Package ‘windfarmGA’

January 18, 2025
Title Genetic Algorithm for Wind Farm Layout Optimization
Version 4.0.0
Maintainer Sebastian Gatscha <sebastian_gatscha@gmx.at>

Description The genetic algorithm is designed to optimize wind farms of any shape. It requires a pre-
defined amount of turbines, a unified rotor radius and an average wind speed value for each in-
coming wind direction. A terrain effect model can be included that downloads an 'SRTM' eleva-
tion model and loads a Corine Land Cover raster to approximate surface roughness.

Depends R (>=4.1.0)

Imports Rcpp, terra, sf, RColorBrewer, calibrate, grDevices, graphics,
magrittr, methods, stats, utils

LinkingTo Rcpp
LazyData TRUE
License MIT + file LICENSE

URL https://ysosirius.github.io/windfarmGA/index.html

BugReports https://github.com/YsoSirius/windfarmGA/issues
Encoding UTF-8
RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0), foreach, parallel, doParallel, progress,
stars, raster, leaflet, elevatr (>= 0.99.0), ggplot2, gstat,
rworldmap

X-schema.org-keywords windfarm-layout, optimization,
genetic-algorithm, renewable-energy, r, rstats, r-package

Config/testthat/edition 3
Config/testthat/parallel true
NeedsCompilation yes

Author Sebastian Gatscha [aut, cre, cph]
Repository CRAN

Date/Publication 2025-01-18 11:00:02 UTC

https://ysosirius.github.io/windfarmGA/index.html
https://github.com/YsoSirius/windfarmGA/issues

2 Contents

Contents
windfarmGA-package L 3
barometric_height L 3
big_shape 4
calculate_energy e e e e e 5
circle_intersection e 7
CIOSSOVET &« v v v e v e 8
fitness e e e 9
genetic_algorithm L 11
get_dist_angles 15
get_grids 16
grid_area e 18
hexa_area e 19
hole_shape e e 20
init_population 21
isSpatial L e e 22
multi_shape 23
MULAtION o s e 23
package_ installed 24
PErmutations L. e e e e 25
plot_cloud 26
plot_development L 26
plot_evolution e e e e e e e 27
plot_fitness_evolution L. 28
plot_leaflet e 28
plot_parkfitness 30
plot_random_search e 30
plot_result 31
plot_viewshed e 33
plot_windfarmGA 34
Plot_windrose e e e e 35
random_sSearch 36
random_search_single o 37
readinte@er e e e e e e e e e e e e 38
readintegerSel L. 38
resulthex e 39
resultrect L L e e e e e e 39
selection L e e e e e 40
SPLtAL . . L L 41
SP_pPOlygon e e e 42
terrain_model L e 42
IMEION o v e e e e e e e e e e e e e e e e e 43
turbine_influences L e 45
windata_format e 46

Index 48

windfarmGA-package 3

windfarmGA-package windfarmGA: Genetic Algorithm for Wind Farm Layout Optimization

Description

The genetic algorithm is designed to optimize wind farms of any shape. It requires a predefined
amount of turbines, a unified rotor radius and an average wind speed value for each incoming wind
direction. A terrain effect model can be included that downloads an "SRTM’ elevation model and
loads a Corine Land Cover raster to approximate surface roughness.

Details
[Stable]
‘ A package to optimize small wind farms with irregular shapes using a genetic algorithm. It
requires a fixed amount of turbines, a fixed rotor radius and an average wind speed value for each
incoming wind direction. A terrain effect model can be included which downloads a digital eleva-

tion model and a Corine Land Cover raster to approximate surface roughness. Further information
can be found at the description of the function genetic_algorithm.

Author(s)

Maintainer: Sebastian Gatscha <sebastian_gatscha@gmx.at>

See Also
Useful links:

* Documentation Github.io
e Documentation

* Master Thesis

» Shiny App

* Report Issues

barometric_height Calculates Air Density, Air Pressure and Temperature according to the
Barometric Height Formula

Description

Calculates air density, temperature and air pressure respective to certain heights according to the
International standard atmosphere and the barometric height formula.

https://ysosirius.github.io/windfarmGA/
https://github.com/YsoSirius/windfarmGA
https://homepage.boku.ac.at/jschmidt/TOOLS/Masterarbeit_Gatscha.pdf
https://windfarmga.shinyapps.io/windga_shiny
https://github.com/YsoSirius/windfarmGA/issues

4 big_shape

Usage

barometric_height(data, height, po = 101325, ro = 1.225)

Arguments

data A data.frame containing the height values

height Column name of the height values

po Standardized air pressure at sea level (101325 Pa)

ro Standardized air density at sea level (1,225 kg per m3)
Value

Returns a data.frame with height values and corresponding air pressures, air densities and tempera-
tures in Kelvin and Celsius.

See Also

Other Wind Energy Calculation Functions: calculate_energy(), circle_intersection(), get_dist_angles(),
turbine_influences()

Examples

data <- matrix(seq(@, 5000, 500))
barometric_height(data)
plot.ts(barometric_height(data))

big_shape A POLYGON with an area of ~70 km2

Description

A POLYGON with an area of ~70 km?2

Usage

big_shape

Format

An object of class sf (inherits from data. frame) with 1 rows and 1 columns.

calculate_energy

calculate_energy

Calculate Energy Outputs of Individuals

Description

Calculate the energy output and efficiency rates of an individual in the current population under all
given wind directions and speeds. If the terrain effect model is activated, the main calculations to
model those effects will be done in this function.

Usage
calculate_energy(
sel,
referenceHeight,
RotorHeight,
SurfaceRoughness,
wnkl,
distanz,
polygont,
RotorR,
dirSpeed,
srtm_crop,
topograp,
cclRaster,
weibull,
plotit = FALSE
)
Arguments
sel A matrix of an individual of the current population
referenceHeight
The height at which the incoming wind speeds were measured. Default is
RotorHeight
RotorHeight The height of the turbine hub
SurfaceRoughness
A surface roughness length in meters. With the terrain effect model, a surface
roughness is calculated for every grid cell using the elevation and land cover
data. Defaultis 0.3
wnkl The angle from which wake influences are considered to be negligible
distanz The distance after which wake effects are considered to be eliminated
polygon1 The considered area as Simple Feature Polygon
RotorR The desired rotor radius in meter
dirSpeed The wind speed and direction data.frame

calculate_energy

The first element of the terrain_model resulting list

Boolean value, which indicates if the terrain effect model should be enabled or
not. Default is FALSE

The second element of the terrain_model resulting list

A boolean value that specifies whether to take Weibull parameters into account.
If TRUE, the wind speed values of vdirspe are ignored. The algorithm will
calculate the mean wind speed for every wind turbine according to the Weibull
parameters. Default is FALSE

If TRUE, the process will be plotted. Default is FALSE

Returns a list of an individual of the current generation with resulting wake effects, energy out-
puts, efficiency rates for every wind direction. The length of the list corresponds to the number of
different wind directions.

Other Wind Energy Calculation Functions: barometric_height(), circle_intersection(),
get_dist_angles(), turbine_influences()

6
srtm_crop
topograp
cclRaster
weibull
plotit
Value
See Also
Examples

Create a random Polygon

library(sf)

Polygon1 <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
c (4498482, 4498482, 4499991, 4499991, 4498482),
c(2668272, 2669343, 2669343, 2668272, 2668272)

N,

crs = 3035

)

Create a uniform and unidirectional wind data.frame and plot the
resulting wind rose
data.in <- data.frame(ws = 12, wd = Q)
windrosePlot <- plot_windrose(
data = data.in, spd = data.in$ws,
dir = data.in$wd, dirres = 10, spdmax = 20

)

Assign the rotor radius and a factor of the radius for grid spacing.

Rotor <- 50

fcrR <- 3

resGrid <- grid_area(

shape =

Polygon1, size = Rotor * fcrR, prop = 1,

plotGrid = TRUE

)

Assign the indexed data frame to new variable. Element 2 of the list
is the grid, saved as Simple Feature Polygons.

circle_intersection

resGridl <- resGrid[[1]]

Create an initial population with the indexed Grid, 15 turbines and
100 individuals.
initpop <- init_population(Grid = resGridl, n = 15, nStart = 100)

Calculate the expected energy output of the first individual of the
population.
par(mfrow = c(1, 2))
plot(Polygon1)
points(initpop[[111[, "X"], initpop[[111[, "Y"], pch = 20, cex = 2)
plot(resGrid[[2]], add = TRUE)
resCalcEn <- calculate_energy(
sel = initpop[[1]1], referenceHeight = 50,
RotorHeight = 5@, SurfaceRoughness = 0.14, wnkl = 20,
distanz = 100000, dirSpeed = data.in,
RotorR = 50, polygonl = Polygonl, topograp = FALSE,
weibull = FALSE
)
resCalcEn <- as.data.frame(resCalcEn)
plot(Polygonl, main = resCalcEn[, "Energy_Output_Red”I[[1]11)
points(x = resCalcEn[, "Bx"], y = resCalcEn[, "By"], pch = 20)

Create a variable and multidirectional wind data.frame and plot the
resulting wind rose
data.in10 <- data.frame(ws = runif (10, 1, 25), wd = runif(10, @, 360))
windrosePlot <- plot_windrose(

data = data.in10, spd = data.in10%ws,

dir = data.in10$wd, dirres = 10, spdmax = 20
)

Calculate the energy outputs for the first individual with more than one
wind direction.
resCalcEn <- calculate_energy(

sel = initpop[[1]], referenceHeight = 50,

RotorHeight = 50, SurfaceRoughness = 0.14, wnkl = 20,

distanz = 100000, dirSpeed = data.inl10,

RotorR = 50, polygonl = Polygonl, topograp = FALSE,

weibull = FALSE

circle_intersection Get area of intersecting circles

Description

Calculate the intersection area of two circles with different radii and different heights

8 crossover

Usage

circle_intersection(rl, r2, h1, h2, dx)

Arguments

ri The radius of circle 1

r2 The radius of circle 2

h1 The height of the circle center 1

h2 The height of the circle center 2

dx The distance on the x-axis between both centers
Value

A numeric value

See Also

Other Wind Energy Calculation Functions: barometric_height(), calculate_energy(), get_dist_angles(),
turbine_influences()

crossover Crossover Method

Description

The crossover method creates new offspring with the selected individuals by permutating their
genetic codes.

Usage

crossover(se6, u, uplimit, crossPart = c("EQU", "RAN"), verbose, seed)
Arguments

seb The selected individuals. The output of selection

u The crossover point rate

uplimit The upper limit of allowed permutations

crossPart The crossover method. Either "EQU" or "RAN"

verbose If TRUE, will print out further information

seed Set a seed for comparability. Default is NULL
Value

Returns a binary coded matrix of all permutations and all grid cells, where O indicates no turbine
and 1 indicates a turbine in the grid cell.

fitness 9

See Also

Other Genetic Algorithm Functions: fitness(), genetic_algorithm(), init_population(),
mutation(), selection(), trimton()

Examples

Create two random parents with an index and random binary values
Parents <- data.frame(
D = 1:20,
bin = sample(c(@, 1), 20, replace = TRUE, prob = c(70, 30)),
bin.1 = sample(c(@, 1), 20, replace = TRUE, prob = c(30, 70))
)

Create random Fitness values for both individuals
FitParents <- data.frame(ID = 1, Fitness = 1000, Fitness.1 = 20)

Assign both values to a list

CrossSampl <- list(Parents, FitParents)

Cross their data at equal locations with 2 crossover parts
crossover(CrossSampl, u = 1.1, uplimit = 300, crossPart = "EQU")

with 3 crossover parts and equal locations
crossover(CrossSampl, u = 2.5, uplimit = 300, crossPart = "EQU")

or with random locations and 5 crossover parts

crossover(CrossSampl, u = 4.9, uplimit = 300, crossPart = "RAN")
fitness Evaluate the Individual Fitness values
Description

The fitness of all individuals in the current population is calculated after their energy output has
been evaluated in calculate_energy. This function reduces the resulting energy outputs to a
single fitness value for each individual.

Usage

fitness(
selection,
referenceHeight,
RotorHeight,
SurfaceRoughness,
Polygon,
resoll,
rot,
dirspeed,
srtm_crop,

10 fitness

topograp,
cclRaster,
weibull,
Parallel,
numCluster

Arguments

selection A list containing all individuals of the current population.
referenceHeight

The height at which the incoming wind speeds were measured. Default is
RotorHeight

RotorHeight The height of the turbine hub
SurfaceRoughness
A surface roughness length in meters. With the terrain effect model, a surface

roughness is calculated for every grid cell using the elevation and land cover
data. Defaultis 0.3

Polygon The considered area as shapefile.

resolil The resolution of the grid in meter.

rot The desired rotor radius in meter.

dirspeed The wind data as list.

srtm_crop A list of 3 raster, with 1) the elevation, 2) an orographic and 3) a terrain raster.

Calculated in genetic_algorithm

topograp Boolean value, which indicates if the terrain effect model should be enabled or
not. Default is FALSE

cclRaster A Corine Land Cover raster, that has to be adapted previously by hand with
the surface roughness length for every land cover type. Is only used, when the
terrain effect model is activated.

weibull A raster representing the estimated wind speeds

Parallel A boolean value, indicating whether parallel processing should be used. The
parallel and doParallel packages are used for parallel processing. Default is
FALSE

numCluster If Parallel is TRUE, this variable defines the number of clusters to be used.

Default is 2

Value
Returns a list with every individual, consisting of X & Y coordinates, rotor radii, the runs and the
selected grid cell IDs, and the resulting energy outputs, efficiency rates and fitness values.

See Also

Other Genetic Algorithm Functions: crossover(), genetic_algorithm(), init_population(),
mutation(), selection(), trimton()

genetic_algorithm 11

Examples

Create a random rectangular shapefile
library(sf)
Polygon1 <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
c(4498482, 4498482, 4499991, 4499991, 4498482),
c(2668272, 2669343, 2669343, 2668272, 2668272)
),
crs = 3035
))

Create a uniform and unidirectional wind data.frame and plots the
resulting wind rose

Uniform wind speed and single wind direction

wind <- data.frame(ws = 12, wd = @)

windrosePlot <- plot_windrose(data = wind, spd = wind$ws,

dir = wind$wd, dirres=10, spdmax=20)

Calculate a Grid and an indexed data.frame with coordinates and
grid cell IDs.

Gridl <- grid_area(shape = Polygonl, size = 200, prop = 1)

Grid <- Grid1[[1]1]

AmountGrids <- nrow(Grid)

wind <- list(wind, probab = 100)

startsel <- init_population(Grid, 10, 20)

fit <- fitness(
selection = startsel, referenceHeight = 100, RotorHeight = 100,
SurfaceRoughness = 0.3, Polygon = Polygonl, resoll = 200, rot = 20,
dirspeed = wind, srtm_crop = "", topograp = FALSE, cclRaster =
Parallel = FALSE

nn

genetic_algorithm Run a Genetic Algorithm to optimize a wind farm layout

Description

Run a Genetic Algorithm to optimize the layout of wind turbines on a given area. The algorithm
works with a fixed amount of turbines, a fixed rotor radius and a mean wind speed value for every
incoming wind direction.

Usage

genetic_algorithm(
Polygont,
GridMethod,
Rotor,

12

n,

fcrR,
referenceHeight,
RotorHeight,
SurfaceRoughness,
Proportionality,

genetic_algorithm

iteration,
mutr,
vdirspe,
topograp,
elitism,
nelit,
selstate,
crossPart1,
trimForce,
Projection,
sourceCCL,

sourceCCLRoughness,

weibull,
weibullsrc,
Parallel,
numCluster,

verbose = FALSE,
plotit = FALSE

)
Arguments

Polygon1 The considered area as SpatialPolygon, SimpleFeature Polygon or coordinates
as matrix/data.frame

GridMethod Should the polygon be divided into rectangular or hexagonal grid cells? The
default is Rectangular grid. Hexagonal grids are computed when assigning h
or hexagon to this input variable.

Rotor The rotor radius in meter

n The amount of turbines

fcrrR A numeric value used for grid spacing. Default is 5

referenceHeight
The height at which the incoming wind speeds were measured. Default is
RotorHeight

RotorHeight The height of the turbine hub

SurfaceRoughness
A surface roughness length in meters. With the terrain effect model, a surface
roughness is calculated for every grid cell using the elevation and land cover
data. Defaultis 0.3

Proportionality

A numeric value used for the grid calculation, as it determines the percentage a
grid cell must overlay the area. Default is 1

genetic_algorithm

iteration
mutr

vdirspe

topograp

elitism

nelit

selstate

crossParti

trimForce

Projection

sourceCCL

13

The number of iterations. Default is 20
A numeric mutation rate. Default is 0.008

A data.frame containing the wind speeds, directions and probabilities. See
windata_format.

Boolean value, which indicates if the terrain effect model should be enabled or
not. Default is FALSE

Boolean value, which indicates whether elitism should be activated or not. De-
fault is TRUE

If elitismis TRUE, this input determines the amount of individuals in the elite
group. Default is 7

Determines which selection method is used, "FIX" selects a constant percentage
and "VAR" selects a variable percentage, depending on the development of the
fitness values. Default is "FIX"

Determines which crossover method is used, "EQU" divides the genetic code at
equal intervals and "RAN" divides the genetic code at random locations. Default
iS HEQUH

If TRUE the algorithm will use a probabilistic approach to correct the windfarms

to the desired amount of turbines. If FALSE the adjustment will be random.
Default is FALSE

A spatial reference system. Depending on your PROJ-version, it should either
be a numeric EPSG-code or a Proj4-string. Default is EPSG: 3035

The path to the Corine Land Cover raster (.tif). Only required when the terrain
effect model is activated.

sourceCCLRoughness

weibull

weibullsrc

Parallel

numCluster

verbose

plotit

The source to the adapted Corine Land Cover legend as .csv file. Only required
when terrain effect model is activated. As default a .csv file within this package
(‘~/extdata’) is taken that was already adapted manually.

A boolean value that specifies whether to take Weibull parameters into account.
If TRUE, the wind speed values of vdirspe are ignored. The algorithm will
calculate the mean wind speed for every wind turbine according to the Weibull
parameters. Default is FALSE

A list of Weibull parameter rasters, where the first list item must be the shape
parameter raster k and the second item must be the scale parameter raster a of
the Weibull distribution. If no list is given, then rasters included in the package
are used instead, which currently only cover Austria. This variable is only used
if weibull = TRUE.

A boolean value, indicating whether parallel processing should be used. The
parallel and doParallel packages are used for parallel processing. Default is
FALSE

If Parallel is TRUE, this variable defines the number of clusters to be used.
Default is 2

If TRUE it will print information for every generation. Default is FALSE
If TRUE it will plot the best windfarm of every generation. Default is FALSE

14 genetic_algorithm

Details

A terrain effect model can be included in the optimization process. Therefore, a digital elevation
model will be downloaded automatically via the elevatr::get_elev_raster function. A land
cover raster can also downloaded automatically from the EEA-website, or the path to a raster
file can be passed to sourceCCL. The algorithm uses an adapted version of the Raster legend
("clc_legend.csv"), which is stored in the package directory ‘~/inst/extdata’. To use other val-
ues for the land cover roughness lengths, insert a column named ''Rauhigkeit_z' to the .csv file,
assign a surface roughness length to all land cover types. Be sure that all rows are filled with nu-
meric values and save the file with '";'' separation. Assign the path of the file to the input variable
sourceCCLRoughness of this function.

Value

The result is a matrix with aggregated values per generation; the best individual regarding energy
and efficiency per generation, some fuzzy control variables per generation, a list of all fitness values
per generation, the amount of individuals after each process, a matrix of all energy, efficiency and
fitness values per generation, the selection and crossover parameters, a matrix with the generational
difference in maximum and mean energy output, a matrix with the given inputs, a dataframe with the
wind information, the mutation rate per generation and a matrix with all tested wind farm layouts.

See Also

Other Genetic Algorithm Functions: crossover(), fitness(), init_population(),mutation(),
selection(), trimton()

Examples

Not run:
Create a random rectangular shapefile
library(sf)

Polygon1 <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
c (4498482, 4498482, 4499991, 4499991, 4498482),
c(2668272, 2669343, 2669343, 2668272, 2668272)
))),
crs = 3035
)

Create a uniform and unidirectional wind data.frame and plot the
resulting wind rose
data.in <- data.frame(ws = 12, wd = 0)
windrosePlot <- plot_windrose(
data = data.in, spd = data.in$ws,
dir = data.in$wd, dirres = 10, spdmax = 20

)

Runs an optimization run for 20 iterations with the

given shapefile (Polygon1), the wind data.frame (data.in),

12 turbines (n) with rotor radii of 30m (Rotor) and rotor height of 100m.
result <- genetic_algorithm(

get_dist_angles 15

Polygon1 = Polygoni,

n=12,

vdirspe = data.in,
Rotor = 30,
RotorHeight = 100

)
plot_windfarmGA(result = result, Polygonl = Polygonl)

End(Not run)

get_dist_angles Calculate distances and angles of possibly influencing turbines

Description

Calculate distances and angles for a turbine and all it’s potentially influencing turbines.

Usage

get_dist_angles(t, o, wnkl, dist, polYgon, plotAngles = FALSE)

Arguments
t A data.frame of the current individual with X and Y coordinates
o) A numeric value indicating the index of the current turbine
wnkl The angle from which wake influences are considered to be negligible
dist A numeric value indicating the distance, after which the wake effects are con-
sidered to be eliminated.
polYgon A shapefile representing the considered area
plotAngles A logical variable, which is used to plot the distances and angles. Default is
FALSE
Value

Returns a matrix with the distances, angles and heights of potentially influencing turbines

See Also

Other Wind Energy Calculation Functions: barometric_height(), calculate_energy(),circle_intersection(),
turbine_influences()

16 get_grids

Examples

library(sf)

Exemplary input Polygon with 2km x 2km:
Polygonl <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
(4498482, 4498482, 4499991, 4499991, 4498482),
c(2668272, 2669343, 2669343, 2668272, 2668272)
),
crs = 3035
)

Create a random windfarm with 10 turbines
t <- st_coordinates(st_sample(Polygonl, 10))
t <- cbind(t, "Z" = 1)

wnkl <- 20

dist <- 100000

Evaluate and plot for every turbine all other potentially influencing turbines
potInfTur <- list()
for (i in 1:(length(tl, 11))) {
potInfTur[[i]] <- get_dist_angles(
t=1t, o=1, wnkl = wnkl,
dist = dist, polYgon = Polygonl, plotAngles = TRUE
)

3
potInfTur

get_grids Get the Grid-IDs from binary matrix

Description

Retrieve the grid ID’s from the binary matrix, where the binary code indicates which grid cells are
used in the current wind farm constellation.

Usage

get_grids(trimtonOQut, Grid)

Arguments
trimtonOut Input matrix with binary values
Grid Grid of the considered area
Value

Returns a list of all individuals with X and Y coordinates and the grid cell ID.

get_grids 17

See Also

Other Helper Functions: grid_area(), hexa_area(), isSpatial(), permutations(), readinteger(),
readintegerSel(), splitAt(), windata_format()

Examples

Create a random rectangular shapefile
library(sf)
Polygonl <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
c(o, 0, 2000, 2000, 0),
c(0, 2000, 2000, 0, 0)
D),
crs = 3035
)

Calculate a Grid and an indexed data.frame with coordinates and
grid cell Ids.

Gridl <- grid_area(shape = Polygonl, size = 200, prop = 1)

Grid <- Grid1[[1]1]

AmountGrids <- nrow(Grid)

startsel <- init_population(Grid, 10, 20)

wind <- data.frame(ws = 12, wd = @)

wind <- list(wind, probab = 100)

fit <- fitness(
selection = startsel, referenceHeight = 100, RotorHeight = 100,
SurfaceRoughness = 0.3, Polygon = Polygonl, resoll = 200, rot = 20,
dirspeed = wind, srtm_crop = "", topograp = FALSE, cclRaster = ""

)

allparks <- do.call("rbind”, fit)

SELECTION

print the amount of Individuals selected.

Check if the amount of Turbines is as requested.
selec6best <- selection(fit, Grid, 2, TRUE, 6, "VAR")

CROSSOVER

u determines the amount of crossover points,

crossPart determines the method used (Equal/Random),

uplimit is the maximum allowed permutations

crossOut <- crossover(selec6best, 2, uplimit = 300, crossPart = "RAN")

MUTATION

Variable Mutation Rate is activated if more than 2 individuals represent
the current best solution.

mut <- mutation(a = crossOut, p = 0.3)

TRIMTON

After Crossover and Mutation, the amount of turbines in a windpark change
and have to be corrected to the required amount of turbines.

mutl <- trimton(

18 grid_area

mut = mut, nturb = 10, allparks = allparks,
nGrids = AmountGrids, trimForce = FALSE

)

Get the new Grid-Ids and run a new fitness run.

getRectV <- get_grids(mutl, Grid)

fit <- fitness(
selection = getRectV, referenceHeight = 100, RotorHeight = 100,
SurfaceRoughness = 0.3, Polygon = Polygonl, resoll = 200, rot = 20,

dirspeed = wind, srtm_crop = "", topograp = FALSE, cclRaster = ""
)
head(fit)
grid_area Make a grid from a Simple Feature Polygon
Description

Create a grid from a given polygon with a certain resolution and proportionality. The grid cell
centroids represent possible wind turbine locations.

Usage
grid_area(shape, size = 500, prop = 1, plotGrid = FALSE)

Arguments
shape Simple Feature Polygon of the considered area
size The cellsize of the grid in meters. Default is 500
prop A factor used for grid calculation. It determines the minimum percentage that a
grid cell must cover the area. Default is 1
plotGrid Logical value indicating whether the results should be plotted. Default is FALSE
Value

Returns a list with 2 elements. List element 1 will have the grid cell IDS, and the X and Y coordi-
nates of the centers of each grid cell. List element 2 is the grid as Simple Feature Polygons, which
is used for plotting purposes.

Note
The grid of the genetic algorithm will have a resolution of Rotor * fcrR. See the arguments of
genetic_algorithm

See Also

Other Helper Functions: get_grids(), hexa_area(), isSpatial(), permutations(), readinteger(),
readintegerSel(), splitAt(), windata_format()

hexa_area 19

Examples

Exemplary input Polygon with 2km x 2km:
library(sf)
Polygon1l <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
c(o, 0, 2000, 2000, 0),
c(0, 2000, 2000, 0, 0)
M),
crs = 3035

))

Create a Grid
grid_area(Polygon1, 200, 1, TRUE)
grid_area(Polygonl, 400, 1, TRUE)

Examplary irregular input Polygon
Polygon1 <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
c(0, 0, 2000, 3000, 0),
c(20, 200, 2000, 0, 20)

),

crs = 3035
)
Create a Grid
grid_area(Polygonl, 200, 1, TRUE)
grid_area(Polygonl, 200, 0.1, TRUE)
grid_area(Polygon1, 400, 1, TRUE)
grid_area(Polygonl, 400, 0.1, TRUE)

hexa_area Polygon to Hexagonal Grids

Description

The function takes a Simple Feature Polygon and a size argument and creates a list with an indexed
matrix with coordinates and a Simple Feature object, that consists of hexagonal grids.

Usage
hexa_area(shape, size = 500, plotGrid = FALSE)

Arguments
shape Simple Feature Polygon of the considered area
size The cellsize of the grid in meters. Default is 500

plotGrid Logical value indicating whether the results should be plotted. Default is FALSE

20 hole_shape

Value

Returns a list with 2 elements. List element 1 will have the grid cell IDS, and the X and Y coordi-
nates of the centers of each grid cell. List element 2 is the grid as Simple Feature Polygons, which
is used for plotting purposes.

See Also

Other Helper Functions: get_grids(), grid_area(), isSpatial(), permutations(), readinteger(),
readintegerSel(), splitAt(), windata_format()

Examples

library(sf)
Exemplary input Polygon with 2km x 2km:
Poly <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
(4498482, 4498482, 4499991, 4499991, 4498482),
c(2668272, 2669343, 2669343, 2668272, 2668272)
M),
crs = 3035

))
HexGrid <- hexa_area(Poly, 100, TRUE)

hole_shape A POLYGON with a hole

Description

A POLYGON with a hole

Usage

hole_shape

Format

An object of class sf (inherits from data. frame) with 1 rows and 2 columns.

init_population 21

init_population Create a random initial Population

Description

Create nStart random sub-selections from the indexed grid and assign binary variable 1 to selected
grids. This function initiates the genetic algorithm with a first random population and will only be
needed in the first iteration.

Usage

init_population(Grid, n, nStart = 100)

Arguments
Grid The data.frame output of grid_area" function, with X and Y coordinates and
Grid cell IDs.
n A numeric value indicating the amount of required turbines.
nStart A numeric indicating the amount of randomly generated initial individuals. De-
fault is 100.
Value

Returns a list of nStart initial individuals, each consisting of n turbines. Resulting list has the x
and y coordinates, the grid cell ID and a binary variable of 1, indicating a turbine in the grid cell.

See Also

Other Genetic Algorithm Functions: crossover (), fitness(), genetic_algorithm(),mutation(),
selection(), trimton()

Examples

library(sf)
Exemplary input Polygon with 2km x 2km:
Polygon1l <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
c(4498482, 4498482, 4499991, 4499991, 4498482),
c(2668272, 2669343, 2669343, 2668272, 2668272)
M),
crs = 3035

))
Grid <- grid_area(Polygonl, 200, 1, TRUE)

Create 5 individuals with 10 wind turbines each.
firstPop <- init_population(Grid = Grid[[1]], n = 10, nStart = 5)

22 isSpatial

isSpatial Transform to Simple Feature Polygons

Description
Helper Function, which transforms SpatialPolygons or coordinates in matrix/data.frame - form to a
Simple Feature Polygon

Usage
isSpatial(shape, proj)

Arguments
shape An area as SpatialPolygon, SimpleFeature Polygon or coordinates as matrix/data.frame
proj Which Projection should be assigned to matrix / data.frame coordinates

Details

If the columns are named, it will look for common abbreviation to match x/y or long/lat columns.
If the columns are not named, the first 2 numeric columns are taken.

Value

A Simple Feature Polygon

See Also

Other Helper Functions: get_grids(), grid_area(), hexa_area(), permutations(), readinteger(),
readintegerSel(), splitAt(), windata_format()

Examples

library(sf)

df <- rbind(
c(4498482, 2668272), c(4498482, 2669343),
c(4499991, 2669343), c(4499991, 2668272)

)
isSpatial(df)

Polygon1l <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
(4498482, 4498482, 4499991, 4499991, 4498482),
c(2668272, 2669343, 2669343, 2668272, 2668272)
))),
crs = 3035

)
isSpatial(st_coordinates(Polygonl), 3035)

multi_shape 23

multi_shape A MULTIPOLYGON with 3 Polygons

Description

A MULTIPOLYGON with 3 Polygons

Usage

multi_shape

Format

An object of class sf (inherits from data. frame) with 1 rows and 1 columns.

mutation Mutation Method

Description

The function randomly mutates an individual’s genetic code

Usage

mutation(a, p, seed = NULL)

Arguments

a The binary matrix of all individuals

p The mutation rate

seed Set a seed for comparability. Default is NULL
Value

Returns a binary matrix with mutated genes.

See Also

Other Genetic Algorithm Functions: crossover(), fitness(), genetic_algorithm(), init_population(),
selection(), trimton()

24

Examples

Create 4 random individuals with binary values

a <- cbind(
bin@ = sample(c(@, 1), 20, replace = TRUE, prob = c(70, 30)),
bin1 = sample(c(@, 1), 20, replace = TRUE, prob = c(30, 70)),
bin2 = sample(c(@, 1), 20, replace = TRUE, prob = c(30, 70)),
bin3 = sample(c(@, 1), 20, replace = TRUE, prob = c(30, 70))

Mutate the individuals with a low percentage
aMut <- mutation(a, @.1, NULL)

Check which values are not like the originals
a == aMut

Mutate the individuals with a high percentage
aMut <- mutation(a, ©.4, NULL)

Check which values are not like the originals
a == aMut

package_installed

package_installed Is the package installed or not

Description

Is the package installed or not

Usage

is_foreach_installed()
is_parallel_installed()
is_doparallel_installed()
is_ggplot2_installed()
is_leaflet_installed()

is_elevatr_installed()

Value

An invisible boolean value, indicating if the package is installed or not.

permutations 25

permutations Enumerate the Combinations or Permutations of the Elements of a
Vector

Description

permutations enumerates the possible permutations. The function is forked and minified from
gtools::permutations

Usage

permutations(n, r, v = 1:n)

Arguments

n Size of the source vector

r Size of the target vectors

v Source vector. Defaults to 1:n
Value

Returns a matrix where each row contains a vector of length r.

Author(s)

Original versions by Bill Venables. Extended to handle repeats.allowed by Gregory R. Warnes

References
Venables, Bill. "Programmers Note", R-News, Vol 1/1, Jan. 2001. https://cran.r-project.
org/doc/Rnews/

See Also

Other Helper Functions: get_grids(), grid_area(), hexa_area(), isSpatial(), readinteger(),
readintegerSel(), splitAt(), windata_format()

https://cran.r-project.org/doc/Rnews/
https://cran.r-project.org/doc/Rnews/

26 plot_development

plot_cloud Plot outputs of all generations with standard deviations

Description
Plot the fitness, efficiency and energy outputs of all generations and the corresponding standard
deviations.

Usage
plot_cloud(result, pl = FALSE)

Arguments

result The output of genetic_algorithm

pl Should the results be plotted? Default is FALSE
Value

Returns a data.frame with the values for fitness, efficiency and energy for all evaluated individuals

See Also

Other Plotting Functions: plot_development(), plot_evolution(), plot_fitness_evolution(),
plot_parkfitness(), plot_result(), plot_windfarmGA(), plot_windrose(), random_search_single()

Examples

Plot the results of a hexagonal grid optimization
plcdf <- plot_cloud(resulthex, TRUE)

plot_development Plot the progress of populations

Description

Plot the changes in mean and max fitness values to previous generation.

Usage

plot_development(result)

Arguments

result The output of genetic_algorithm

plot_evolution 27

Value

Returns NULL. Used for plotting

See Also

Other Plotting Functions: plot_cloud(), plot_evolution(), plot_fitness_evolution(), plot_parkfitness(),
plot_result(), plot_windfarmGA(), plot_windrose(), random_search_single()

Examples

plot_development(resultrect)

plot_evolution Plot the evolution of fitness values

Description
Plot the evolution of energy outputs and efficiency rates over the whole generations. Plots min,
mean and max values.

Usage

plot_evolution(result, ask = TRUE, spar = 0.1)

Arguments

result The output of genetic_algorithm

ask Should R wait for interaction for subsequent plotting. Default is TRUE

spar A numeric value determining how exact a spline should be drawn. Default is 0.1
Value

Returns NULL. Used for plotting

See Also
Other Plotting Functions: plot_cloud(), plot_development(), plot_fitness_evolution(),
plot_parkfitness(), plot_result(), plot_windfarmGA(), plot_windrose(), random_search_single()
Examples

Plot the results of a rectangular grid optimization
plot_evolution(resultrect, ask = TRUE, spar = 0.1)

28 plot_leafiet

plot_fitness_evolution
Plot the changes of min/mean/max fitness values

Description

Plot the evolution of fitness values and the change in the min, mean and max fitness values to the
former generations.

Usage

plot_fitness_evolution(result, spar = 0.1)

Arguments

result The output of genetic_algorithm

spar A numeric value determining how exact a spline should be drawn. Default is 0.1
Value

Returns NULL. Used for plotting

See Also

Other Plotting Functions: plot_cloud(), plot_development(), plot_evolution(), plot_parkfitness(),
plot_result(), plot_windfarmGA(), plot_windrose(), random_search_single()

Examples

Plot the results of a hexagonal grid optimization
plot_fitness_evolution(resulthex, 0.1)

plot_leaflet Plot a wind warm with leaflet

Description

Plot a resulting wind farm on a leaflet map.

Usage

plot_leaflet(result, Polygonl, which = 1, orderitems = TRUE, GridPol)

plot_leaflet 29

Arguments
result The output of genetic_algorithm
Polygon1 The considered area as SpatialPolygon, SimpleFeature Polygon or coordinates
as matrix/data.frame
which A numeric value, indicating which individual to plot. The default is 1. Com-
bined with orderitems = TRUE this will show the best performing wind farm.
orderitems A logical value indicating whether the results should be ordered by energy val-
ues TRUE or chronologically FALSE
GridPol By default, the grid will be calculated based on the inputs of result and the
Polygon1. But another spatial object or the output of the grid_areaor hexa_area
functions can also be
Value

Returns a leaflet map.

Examples

Not run:
Plot the best wind farm on a leaflet map (ordered by energy values)
plot_leaflet(result = resulthex, Polygonl = sp_polygon, which = 1)

Plot the last wind farm (ordered by chronology).
plot_leaflet(
result = resulthex, Polygonl = sp_polygon, orderitems = FALSE,
which =1

)

Plot the best wind farm on a leaflet map with the rectangular Grid
Grid <- grid_area(sp_polygon, size = 150, prop = 0.4)
plot_leaflet(
result = resultrect, Polygonl = sp_polygon, which = 1,
GridPol = Grid[[2]]
)

Plot the last wind farm with hexagonal Grid

Grid <- hexa_area(sp_polygon, size = 75)

plot_leaflet(
result = resulthex, Polygonl = sp_polygon, which = 1,
GridPol = Grid[[2]]

)

End(Not run)

30 plot_random_search

plot_parkfitness Plot the genetic algorithm results

Description

Plot the evolution of fitness values with the influences of selection, crossover and mutation.

Usage

plot_parkfitness(result, spar = 0.1)

Arguments

result The output of genetic_algorithm

spar A numeric value determining how exact a spline should be drawn. Default is 0.1
Value

Returns NULL. Used for plotting

See Also

Other Plotting Functions: plot_cloud(), plot_development(), plot_evolution(), plot_fitness_evolution(),
plot_result(), plot_windfarmGA(), plot_windrose(), random_search_single()

Examples

Plot the results of a hexagonal grid optimization
plot_parkfitness(resulthex)

plot_random_search Plot the result of a randomized output.

Description

Plotting method for the results of random_search_single and random_search.

Usage

plot_random_search(resultRS, result, Polygonl, best)

plot_result 31

Arguments
resultRS The result of the random functions random_search_single and random_search.
result The output of genetic_algorithm
Polygon1 The considered area as SpatialPolygon, SimpleFeature Polygon or coordinates
as matrix/data.frame
best How many best candidates to plot. Default is 1.
Value

Returns NULL. Used for plotting

See Also

Other Randomization: random_search(), random_search_single()

Examples

library(sf)
Polygonl <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
(4498482, 4498482, 4499991, 4499991, 4498482),
c(2668272, 2669343, 2669343, 2668272, 2668272)

))),
crs = 3035

)

Res <- random_search(result = resultrect, Polygonl = Polygonl)
plot_random_search(resultRS = Res, result = resultrect, Polygonl = Polygonl, best = 2)

plot_result Plot the best results

Description

Plot the best solutions of the genetic algorithm. Depending on plotEn, either the best energy or
efficiency solutions can be plotted. best indicates the amount of best solutions to plot.

Usage

plot_result(
result,
Polygont,
best = 3,
plotEn = 1,
topographie = FALSE,
Grid = TRUE,

32 plot_result

sourceCCLRoughness = NULL,
sourceCCL = NULL,

weibullsrc
)
Arguments

result The output of genetic_algorithm

Polygon1 The considered area as SpatialPolygon, SimpleFeature Polygon or coordinates
as matrix/data.frame

best A numeric value indicating how many of the best individuals should be plotted

plotEn A numeric value that indicates if the best energy or efficiency output should be
plotted. 1 plots the best energy solutions and 2 plots the best efficiency solutions

topographie A logical value, indicating whether terrain effects should be considered and plot-
ted or not

Grid If TRUE (default) the used grid will be added to the plot. You can also pass
another Simple Feature object

sourceCCLRoughness
The source to the adapted Corine Land Cover legend as .csv file. Only required
when terrain effect model is activated. As default a .csv file within this package
(‘~/extdata’) is taken that was already adapted manually.

sourceCCL The path to the Corine Land Cover raster (.tif). Only required when the terrain
effect model is activated.

weibullsrc A list of Weibull parameter rasters, where the first list item must be the shape
parameter raster k and the second item must be the scale parameter raster a of
the Weibull distribution. If no list is given, then rasters included in the package
are used instead, which currently only cover Austria. This variable is only used
if weibull = TRUE.

Value

Returns a data.frame of the best (energy/efficiency) individual during all iterations

See Also

Other Plotting Functions: plot_cloud(), plot_development(), plot_evolution(), plot_fitness_evolution(),
plot_parkfitness(), plot_windfarmGA(), plot_windrose(), random_search_single()

Examples

Not run:
Add some data examples from the package
library(sf)
Polygon1 <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
(4498482, 4498482, 4499991, 4499991, 4498482),
c(2668272, 2669343, 2669343, 2668272, 2668272)
),

plot_viewshed 33

crs = 3035
)

Plot the results of a hexagonal grid optimization
plot_result(resulthex, Polygonl, best = 1, plotEn = 1, topographie = FALSE)

Plot the results of a rectangular grid optimization
plot_result(resultrect, Polygonl, best = 1, plotEn = 1, topographie = FALSE)

End(Not run)

plot_viewshed Plot visibility

Description

Calculate and plot visibility for given points in a given area.

Usage
plot_viewshed(r, turbine_locs, h1 = @, h2 = @, plot = TRUE, ...)
Arguments
r The elevation SpatRaster
turbine_locs Coordinates, SpatialPoint or SimpleFeature Points representing the wind tur-
bines
h1 A single number or numeric vector giving the extra height offsets for the turbine_locs
h2 The height offset for Point 2
plot Should the result be plotted. Default is TRUE

forwarded to terra: :plot

Value

A mosaiced SpatRaster, representing the visibility for all turbine_locs

Examples

library(sf)
library(terra)

f <- system.file("ex/elev.tif"”, package = "terra")

r <- rast(f)

x <- project(r, "EPSG:2169")

shape <- sf::st_as_sf(as.polygons(terra::boundaries(x)))
plot(shape)

st_crs(shape) <- 2169

locs <- st_sample(shape, 10, type = "random")
plot_viewshed(x, locs, h1 = @, h2 = @, plot = TRUE)

34 plot_windfarmGA

plot_windfarmGA Plot the results of an optimization run

Description

Plot the results of a genetic algorithm run with given inputs. Several plots try to show all relevant
effects and outcomes of the algorithm. 6 plot methods are available that can be selected individually.

Usage
plot_windfarmGA(
result,
Polygont,
whichPl = "all”,
best = 1,
plotEn = 1,
weibullsrc
)
Arguments
result The output of genetic_algorithm
Polygon1 The considered area as SpatialPolygon, SimpleFeature Polygon or coordinates
as matrix/data.frame
whichPl Which plots should be shown: 1-6 are possible. The default is "all" which shows
all available plots
best A numeric value indicating how many of the best individuals should be plotted
plotEn A numeric value that indicates if the best energy or efficiency output should be
plotted. 1 plots the best energy solutions and 2 plots the best efficiency solutions
weibullsrc A list of Weibull parameter rasters, where the first list item must be the shape
parameter raster k and the second item must be the scale parameter raster a of
the Weibull distribution. If no list is given, then rasters included in the package
are used instead, which currently only cover Austria. This variable is only used
if weibull = TRUE.
Value

Returns NULL. Used for plotting

See Also

Other Plotting Functions: plot_cloud(), plot_development(), plot_evolution(), plot_fitness_evolution(),
plot_parkfitness(), plot_result(), plot_windrose(), random_search_single()

plot_windrose

Examples

Not run:
library(sf)
Polygon1l <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
c(4498482, 4498482, 4499991, 4499991, 4498482),
c(2668272, 2669343, 2669343, 2668272, 2668272)
))),
crs = 3035
))

Plot the results of a hexagonal grid optimization
plot_windfarmGA(resulthex, Polygonl, whichPl = "all”, best = 1, plotEn = 1)

Plot the results of a rectangular grid optimization
plot_windfarmGA(resultrect, Polygonl, whichPl = "all"”, best = 1, plotEn = 1)

End(Not run)

plot_windrose Plot a Windrose

Description

Plot a wind rose of the wind data frame.

Usage
plot_windrose(
data,
spd,
dir,
spdres = 2,
dirres = 10,
spdmin = 1,
spdmax = 30,
palette = "Y1GnBu",
spdseq = NULL,
plotit = TRUE
)
Arguments
data A data.frame containing the wind information
spd The column of the wind speeds in "data"
dir The column of the wind directions in "data"

spdres The increment of the wind speed legend. Default is 2

36 random_search

dirres The size of the wind sectors. Default is 10

spdmin Minimum wind speed. Default is 1

spdmax Maximal wind speed. Default is 30

palette A color palette used for drawing the wind rose

spdseq A wind speed sequence, that is used for plotting

plotit Should the windrose be plotted? Default is TRUE
Value

Returns NULL. Used for plotting

See Also

Other Plotting Functions: plot_cloud(), plot_development(), plot_evolution(), plot_fitness_evolution(),
plot_parkfitness(), plot_result(), plot_windfarmGA(), random_search_single()

Examples

Exemplary Input Wind speed and direction data frame
Uniform wind speed and single wind direction
data.in <- data.frame(ws = 12, wd = 0)
windrosePlot <- plot_windrose(
data = data.in, spd = data.in$ws,
dir = data.in$wd

)

Random wind speeds and random wind directions
data.in <- data.frame(
ws = sample(1:25, 10),
wd = sample(1:260, 10)
)
windrosePlot <- plot_windrose(
data = data.in, spd = data.in$ws,
dir = data.in$wd

random_search Randomize the output of the Genetic Algorithm

Description

Perform a random search in the grid cells, to further optimize the output of the wind farm layout.

Usage

random_search(result, Polygonl, n = 20, best = 1, Plot = FALSE, max_dist = 2.2)

random_search_single 37

Arguments
result The resulting matrix of the function genetic_algorithm
Polygon1 The considered area as SpatialPolygon, SimpleFeature Polygon or coordinates
as matrix/data.frame
n The number of random searches to be performed. Default is 20.
best Which best individuals should be the starting conditions for a random search.
The default is 1.
Plot Should the random search be plotted? Default is FALSE
max_dist A numeric value multiplied by the rotor radius to perform collision checks. De-
faultis 2.2
Value

Returns a list.

See Also

Other Randomization: plot_random_search(), random_search_single()

Examples

new <- random_search(resultrect, sp_polygon, n = 20, best = 4)
plot_random_search(resultRS = new, result = resultrect, Polygonl = sp_polygon, best = 2)

random_search_single Randomize the location of a single turbine

Description

Perform a random search for a single turbine, to further optimize the output of the wind farm layout.

Usage
random_search_single(result, Polygonl, n = 20, Plot = FALSE, max_dist = 2.2)

Arguments
result The resulting matrix of the function genetic_algorithm
Polygon1 The considered area as SpatialPolygon, SimpleFeature Polygon or coordinates
as matrix/data.frame
n The number of random searches to be performed. Default is 20.
Plot Should the random search be plotted? Default is FALSE
max_dist A numeric value multiplied by the rotor radius to perform collision checks. De-

fault is 2.2

38 readintegerSel

Value

Returns a list

See Also

Other Randomization: plot_random_search(), random_search()

Other Plotting Functions: plot_cloud(), plot_development(), plot_evolution(), plot_fitness_evolution(),
plot_parkfitness(), plot_result(), plot_windfarmGA(), plot_windrose()

readinteger Check Input Crossover Method

Description

Checks whether the input for crossover is given correctly. If not, a message is prompted which
asks to input one of the 2 available crossover methods. The available inputs are "E" and "R". "E"
refers to partitioning at equal intervals and "R" refers to random partitioning.

Usage

readinteger()

Value

Returns the selected crossover method (character)

See Also

Other Helper Functions: get_grids(), grid_area(), hexa_area(), isSpatial(), permutations(),
readintegerSel(), splitAt(), windata_format()

readintegersSel Check Input Selection Method

Description

Checks whether the input for selection is given correctly. If not, a message is prompted which
asks to input one of the 2 available selection methods. The available inputs are "F" and "V". "F"
refers to a fixed percentage of 50% and "V" refers to a variable percentage, based on the develop-
ment of the population fitness values.

Usage

readintegerSel()

resulthex 39

Value

Returns the selected selection method (character)

See Also

Other Helper Functions: get_grids(), grid_area(), hexa_area(), isSpatial(), permutations(),
readinteger(), splitAt(), windata_format()

resulthex A resulting matrix of genetic_algorithm with 10 iterations and a
hexagonal grid derived from sp_polygon

Description
A resulting matrix of genetic_algorithm with 10 iterations and a hexagonal grid derived from
sp_polygon

Usage

resulthex

Format

An object of class matrix (inherits from array) with 10 rows and 13 columns.

resultrect A resulting matrix of genetic_algorithm with 200 iterations and a
rectangular grid derived from sp_polygon

Description
A resulting matrix of genetic_algorithm with 200 iterations and a rectangular grid derived from
sp_polygon

Usage

resultrect

Format

An object of class matrix (inherits from array) with 200 rows and 13 columns.

40 selection

selection Selection Method

Description

Select a certain amount of individuals and recombine them to parental teams. Add the mean fitness
value of both parents to the parental team. Depending on the selected selstate, the algorithm
will either take always 50 percent or a variable percentage of the current population. The variable
percentage depends on the evolution of the populations fitness values.

Usage

selection(fit, Grid, teil, elitism, nelit, selstate, verbose)

Arguments
fit A list of all fitness-evaluated individuals
Grid Is the indexed grid output from grid_area
teil A numeric value that determines the selection percentage
elitism Boolean value, which indicates whether elitism should be activated or not. De-
fault is TRUE
nelit If elitismis TRUE, this input determines the amount of individuals in the elite
group. Default is 7
selstate Determines which selection method is used, "FIX" selects a constant percentage
and "VAR" selects a variable percentage, depending on the development of the
fitness values. Default is "FIX"
verbose If TRUE, will print out further information.
Value

Returns list with 2 elements. Element 1 is the binary encoded matrix which shows all selected
individuals. Element 2 represent the mean fitness values of each parental team.

See Also

Other Genetic Algorithm Functions: crossover(), fitness(), genetic_algorithm(), init_population(),
mutation(), trimton()

Examples

Exemplary input Polygon with 2km x 2km:
library(sf)
Polygon1 <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
c(4498482, 4498482, 4499991, 4499991, 4498482),
c(2668272, 2669343, 2669343, 2668272, 2668272)

splitAt 41

))),
crs = 3035

)

Calculate a Grid and an indexed data.frame with coordinates and grid cell Ids.
Gridl <- grid_area(shape = Polygonl, size = 200, prop = 1)

Grid <- Grid1[[1]1]

AmountGrids <- nrow(Grid)

startsel <- init_population(Grid, 10, 20)
wind <- as.data.frame(cbind(ws = 12, wd = 0))
wind <- list(wind, probab = 100)
fit <- fitness(
selection = startsel, referenceHeight = 100, RotorHeight = 100,
SurfaceRoughness = 0.3, Polygon = Polygonl, resoll = 200,
rot = 20, dirspeed = wind,
srtm_crop = "", topograp = FALSE, cclRaster =
)
allparks <- do.call("rbind", fit)
SELECTION
print the amount of Individuals selected. Check if the amount
of Turbines is as requested.
selecbbest <- selection(fit, Grid, 2, TRUE, 6, "VAR")
selecbbest <- selection(fit, Grid, 2, TRUE, 6, "FIX")
selecbbest <- selection(fit, Grid, 4, FALSE, 6, "FIX")

nn

splitAt Split matrices or numeric vectors at specific indices

Description

The function is used by the crossover method to split a genetic code at certain intervals. See also
crossover.

Usage

splitAt(x, pos)

Arguments
X A numeric variable that represents an individual’s binary genetic code
pos A numeric value that indicates where to split the genetic code

Value

Returns a list of the split genetic code.

42 terrain_model

See Also

Other Helper Functions: get_grids(), grid_area(), hexa_area(), isSpatial(), permutations(),
readinteger(), readintegerSel (), windata_format()

Examples

splitAt(1:100, 20)
splitAt(as.matrix(1:100), 20)

sp_polygon The rectangular POLYGON used to create resultrect & resulthex

Description

The rectangular POLYGON used to create resultrect & resulthex

Usage

sp_polygon

Format

An object of class sf (inherits from data. frame) with 1 rows and 1 columns.

terrain_model Get topographic rasters

Description

Calculate the SpatRasters needed for the terrain model.

Usage

terrain_model(
topograp = TRUE,
Polygon1,
sourceCCL,
sourceCCLRoughness,
plotit = FALSE,
verbose = FALSE

trimton 43

Arguments
topograp Boolean value, which indicates if the terrain effect model should be enabled or
not. Default is FALSE
Polygon1 The considered area as SpatialPolygon, SimpleFeature Polygon or coordinates
as matrix/data.frame
sourceCCL The path to the Corine Land Cover raster (.tif). Only required when the terrain
effect model is activated.
sourceCCLRoughness
The source to the adapted Corine Land Cover legend as .csv file. Only required
when terrain effect model is activated. As default a .csv file within this package
(‘~/extdata’) is taken that was already adapted manually.
plotit Plots the elevation data
verbose If TRUE it will print information for every generation. Default is FALSE
Value
A list of SpatRasters
Examples
Not run:
library(sf)

Polygonl <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
c(4651704, 4651704, 4654475, 4654475, 4651704),
c(2692925, 2694746, 2694746, 2692925, 2692925)
))),
crs = 3035
))
Polygon_wgs84 <- sf::st_transform(Polygonl, st_crs(4326))
srtm <- elevatr::get_elev_raster(locations = Polygon_wgs84, z = 11)
res <- terrain_model(srtm, Polygonl)

End(Not run)

trimton Adjust the amount of turbines per windfarm

Description

Adjust the mutated individuals to the required amount of turbines.

Usage

trimton(mut, nturb, allparks, nGrids, trimForce, seed)

44 trimton

Arguments
mut A binary matrix with the mutated individuals
nturb A numeric value indicating the amount of required turbines
allparks A data.frame consisting of all individuals of the current generation
nGrids A numeric value indicating the total amount of grid cells
trimForce If TRUE the algorithm will use a probabilistic approach to correct the windfarms
to the desired amount of turbines. If FALSE the adjustment will be random.
Default is FALSE
seed Set a seed for comparability. Default is NULL
Value

Returns a binary matrix with the correct amount of turbines per individual

See Also

Other Genetic Algorithm Functions: crossover (), fitness(), genetic_algorithm(), init_population(),
mutation(), selection()

Examples

Create a random rectangular shapefile
library(sf)
Polygon1 <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
c(0, 0, 2000, 2000, 0),
c(0, 2000, 2000, 0, 0)
),
crs = 3035
)

Create a uniform and unidirectional wind data.frame and plots the
resulting wind rose

Uniform wind speed and single wind direction

data.in <- as.data.frame(cbind(ws = 12, wd = @))

Calculate a Grid and an indexed data.frame with coordinates and grid cell Ids.
Gridl <- grid_area(shape = Polygonl, size = 200, prop = 1)

Grid <- Grid1[[1]1]

AmountGrids <- nrow(Grid)

startsel <- init_population(Grid, 10, 20)

wind <- as.data.frame(cbind(ws = 12, wd = 0))

wind <- list(wind, probab = 100)

fit <- fitness(
selection = startsel, referenceHeight = 100, RotorHeight = 100,
SurfaceRoughness = 0.3, Polygon = Polygonl, resoll = 200, rot = 20,
dirspeed = wind, srtm_crop = "", topograp = FALSE, cclRaster =

)

nn

turbine_influences 45

allparks <- do.call("rbind”, fit)
SELECTION
print the amount of Individuals selected.
Check if the amount of Turbines is as requested.
selec6best <- selection(fit, Grid, 2, TRUE, 6, "VAR")
selecbbest <- selection(fit, Grid, 2, TRUE, 6, "FIX")
selecbbest <- selection(fit, Grid, 4, FALSE, 6, "FIX")
CROSSOVER
u determines the amount of crossover points,
crossPart determines the method used (Equal/Random),
uplimit is the maximum allowed permutations
crossOut <- crossover(selec6best, 2, uplimit = 300, crossPart = "RAN")
crossOut <- crossover(selec6best, 7, uplimit = 500, crossPart = "RAN")
crossOut <- crossover(selec6best, 3, uplimit = 300, crossPart = "EQU")
MUTATION
Variable Mutation Rate is activated if more than 2 individuals represent
the current best solution.
mut <- mutation(a = crossOut, p = @.3, NULL)
TRIMTON
After Crossover and Mutation, the amount of turbines in a windpark change and have to be
corrected to the required amount of turbines.
mutl <- trimton(
mut = mut, nturb = 10, allparks = allparks, nGrids = AmountGrids,
trimForce = FALSE
)
colSums(mut)
colSums(mut1)

turbine_influences Find potentially influencing turbines

Description

Find all turbines that could potentially influence another turbine and save them to a list.

Usage
turbine_influences(t, wnkl, dist, polYgon, dirct, plotAngles = FALSE)

Arguments
t A data.frame of the current individual with X and Y coordinates
wnkl The angle from which wake influences are considered to be negligible
dist A numeric value indicating the distance, after which the wake effects are con-
sidered to be eliminated.
polYgon A shapefile representing the considered area
dirct A numeric value indicating the current wind direction
plotAngles A logical variable, which is used to plot the distances and angles. Default is

FALSE

46 windata_format

Value

Returns a list of all individuals of the current generation which could potentially influence other
turbines. List includes the relevant coordinates, the distances and angles in between and assigns the
Point ID.

See Also

Other Wind Energy Calculation Functions: barometric_height(), calculate_energy(),circle_intersection(),
get_dist_angles()

Examples

Exemplary input Polygon with 2km x 2km:
library(sf)

Polygon1 <- sf::st_as_sf(sf::st_sfc(
sf::st_polygon(list(cbind(
c(0, 0, 2000, 2000, 0),
c(0, 2000, 2000, 0, 0)
),
crs = 3035
)

t <- st_coordinates(st_sample(Polygonl, 10))
t <- cbind(t, "Z" = 1)

wnkl <- 20
dist <- 100000
dirct <- 0@

res <- turbine_influences(t, wnkl, dist, Polygon1, dirct, plotAngles = TRUE)

windata_format Transform Winddata

Description

Helper Function, which transforms winddata to an acceptable format

Usage

windata_format(df)

Arguments

df The wind data with speeds, direction and optionally a probability column. If not
assigned, it will be calculated

windata_format 47

Value

A list of windspeed and probabilities

See Also

Other Helper Functions: get_grids(), grid_area(), hexa_area(), isSpatial(), permutations(),
readinteger(), readintegerSel(), splitAt()

Examples

wind_df <- data.frame(
ws = c(12, 30, 45),
wd = c(@, 90, 150),
probab = 30:32

)

windata_format(wind_df)

wind_df <- data.frame(
speed = c(12, 30, 45),
direction = c(90, 90, 150),
probab = c(10, 20, 60)

)

windata_format(wind_df)

wind_df <- data.frame(
speed = c(12, 30, 45),
direction = c(400, 90, 150)
)

windata_format(wind_df)

Index

* Genetic Algorithm Functions
crossover, 8
fitness, 9
genetic_algorithm, 11
init_population, 21
mutation, 23
selection, 40
trimton, 43

* Helper Functions
get_grids, 16
grid_area, 18
hexa_area, 19
isSpatial, 22
permutations, 25
readinteger, 38
readintegerSel, 38
splitAt, 41
windata_format, 46

* Plotting Functions
plot_cloud, 26
plot_development, 26
plot_evolution, 27
plot_fitness_evolution, 28
plot_parkfitness, 30
plot_result, 31
plot_windfarmGA, 34
plot_windrose, 35
random_search_single, 37

+ Randomization
plot_random_search, 30
random_search, 36
random_search_single, 37

* Terrain Model
terrain_model, 42

* Viewshed Analysis
plot_viewshed, 33

* Wind Energy Calculation Functions
barometric_height, 3
calculate_energy, 5

48

circle_intersection, 7
get_dist_angles, 15
turbine_influences, 45
* datasets
big_shape, 4
hole_shape, 20
multi_shape, 23
resulthex, 39
resultrect, 39
sp_polygon, 42

barometric_height, 3,6, 8, 15, 46
big_shape, 4

calculate_energy, 4, 5,8, 9, 15,46
circle_intersection, 4, 6,7, 15, 46
crossover, 8, 10, 14, 21, 23, 38, 40, 41, 44

fitness, 9,9, 14,21, 23, 40, 44

genetic_algorithm, 3,9, 10, 11, 18, 21, 23,
26-32, 34, 37, 40, 44

get_dist_angles, 4, 6, 8, 15, 46

get_grids, 16, 18, 20, 22, 25, 38, 39, 42,47

grid_area, 17, 18, 20-22, 25, 29, 38-40, 42,
47

hexa_area, 17, 18, 19, 22, 25, 29, 38, 39, 42,
47
hole_shape, 20

init_population, 9, 10, 14,21, 23,40, 44
is_doparallel_installed
(package_installed), 24
is_elevatr_installed
(package_installed), 24
is_foreach_installed
(package_installed), 24
is_ggplot2_installed
(package_installed), 24

INDEX

is_leaflet_installed
(package_installed), 24

is_parallel_installed
(package_installed), 24

isSpatial, 17, 18, 20, 22, 25, 38, 39,42, 47

multi_shape, 23
mutation, 9, 10, 14, 21, 23, 40, 44

package_installed, 24
permutations, 17, 18, 20, 22, 25, 38, 39, 42,
47
plot_cloud, 26, 27, 28, 30, 32, 34, 36, 38
plot_development, 26, 26, 27, 28, 30, 32, 34,
36, 38
plot_evolution, 26, 27, 27, 28, 30, 32, 34,
36, 38
plot_fitness_evolution, 26, 27, 28, 30, 32,
34, 36, 38
plot_leaflet, 28
plot_parkfitness, 26-28, 30, 32, 34, 36, 38
plot_random_search, 30, 37, 38
plot_result, 26-28, 30, 31, 34, 36, 38
plot_viewshed, 33
plot_windfarmGA, 26-28, 30, 32, 34, 36, 38
plot_windrose, 26-28, 30, 32, 34, 35, 38

random_search, 30, 31, 36, 38

random_search_single, 26-28, 30-32, 34,
36, 37,37

readinteger, 17, 18, 20, 22, 25, 38, 39, 42,47

readintegerSel, 17, 18, 20, 22, 25, 38, 38,
42,47

resulthex, 39

resultrect, 39

selection, 810, 14, 21, 23, 38, 40, 44
sp_polygon, 42
splitAt, 17, 18, 20, 22, 25, 38, 39, 41,47

terrain_model, 6, 42
trimton, 9, 10, 14, 21, 23, 40, 43
turbine_influences, 4,6, 8, 15, 45

windata_format, 13,17, 18, 20, 22, 25, 38
39,42, 46

windfarmGA (windfarmGA-package), 3

windfarmGA-package, 3

49

	windfarmGA-package
	barometric_height
	big_shape
	calculate_energy
	circle_intersection
	crossover
	fitness
	genetic_algorithm
	get_dist_angles
	get_grids
	grid_area
	hexa_area
	hole_shape
	init_population
	isSpatial
	multi_shape
	mutation
	package_installed
	permutations
	plot_cloud
	plot_development
	plot_evolution
	plot_fitness_evolution
	plot_leaflet
	plot_parkfitness
	plot_random_search
	plot_result
	plot_viewshed
	plot_windfarmGA
	plot_windrose
	random_search
	random_search_single
	readinteger
	readintegerSel
	resulthex
	resultrect
	selection
	splitAt
	sp_polygon
	terrain_model
	trimton
	turbine_influences
	windata_format
	Index

