter 1. User Manual

../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.60.0

1.13.2 Behavioral reflection

Behavioral reflection provides insight on what an application does when running. Specifically, by observing
and acting on the messages being exchanged between objects. See the section on event-driven programming
for details. There is also a dependents library that provides an implementation of Smalltalk dependents
mechanism.

For use in debugging tools, there is also a small reflection API providing trace and debug event predicates
provided by the logtalk built-in object.

1.14 Writing and running applications

For a successful programming in Logtalk, you need a good working knowledge of Prolog and an understand-
ing of the principles of object-oriented programming. Most guidelines for writing good Prolog code apply as
well to Logtalk programming. To those guidelines, you should add the basics of good object-oriented design.

One of the advantages of a system like Logtalk is that it enable us to use the currently available object-
oriented methodologies, tools, and metrics [Champaux92] in logic programming. That said, writing appli-
cations in Logtalk is similar to writing applications in Prolog: we define new predicates describing what is
true about our domain objects, about our problem solution. We encapsulate our predicate directives and
definitions inside new objects, categories, and protocols that we create by hand with a text editor or by using
the Logtalk built-in predicates. Some of the information collected during the analysis and design phases
can be integrated in the objects, categories and protocols that we define by using the available entity and
predicate documenting directives.

1.14.1 Starting Logtalk

We run Logtalk inside a normal Prolog session, after loading the necessary files. Logtalk extends but does
not modify your Prolog compiler. We can freely mix Prolog queries with the sending of messages and our
applications can be made of both normal Prolog clauses and object definitions.

Depending on your Logtalk installation, you may use a script or a shortcut to start Logtalk with your chosen
Prolog compiler. On POSIX operating-systems, the scripts should be available from the command-line; scripts
are named upon the used backend Prolog compilers. On Windows, the shortcuts should be available from
the Start Menu. For example, assuming a POSIX operating-system and GNU Prolog as the backend:

$ gplgt

Depending on your Logtalk installation, you may need to type instead gplgt. sh.

1.14.2 Running parallel Logtalk processes

Running parallel Logtalk processes is enabled by setting the clean flag to on. This is the default flag value in
the backend adapter files. With this setting, the intermediate Prolog files generated by the Logtalk compiler
include the processes identifier in the names, thus preventing file names clashes when running parallel
processes. When the flag is turned off, the generated intermediate Prolog file names don’t include the
process identifier and are kept between runs. This is usually done to avoid repeated recompilation of stable
code when developing large applications or when running multiple test sets for performance (by avoiding
repeated recompilation of the 1gtunit tool).

1.14. Writing and running applications 99

../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.60.0

To run parallel Logtalk processes with the clean flag turned off, each process must use its own scratch
directory. This is accomplished by defining the scratch_directory library alias to a per process location. For
example, assuming we’re using GNU Prolog as the backend, a possible definition could be:

;- multifile(logtalk_library_path/2).
;= dynamic(logtalk_library_path/2).

logtalk_library_path(scratch_directory, Directory) :-
temporary_name (1gtXXXXXX, Name),
decompose_file_name(Name, _, Prefix, _),
atom_concat('/tmp/', Prefix, Directory),
(file_exists(Directory) ->
true
; make_directory(Directory)

).

Assuming the code above is saved in a parallel_logtalk_processes_setup.pl file, we would then start
Logtalk using:

$ gplgt --init-goal "consult('parallel_logtalk_processes_setup.pl')”

The details on how to define and load the definition of the scratch_directory library alias are, however,
backend specific (due to the lack of Prolog standardization) and possibly also operating-system specific
(different locations for the temporary directory). The Logtalk library contains support for selected backends.

1.14.3 Source files

Logtalk source files may define any number of entities (objects, categories, or protocols). Source files may
also contain Prolog code interleaved with Logtalk entity definitions. Plain Prolog code is usually copied
as-is to the corresponding Prolog output file (except, of course, if subject to the term-expansion mechanism).
Prolog modules are compiled as objects. The following Prolog directives are processed when read (thus
affecting the compilation of the source code that follows): ensure_loaded/1, use_module/1-2, op/3, and
set_prolog_flag/2. The initialization/1 directive may be used for defining an initialization goal to be exe-
cuted when loading a source file.

Logtalk source files can include the text of other files by using the include/1 directive. Although there is also
a standard Prolog include/1 directive, any occurrences of this directive in a Logtalk source file is handled by
the Logtalk compiler, not by the backend Prolog compiler, to improve portability.

When writing a Logtalk source file the following advice applies:
* When practical and when performance is critical, define each entity on its own source file.

* Source file loading order can impact performance (e.g. if an object imports a category defined in a
source file loaded after the object source file, no static binding optimizations will be possible).

* Initialization directives that result in the compilation and loading of other source files (e.g. libraries)
should preferably be written in the application loader file to ensure the availability of the entities they
define when compiling the application source files (thus enabling static binding optimizations).

100 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

Naming conventions

When defining each entity in its own source file, it is recommended that the source file be named after the
entity identifier. For parametric objects, the identifier arity can be appended to the identifier functor. By
default, all Logtalk source files use the extension .1gt but this is optional and can be set in the adapter files.
For example, we may define an object named vehicle and save it in a vehicle.lgt source file. A sort(_)
parametric object would be saved it on a sort_1.1gt source file.

Source file text encoding

The text encoding used in a source file may be declared using the encoding/1 directive when running Logtalk
with backend Prolog compilers that support multiple encodings (check the encoding directive flag in the
adapter file of your Prolog compiler).

1.14.4 Multi-pass compiler

Logtalk is implemented using a multi-pass compiler. In comparison, some Prolog systems use a multi-pass
compiler while others use a single-pass compiler. While there are pros and cons with each solution, the most
relevant consequence in this context is for the content of source files. In Logtalk, entities and predicates only
become available (for the runtime system) after the source file is successfully compiled and loaded. This
may prevent some compiler optimizations, notably static binding, if some of the referred entities are defined
in the same source file. On the other hand, the order of predicate directives and predicate definitions is
irrelevant. In contrast, in a system implemented using a single-pass compiler, the order of the source file
terms can and often is significant for proper and successful compilation. In these systems, predicates may
become available for calling as soon as they are compiled even if the remaining of the source file is yet to be
compiled.

The Logtalk compiler reads source files using the Prolog standard read_term/3 predicate. This ensures com-
patibility with any syntax extensions that the used backend may implement. In the first compiler stage, all
source file terms are read and data about all defined entities, directives, predicates, and grammar rules is
collected. Any defined term-expansion rules are applied to the read terms. Grammar rules are expanded into
predicate clauses unless expanded by user-defined term-expansion rules. The second stage compiles all ini-
tialization goals and clause bodies, taking advantage of the data collected in the first stage, and applying any
defined goal-expansion rules. Depending on the compilation mode, the generated code can be instrumented
for debugging tools or optimized for performance. Linter checks are performed during these two first stages.
The final step in the second stage is to write the generated intermediate Prolog code into a temporary file.
In the third and final stage, this intermediate Prolog file is compiled and loaded by the used backend. These
intermediate files are deleted by default after loading (see the clean flag description for details).

1.14.5 Compiling and loading your applications

Your applications will be made of source files containing your objects, protocols, and categories. The source
files can be compiled to disk by calling the logtalk compile/1 built-in predicate:

| ?- logtalk_compile([source_filel, source_file2, ...1).

This predicate runs the compiler on each file and, if no fatal errors are found, outputs Prolog source files that
can then be consulted or compiled in the usual way by your Prolog compiler.

To compile to disk and also load into memory the source files we can use the logtalk load/1 built-in predicate:

| ?- logtalk_load([source_filel, source_file2, ...1]).

1.14. Writing and running applications 101

The Logtalk Handbook, Release v3.60.0

This predicate works in the same way of the predicate logtalk_compile/1 but also loads the compiled files
into memory.

Both predicates expect a source file name or a list of source file names as an argument. The Logtalk source
file name extension, as defined in the adapter file (by default, .1gt), can be omitted.

If you have more than a few source files then you may want to use a loader file helper file containing the
calls to the logtalk_load/1-2 predicates. Consulting or compiling the loader file will then compile and load
all your Logtalk entities into memory (see below for details).

With most backend Prolog compilers, you can use the shorthands {File} for logtalk_load(File) and {Filel,
File2, ...} for logtalk_load([Filel, File2, ...1). The use these shorthands should be restricted to the
Logtalk/Prolog top-level interpreter as they are not part of the language specification and may be commented
out in case of conflicts with backend Prolog compiler features.

The built-in predicate logtalk make/0 can be used to reload all modified source files. With most backend
Prolog compilers, you can also use the {*} top-level shortcut. Files are also reloaded when the compilation
mode changes. An extended version of this predicate, logtalk make/1, accepts multiple targets including
all, clean, check, circular, documentation, caches, debug, normal, and optimal. For example, assume
that you have loaded your application files and found a bug. You can easily recompile the files in debug
mode by using the logtalk_make(debug) goal. After debugging and fixing the bug, you can reload the files
in normal mode using the logtalk_make(normal) or in optimized mode using the logtalk_make(optimal)
goal. See the predicates documentation for a complete list of targets and top-level shortcuts. In particular,
the logtalk_make(clean) goal can be specially useful before switching backend Prolog compilers as the
generated intermediate files may not be compatible. The logtalk_make(caches) goal is usually used when
benchmarking compiler performance improvements.

1.14.6 Loader files

If you look into the Logtalk distribution, you will notice that most source code directories (e.g. of tools,
libraries, and examples) contain a driver file that can be used to load all included source files and any
required libraries. These loader files are usually named loader.lgt or contain the word loader in their
name. Loader files are ordinary source files and thus compiled and loaded like any source file. By also
defining a loader file for your project, you can then load it by simply typing:

| ?- {loader}.

Another driver file, usually named tester.1lgt (or containing the word tester in its name) is commonly used
to load and run tests. By also defining a tester file for your project, you can then run its tests by simply

typing:

| ?- {tester}.

Usually these driver files contain calls to the built-in predicates set logtalk flag/2 (e.g. for setting global,
project-specific, flag values) and logtalk load/1 or logtalk load/2 (for loading project files), wrapped inside
a Prolog initialization/1 directive for portability. For instance, if your code is split in three source files
named sourcel.1gt, source2.1gt, and source3.1gt, then the contents of your loader file could be:

;- initialization((
set_logtalk_flag(events, allow),

logtalk_load([sourcel, source2, source3])

).

102 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

Another example of directives that are often used in a loader file would be op/3 directives declaring global
operators needed by your project. Loader files are also often used for setting source file-specific compiler
flags (this is useful even when you only have a single source file if you always load it with using the same
set of compiler flags). For example:

;- initialization((

set_logtalk_flag(underscore_variables, dont_care),
set_logtalk_flag(source_data, off),

logtalk_load(
[sourcel, source2, source3],

[portability(warning)1),
logtalk_load(
[source4, source5],

[portability(silent)])
).

To take the best advantage of loader and tester files, define a clause for the multifile and dynamic
logtalk_library_path/2 predicate for the directory containing your source files as explained in the next
section.

When your project also uses Prolog module resources, the loader file is also the advised place to load them,
preferably without any exports. For example:

;- use_module(library(clpfd), [1).

;- initialization((

).

Complex projects often use a main loader file that loads the loader files of each of the project components.
Thus, loader files provide a central point to understand a project organization and dependencies.

Worth mentioning here a common mistake when first starting working with loader files. New users some-
times try to set compiler flags using logtalk_load/2 when loading a loader file. For example, by writing:

| ?- logtalk_load(loader, [optimize(on)]).

This will not work as you might expect as the compiler flags will only be used in the compilation of the
loader.1gt file itself and will not affect the compilation of files loaded through the initialization/1 direc-
tive contained on the loader file.

1.14. Writing and running applications 103

The Logtalk Handbook, Release v3.60.0

1.14.7 Libraries of source files

Logtalk defines a library simply as a directory containing source files. Library locations can be specified by
defining or asserting clauses for the dynamic and multifile predicate logtalk library path/2. For example:

;- multifile(logtalk_library_path/2).
;= dynamic(logtalk_library_path/2).

logtalk_library_path(shapes, '$LOGTALKUSER/examples/shapes/').

The first argument of the predicate is used as an alias for the path on the second argument. Library aliases
may also be used on the second argument. For example:

;- multifile(logtalk_library_path/2).
:— dynamic(logtalk_library_path/2).

logtalk_library_path(lgtuser, '$LOGTALKUSER/').
logtalk_library_path(examples, lgtuser('examples/')).
logtalk_library_path(viewpoints, examples('viewpoints/')).

This allows us to load a library source file without the need to first change the current working directory to
the library directory and then back to the original directory. For example, in order to load a loader.1gt file,
contained in a library named viewpoints, we just need to type:

| ?- logtalk_load(viewpoints(loader)).

The best way to take advantage of this feature is to load at startup a source file containing clauses for
the logtalk_library_path/2 predicate needed for all available libraries (typically, using a settings file, as
discussed below). This allows us to load library source files or entire libraries without worrying about
libraries paths, improving code portability. The directory paths on the second argument should always end
with the path directory separator character. Most backend Prolog compilers allows the use of environment
variables in the second argument of the logtalk_library_path/2 predicate. Use of POSIX relative paths
(e.g. '../" or'./") for top-level library directories (e.g. lgtuser in the example above) is not advised as
different backend Prolog compilers may start with different initial working directories, which may result in
portability problems of your loader files.

This library notation provides functionality inspired by the file_search_path/2 mechanism introduced by
Quintus Prolog and later adopted by some other Prolog compilers but with a key difference: there is no
fragile search mechanism and the Logtalk make can be used to check for duplicated library aliases. Multiple
definitions for the same alias are problematic when using external dependencies as any third-party update
to those dependencies can introduce file name clashes. Note that the potential for these clashes cannot
be reliably minimized by a careful ordering of the logtalk_library_path/2 predicate clauses due to this
predicate being multifile and dynamic.

1.14.8 Settings files

Although is always possible to edit the backend Prolog compiler adapter files, the recommended solution
to customize compiler flags is to create a settings.lgt file in the Logtalk user folder or in the user home
folder. Depending on the backend Prolog compiler and on the operating-system, is also possible to define
per-project settings files by creating a settings.1gt file in the project directory and by starting Logtalk from
this directory. At startup, Logtalk tries to load a settings.1gt file from the following directories, searched
in sequence:

* Startup directory ($LOGTALK_STARTUP_DIRECTORY)

104 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

* Logtalk user directory ($LOGTALKUSER)

* User home directory ($HOME; %USERPROFILE% on Windows if %HOME% is not defined)
* Application data directory (%APPDATA%\Logtalk; only on Windows)

* Config directory ($XDG_CONFIG_HOME/logtalk)

* Default config directory ($HOME/.config/logtalk/)

The startup directory is only searched when the read-only settings file flag is set to allow. When no settings
files are found, Logtalk will use the default compiler flag values set on the backend Prolog compiler adapter
files. When limitations of the backend Prolog compiler or on the operating-system prevent Logtalk from
finding the settings files, these can always be loaded manually after Logtalk startup.

Settings files are normal Logtalk source files (although when automatically loaded by Logtalk they are com-
piled and loaded silently with any errors being reported but otherwise ignored). The usual contents is an
initialization/1 Prolog directive containing calls to the set logtalk flag/2 Logtalk built-in predicate and
asserting clauses for the logtalk library path/2 multifile dynamic predicate. Note that the set logtalk flag/2
directive cannot be used as its scope is local to the source file being compiled.

One of the troubles of writing portable applications is the different feature sets of Prolog compilers. Using
the Logtalk support for conditional compilation and the prolog dialect flag we can write a single settings file
that can be used with several backend Prolog compilers:

.- if(current_logtalk_flag(prolog_dialect, yap)).

.- elif(current_logtalk_flag(prolog_dialect, gnu)).

.- else.

;- endif.

The Logtalk distribution includes a settings-sample.lgt sample file with commented out code snippets for
common settings.

1.14.9 Compiler linter

The compiler includes a linter that checks for a wide range of possible problems in source files. Notably, the
compiler checks for unknown entities, unknown predicates, undefined predicates (i.e. predicates that are de-
clared but not defined), missing directives (including missing dynamic/1 and meta_predicate/1 directives),
redefined built-in predicates, calls to non-portable predicates, singleton variables, goals that are always true
or always false (i.e. goals that are can be replaced by true or fail), and trivial fails (i.e. calls to predicates
with no match clauses). Most of the linter warnings are controlled by compiler flags. See the next section for
details.

1.14. Writing and running applications 105

The Logtalk Handbook, Release v3.60.0

1.14.10 Compiler flags

The logtalk load/1 and logtalk _compile/1 always use the current set of default compiler flags as specified in
your settings file and the Logtalk adapter files or changed for the current session using the built-in predicate
set_logtalk flag/2. Although the default flag values cover the usual cases, you may want to use a different
set of flag values while compiling or loading some of your Logtalk source files. This can be accomplished by
using the logtalk load/2 or the logtalk compile/2 built-in predicates. These two predicates accept a list of
options affecting how a Logtalk source file is compiled and loaded:

| ?- logtalk_compile(Files, Options).

or:

| ?- logtalk_load(Files, Options).

In fact, the logtalk_load/1 and logtalk_compile/1 predicates are just shortcuts to the extended versions
called with the default compiler flag values. The options are represented by a compound term where the
functor is the flag name and the sole argument is the flag value.

We may also change the default flag values from the ones loaded from the adapter file by using the
set_logtalk flag/2 built-in predicate. For example:

| ?- set_logtalk_flag(unknown_entities, silent).

The current default flags values can be enumerated using the current logtalk flag/2 built-in predicate:

| ?- current_logtalk_flag(unknown_entities, Value).

Value = silent
yes

Logtalk also implements a set_logtalk flag/2 directive, which can be used to set flags within a source file or
within an entity. For example:

% compile objects in this source file with event support
.- set_logtalk_flag(events, allow).

:- object(foo).
% compile this object with support

% for dynamic predicate declarations
.- set_logtalk_flag(dynamic_declarations, allow).

:— end_object.

Note that the scope of the set_logtalk_flag/2 directive is local to the entity or to the source file containing
it.

Note: Applications should never rely on default flag values for working properly. Whenever the compilation
of a source file or an entity requires a specific flag value, the flag should be set explicitly in the entity, in the
source file, or in the loader file.

106 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

Read-only flags

Some flags have read-only values and thus cannot be changed at runtime. Their values are defined in the
Prolog backend adapter files These are:

settings_file
Allows or disables loading of a settings file at startup. Possible values are allow, restrict, and deny.
The usual default value is allow but it can be changed by editing the adapter file when e.g. embedding
Logtalk in a compiled application. With a value of allow, settings files are searched in the startup di-
rectory, in the Logtalk user directory, in the user home directory, in the APPDATA if running on Windows,
and in the XDG configuration directory. With a value of restrict, the search for the settings files skips
the startup directory.

prolog_dialect
Identifier of the backend Prolog compiler (an atom). This flag can be used for conditional compilation
of Prolog compiler specific code.

prolog_version
Version of the backend Prolog compiler (a compound term, v(Major, Minor, Patch), whose arguments
are integers). This flag availability depends on the Prolog compiler. Checking the value of this flag fails
for any Prolog compiler that does not provide access to version data.

prolog_compatible_version
Compatible version of the backend Prolog compiler (a compound term, usually with the format
@=(v(Major, Minor, Patch)), whose arguments are integers). This flag availability depends on
the Prolog compiler. Checking the value of this flag fails for any Prolog compiler that does not provide
access to version data.

unicode
Informs Logtalk if the backend Prolog compiler supports the Unicode standard. Possible flag values
are unsupported, full (all Unicode planes supported), and bmp (supports only the Basic Multilingual
Plane).

encoding_directive
Informs Logtalk if the backend Prolog compiler supports the encoding/1 directive. This directive is used
for declaring the text encoding of source files. Possible flag values are unsupported, full (can be used
in both Logtalk source files and compiler generated Prolog files), and source (can be used only in
Logtalk source files).

tabling
Informs Logtalk if the backend Prolog compiler provides tabling programming support. Possible flag
values are unsupported and supported.

engines
Informs if the backend Prolog compiler provides the required low level multi-threading programming
support for Logtalk threaded engines. Possible flag values are unsupported and supported.

threads
Informs if the backend Prolog compiler provides the required low level multi-threading programming
support for all high-level Logtalk multi-threading features. Possible flag values are unsupported and
supported.

modules
Informs Logtalk if the backend Prolog compiler provides suitable module support. Possible flag val-
ues are unsupported and supported (independently of this flag, Logtalk provides limited support for
compiling Prolog modules as objects).

coinduction
Informs Logtalk if the backend Prolog compiler provides the required minimal support for cyclic terms

1.14. Writing and running applications 107

The Logtalk Handbook, Release v3.60.0

necessary for working with coinductive predicates. Possible flag values are unsupported and supported.

Version flags

version_data(Value)
Read-only flag whose value is the compound term logtalk(Major,Minor,Patch,Status). The first
three arguments are integers and the last argument is an atom, possibly empty, representing version
status: aN for alpha versions, bN for beta versions, rcN for release candidates (with N being a natural
number), and stable for stable versions. The version_data flag is also a de facto standard for Prolog
compilers.

Lint flags

unknown_entities(Option)
Controls the unknown entity warnings, resulting from loading an entity that references some other
entity that is not currently loaded. Possible option values are warning (the usual default) and silent.
Note that these warnings are not always avoidable, specially when using reflective designs of class-
based hierarchies.

unknown_predicates(Option)
Defines the compiler behavior when unknown messages or calls to unknown predicates (or non-
terminals) are found. An unknown message is a message sent to an object that is not part of the
object protocol. An unknown predicate is a called predicate that is neither locally declared or defined.
Possible option values are error, warning (the usual default), and silent (not recommended).

undefined_predicates(Option)
Defines the compiler behavior when calls to declared but undefined predicates (or non-terminals) are
found. Note that these calls will fail at runtime as per closed-world assumption. Possible option values
are error, warning (the usual default), and silent (not recommended).

steadfastness(Option)
Controls warnings about possible non steadfast predicate definitions due to variable aliasing at a clause
head and a cut in the clause body. Possible option values are warning and silent (the usual default
due to the possibility of false positives).

portability(Option)
Controls the non-ISO specified Prolog built-in predicate and non-ISO specified Prolog built-in arith-
metic function calls warnings plus use of non-standard Prolog flags and/or flag values. Possible option
values are warning and silent (the usual default).

deprecated(Option)
Controls the deprecated predicate warnings. Possible option values are warning (the usual default)
and silent.

missing_directives(Option)
Controls the missing predicate directive warnings. Possible option values are warning (the usual de-
fault) and silent (not recommended).

duplicated_directives(Option)
Controls the duplicated predicate directive warnings. Possible option values are warning (the usual
default) and silent (not recommended). Note that conflicting directives for the same predicate are
handled as errors, not as duplicated directive warnings.

trivial_goal_fails(Option)
Controls the printing of warnings warnings for calls to local static predicates with no matching clauses.
Possible option values are warning (the usual default) and silent (not recommended).

108 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

always_true_or_false_goals(Option)
Controls the printing of warnings for goals that are always true or false. Possible option values are
warning (the usual default) and silent (not recommended).

lambda_variables(Option)
Controls the printing of lambda variable related warnings. Possible option values are warning (the
usual default) and silent (not recommended).

suspicious_calls(Option)
Controls the printing of suspicious call warnings. Possible option values are warning (the usual default)
and silent (not recommended).

redefined_built_ins(Option)
Controls the Logtalk and Prolog built-in predicate redefinition warnings. Possible option values are
warning and silent (the usual default). Warnings about redefined Prolog built-in predicates are often
the result of running a Logtalk application on several Prolog compilers as each Prolog compiler defines
its set of built-in predicates.

redefined_operators(Option)
Controls the Logtalk and Prolog built-in operator redefinition warnings. Possible option values are
warning (the usual default) and silent. Redefining Logtalk operators or standard Prolog operators
can break term parsing causing syntax errors or change how terms are parsed introducing bugs.

singleton_variables(Option)
Controls the singleton variable warnings. Possible option values are warning (the usual default) and
silent (not recommended).

underscore_variables(Option)
Controls the interpretation of variables that start with an underscore (excluding the anonymous vari-
able) that occur once in a term as either don’t care variables or singleton variables. Possible option
values are dont_care and singletons (the usual default). Note that, depending on your Prolog com-
piler, the read_term/3 built-in predicate may report variables that start with an underscore as singleton
variables. There is no standard behavior, hence this option.

naming(Option)
Controls warnings about entity, predicate, and variable names per official coding guidelines (which
advise using underscores for entity and predicate names and camel case for variable names). Addition-
ally, variable names should not differ only on case. Possible option values are warning and silent (the
usual default due to the current limitation to ASCII names and the computational cost of the checks).

duplicated_clauses(Option)
Controls warnings of duplicated entity clauses (and duplicated entity grammar rules). Possible option
values are warning and silent (the usual default due to the required heavy computations). When the
term-expansion mechanism is used and results in duplicated clauses, the reported line numbers are for
lines of the original clauses that were expanded.

disjunctions(Option)
Controls warnings on clauses where the body is a disjunction. Possible option values are warning (the
usual default) and silent.

conditionals(Option)
Controls warnings on if-then-else and soft-cut control constructs. Possible option values are warning
(the usual default) and silent.

catchall_catch(Option)
Controls warnings on catch/3 goals that catch all exceptions. Possible option values are warning and
silent (the usual default). Lack of standardization often makes it tricky or cumbersome to avoid too
generic catch/3 goals when writing portable code.

1.14. Writing and running applications 109

The Logtalk Handbook, Release v3.60.0

tail_recursive(Option)
Controls warnings of non-tail recursive predicate (and non-terminal) definitions. The lint check does
not detect all cases of non-tail recursive predicate definitions, however. Also, definitions that make two
or more recursive calls are not reported as usually they cannot be changed to be tail recursive. Possible
option values are warning and silent (the usual default).

Optional features compilation flags

complements(Option)
Allows objects to be compiled with support for complementing categories turned off in order to im-
prove performance and security. Possible option values are allow (allow complementing categories
to override local object predicate declarations and definitions), restrict (allow complementing cate-
gories to add predicate declarations and definitions to an object but not to override them), and deny
(ignore complementing categories; the usual default). This option can be used on a per-object basis.
Note that changing this option is of no consequence for objects already compiled and loaded.

dynamic_declarations(Option)
Allows objects to be compiled with support for dynamic declaration of new predicates turned off in
order to improve performance and security. Possible option values are allow and deny (the usual
default). This option can be used on a per-object basis. Note that changing this option is of no
consequence for objects already compiled and loaded. This option is only checked when sending an
asserta/1 or assertz/1 message to an object. Local asserting of new predicates is always allowed.

events(Option)
Allows message sending calls to be compiled with or without event-driven programming support. Possi-
ble option values are allow and deny (the usual default). Objects (and categories) compiled with this
option set to deny use optimized code for message-sending calls that does not trigger events. As such,
this option can be used on a per-object (or per-category) basis. Note that changing this option is of no
consequence for objects already compiled and loaded.

context_switching_calls(Option)
Allows context switching calls ((<<)/2) to be either allowed or denied. Possible option values are
allow and deny. The default flag vale is allow. Note that changing this option is of no consequence for
objects already compiled and loaded.

Backend Prolog compiler and loader flags

prolog_compiler(Flags)
List of compiler flags for the generated Prolog files. The valid flags are specific to the used Prolog
backend compiler. The usual default is the empty list. These flags are passed to the backend Prolog
compiler built-in predicate that is responsible for compiling to disk a Prolog file. For Prolog compilers
that don’t provide separate predicates for compiling and loading a file, use instead the prolog loader
flag.

prolog_loader(Flags)
List of loader flags for the generated Prolog files. The valid flags are specific to the used Prolog backend
compiler. The usual default is the empty list. These flags are passed to the backend Prolog compiler
built-in predicate that is responsible for loading a (compiled) Prolog file.

110 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

Other flags

scratch_directory(Directory)

Sets the directory to be used to store the temporary files generated when compiling Logtalk source files.
This directory can be specified using an atom or using library notation. The directory must always end
with a slash. The default value is a sub-directory of the source files directory, either './lgt_tmp/' or
'./.1gt_tmp/' (depending on the backend Prolog compiler and operating-system). Relative directo-
ries must always start with './' due to the lack of a portable solution to check if a path is relative
or absolute. The default value set on the backend Prolog compiler adapter file can be overriden by
defining the scratch_directory library alias (see the logtalk library path/2 predicate documentation
for details).

report(Option)
Controls the default printing of messages. Possible option values are on (by usual default, print all
messages that are not intercepted by the user), warnings (only print warning and error messages that
are not intercepted by the user), and of f (do not print any messages that are not intercepted by the
user).

code_prefix(Character)

Enables the definition of prefix for all functors of Prolog code generated by the Logtalk compiler. The
option value must be a single character atom. Its default value is '$'. Specifying a code prefix provides
a way to solve possible conflicts between Logtalk compiled code and other Prolog code. In addition,
some Prolog compilers automatically hide predicates whose functor start with a specific prefix such as
the character $. Although this is not a read-only flag, it should only be changed at startup time and
before loading any source files. When changing this flag (e.g. from a settings file), restart with the clean
flag turned on to ensure that any compiled files using the old code_prefix value will be recompiled.

optimize(Option)

Controls the compiler optimizations. Possible option values are on (used by default for deployment)
and off (used by default for development). Compiler optimizations include the use of static binding
whenever possible, the removal of redundant calls to true/@ from predicate clauses, the removal of
redundant unifications when compiling grammar rules, and inlining of predicate definitions with a
single clause that links to a local predicate, to a plain Prolog built-in (or foreign) predicate, or to a
Prolog module predicate with the same arguments. Care should be taken when developing applications
with this flag turned on as changing and reloading a file may render static binding optimizations invalid
for code defining in other loaded files. Turning on this flag automatically turns off the debug flag.

source_data(Option)
Defines how much information is retained when compiling a source file. Possible option values are on
(the usual default for development) and of f. With this flag set to on, Logtalk will keep the information
represented using documenting directives plus source location data (including source file names and
line numbers). This information can be retrieved using the reflection API and is useful for documenting,
debugging, and integration with third-party development tools. This flag can be turned off in order to
generate more compact code.

debug(Option)
Controls the compilation of source files in debug mode (the Logtalk default debugger can only be
used with files compiled in this mode). Also controls, by default, printing of debug> and debug(Topic)
messages. Possible option values are on and of f (the usual default). Turning on this flag automatically
turns off the optimize flag.

reload(Option)
Defines the reloading behavior for source files. Possible option values are skip (skip reloading
of already loaded files; this value can be used to get similar functionality to the Prolog directive
ensure_loaded/1 but should be used only with fully debugged code), changed (the usual default;
reload files only when they are changed since last loaded provided that any explicit flags and the
compilation mode are the same as before), and always (always reload files).

1.14. Writing and running applications 111

The Logtalk Handbook, Release v3.60.0

relative_to(Directory)
Defines a base directory for resolving relative source file paths. The default value is the directory of
the source file being compiled.

hook(Object)
Allows the definition of an object (which can be the pseudo-object user) implementing the expanding
built-in protocol. The hook object must be compiled and loaded when this option is used. It’s also
possible to specify a Prolog module instead of a Logtalk object but the module must be pre-loaded and
its identifier must be different from any object identifier.

clean(Option)

Controls cleaning of the intermediate Prolog files generated when compiling Logtalk source files. Pos-
sible option values are of f and on (the usual default). When turned on, intermediate files are deleted
after loading and all source files are recompiled disregarding any existing intermediate files. When
turned off, the intermediate files are kept. This is useful when embedding applications, which requires
collecting the intermediate code, and when working on large applications to avoid repeated recompi-
lation of stable code. The flag must be turned on when changing compilation modes, changing flags
such as code_prefix, or when turning on linter flags that are off by default without at the same time
making changes to the application source files themselves as any existing intermediate files would not
be recompiled as necessary due to file timestamps not changing.

User-defined flags

Logtalk provides a create logtalk flag/3 predicate that can be used for defining new flags.

1.14.11 Reloading source files

As a general rule, reloading source files should never occur in production code and should be handled with
care in development code. Reloading a Logtalk source file usually requires reloading the intermediate Prolog
file that is generated by the Logtalk compiler. The problem is that there is no standard behavior for reloading
Prolog files. For static predicates, almost all Prolog compilers replace the old definitions with the new ones.
However, for dynamic predicates, the behavior depends on the Prolog compiler. Most compilers replace
the old definitions but some of them simply append the new ones, which usually leads to trouble. See the
compatibility notes for the backend Prolog compiler you intend to use for more information. There is an
additional potential problem when using multi-threading programming. Reloading a threaded object does
not recreate from scratch its old message queue, which may still be in use (e.g. threads may be waiting on
it).

When using library entities and stable code, you can avoid reloading the corresponding source files (and,
therefore, recompiling them) by setting the reload compiler flag to skip. For code under development, you
can turn off the clean flag to avoid recompiling files that have not been modified since last compilation
(assuming that backend Prolog compiler that you are using supports retrieving of file modification dates).
You can disable deleting the intermediate files generated when compiling source files by changing the default
flag value in your settings file, by using the corresponding compiler flag with the compiling and loading built-
in predicates, or, for the remaining of a working session, by using the call:

| ?- set_logtalk_flag(clean, off).

Some caveats that you should be aware. First, some warnings that might be produced when compiling a
source file will not show up if the corresponding object file is up-to-date because the source file is not being
(re)compiled. Second, if you are using several Prolog compilers with Logtalk, be sure to perform the first
compilation of your source files with the clean flag turned off: the intermediate Prolog files generated by
the Logtalk compiler may be not compatible across Prolog compilers or even for the same Prolog compiler
across operating systems (e.g. due to the use of different character encodings or end-of-line characters).

112 Chapter 1. User Manual

../../docs/user_0.html#user-0
../../docs/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.60.0

1.14.12 Batch processing

When doing batch processing, you probably want to turn off the report flag to suppress all messages of type
banner, comment, comment(_), warning, and warning(_) that are normally printed. Note that error messages
and messages providing information requested by the user will still be printed.

1.14.13 Optimizing performance

The default compiler flag settings are appropriated for the development but not necessarily for the deploy-
ment of applications. To minimize the generated code size, turn the source_data flag off. To optimize runtime
performance, turn on the optimize flag. Your chosen backend Prolog compiler may also provide performance
related flags; check its documentation.

Pay special attention to file compilation/loading order. Whenever possible, compile and load your files taking
into account file dependencies. By default, the compiler will print a warning whenever a file references an
entity that is not yet loaded. Solving these warnings is key for optimal performance by enabling static binding
optimizations. For a clear picture of file dependencies, use the diagrams tool to generate a file dependency
diagram for your application.

Minimize the use of dynamic predicates. Parametric objects can often be used in alternative. When dynamic
predicates cannot be avoided, try to make them private. Declaring a dynamic predicate also as a private
predicate allows the compiler to optimize local calls to the database methods (e.g. assertz/1 and retract/1)
that modify the predicate.

Sending a message to self implies dynamic binding but there are often cases where (::)/1 is misused to call
an imported or inherited predicate that is never going to be redefined in a descendant. In these cases,
a super call, (™ ~)/1, can be used instead with the benefit of often enabling static binding. Most of the
guidelines for writing efficient Prolog code also apply to Logtalk code. In particular, define your predicates
to take advantage of first-argument indexing. In the case of recursive predicates, define them as tail-recursive
predicates whenever possible.

See the section on performance for a detailed discussion on Logtalk performance.

1.14.14 Portable applications

Logtalk is compatible with most modern standards compliant Prolog compilers. However, this does not
necessarily imply that your Logtalk applications will have the same level of portability. If possible, you
should only use in your applications Logtalk built-in predicates and ISO Prolog specified built-in predicates
and arithmetic functions. If you need to use built-in predicates (or built-in arithmetic functions) that may
not be available in other Prolog compilers, you should try to encapsulate the non-portable code in a small
number of objects and provide a portable interface for that code through the use of Logtalk protocols. An
example will be code that access operating-system specific features. The Logtalk compiler can warn you of
the use of non-ISO specified built-in predicates and arithmetic functions by using the portability compiler
flag.

1.14. Writing and running applications 113

The Logtalk Handbook, Release v3.60.0

1.14.15 Conditional compilation

Logtalk supports conditional compilation within source files using the if/1, elif/1, else/0, and endif/0 direc-
tives. This support is similar to the support found in several Prolog systems such as ECLiPSe, GNU Prolog,
SICStus Prolog, SWI-Prolog, XSB, and YAP.

1.14.16 Avoiding common errors

Try to write objects and protocol documentation before writing any other code; if you are having trouble
documenting a predicate perhaps we need to go back to the design stage.

Try to avoid lengthy hierarchies. Composition is often a better choice over inheritance for defining new ob-
jects (Logtalk supports component-based programming through the use of categories). In addition, prototype-
based hierarchies are semantically simpler than class-based hierarchies.

Dynamic predicates or dynamic entities are sometimes needed, but we should always try to minimize the
use of non-logical features such as asserts and retracts.

Since each Logtalk entity is independently compiled, if an object inherits a dynamic or a meta-predicate
predicate, then the respective directives must be repeated to ensure a correct compilation.

In general, Logtalk does not verify if a user predicate call/return arguments comply with the declared modes.
On the other hand, Logtalk built-in predicates, built-in methods, and message sending control structures are
fully checked for calling mode errors.

Logtalk error handling strongly depends on the ISO compliance of the chosen Prolog compiler. For instance,
the error terms that are generated by some Logtalk built-in predicates assume that the Prolog built-in predi-
cates behave as defined in the ISO standard regarding error conditions. In particular, if your Prolog compiler
does not support a read_term/3 built-in predicate compliant with the ISO Prolog Standard definition, then
the current version of the Logtalk compiler may not be able to detect misspell variables in your source code.

1.14.17 Coding style guidelines

It is suggested that all code between an entity opening and closing directives be indented by one tab stop.
When defining entity code, both directives and predicates, Prolog coding style guidelines may be applied.
All Logtalk source files, examples, and standard library entities use tabs (the recommended setting is a tab
width equivalent to 4 spaces) for laying out code. Closed related entities can be defined in the same source
file. However, for best performance, is often necessary to have an entity per source file. Entities that might
be useful in different contexts (such as library entities) are best defined in their own source files.

A detailed coding style guide is available at the Logtalk official website.

1.15 Printing messages and asking questions

Applications, components, and libraries often print all sorts of messages. These include banners, logging,
debugging, and computation results messages but also, in some cases, user interaction messages. However,
the authors of applications, components, and libraries often cannot anticipate the context where their soft-
ware will be used and thus decide which and when messages should be displayed, suppressed, or diverted.
Consider the different components in a Logtalk application development and deployment. At the base level,
you have the Logtalk compiler and runtime. The compiler writes messages related to e.g. compiling and
loading files, compiling entities, compilation warnings and errors. The runtime may write banner messages
or throw execution errors that may result in printing human-level messages. The development environment

114 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

can be console-based or you may be using a GUI tool such as PDT. In the latter case, PDT needs to inter-
cept the Logtalk compiler and runtime messages to present the relevant information using its GUIL. Then
you have all the other components in a typical application. For example, your own libraries and third-party
libraries. The libraries may want to print messages on its own, e.g. banners, debugging information, or
logging information. As you assemble all your application components, you want to have the final word on
which messages are printed, where, and when. Uncontrolled message printing by libraries could potentially
disturb application flow, expose implementation details, spam the user with irrelevant details, or break user
interfaces.

The solution is to decouple the calls to print a message from the actual printing of the output text. The same
is true for calls to read user input. By decoupling the call to input some data from the actual read of the
data, we can easily switched e.g. from a command-line interface to a GUI input dialog or even automate
providing the data (e.g. when automating testing of user interaction).

Logtalk provides a solution based on the structured message printing mechanism that was introduced by
Quintus Prolog, where it was apparently implemented by Dave Bowen (thanks to Richard O’Keefe for the
historical bits). This mechanism gives the programmer full control of message printing, allowing it to filter,
rewrite, or redirect any message. Variations of this mechanism can also be found in some Prolog systems
including SICStus Prolog, SWI-Prolog, and YAP. Based on this mechanism, Logtalk introduces an extension
that also allows abstracting asking a user for input. Both mechanisms are implemented by the logtalk built-
in object and described in this section. The message printing mechanism is extensively used by the Logtalk
compiler itself and by the developer tools. The question asking mechanism is used e.g. in the debugger tool.

1.15.1 Printing messages

The main predicate for printing a message is logtalk::print_message/3. A simple example, using the Logtalk
runtime is:

| ?- logtalk::print_message(banner, core, banner).

Logtalk 3.23.0
Copyright (c) 1998-2018 Paulo Moura
yes

The first argument of the predicate is the kind of message that we want to print. In this case, we use banner
to indicate that we are printing a product name and copyright banner. An extensive list of message kinds is
supported by default:

banner
banner messages (used e.g. when loading tools or main application components; can be suppressed by
setting the report flag to warnings or of f)

help
messages printed in reply for the user asking for help (mostly for helping port existing Prolog code)

information and information(Group)
messages usually printed in reply to a user request for information

silent and silent(Group)
not printed by default (but can be intercepted using the message_hook/4 predicate)

comment and comment(Group)
useful but usually not essential messages (can be suppressed by setting the report flag to warnings or
off)

warning and warning(Group)
warning messages (generated e.g. by the compiler; can be suppressed by turning off the report flag)

1.15. Printing messages and asking questions 115

../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.60.0

error and error(Group)
error messages (generated e.g. by the compiler)

debug, debug(Group)
debugging messages (by default, only printed when the debug flag is turned on; the print_message/3
goals for these messages are suppressed by the compiler when the optimize flag is turned on)

question, question(Group)
questions to a user

Using a compound term allows easy partitioning of messages of the same kind in different groups. Note
that you can define your own alternative message kind identifiers, for your own components, together with
suitable definitions for their associated prefixes and output streams.

The second argument of print_message/3 represents the component defining the message being printed.
Here component is a generic term that can designate e.g a tool, a library, or some sub-system in a large
application. In our example, the component name is core, identifying the Logtalk compiler/runtime. This
argument was introduced to provide multiple namespaces for message terms and thus simplify programming-
in-the-large by allowing easy filtering of all messages from a specific component and also avoiding conflicts
when two components happen to define the same message term (e.g. banner). Users should choose and
use a unique name for a component, which usually is the name of the component itself. For example, all
messages from the [gtunit tool use lgtunit for the component argument. The compiler and runtime are
interpreted as a single component designated as core.

The third argument of print_message/3 is the message itself, represented by a term. In the above example,
the message term is banner. Using a term to represent a message instead of a string with the message text
itself have significant advantages. Notably, it allows using a compound term for easy parameterization of the
message text and simplifies machine-processing, localization of applications, and message interception. For
example:

| ?- logtalk::print_message(comment, core, redefining_entity(object, foo)).

% Redefining object foo
yes

1.15.2 Message tokenization

The advantages of using message terms require a solution for generating the actual messages text. This
is supported by defining grammar rules for the logtalk::message tokens//2 multifile non-terminal, which
translates a message term, for a given component, to a list of tokens. For example:

;- multifile(logtalk: :message_tokens//2).
;- dynamic(logtalk: :message_tokens//2).

logtalk: :message_tokens(redefining_entity(Type, Entity), core) -->
['Redefining ~w ~q'-[Type, Entity], nl].

The following tokens can be used when translating a message:

at_same_line
Signals a following part to a multi-part message with no line break in between; this token is ignored
when it’s not the first in the list of tokens

flush
Flush the output stream (by calling the flush_output/1 standard predicate)

116 Chapter 1. User Manual

The Logtalk Handbook, Release v3.60.0

nl
Change line in the output stream

Format-Arguments
Format must be an atom and Arguments must be a list of format arguments (the token arguments are
passed to a call to the format/3 de facto standard predicate)

term(Term, Options)
Term can be any term and Options must be a list of valid write_term/3 output options (the token
arguments are passed to a call to the write_term/3 standard predicate)

ansi(Attributes, Format, Arguments)
Taken from SWI-Prolog; by default, do nothing; can be used for styled output

begin(Kind, Var)
Taken from SWI-Prolog; by default, do nothing; can be used together with end(Var) to wrap a sequence
of message tokens

end(Var)
Taken from SWI-Prolog; by default, do nothing

The logtalk object also defines public predicates for printing a list of tokens, for hooking into printing an
individual token, and for setting default output stream and message prefixes. For example, the SWI-Prolog
adapter file uses the print message token hook predicate to enable coloring of messages printed on a console.

1.15.3 Meta-messages

Defining tokenization rules for every message is not always necessary, however. Logtalk defines several meta-
messages that are handy for simple cases and temporary messages only used to help developing, notably
debugging messages. See the Debugging messages section and the logtalk built-in object remarks section for
details.

1.15.4 Intercepting messages

Calls to the logtalk::print message/3 predicate can be intercepted by defining clauses for the
logtalk::message_hook/4 multifile hook predicate. This predicate can suppress, rewrite, and divert messages.

As a first example, assume that you want to make Logtalk startup less verbose by suppressing printing of the
default compiler flag values. This can be easily accomplished by defining the following category in a settings
file:

.- category(my_terse_logtalk_startup_settings).

;- multifile(logtalk: :message_hook/4).
:— dynamic(logtalk: :message_hook/4).

logtalk: :message_hook(default_flags, comment(settings), core, _).

:- end_category.

The printing message mechanism automatically calls the message_hook/4 hook predicate. When this call
succeeds, the mechanism assumes that the message have been successfully handled.

As another example, assume that you want to print all otherwise silent compiler messages:

1.15. Printing messages and asking questions 117

../../docs/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.60.0

.- category(my_verbose_logtalk_message_settings).

;- multifile(logtalk: :message_hook/4).
;- dynamic(logtalk: :message_hook/4).

logtalk: :message_hook(_Message, silent, core, Tokens) :-
logtalk: :message_prefix_stream(comment, core, Prefix, Stream),
logtalk: :print_message_tokens(Stream, Prefix, Tokens).

logtalk: :message_hook(_Message, silent(Key), core, Tokens) :-
logtalk: :message_prefix_stream(comment(Key), core, Prefix, Stream),

logtalk: :print_message_tokens(Stream, Prefix, Tokens).

;- end_category.

This example calls the logtalk::message_prefix_stream/4 hook predicate, which can be used to define a mes-
sage line prefix and an output stream for printing messages for a given component.

1.15.5 Asking questions

Logtalk structured question asking mechanism complements the message printing mechanism. It provides an
abstraction for the common task of asking a user a question and reading back its reply. By default, this mech-
anism writes the question, writes a prompt, and reads the answer using the current user input and output
streams but allows all steps to be intercepted, filtered, rewritten, and redirected. Two typical examples are
using a GUI dialog for asking questions and automatically providing answers to specific questions.

The question asking mechanism works in tandem with the message printing mechanism, using it to print the
question text and a prompt. It provides an asking predicate and a hook predicate, both declared and defined
in the logtalk built-in object. The asking predicate, logtalk::ask_question/5, is used for ask a question and
read the answer. Assume that we defined the following message tokenization and question prompt and
stream:

.- category(hitchhikers_guide_to_the_galaxy).

;- multifile(logtalk: :message_tokens//2).
;- dynamic(logtalk: :message_tokens//2).

% abstract the question text using the atom ultimate_question;
% the second argument, hitchhikers, is the application component
logtalk: :message_tokens(ultimate_question, hitchhikers) -->
['The answer to the ultimate question of life, the universe and everything is?'-[1,.
—nl].

:- multifile(logtalk::question_prompt_stream/4).
:— dynamic(logtalk: :question_prompt_stream/4)