
Package ‘treebalance’
December 14, 2023

Title Computation of Tree (Im)Balance Indices

Version 1.2.0

Description The aim of the 'R' package 'treebalance' is to provide functions for the computation of
a large variety of (im)balance indices for rooted trees. The package accompanies the book
''Tree balance indices: a comprehensive survey'' by M. Fischer, L. Herbst, S. Kersting,
L. Kuehn and K. Wicke (2023) <ISBN: 978-3-031-39799-8>, <doi:10.1007/978-3-031-39800-
1>, which gives a precise definition for the terms 'balance index' and 'imbalance index' (Chapter 4)
and provides an overview of the terminology in this manual (Chapter 2). For further information
on (im)balance indices, see also Fischer et al. (2021) <https://treebalance.wordpress.com>.
Considering both established and new (im)balance indices, 'treebalance' provides (among
others) functions for calculating the following 18 established indices and index families: the
average leaf depth, the B1 and B2 index, the Colijn-Plazzotta rank, the normal, corrected,
quadratic and equal weights Colless index, the family of Colless-like indices, the family of
I-based indices, the Rogers J index, the Furnas rank, the rooted quartet index, the s-shape
statistic, the Sackin index, the symmetry nodes index, the total cophenetic index and the
variance of leaf depths. Additionally, we include 9 tree shape statistics that satisfy the
definition of an (im)balance index but have not been thoroughly analyzed in terms of tree
balance in the literature yet. These are: the total internal path length, the total path length,
the average vertex depth, the maximum width, the modified maximum difference in widths, the
maximum depth, the maximum width over maximum depth, the stairs1 and the stairs2 index.
As input, most functions of 'treebalance' require a rooted (phylogenetic) tree in 'phylo' format
(as introduced in 'ape' 1.9 in November 2006). 'phylo' is used to store (phylogenetic) trees
with no vertices of out-degree one. For further information on the format we kindly refer the
reader to E. Paradis (2012) <http:
//ape-package.ird.fr/misc/FormatTreeR_24Oct2012.pdf>.

Author Mareike Fischer [aut],
Lina Herbst [aut],
Sophie Kersting [aut],
Luise Kuehn [aut, cre],
Kristina Wicke [aut]

Maintainer Luise Kuehn <treebalanceindices@gmail.com>

Depends R (>= 3.5.0)

Imports ape, memoise, gmp

License GPL-3

1

https://doi.org/10.1007/978-3-031-39800-1
https://doi.org/10.1007/978-3-031-39800-1
https://treebalance.wordpress.com
http://ape-package.ird.fr/misc/FormatTreeR_24Oct2012.pdf
http://ape-package.ird.fr/misc/FormatTreeR_24Oct2012.pdf

2 R topics documented:

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Date/Publication 2023-12-14 10:00:03 UTC

R topics documented:
areaPerPairI . 3
avgLeafDepI . 4
avgVertDep . 5
B1I . 6
B2I . 7
cherryI . 8
collessI . 9
collesslikeI . 11
colPlaLab . 12
colPlaLab_inv . 13
ewCollessI . 15
furnasI . 16
furnasI_inv . 17
getDescMatrix . 18
IbasedI . 21
maxDelW . 23
maxDepth . 24
maxWidth . 25
mCherryI . 26
mWovermD . 27
rogersI . 28
rQuartetI . 29
sackinI . 30
sShapeI . 31
stairs1 . 32
stairs2 . 33
symNodesI . 34
totCophI . 35
totIntPathLen . 36
totPathLen . 37
varLeafDepI . 38
wedEth . 39
weighL1dist . 40

Index 41

areaPerPairI 3

areaPerPairI Calculation of the area per pair index for rooted trees

Description

This function calculates the area per pair index APP (T) for a given rooted tree T . The tree must
not necessarily be binary. APP (T) is defined as

APP (T) =
2

n · (n− 1)
·
∑

1≤i<j≤n

dT (i, j)

in which n denotes the number of leaves in T , and dT (i, j) denotes the number of edges on the path
between the two leaves i and j. Note that APP (T) can also be computed from the Sackin index
S(T) and the total cophenetic index TCI(T) of T as APP (T) = 2

n · S(T) −
4

n(n−1) · TCI(T)
enabling efficient computation.

The area per pair index does not fulfill the definition of an (im)balance index given in "Tree balance
indices: a comprehensive survey" (Fischer et al., 2023).

For details on the area per pair index, see also Chapter 24 in "Tree balance indices: a compre-
hensive survey" (https://doi.org/10.1007/978-3-031-39800-1_24).

Usage

areaPerPairI(tree)

Arguments

tree A rooted tree in phylo format.

Value

areaPerPairI returns the area per pair index of the given tree.

Author(s)

Luise Kuehn

References

T. Araujo Lima, F. M. D. Marquitti, and M. A. M. de Aguiar. Measuring Tree Balance with Nor-
malized Tree Area. arXiv e-prints, art. arXiv:2008.12867, 2020.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
areaPerPairI(tree)

4 avgLeafDepI

avgLeafDepI Calculation of the average leaf depth index for rooted trees

Description

This function calculates the average leaf depth N(T) for a given rooted tree T . The tree must not
necessarily be binary. N(T) is defined as

N(T) =
1

n
·
∑

u∈Vin(T)

nu

in which n denotes the number of leaves in T , Vin(T) denotes the set of inner nodes of T and nu
denotes the number of leaves in the pending subtree that is rooted at the inner node u. Note that
N(T) can also be computed from the Sackin index S(T) as N(T) = 1

n · S(T). The average leaf
depth is an imbalance index.

For n = 1 the function returns N(T) = 0 and a warning.

For details on the average leaf depth, see also Chapter 6 in "Tree balance indices: a comprehensive
survey" (https://doi.org/10.1007/978-3-031-39800-1_6).

Usage

avgLeafDepI(tree)

Arguments

tree A rooted tree in phylo format.

Value

avgLeafDepI returns the average leaf depth of the given tree.

Author(s)

Luise Kuehn

References

M. J. Sackin. "Good" and "Bad" Phenograms. Systematic Biology, 21(2):225-226, 1972. doi:
10.1093/sysbio/21.2.225.

K.-T. Shao and R. R. Sokal. Tree Balance. Systematic Zoology, 39(3):266, 1990.
doi: 10.2307/2992186.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
avgLeafDepI(tree)

avgVertDep 5

avgVertDep Calculation of the average vertex depth for rooted trees

Description

This function calculates the average vertex depth AVD(T) for a given rooted tree T . The tree must
not necessarily be binary. AVD(T) is defined as

AVD(T) =
1

|V (T)|
·
∑

x∈V (T)

δ(x)

in which V (T) denotes the set of vertices of T , and δ(x) denotes the depth of the vertex x. The
average vertex depth is a normalised version of the total path length and an imbalance index.

For n = 1 the function returns AVD(T) = 0 and a warning.

For details on the average vertex depth, see also Chapter 23 in "Tree balance indices: a comprehen-
sive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

avgVertDep(tree)

Arguments

tree A rooted tree in phylo format.

Value

avgVertDep returns the average vertex depth of the given tree.

Author(s)

Luise Kuehn

References

A. Herrada et al. Scaling properties of protein family phylogenies. BMC Evolutionary Biology,
11(1), June 2011. doi: 10.1186/1471-2148-11-155.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,,),),(,)));")
avgVertDep(tree)

6 B1I

B1I Calculation of the B1 index for rooted trees

Description

This function calculates theB1 indexB1(T) for a given rooted tree T . The tree must not necessarily
be binary. B1(T) is defined as

B1(T) =
∑

u∈Vin(T)\{ρ}

h(Tu)
−1

in which Vin(T)\{ρ} denotes the set of inner vertices of T without the root, and h(Tu) denotes the
height of the pending subtree rooted at u. When restricted to binary trees, the B1 index is a balance
index. For arbitrary trees it does not fulfill the definition of an (im)balance index.

For n = 1 the function returns B1(T) = 0 and a warning.

For details on the B1 index, see also Chapter 10 in "Tree balance indices: a comprehensive sur-
vey" (https://doi.org/10.1007/978-3-031-39800-1_10).

Usage

B1I(tree)

Arguments

tree A rooted tree in phylo format.

Value

B1I returns the B1 index of the given tree.

Author(s)

Sophie Kersting

References

K.-T. Shao and R. R. Sokal. Tree Balance. Systematic Zoology, 39(3):266, 1990.
doi: 10.2307/2992186.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
B1I(tree)

B2I 7

B2I Calculation of the B2 index for rooted trees

Description

This function calculates the B2 indexB2(T) for a given rooted tree T . The tree must not necessarily
be binary. B2(T) is defined as

B2(T) = −
∑

x∈VL(T)

px · log(px)

in which VL(T) denotes the leaf set of T , and in which

px =
∏

v∈anc(x)

1

|child(v)|

denotes the probability of reaching leaf x when starting at the root and assuming equiprobable
branching at each vertex v ∈ anc(x) with anc(x) denoting the set of ancestors of x excluding x.
child(v) denotes the set of children of the inner vertex v.
The B2 index is a balance index.

For n = 1 the function returns B2(T) = 0 and a warning.

For details on the B2 index, see also Chapter 11 in "Tree balance indices: a comprehensive sur-
vey" (https://doi.org/10.1007/978-3-031-39800-1_11).

Usage

B2I(tree, logbase = 2)

Arguments

tree A rooted tree in phylo format.

logbase The base that shall be used for the logarithm. For binary trees it is common to
use base 2.

Value

B2I returns the B2 index of the given tree.

Author(s)

Sophie Kersting, Luise Kuehn

8 cherryI

References

K.-T. Shao and R. R. Sokal. Tree Balance. Systematic Zoology, 39(3):266, 1990.
doi: 10.2307/2992186.

P.-M. Agapow and A. Purvis. Power of Eight Tree Shape Statistics to Detect Nonrandom Diver-
sification: A Comparison by Simulation of Two Models of Cladogenesis. Systematic Biology,
51(6):866-872, 2002.doi: 10.1080/10635150290102564.
URL https://doi.org/10.1080/10635150290102564.

M. Hayati, B. Shadgar, and L. Chindelevitch. A new resolution function to evaluate tree shape
statistics. PLOS ONE, 14(11):e0224197, 2019. doi: 10.1371/journal.pone.0224197.
URL https://doi.org/10.1371/journal.pone.0224197.

M. Kirkpatrick and M. Slatkin. Searching for evolutionary patterns in the shape of a phylogenetic
tree. Evolution, 47(4):1171-1181, 1993. doi: 10.1111/j.1558-5646.1993.tb02144.x.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
B2I(tree)

cherryI Calculation of the cherry index for rooted trees

Description

This function calculates the cherry index ChI(T) for a given rooted tree T . The tree must not
necessarily be binary. ChI(T) is defined as the number of cherries in the tree. A cherry is a pair of
leaves that have the same direct ancestor. Note, if a vertex u has x leaves as direct descendants, the
number of cherries induced by u is binom(x, 2).

The cherry index does not fulfill the definition of an (im)balance index given in "Tree balance
indices: a comprehensive survey" (Fischer et al., 2023).

For details on the cherry index, see also Chapter 24 in "Tree balance indices: a comprehensive
survey" (https://doi.org/10.1007/978-3-031-39800-1_24).

Usage

cherryI(tree)

Arguments

tree A rooted tree in phylo format.

Value

cherryI returns the cherry index of the given tree.

collessI 9

Author(s)

Sophie Kersting

References

A. McKenzie and M. Steel. Distributions of cherries for two models of trees. Mathematical Bio-
sciences, 164(1):81-92, 2000. doi: 10.1016/s0025-5564(99)00060-7.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
cherryI(tree)
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
cherryI(tree)
tree <- ape::read.tree(text="((,,,),(,,));")
cherryI(tree)

collessI Calculation of the Colless index for rooted binary trees

Description

This function calculates variants of the Colless index for a given rooted binary tree T . All of them
are imbalance indices.

The original Colless index C(T) is defined as

C(T) =
∑

u∈Vin(T)

|nua
− nub

|

in which Vin(T) denotes the set of all inner vertices of T , and in which nua
and nub

denote the
number of leaves in the two pending subtrees that are rooted at the direct descendants of u.

The corrected Colless index IC(T) of T is defined as IC(T) = 0 for n = 1 and n = 2 and
for n > 2 as

IC(T) =
2 · C(T)

(n− 1) · (n− 2)

in which n denotes the total number of leaves in T .

The quadratic Colless index QC(T) of T is defined as

QC(T) =
∑

u∈Vin(T)

|nua
− nub

|2

Special cases: For n = 1 the function returns C(T) = IC(T) = QC(T) = 0 and a warning.

10 collessI

For details on the original, corrected and quadratic Colless indices, see also Chapters 12, 13 and 15
in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_12,
https://doi.org/10.1007/978-3-031-39800-1_13, https://doi.org/10.1007/978-3-031-39800-1_15).

Usage

collessI(tree, method = "original")

Arguments

tree A rooted binary tree in phylo format.

method A character string specifying the version that shall be computed. It can be one
of the following: "original", "corrected", "quadratic".

Value

collessI returns the Colless index of the given tree according to the chosen method.

Author(s)

Luise Kuehn and Sophie Kersting

References

D. Colless. Review of Phylogenetics: the theory and practice of phylogenetic systematics. System-
atic Zoology, 1982. ISSN 00397989.

T. M. Coronado, M. Fischer, L. Herbst, F. Rossello, and K. Wicke. On the minimum value of the
Colless index and the bifurcating trees that achieve it. Journal of Mathematical Biology, 2020.doi:
10.1007/s00285-020-01488-9.

S. B. Heard. Patterns in tree balance among cladistic, phenetic, and randomly generated phyloge-
netic trees. Evolution, 1992. doi: 10.1111/j.1558-5646.1992.tb01171.x.

K. Bartoszek, T. M. Coronado, A. Mir, and F. Rossello. Squaring within the Colless index yields a
better balance index. Mathematical Biosciences, 331:108503, 2021. doi: 10.1016/j.mbs.2020.108503.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
collessI(tree, method="original")
collessI(tree, method="corrected")
collessI(tree, method="quadratic")

collesslikeI 11

collesslikeI Calculation of the Colless-like indices for rooted trees

Description

This function calculates the Colless-like index for a given rooted tree T according to the chosen
weight function f and dissimilarity D. The Colless-like index CL(T) relative to D and f is the
sum of the (D, f)-balance values over all inner vertices of the tree. More precisely,

CL(T) =
∑

v∈Vin(T)

balD,f (v)

where Vin(T) is the set of inner vertices of T . The (D, f)-balance value of v with children v1, ..., vk
is computed as

balD,f (v) = D(fs(Tv1), ..., fs(Tvk))

with D denoting the dissimilarity and fs denoting the f.size.
The f.size fs(T) of a tree T uses the function f , which maps any integer to a non-negative real
number, to build a weighted sum of the out-degrees of all vertices in T . More precisely,

fs(T) =
∑

v∈V (T)

f(deg + (v))

where V (T) is the set of all vertices of T and deg + (v) denotes the out-degree (i.e. the number
of children) of the vertex v. The f -functions that are already implemented are f(x) = ex and
f(x) = ln(x+ e).
The dissimilarity D(x1, ..., xk) of a vector x1, ..., xk assigns a non-negative value to the vector, is
independent of the order of the vector entries and equals zero if and only if x1 = ... = xk. In this
implementation the following dissimilarity functions are already built-in: mean deviation from the
median (mdm), the sample variance (var) and the sample standard deviation (sd).
collesslikeI also allows the use of other functions for the weight function f and the dissimilarity
D.

Special cases: For n = 1 the function returns CL(T) = 0 and a warning.

For details on the family of Colless-like indices, see also Chapter 16 in "Tree balance indices: a
comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_16).

Usage

collesslikeI(tree, f.size, dissim)

Arguments

tree A rooted binary tree in phylo format.
f.size A character string specifying the function f that shall be used to compute the

f.size. It can be one of the following: "exp", "ln" or the name of a function as a
string.

dissim A character string specifying the dissimilarity that shall be used. It can be one
of the following: "mdm", "var", "sd" or the name of a function as a string.

12 colPlaLab

Value

collesslikeI returns the Colless-like index of the given tree according to the chosen function and
dissimilarity.

Author(s)

Luise Kuehn, Sophie Kersting

References

A. Mir, L. Rotger, and F. Rossello. Sound Colless-like balance indices for multifurcating trees.
PLOSONE, 13(9):e0203401, 2018. doi: 10.1371/journal.pone.0203401

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
collesslikeI(tree, f.size="exp", dissim="mdm")
collesslikeI(tree, f.size="exp", dissim="var")
collesslikeI(tree, f.size="ln", dissim="sd")
myfsize <- function(x) return(x+1)
mydissim <- function(x) return (var(x))
collesslikeI(tree, f.size="myfsize",dissim = "mydissim")

colPlaLab Calculation of the Colijn-Plazzotta rank for rooted binary trees

Description

This function calculates the Colijn-Plazzotta rank CP (T) for a given rooted binary tree T .

For a binary tree T , the Colijn-Plazzotta rank CP (T) is recursively defined as CP (T) = 1 if
T consists of only one leaf and otherwise

CP (T) =
1

2
· CP (T1) · (CP (T1)− 1) + CP (T2) + 1

with CP (T1) ≥ CP (T2) being the ranks of the two pending subtrees rooted at the children of the
root of T . This rank of T corresponds to its position in the lexicographically sorted list of (i, j):
(1),(1,1),(2,1),(2,2),(3,1),... The Colijn-Plazzotta rank of binary trees has been shown to be an im-
balance index.

For n = 1 the function returns CP (T) = 1 and a warning.

Note that problems can sometimes arise even for trees with small leaf numbers due to the lim-
ited range of computable values (ranks can reach INF quickly).

For details on the Colijn-Plazzotta rank, see also Chapter 21 in "Tree balance indices: a com-
prehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_21).

colPlaLab_inv 13

Usage

colPlaLab(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

colPlaLab returns the Colijn-Plazotta rank of the given tree. Since the values can get quite large,
the function returns them in big.z format (package gmp).

Author(s)

Sophie Kersting, Luise Kuehn

References

C. Colijn and G. Plazzotta. A Metric on Phylogenetic Tree Shapes. Systematic Biology, doi:
10.1093/sysbio/syx046.

N. A. Rosenberg. On the Colijn-Plazzotta numbering scheme for unlabeled binary rooted trees.
Discrete Applied Mathematics, 2021. doi: 10.1016/j.dam.2020.11.021.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
colPlaLab(tree)

colPlaLab_inv Generation of the rooted binary tree corresponding to a given Colijn-
Plazzotta rank

Description

This function generates the unique rooted binary tree T (in phylo format) that corresponds to the
given Colijn-Plazzotta rank CP (T). It is the inverse function of colPlaLab().

colPlaLab(): For a given rooted binary tree T , CP (T) is recursively defined as CP (T) = 1
if T consists of only one vertex and otherwise CP (T) = 1

2 ·CP (T1) · (CP (T1)−1)+CP (T2)+1
with CP (T1) ≥ CP (T2) being the ranks of the two pending subtrees rooted at the children of the
root of T . The rank CP (T) of T corresponds to its position in the lexicographically sorted list of
(i, j): (1),(1,1),(2,1),(2,2),(3,1),...

colPlaLab_inv(): For a given rank CP the corresponding tree T can be reconstructed by starting

14 colPlaLab_inv

from one vertex ρ (labelled CP) and recursively splitting vertices whose labels h are greater than 1
into two children with the labels:

i =

⌈
1 +
√
8 · h− 7

2

⌉
− 1

and

j = h− i · (i− 1)

2
− 1

until there are no more vertices to split.
For CP = 1 the function returns the smallest possible tree in the phylo format: the tree consisting
of a single edge.

Note that problems can arise for extremely high input values (>10e+18).

For details on the Colijn-Plazzotta rank, see also Chapter 21 in "Tree balance indices: a com-
prehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_21).

Usage

colPlaLab_inv(rank)

Arguments

rank An integer denoting the Colijn-Plazzotta rank of the sought tree.

Value

colPlaLab_inv returns the unique rooted binary tree for the given rank.

Author(s)

Sophie Kersting

References

C. Colijn and G. Plazzotta. A Metric on Phylogenetic Tree Shapes. Systematic Biology, 67(1):113-
126,2018. doi: 10.1093/sysbio/syx046.

N. A. Rosenberg. On the Colijn-Plazzotta numbering scheme for unlabeled binary rooted trees.
Discrete Applied Mathematics, 291:88-98, 2021. doi: 10.1016/j.dam.2020.11.021.

Examples

colPlaLab_inv(22)

ewCollessI 15

ewCollessI Calculation of the equal weights Colless index for rooted binary trees

Description

This function calculates the equal weights Colless index I2(T) for a given rooted binary tree T .
I2(T) is defined as

I2(T) =
1

n− 2
·

∑
u∈Vin(T),nu>2

|nua − nub
|

nu − 2

in which Vin(T) denotes the set of all inner vertices of T , and in which nu, nua
and nub

denote the
number of leaves in the pending subtrees that are rooted at u and the two direct descendants of u.
The equal weights Colless index is an imbalance index.

For n = 1 and n = 2 the function returns I2(T) = 0 and a warning.

For details on the equal weigths Colless index, see also Chapter 14 in "Tree balance indices: a
comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_14).

Usage

ewCollessI(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

ewCollessI returns the equal weights Colless index of the given tree.

Author(s)

Luise Kuehn

References

A. O. Mooers and S. B. Heard. Inferring Evolutionary Process from Phylogenetic Tree Shape. The
Quarterly Review of Biology, 72(1), 1997. doi: 10.1086/419657.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
ewCollessI(tree)

16 furnasI

furnasI Calculation of the Furnas rank for rooted binary trees

Description

This function calculates the Furnas rank F (T) for a given rooted binary tree T . F (T) is the unique
rank of the tree T among all rooted binary trees with n leaves in the left-light rooted ordering. For
details on the left-light rooted ordering as well as details on how the Furnas rank is computed, see
"The generation of random, binary unordered trees" by G.W. Furnas (1984) or "Tree balance in-
dices: a comprehensive survey" by Fischer et al. (2023). The Furnas rank is a balance index.

The concept of assigning each rooted binary tree a unique tuple (rank, n) allows to store many
trees with minimal storage use.

For details on the Furnas rank, see also Chapter 22 in "Tree balance indices: a comprehensive
survey" (https://doi.org/10.1007/978-3-031-39800-1_22).

Usage

furnasI(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

furnasI returns the unique Furnas rank of the given tree, i.e. the rank of the tree among all rooted
binary trees with n leaves in the left-light rooted ordering. Since the values can get quite large, the
function returns them in big.z format (package gmp).

Author(s)

Luise Kuehn, Lina Herbst

References

G. W. Furnas. The generation of random, binary unordered trees. Journal of Classification, 1984.
doi: 10.1007/bf01890123. URL https://doi.org/10.1007/bf01890123.

M. Kirkpatrick and M. Slatkin. Searching for evolutionary patterns in the shape of a phylogenetic
tree. Evolution, 1993. doi: 10.1111/j.1558-5646.1993.tb02144.x.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
furnasI(tree)

furnasI_inv 17

furnasI_inv Calculation of rooted binary tree for tuple (rank, leaf number)

Description

This function calculates the unique tree T (in phylo format) for two given integer values r and n,
with n denoting the number of leaves of T and r denoting the rank of T in the left-light rooted
ordering of all rooted binary trees with n leaves. It is the inverse function of furnasI(). For details
on how to calculate T (including algorithm) see "The generation of random, binary unordered trees"
by G.W. Furnas (1984) or "Tree balance indices: a comprehensive survey" by Fischer et al. (2023).

furnasI_inv can be used e.g. to generate random rooted binary trees with a certain number of
leaves. Also, the concept of assigning each rooted binary tree a unique tuple (rank, n) allows to
store many trees with minimal storage use.

For details on the Furnas rank, see also Chapter 22 in "Tree balance indices: a comprehensive
survey" (https://doi.org/10.1007/978-3-031-39800-1_22).

Usage

furnasI_inv(rank, n)

Arguments

rank An integer denoting the rank of the sought tree among all rooted binary trees
with n leaves.

n An integer denoting the number of leaves of the sought tree.

Value

furnasI_inv returns the unique tree (in phylo format) for the given leaf number and rank.

Author(s)

Sophie Kersting

References

G. W. Furnas. The generation of random, binary unordered trees. Journal of Classification, 1984.
doi: 10.1007/bf01890123. URL https://doi.org/10.1007/bf01890123.

Examples

furnasI_inv(rank=6,n=8)

18 getDescMatrix

getDescMatrix Auxiliary functions

Description

getDescMatrix - Creates a matrix that contains the descendants of node i in row i.

getAncVec - Creates a vector that contains the parent (direct ancestor) of node i at position i.

getNodesOfDepth - Creates a matrix that contains the nodes of depth i in row i.

symBucketLexicoSort - Sorts the pairs of numbers lexicographically and returns ranking. Uses
bucket sort.

getAllAncestors - Returns all ancestors of v including v itself.

cPL_inv - Returns the binary tree that belongs to the input label in an incomplete Newick format.

maxDepthLeaf - Returns the maximumy< depth of a leaf in the subtree that is rooted at v.

get.subtreesize - Creates a vector that contains at the i-th position the number of leaves in the
pending subtree rooted at i.

getlca - Returns the name of the lowest common ancestor of the two input vertices v and w.

we_eth - Returns the Wedderburn-Etherington number we(n) for a given non-negative integer n.

getfurranks - Returns for each vertex i the Furnas rank of the subtree rooted at i.

getsubtree - Returns the pending subtree (in phylo format) that is rooted at the input vertex. If the
input vertex is a leaf, the function returns the standard tree for n = 1 (with 1 edge).

is_binary - Returns TRUE if the input tree is binary and FALSE otherwise.

is_phylo - Tests all requirements of the phylo format, and returns TRUE if the tree is correctly
formatted, else FALSE with detailed feedback on the features that are not met.

tree_decomposition - Returns a list of length two, which contains the two pending subtrees that
are rooted at the children of the root of the input tree. The smaller one (according to the number of
leaves) is stated first.

tree_merge - Returns a rooted tree T in phylo format, which contains the input trees tree1 and
tree2 as "left" and "right" maximal pending subtrees.

treenumber - Returns the unique tree number tn(T) of the given tree. tn(T) is the rank of the tree
T among all rooted binary trees in the left-light rooted ordering. It can be calculated as follows:

tn(T) = F (T) +

n−1∑
i=1

we(i)

in which n is the number of leaves in T , F (T) is the Furnas rank of T , i.e. the rank of T in the
left-light rooted ordering of all rooted binary trees with n leaves, and we(i) is the Wedderburn-
Etherington number of i. The concept of assigning each rooted binary tree a unique tree number
allows to store many trees with minimal storage use. For n = 1 the function returns tn(T) = 1 and
a warning.

treenumber_inv - Returns the unique tree (in phylo format) for the given tree number.

auxE_l_X - Returns the sum of all products of l different values in X.

getDescMatrix 19

Usage

getDescMatrix(tree)

getAncVec(tree)

getNodesOfDepth(mat, root, n)

symBucketLexicoSort(workLabs)

getAllAncestors(tree, v)

cPL_inv(label)

maxDepthLeaf(tree, v = length(tree$tip.label) + 1)

get.subtreesize(tree)

getlca(tree, v, w)

we_eth(n)

getfurranks(tree)

getsubtree(tree, subroot)

is_binary(tree)

is_phylo(tree)

tree_decomposition(tree)

tree_merge(tree1, tree2)

treenumber(tree)

treenumber_inv(treenum)

auxE_l_X(subX, Xset)

Arguments

tree A rooted tree in phylo format, >= 2 leaves

mat Descendants matrix from getDescMatrix

root Number (label) of the root of the tree

n Number of leaves of the tree

workLabs numeric matrix (2 columns)

v A vertex of the tree.

20 getDescMatrix

label A Colijn-Plazotta label of desired tree, a positive integer.

w A vertex of the tree.

subroot A vertex of the tree. It is not recommended to use leaves as subroots.

tree1 A rooted tree in phylo format.

tree2 A rooted tree in phylo format.

treenum An integer denoting the tree number of the sought tree.

subX integer >=1, size of the subsets of X.

Xset Vector (multiset) of numeric values.

Value

desc_mat numeric matrix

anc_vec numeric vector

nodes_of_depth numeric matrix

ranking numeric vector

vectorWithAncs numeric vector

Author(s)

Sophie Kersting, Luise Kuehn and Lina Herbst

Examples

mat <- cbind(c(7,7,6,5,5,6),c(1,2,3,4,6,7))
tree <- list(edge=mat, tip.label=c("","","",""), Nnode=3)
getDescMatrix(tree)
mat <- cbind(c(5,5,5,5),c(1,2,3,4))
tree <- list(edge=mat, tip.label=c("","","",""), Nnode=1)
getDescMatrix(tree)
getAncVec(tree)
getNodesOfDepth(mat=getDescMatrix(tree),root=length(tree$tip.label)+1,
n=length(tree$tip.label))
myWorkLabs <- cbind(c(0,1,2,3,1,0),c(0,2,2,4,1,0))
symBucketLexicoSort(myWorkLabs)
getAllAncestors(tree,v=6)
cPL_inv(label=6)
maxDepthLeaf(tree,v=6)
get.subtreesize(tree)
getlca(tree,1,2)
we_eth(5)
getfurranks(tree)
getsubtree(tree,4)
is_binary(ape::read.tree(text="((((,),),(,)),(((,),),(,)));"))
is_phylo(ape::read.tree(text="((((,),),(,)),(((,),),(,)));"))
tree_decomposition(ape::read.tree(text="((((,),),(,)),(((,),),(,)));"))
treeA <- ape::read.tree(text="(((,),),(,));")
treeB <- ape::read.tree(text="((,),);")
tree_merge(treeA, treeB)

IbasedI 21

treenumber(ape::read.tree(text="((((,),),(,)),(((,),),(,)));"))
treenumber_inv(192)
auxE_l_X(subX=3,Xset=c(1,1,2,2))

IbasedI Calculation of the I-based indices for rooted trees

Description

This function calculates I-based indices I(T) for a given rooted tree T . Note that the leaves of the
tree may represent single species or groups of more than one species. Thus, a vector is required
that contains for each leaf the number of species that it represents. The tree may contain few poly-
tomies, which are not allowed to concentrate in a particular region of the tree (see p. 238 in Fusco
and Cronk (1995)).

Let v be a vertex of T that fulfills the following criteria: a) The number of descendant (termi-
nal) species of v is kv > 3 (note that if each leaf represents only one species kv is simply the
number of leaves in the pending subtree rooted at v), and b) v has exactly two children.

Then, we can calculate the Iv value as follows:

Iv =
kva −

⌈
kv
2

⌉
kv − 1−

⌈
kv
2

⌉
in which kva denotes the number of descendant (terminal) species in the bigger one of the two
pending subtrees rooted at v.

As the expected value of Iv under the Yule model depends on kv , Purvis et al. (2002) suggested to
take the corrected values I ′v or Iwv instead.
The I ′v value of v is defined as follows: I ′v = Iv if kv is odd and I ′v =

kv−1
kv
· Iv if kv is even.

The Iwv value of v is defined as follows:

Iwv =
w(Iv) · Iv

meanV ′(T)w(Iv)

where V ′(T) is the set of inner vertices of T that have precisely two children and kv ≥ 4, andw(Iv)
is a weight function with w(Iv) = 1 if kv is odd and w(Iv) = kv−1

kv
if kv is even and Iv > 0, and

w(Iv) =
2·(kv−1)

kv
if kv is even and Iv = 0.

The I-based index of T can now be calculated using different methods. Here, we only state the ver-
sion for the I ′ correction method, but the non-corrected version or the Iwv corrected version works
analoguously. 1) root: The I ′ index of T equals the I ′v value of the root of T , i.e. I ′(T) = I ′ρ,
provided that the root fulfills the two criteria. Note that this method does not fulfil the definition of
an (im)balance index. 2) median: The I ′ index of T equals the median I ′v value of all vertices v that
fulfill the two criteria. 3) total: The I ′ index of T equals the summarised I ′v values of all vertices
v that fulfill the two criteria. 4) mean: The I ′ index of T equals the mean I ′v value of all vertices
v that fulfill the two criteria. 5) quartile deviation: The I ′ index of T equals the quartile deviation

22 IbasedI

(half the difference between third and first quartile) of the I ′v values of all vertices v that fulfill the
two criteria.

For details on the family of I-based indices, see also Chapter 17 in "Tree balance indices: a com-
prehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_17).

Usage

IbasedI(
tree,
specnum = rep(1, length(tree$tip.label)),
method = "mean",
correction = "none",
logs = TRUE

)

Arguments

tree A rooted tree in phylo format (with possibly few polytomies).

specnum A vector whose i-th entry is the number of species that the i-th leaf represents.
(default is 1,...,1)

method A character string specifying the method that shall be used to calculate I(T). It
can be one of the following: "root", "median", "total", "mean", "quartdev".

correction A character string specifying the correction method that shall be applied to the I
values. It can be one of the following: "none", "prime", "w".

logs Boolean value, (default true), determines if the number of suitable nodes (i.e.
nodes that fulfill the criteria) and polytomies in the tree should be printed.

Value

IbasedI returns an I-based balance index of the given tree according to the chosen (correction and)
method.

Author(s)

Luise Kuehn and Sophie Kersting

References

G. Fusco and Q. C. Cronk. A new method for evaluating the shape of large phylogenies. Journal of
Theoretical Biology, 1995. doi: 10.1006/jtbi.1995.0136. URL https://doi.org/10.1006/jtbi.1995.0136.

A. Purvis, A. Katzourakis, and P.-M. Agapow. Evaluating Phylogenetic Tree Shape: Two Modifica-
tions to Fusco & Cronks Method. Journal of Theoretical Biology, 2002. doi: 10.1006/jtbi.2001.2443.
URL https://doi.org/10.1006/jtbi.2001.2443.

maxDelW 23

Examples

tree <- ape::read.tree(text="(((((,),),),),);")
IbasedI(tree, method="mean")
IbasedI(tree, method="mean", correction="prime", specnum=c(1,1,2,1,1,1))

maxDelW Calculation of the (modified) maximum difference in widths for a
rooted tree

Description

This function calculates the maximum difference in widths delW (T) and the modified maximum
difference in width mdelW (T) for a given rooted tree T . The tree must not necessarily be binary.
delW (T) is defined as

delW (T) = max
i=0,...,h(T)−1

|w(i+ 1)− w(i)|

and mdelW (T) is defined as

mdelW (T) = max
i=0,...,h(T)−1

w(i+ 1)− w(i)

in which h(T) denotes the height of the tree T and w(i) denotes the number of vertices in T that
have depth i. The modified maximum difference in widths is a balance index, while the maximum
difference in widths is neither a balance nor imbalance index.

Note that there was a spelling error in the previous manual of this function - we wrote "maxi-
mum difference in widths" while the given definition and the R code corresponded to the "modified
maximum difference in width".

For details on the maximum difference in widths and the modified maximum difference in widths,
see also Chapters 24 and 23 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-
3-031-39800-1_24, https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

maxDelW(tree, method = "modified")

Arguments

tree A rooted tree in phylo format.

method A character string specifying whether the original maximum difference in widths
or the modified maximum difference in widths shall be computed. Can be any
of "original" or "modified" (default is modified).

24 maxDepth

Value

maxDelW returns the maximum difference in widths of a tree (if method is set to original) or the
modified maximum difference in widths (if method is set to modified).

Author(s)

Sophie Kersting, Luise Kuehn

References

C. Colijn, J. Gardy. Phylogenetic tree shapes resolve disease transmission patterns. Evolution,
Medicine, and Public Health, 2014(1):96-108, 2014. ISSN 2050-6201. doi: 10.1093/emph/eou018.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
maxDelW(tree, method="original")
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
maxDelW(tree, method="modified")

maxDepth Calculation of the maximum depth of the tree

Description

This function calculates the maximum depth of any vertex in a rooted tree T , which is at the same
time its height h(T). The tree must not necessarily be binary. Formally, h(T) is defined as

h(T) = max
v∈V (T)

δ(v)

with δ(v) being the depth of the vertex v. The maximum depth is an imbalance index.

For n = 1 the function returns h(T) = 0 and a warning.

For details on the maximum depth, see also Chapter 23 in "Tree balance indices: a comprehen-
sive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

maxDepth(tree)

Arguments

tree A rooted tree in phylo format.

Value

maxDepth returns the maximum depth, i.e. height, of a tree.

maxWidth 25

Author(s)

Luise Kuehn, Sophie Kersting

References

C. Colijn and J. Gardy. Phylogenetic tree shapes resolve disease transmission patterns. Evolution,
Medicine, and Public Health, 2014(1):96-108, 2014. ISSN 2050-6201. doi: 10.1093/emph/eou018.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
maxDepth(tree)
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
maxDepth(tree)

maxWidth Calculation of the maximum width of the tree

Description

This function calculates the maximum width maxWidth(T) for a given rooted tree T . The tree
must not necessarily be binary. maxWidth(T) is defined as

maxWidth(T) = max
i=0,...,h(T)

w(i)

in which h(T) denotes the height of the tree T and w(i) denotes the number of vertices in T that
have depth i. The maximum width is a balance index.

For details on the maximum width, see also Chapter 23 in "Tree balance indices: a comprehen-
sive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

maxWidth(tree)

Arguments

tree A rooted tree in phylo format.

Value

maxWidth returns the maximum width of a tree.

Author(s)

Sophie Kersting

26 mCherryI

References

C. Colijn and J. Gardy. Phylogenetic tree shapes resolve disease transmission patterns. Evolution,
Medicine, and Public Health, 2014(1):96-108, 2014. ISSN 2050-6201. doi: 10.1093/emph/eou018.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
maxWidth(tree)
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
maxWidth(tree)

mCherryI Calculation of the modified cherry index for rooted binary trees

Description

This function calculates the modified cherry indexmChI(T) for a given rooted binary tree T . Note
that compared to the original cherry index ChI(T), the modified cherry index is defined for binary
trees only. mChI(T) is defined as n − 2 · ChI(T), i.e. it counts the number of leaves of the tree
which are not in a cherry. A cherry is a pair of leaves that have the same direct ancestor.

The modified cherry index does not fulfill the definition of an (im)balance index given in "Tree
balance indices: a comprehensive survey" (Fischer et al., 2023).

For details on the modified cherry index, see also Chapter 24 in "Tree balance indices: a com-
prehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_24).

Usage

mCherryI(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

mCherryI returns the modified cherry index of the given tree.

Author(s)

Luise Kuehn

References

S. J. Kersting, M. Fischer. Measuring tree balance using symmetry nodes — A new balance index
and its extremal properties. Mathematical Biosciences, 341:108690, 2021. doi: 10.1016/j.mbs.2021.108690.

mWovermD 27

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
mCherryI(tree)
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
mCherryI(tree)

mWovermD Calculation of the maximum width over maximum depth of the tree

Description

This function calculates the maximum width over maximum depth mWovermD(T) for a given
rooted tree T . The tree must not necessarily be binary. For n > 1, mWovermD(T) is defined as

mWovermD(T) = maxWidth(T)/h(T)

in which h(T) denotes the height of the tree T , which is the same as the maximum depth of any leaf
in the tree, and maxWidth(T) denotes the maximum width of the tree T . The maximum width
over maximum depth is a balance index.

For details on the maximum width over maximum depth, see also Chapter 23 in "Tree balance
indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

mWovermD(tree)

Arguments

tree A rooted tree in phylo format.

Value

mWovermD returns the maximum width over maximum depth of a tree.

Author(s)

Luise Kuehn

References

C. Colijn and J. Gardy. Phylogenetic tree shapes resolve disease transmission patterns. Evolution,
Medicine, and Public Health, 2014(1):96–108, 2014. doi: 10.1093/emph/eou018.

28 rogersI

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
mWovermD(tree)
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
mWovermD(tree)

rogersI Calculation of the Rogers J index for rooted binary trees

Description

This function calculates the Rogers J index J(T) for a given rooted binary tree T . It is defined as
the number of inner vertices whose balance value is unequal to zero, more precisely

J(T) =
∑

u∈Vin(T)

(1− I(nua
= nub

))

in which Vin(T) denotes the set of all inner vertices of T , and in which nua and nub
denote the

number of leaves in the two pending subtrees that are rooted at the direct descendants of u.
Special cases: For n = 1, the function returns J(T) = 0 and a warning.

For details on the Rogers J index, see also Chapter 19 in "Tree balance indices: a comprehensive
survey" (https://doi.org/10.1007/978-3-031-39800-1_19).

Usage

rogersI(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

rogersI returns the Rogers J index of the given tree.

Author(s)

Sophie Kersting

References

J. S. Rogers. Central Moments and Probability Distributions of Three Measures of Phylogenetic
Tree Imbalance. Systematic Biology, 45(1):99-110, 1996. doi: 10.1093/sysbio/45.1.99.

rQuartetI 29

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
rogersI(tree)

rQuartetI Calculation of the rooted quartet index for rooted trees

Description

This function calculates the rooted quartet index rQI(T) for a given rooted tree T . The tree must
not necessarily be binary.

Let T be a rooted tree, whose leaves are 1, ..., n. Let P4 denote the set of all subsets of {1, ..., n}
that have cardinality 4. Let T (Q) denote the rooted quartet on Q ∈ P4 that is obtained by taking
the subgraph of T that is induced by Q and supressing its outdegree-1 vertices. T (Q) can have one
of the five following shapes:

- Q∗0: This is the caterpillar tree shape on 4 leaves, i.e. "(,(,(,)));" in Newick format. It has 2
automorphisms.
- Q∗1: This is the tree shape on 4 leaves that has three pending subtrees rooted at the children of the
root of T , one of them being a cherry and the other two being single vertices, i.e. "((,),,);" in
Newick format. It has 4 automorphisms.
- Q∗2: This is the tree shape on 4 leaves that has two pending subtrees rooted at the children of the
root of T , one of them being a star tree shape on 3 leaves and the other one being a single vertex,
i.e. "((,,),);" in Newick format. It has 6 automorphisms.
- Q∗3: This is the fully balanced binary tree shape on 4 leaves, i.e. "((,),(,));" in Newick format.
It has 8 automorphisms.
- Q∗4: This is the star tree shape on 4 leaves, i.e. "(,,,);" in Newick format. It has 24 automor-
phisms.

T (Q) is assigned an rQI-value based on its shape, i.e. rQI(T (Q)) = qi if T (Q) has the shape
Q∗i . The values q0, ..., q4 are chosen in such a way that they increase with the symmetry of the
shape as measured by means of its number of automorphisms. Coronado et al. (2019) suggested
the values q0 = 0 and qi = i or qi = 2i for i = 1, ..., 4.
The rooted quartet index rQI(T) of the tree T is then defined as the sum of the rQI-values of its
rooted quartets:

rQI(T) =
∑
Q∈P4

rQI(T (Q))

The rooted quartet index is a balance index.

For details on the rooted quartet index, see also Chapter 20 in "Tree balance indices: a compre-
hensive survey" (https://doi.org/10.1007/978-3-031-39800-1_20).

Usage

rQuartetI(tree, shapeVal = c(0, 1, 2, 3, 4))

30 sackinI

Arguments

tree A rooted tree in phylo format.

shapeVal A vector of length 5 containing the shape values q0, ..., q4. Default is (q0, q1, q2, q3, q4) =
(0, 1, 2, 3, 4).

Value

rQuartetI returns the rooted quartet index of the given tree based on the chosen shape values (see
description for details).

Author(s)

Sophie Kersting

References

T. M. Coronado, A. Mir, F. Rossello, and G. Valiente. A balance index for phylogenetic trees based
on rooted quartets. Journal of Mathematical Biology, 79(3):1105-1148, 2019. doi: 10.1007/s00285-
019-01377-w. URL https://doi.org/10.1007/s00285-019-01377-w.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
rQuartetI(tree)

sackinI Calculation of the Sackin index for rooted trees

Description

This function calculates the Sackin index S(T) for a given rooted tree T . The tree must not neces-
sarily be binary. S(T) is defined as

S(T) =
∑

x∈VL(T)

δ(x) =
∑

u∈Vin(T)

nu

in which VL(T) denotes the leaf set of T , δ(x) denotes the depth of the leaf x, Vin(T) denotes the
set of inner vertices in T , and nu denotes the number of leaves in the pending subtree that is rooted
at u. The Sackin index is an imbalance index.

For n = 1 the function returns S(T) = 0 and a warning.

For details on the Sackin index, see also Chapter 5 in "Tree balance indices: a comprehensive
survey" (https://doi.org/10.1007/978-3-031-39800-1_5).

sShapeI 31

Usage

sackinI(tree)

Arguments

tree A rooted tree in phylo format.

Value

sackinI returns the Sackin index of the given tree.

Author(s)

Luise Kuehn

References

M.J. Sackin. "Good" and "Bad" Phenograms. Systematic Biology, 21(2):225-226, 1972. doi:
10.1093/sysbio/21.2.225.

K.-T. Shao and R.R. Sokal. Tree Balance. Systematic Zoology, 39(3):266, 1990. doi: 10.2307/2992186.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
sackinI(tree)

sShapeI Calculation of the s-shape statistic for rooted trees

Description

This function calculates the s-shape statistic sShape(T) for a given rooted tree T . The tree must
not necessarily be binary, however sShape only fulfils the definition of an imbalance index on the
space of binary trees. sShape(T) is defined as

sShape(T) =
∑

u∈Vin(T)

log(nu − 1)

in which Vin(T) denotes the set of inner vertices of T and nu denotes the number of leaves in the
pending subtree that is rooted at u. An arbitrary logarithm base can be used (for binary trees it is
common to use base 2).

For n = 1 the function returns sShape(T) = 0 and a warning.

For details on the s-shape statistic, see also Chapter 9 in "Tree balance indices: a comprehensive
survey" (https://doi.org/10.1007/978-3-031-39800-1_9).

32 stairs1

Usage

sShapeI(tree, logbase = 2)

Arguments

tree A rooted tree in phylo format.

logbase The logarithm base that shall be used.

Value

sShapeI returns the s-shape statistic of the given tree.

Author(s)

Luise Kuehn

References

M.G. Blum and O. Francois. Which random processes describe the tree of life? a large-scale study
of phylogenetic tree imbalance. Systematic Biology, 2006.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
sShapeI(tree)

stairs1 Calculation of the stairs1 value for rooted binary trees

Description

This function calculates the stairs1 value st1(T) for a given rooted binary tree T . It is a modified
version of the Rogers J index and is defined as the fraction of inner vertices whose balance value is
unequal to zero, more precisely

st1(T) =
1

n− 1
·
∑

u∈Vin(T)

(1− I(nua
= nub

))

in which Vin(T) denotes the set of all inner vertices of T , and in which nua
and nub

denote the
number of leaves in the two pending subtrees that are rooted at the direct descendants of u. The
stairs1 value is an imbalance index.

Special cases: For n = 1, the function returns st1(T) = 0 and a warning.

For details on the stairs1 value, see also Chapter 23 in "Tree balance indices: a comprehensive
survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

stairs2 33

Usage

stairs1(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

stairs1 returns the stairs1 value of the given tree.

Author(s)

Sophie Kersting

References

M. M. Norstrom, M. C. Prosperi, R. R. Gray, A. C. Karlsson, and M. Salemi. PhyloTempo: A Set of
R Scripts for Assessing and Visualizing Temporal Clustering in Genealogies Inferred from Serially
Sampled Viral Sequences. Evolutionary Bioinformatics, 8:EBO.S9738, 2012. ISSN 1176-9343,
1176-9343. doi:10.4137/EBO.S9738.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
stairs1(tree)

stairs2 Calculation of the stairs2 value for rooted binary trees

Description

This function calculates the stairs2 value st2(T) for a given rooted binary tree T . It is defined as
the mean ratio between the leaf numbers of the smaller and larger pending subtree over all inner
vertices, more precisely

st2(T) =
1

n− 1
·
∑

u∈Vin(T)

nua

nub

in which Vin(T) denotes the set of all inner vertices of T , and in which nua
≥ nub

denote the
number of leaves in the two pending subtrees that are rooted at the direct descendants of u. The
stairs2 value is an imbalance index.

Special cases: For n = 1, the function returns st2(T) = 0 and a warning.

For details on the stairs2 value, see also Chapter 23 in "Tree balance indices: a comprehensive
survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

34 symNodesI

Usage

stairs2(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

stairs2 returns the stairs2 value of the given tree.

Author(s)

Sophie Kersting

References

C. Colijn, J. Gardy. Phylogenetic tree shapes resolve disease transmission patterns. Evolution,
Medicine, and Public Health, 2014(1):96-108, 2014. ISSN 2050-6201. doi: 10.1093/emph/eou018.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
stairs2(tree)

symNodesI Calculation of the symmetry nodes index for rooted binary trees

Description

This function calculates the symmetry nodes index SNI(T) for a given rooted binary tree T .
SNI(T) is defined as the number of inner vertices v that are not symmetry nodes, i.e. the two
pending subtrees rooted at the children of v do not have the same tree shape.

For n = 1 the function returns SNI(T) = 0 and a warning.

For details on the symmetry nodes index, see also Chapter 18 in "Tree balance indices: a com-
prehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_18).

Usage

symNodesI(tree)

Arguments

tree A rooted binary tree in phylo format.

totCophI 35

Value

symNodesI returns the symmetry nodes index of the given tree.

Author(s)

Sophie Kersting

References

S. J. Kersting, M. Fischer. Measuring tree balance using symmetry nodes — A new balance index
and its extremal properties. Mathematical Biosciences, page 108690, 2021. ISSN 0025-5564.
doi:https://doi.org/10.1016/j.mbs.2021.108690

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
symNodesI(tree)

totCophI Calculation of the total cophenetic index for rooted trees

Description

This function calculates the total cophenetic index TCI(T) of a given rooted tree T . The tree must
not necessarily be binary. TCI(T) is defined as

TCI(T) =
∑

1≤i<j≤n

δ(lca(i, j)) =
∑

u∈Vin(T)\{ρ}

binom(nu, 2)

in which δ(lca(i, j)) denotes the depth of the lowest common ancestor of the two leaves i and j
and Vin(T) \ {ρ} denotes the set of all inner vertices exept the root and nu denotes the number of
descendant leaves of u. The second formula is useful for efficient computation of TCI(T). The
total cophenetic index is an imbalance index.

For n = 1 the function returns TCI(T) = 0.

For details on the total cophenetic index, see also Chapter 8 in "Tree balance indices: a com-
prehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_8).

Usage

totCophI(tree)

Arguments

tree A rooted tree in phylo format.

36 totIntPathLen

Value

totCophI returns the total cophenetic index of the given tree.

Author(s)

Sophie Kersting

References

A. Mir, F. Rossello, and L. Rotger. A new balance index for phylogenetic trees. Mathematical
Bio-sciences, 241(1):125-136, 2013. doi: 10.1016/j.mbs.2012.10.005.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
totCophI(tree)
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
totCophI(tree)
tree <- ape::read.tree(text="((,,,),(,,));")
totCophI(tree)

totIntPathLen Calculation of the total internal path length for rooted trees

Description

This function calculates the total internal path length TIP (T) for a given rooted tree T . The tree
must not necessarily be binary. TIP (T) is defined as

TIP (T) =
∑

x∈Vin(T)

δ(x)

in which Vin(T) denotes the set of inner vertices of T , and δ(x) denotes the depth of the vertex x.
The total internal path length is an imbalance index.

For details on the total internal path length, see also Chapter 23 in "Tree balance indices: a compre-
hensive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

totIntPathLen(tree)

Arguments

tree A rooted tree in phylo format.

totPathLen 37

Value

totIntPathLen returns the total internal path length of the given tree.

Author(s)

Luise Kuehn

References

D. E. Knuth. The art of computer programming: fundamental algorithms, volume 1. Addison-
Wesley, Reading, Mass, 3rd edition, 1997. ISBN 9780201896831.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,,),),(,)));")
totIntPathLen(tree)

totPathLen Calculation of the total path length for rooted trees

Description

This function calculates the total path length TPL(T) for a given rooted tree T . The tree must not
necessarily be binary. TPL(T) is defined as

TPL(T) =
∑

x∈V (T)

δ(x)

in which V (T) denotes the set of vertices of T , and δ(x) denotes the depth of the vertex x. The
total path length is an imbalance index.

For n = 1 the function returns TPL(T) = 0 and a warning.

For details on the total path length, see also Chapter 23 in "Tree balance indices: a comprehen-
sive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

totPathLen(tree)

Arguments

tree A rooted tree in phylo format.

Value

totPathLen returns the total path length of the given tree.

38 varLeafDepI

Author(s)

Luise Kuehn

References

see e.g. R. P. Dobrow, J. A. Fill. Total path length for random recursive trees. Combinatorics,
Probability and Computing, 8(4):317–333, 1999. doi: 10.1017/S0963548399003855.

see e.g. L. Takacs. On the total heights of random rooted trees. Journal of Applied Probability,
29(3):543–556, 1992. doi: 10.2307/3214892.

see e.g. L. Takacs. On the total heights of random rooted binary trees. Journal of Combinatorial
Theory, Series B, 61(2):155–166, 1994. ISSN 0095-8956. doi: 10.1006/jctb.1994.1041.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,,),),(,)));")
totPathLen(tree)

varLeafDepI Calculation of the variance of leaf depths index for rooted trees

Description

This function calculates the variance of leaf depths index V LD(T) for a given rooted tree T . The
tree must not necessarily be binary. V LD(T) is defined as

V LD(T) =
1

n
·
∑

x∈VL(T)

(δ(x)−N(T))2

in which n denotes the number of leaves of T , VL(T) denotes the set of leaves of T , δ(x) denotes
the depth of the leaf x and N(T) denotes the average leaf depth of T .

For n = 1 the function returns V LD(T) = 0 and a warning.

For details on the variance of leaf depths, see also Chapter 7 in "Tree balance indices: a com-
prehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_7).

Usage

varLeafDepI(tree)

Arguments

tree A rooted tree in phylo format.

Value

varLeafDepI returns the variance of leaf depths index of the given tree.

wedEth 39

Author(s)

Sophie Kersting

References

T. M. Coronado, A. Mir, F. Rossello, and L. Rotger. On Sackin’s original proposal: the variance
of the leaves’ depths as a phylogenetic balance index. BMC Bioinformatics, 21(1), 2020. doi:
10.1186/s12859-020-3405-1. URL https://doi.org/10.1186/s12859-020-3405-1.

M. J. Sackin. "Good" and "Bad" Phenograms. Systematic Biology, 21(2):225-226, 1972. doi:
10.1093/sysbio/21.2.225.

K.-T. Shao and R. R. Sokal. Tree Balance. Systematic Zoology, 39(3):266, 1990. doi: 10.2307/2992186.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
varLeafDepI(tree)

wedEth Wedderburn Etherington numbers (from OEIS)

Description

Contains a vector of Wedderburn Etherington numbers for n = 1 to n = 2545.

Usage

data(wedEth)

Format

numerical vector

Source

OEIS Sequence A001190 available at https://oeis.org/A001190

Examples

data(wedEth)
wedEth[5]

40 weighL1dist

weighL1dist Calculation of weighted l1 distance index for rooted binary trees

Description

This function calculates the weighted l1 distance index Dl1(T) for a given rooted binary tree T .
Dl1(T) is defined as

Dl1(T) =

n∑
z=2

z · |fn(z)− pn(z)|

in which n denotes the number of leaves of T , fn(z) denotes the frequency of pending subtrees of
size z in T and pn(z) is the expected number of pending subtrees of size z under the Yule model,
i.e. pn(z) = 1

n−1 if z = n and otherwise n
n−1 ·

2
z·(z+1) .

For n = 1 the function returns Dl1(T) = 0.

For details on the weighted l1 distance index, see also Chapter 24 in "Tree balance indices: a
comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_24).

Usage

weighL1dist(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

weighL1distI returns the weighted l1 distance index of the given tree.

Author(s)

Sophie Kersting

References

M. G. Blum and O. Francois. On statistical tests of phylogenetic tree imbalance: The Sackin and
other indices revisited. Mathematical Biosciences, 195(2):141-153, 2005. doi: 10.1016/j.mbs.2005.03.003.

Examples

tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
weighL1dist(tree)

Index

∗ datasets
wedEth, 39

areaPerPairI, 3
auxE_l_X (getDescMatrix), 18
avgLeafDepI, 4
avgVertDep, 5

B1I, 6
B2I, 7

cherryI, 8
collessI, 9
collesslikeI, 11
colPlaLab, 12
colPlaLab_inv, 13
cPL_inv (getDescMatrix), 18

ewCollessI, 15

furnasI, 16
furnasI_inv, 17

get.subtreesize (getDescMatrix), 18
getAllAncestors (getDescMatrix), 18
getAncVec (getDescMatrix), 18
getDescMatrix, 18
getfurranks (getDescMatrix), 18
getlca (getDescMatrix), 18
getNodesOfDepth (getDescMatrix), 18
getsubtree (getDescMatrix), 18

IbasedI, 21
is_binary (getDescMatrix), 18
is_phylo (getDescMatrix), 18

maxDelW, 23
maxDepth, 24
maxDepthLeaf (getDescMatrix), 18
maxWidth, 25
mCherryI, 26

mWovermD, 27

rogersI, 28
rQuartetI, 29

sackinI, 30
sShapeI, 31
stairs1, 32
stairs2, 33
symBucketLexicoSort (getDescMatrix), 18
symNodesI, 34

totCophI, 35
totIntPathLen, 36
totPathLen, 37
tree_decomposition (getDescMatrix), 18
tree_merge (getDescMatrix), 18
treenumber (getDescMatrix), 18
treenumber_inv (getDescMatrix), 18

varLeafDepI, 38

we_eth (getDescMatrix), 18
wedEth, 39
weighL1dist, 40

41

	areaPerPairI
	avgLeafDepI
	avgVertDep
	B1I
	B2I
	cherryI
	collessI
	collesslikeI
	colPlaLab
	colPlaLab_inv
	ewCollessI
	furnasI
	furnasI_inv
	getDescMatrix
	IbasedI
	maxDelW
	maxDepth
	maxWidth
	mCherryI
	mWovermD
	rogersI
	rQuartetI
	sackinI
	sShapeI
	stairs1
	stairs2
	symNodesI
	totCophI
	totIntPathLen
	totPathLen
	varLeafDepI
	wedEth
	weighL1dist
	Index

