Package ‘trustmebro’

May 9, 2025
Type Package

Title Inspect and Clean Subject-Generated ID Codes and Related Data
Version 1.0.0

Maintainer Annemarie Plischke <anneplaeschke@gmail.com>

Description Makes data wrangling with ID-related aspects more comfortable.
Provides functions that make it easy to inspect various subject-
generated ID codes (SGIC) for plausibility.
Also helps with inspecting other common identifiers, ensuring that your data stays clean and reli-
able.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, spelling, testthat (>= 3.0.0)
Config/testthat/edition 3

Depends R (>=2.10)

Imports dplyr, tibble, rlang

VignetteBuilder knitr

URL https://kuuuwe.github.io/trustmebro/,
https://github.com/kuuuwe/trustmebro
Language en-US

BugReports https://github.com/kuuuwe/trustmebro/issues
NeedsCompilation no

Author Annemarie Pldschke [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0005-7115-8790>),
Tobias Bréndle [aut] (ORCID: <https://orcid.org/0000-0001-8872-9872>)

Repository CRAN
Date/Publication 2025-05-09 14:10:02 UTC

https://kuuuwe.github.io/trustmebro/
https://github.com/kuuuwe/trustmebro
https://github.com/kuuuwe/trustmebro/issues
https://orcid.org/0009-0005-7115-8790
https://orcid.org/0000-0001-8872-9872

2 find_dupes

Contents
find_dupes e 2
inspect_birthday 3
inspect_birthdaymonth o 3
inspect_birthmonth L 4
inspect_characterid 5
inspect_numberid L e 5
inspect_valinvec e e 6
PUIZE_SIIING . . . o o o o o o e i e e e e e e e e e 7
recode _valiNVEC e e 8
sailor_keyso 9
sailor_students L e e e e 9

Index 10

find_dupes Identify duplicate cases
Description

Identify duplicate cases in a data frame or tibble based on specific variables. A logical column
‘has_dupes® is added, that indicates whether or not a row has duplicate values based on the provided

variables.
Usage
find_dupes(data, ...)
Arguments
data A data frame or tibble
Variable names to check for duplicates
Value

The original data frame or tibble with an additional logical column "has_dupes’ which is “TRUE*
for rows that have duplicates based on the specified variables and ‘FALSE‘ otherwise.

Examples

Example data
print(sailor_students)

Find duplicate cases based on 'sgic', 'school' and 'class'
sailor_students_dupes <- find_dupes(sailor_students, sgic, school, class)

Rows where 'has_dupes' is “TRUE™ indicate duplicates based on the provided columns
print(sailor_students_dupes)

inspect_birthday 3

inspect_birthday Inspect birthday-component of a string

Description

Check whether a given string contains exactly one two-digit number that represents a valid day of
the month (between 01 and 31). The string is assumed to be a code (e.g., a SGIC), which may
include letters and digits.

Usage

inspect_birthday(code)

Arguments
code A character string containing a SGIC or similar code that may include a numeric
birthday-component.
Value

A logical value: ‘TRUE" if the string contains only one valid birthday-component (between 01 and
31), otherwise ‘FALSE".

Examples

inspect_birthday("DEF66") # FALSE - 66 is not a valid day
inspect_birthday("GHI@2") # TRUE - @2 is a valid day
inspect_birthday("ABC12DEF34") # FALSE - Multiple numeric components
inspect_birthday("XYZ") # FALSE - No numeric component
inspect_birthday("JKL31") # TRUE - 31 is a valid day

inspect_birthdaymonth Inspect birthday- and birthmonth-component of a string

Description

Checks whether a given string contains exactly one four-digit number representing a valid combi-
nation of a day (birthday) and a month (birth month). Numeric components can be interpreted in
either "DDMM" (day-month) or "MMDD" (month-day) format, depending on the specified format.
The string is assumed to be a code (e.g., a SGIC), which may include letters and digits.

Usage

inspect_birthdaymonth(code, format = "DDMM")

4 inspect_birthmonth

Arguments
code A character string containing a SGIC or similar code that may include a numeric
component representing a birthday and birth month.
format A string specifying the format of the date of birth components in code. Use
"DDMM" for day-month format and "MMDD" for month-day format. Default
is "DDMM".
Value

A logical value: ‘TRUE® if the string contains exactly one valid numeric component that forms a
valid birthday (day and month), otherwise ‘FALSE‘.

Examples

inspect_birthdaymonth(”"DEF2802") # TRUE - 28th of February is a valid date
inspect_birthdaymonth(”"GHI3002") # FALSE - 30th of February is invalid
inspect_birthdaymonth(”XYZ3112") # TRUE - 31st of December is valid
inspect_birthdaymonth(”18DEF@2") # FALSE - Multiple numeric components
inspect_birthdaymonth("XYZ") # FALSE - No numeric components
inspect_birthdaymonth(”ABC1231", format = "MMDD") # TRUE - December 31st is valid

inspect_birthmonth Inspect birthmonth-component of a string

Description

Check whether a given string contains exactly one two-digit number that represents a valid month
of the year (between 01 and 12). The string is assumed to be a code (e.g., a SGIC), which may
include letters and digits.

Usage

inspect_birthmonth(code)

Arguments
code A character string containing a SGIC or similar code that may include a numeric
birth month-component.
Value

A logical value: “TRUE® if the string contains only one valid birth month-component (between 01
and 12), otherwise ‘FALSE".

inspect_characterid 5

Examples

inspect_birthday("DEF66") # FALSE - 66 is not a valid month
inspect_birthday("GHI@2") # TRUE - @2 (February) is a valid month
inspect_birthday("ABC12DEF10") # FALSE - Multiple numeric components
inspect_birthday("XYZ") # FALSE - No numeric component
inspect_birthday("JKL11") # TRUE - 11 (November) is a valid day

inspect_characterid Inspect if a string matches an expected pattern

Description
Check whether a given string matches a specified pattern using regular expressions (regex). The
string is assumed to be a code (e.g., a SGIC), which should follow a predefined format.

Usage

inspect_characterid(code, pattern)

Arguments
code A character string containing a SGIC or similar code that should follow a pre-
defined format.
pattern A character string specifying the expected pattern using regular expressions
(regex). The pattern defines the format ‘code‘ should match.
Value

A logical value: ‘TRUE® if the code matches the expected pattern, otherwise ‘FALSE®

Examples

inspect_characterid("ABC1234", "~[A-Za-z]{3}[0-91{43}$") #TRUE - Matches the pattern
inspect_characterid("12DBG45FG", ""“[A-Za-z]{3}[0-91{4}$") #FALSE - Does not match the pattern

inspect_numberid Inspect if a number has the expected length

Description

Check whether a given numeric value has the expected number of digits.

Usage

inspect_numberid(number, expected_length)

6 inspect_valinvec

Arguments

number A numeric value.
expected_length
An integer specifying the expected number of digits.

Value

A logical value: ‘TRUE® if ‘number* has the expected length and consists only of digits, otherwise
‘FALSE".

Examples

inspect_numberid(12345, 5) # TRUE - 5 digits
inspect_numberid(1234, 5) # FALSE - 4 digits

inspect_valinvec Inspect if a value is in a recode map

Description

Check whether a given value is present as a key in a specified recode map. Inputs can be validated
against a set of predefined categories or labels.

Usage

inspect_valinvec(value, recode_map)

Arguments
value A single value to inspect, which is checked against the keys of a recode map.
recode_map A named vector where the names represent the keys to check against. The values
of the vector are ignored.
Value

A logical value: ‘TRUE® if the ‘value® is a key in the ‘recode_map°, otherwise ‘FALSE".

Examples
recode_map <- c(male = "M", female = "F")
inspect_valinvec("female”, recode_map) # TRUE - "female” is a key in the recode map

inspect_valinvec("other"”, recode_map) # FALSE - "other"” is not a key in the recode map

purge_string 7

purge_string Purge strings in a data frame

Description

Clean specified character columns in a data frame or tibble by removing non-alphanumeric char-
acters, replacing them with a specified character (default is "#"). Also replaces NA values and
allows for additional characters to keep in the cleaned strings. The resulting strings are converted
to uppercase.

Usage
purge_string(data, ..., replacement = "#", keep = "")
Arguments
data A data frame or tibble containing columns to be cleaned.
Variables to clean. If none are provided, all character columns will be processed.
replacement A character string used to replace unwanted characters and empty strings. De-
fault is "#".
keep A character string containing any additional characters that should be retained
in the cleaned strings.
Value

A data frame or tibble with the specified character columns cleaned and modified as per the given
parameters.

Examples

Example data
print(sailor_students)

Clean all character columns, replacing unwanted characters with "#", retaining "-"
sailor_students_cleaned <-
purge_string(sailor_students, sgic, school, class, gender, keep = "-")

Tibble with cleaned 'sgic', 'school', 'class' and 'gender' columns
print(sailor_students_cleaned)

8 recode_valinvec

recode_valinvec Recode a variable

Description

Recode a specified variable in a data frame or tibble based on a provided recode map. If the recode
map is empty, the original variable is retained under a new name.

Usage

recode_valinvec(data, var, recode_map, new_var)

Arguments

data A data frame or tibble.

var A variable to be recoded.

recode_map A named vector specifying the recode map.

new_var Name of the new variable holding the recoded values.
Value

A data frame or tibble with the new variable added.

Examples

Example data
print(sailor_students)

Define a recode map for gender
recode_map_gender <- c("Female” = "F", "Male" = "M", "Other"” = "X")

Recode gender
sailor_students_recoded <-
recode_valinvec(sailor_students, gender, recode_map_gender, recode_gender)

A tibble with a recoded gender variable
print(sailor_students_recoded)

sailor_keys

sailor_keys key data on students from the sailor moon universe

Description

A fictional key data set.

Usage

sailor_keys

Format
‘sailor_keys‘ A tibble with 12 rows and 6 columns:

schoolyear schoolyear

guid hexadecimal ID number

name, birthday, sex student information

school, schoolnumber, class, grade_level school information

sgicl, sgic2, sgic3 subject generated ID

sailor_students assessment data on students from the sailor moon universe

Description

A fictional assessment data set.

Usage

sailor_students

Format

‘sailor_students® A tibble with 12 rows and 6 columns:

sgic Subject generated ID
school schoolnumber
class class designation
gender gender

testscore_language, testscore_calculus testscores

Index

x datasets
sailor_keys, 9
sailor_students, 9

find_dupes, 2

inspect_birthday, 3
inspect_birthdaymonth, 3
inspect_birthmonth, 4
inspect_characterid, 5
inspect_numberid, 5
inspect_valinvec, 6

purge_string, 7
recode_valinvec, 8

sailor_keys, 9
sailor_students, 9

10

	find_dupes
	inspect_birthday
	inspect_birthdaymonth
	inspect_birthmonth
	inspect_characterid
	inspect_numberid
	inspect_valinvec
	purge_string
	recode_valinvec
	sailor_keys
	sailor_students
	Index

