
tidydfidx
Yves Croissant

June 13, 2025

In some situations, series from a data frame have a natural two-dimensional (tabular) rep-
resentation because each observation can be uniquely characterized by a combination of two
indexes. Two major cases of these situations in applied econometrics are:

• panel data, where the same individuals are observed for several time periods,
• random utility models, where each observation describes the features of an alternative

among a set of alternatives for a given choice situation.

The idea of dfidx is to keep in the same object the data and the information about its structure.
A dfidx object is a data frame with an idx column, which is a data frame that contains the
series that define the indexes.

From version 0.1-2, dfidx doesn’t depend anymore on some of tidyverse packages. If you
want to use dfidx along with tidyverse in order to use tibbles instead of ordinary data frames
and dplyr’s verbs, you should use the new tidydfidx package instead of dfidx.

This vignette supersede the preceding vignette of the dfidx package by showing the advantages
of creating dfidx objects from a tibble and not from an ordinary data frame.1 It also introduces
a new vector interface to define the indexes.

1 Basic use of the dfidx function

The dfidx package is loaded using:

library(tidydfidx)

We also attach the dplyr package (Wickham et al. 2023), which exports functions from the
tibble (Müller and Wickham 2023) and the margrittr (Bache and Wickham 2022) packages

1The advantage of attaching the dplyr package (Wickham et al. 2023) is that the magrittr’s pipe (Bache
and Wickham 2022) and functions from the tibble package (Müller and Wickham 2023) are exported.

1

because we’ll use throughout this vignette tibbles and not ordinary data frames and we’ll show
how dplyr’s verbs can be used with dfidx objects thanks to appropriate methods.

library(dplyr)

To illustrate the features of dfidx, we’ll use the munnell data set (Munnell 1990) that is used
in Baltagi (2013)’s famous book and is part of the plm package as Produc. It contains several
economic series for American states from 1970 to 1986. We’ve added to the initial data set a
president series which indicates the name of the American president in power for the given
year.

data("munnell", package = "dfidx")
munnell <- munnell %>% as_tibble

The two indexes are state and year and both are nested in another variable: state in
region and year in president. A dfidx object is created with the dfidx function: the first
argument should be a data frame (or a tibble) and the second argument idx is used to indicate
the indexes. As, in the munnell data set, the first two columns contain the two indexes, the
idx argument is not mandatory and a dfidx can be obtained from the munnell tibble simply
by using:

munnell %>% dfidx

A tibble: 816 x 11
Index: 48 (state) x 17 (year)
Balanced: yes

idx region president publiccap highway water utilities
<idx> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Alabama:1970 East-South~ Nixon 15033. 7326. 1656. 6051.
2 Alabama:1971 East-South~ Nixon 15502. 7526. 1721. 6255.
3 Alabama:1972 East-South~ Nixon 15972. 7765. 1765. 6442.
i 813 more rows
i 4 more variables: privatecap <dbl>, gsp <int>, labor <dbl>,
unemp <dbl>

The resulting object is of class dfidx and is a tibble with an idx column, which is a tibble
containing the two indexes. Note that the two indexes are now longer standalone series in the
resulting tibble, because the default value of the drop.index argument is TRUE. The header of
the tibble indicates the names and the cardinal of the two indexes. It also indicated whether
the data set is balanced ie, in this panel data context, whether all the states are observed for
the same set of years (which is the case for the munnell data set). The idx column can be
retrieved using the idx function:

2

munnell %>% dfidx %>% idx

A tibble: 816 x 2
state year
<chr> <fct>

1 Alabama 1970
2 Alabama 1971
3 Alabama 1972
i 813 more rows

If the first two columns don’t contain the indexes, the idx argument should be set. If the
observations are ordered first by the first index and then by the second one and if the data set
is balanced, idx can be an integer, the number of distinct values of the first index:

munnell %>% dfidx(48)

A tibble: 816 x 13
Index: 48 (id1) x 17 (id2)
Balanced: yes

idx state year region president publiccap highway water
<idx> <chr> <int> <chr> <chr> <dbl> <dbl> <dbl>

1 1:1 Alabama 1970 East-South Ce~ Nixon 15033. 7326. 1656.
2 1:2 Alabama 1971 East-South Ce~ Nixon 15502. 7526. 1721.
3 1:3 Alabama 1972 East-South Ce~ Nixon 15972. 7765. 1765.
i 813 more rows
i 5 more variables: utilities <dbl>, privatecap <dbl>, gsp <int>,
labor <dbl>, unemp <dbl>

Then the two indexes are created with the default names id1 and id2. More relevant names
can be indicated using the idnames argument and the values of the second index can be
indicated, using the levels argument.

munnell %>% dfidx(48, idnames = c("state", "year"), levels = 1970:1986)

A tibble: 816 x 11
Index: 48 (state) x 17 (year)
Balanced: yes

idx region president publiccap highway water utilities
<idx> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

3

1 1:1970 East-South Centr~ Nixon 15033. 7326. 1656. 6051.
2 1:1971 East-South Centr~ Nixon 15502. 7526. 1721. 6255.
3 1:1972 East-South Centr~ Nixon 15972. 7765. 1765. 6442.
i 813 more rows
i 4 more variables: privatecap <dbl>, gsp <int>, labor <dbl>,
unemp <dbl>

The idx argument can also be a character of length one or two. In the first case, only the first
index is indicated:

munnell %>% dfidx("state", idnames = c(NA, "date"), levels = 1970:1986)

A tibble: 816 x 12
Index: 48 (state) x 17 (date)
Balanced: yes

idx year region president publiccap highway water utilities
<idx> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Alaba~:1970 1970 East-~ Nixon 15033. 7326. 1656. 6051.
2 Alaba~:1971 1971 East-~ Nixon 15502. 7526. 1721. 6255.
3 Alaba~:1972 1972 East-~ Nixon 15972. 7765. 1765. 6442.
i 813 more rows
i 4 more variables: privatecap <dbl>, gsp <int>, labor <dbl>,
unemp <dbl>

Note that we’ve only provided a name for the second index, the NA in the first position of the
idnames argument meaning that we want to keep the original name for the first index. Finally,
if the idx argument is a character of length 2, it should contain the name of the two indexes.

munnell %>% dfidx(c("state", "year"))

A tibble: 816 x 11
Index: 48 (state) x 17 (year)
Balanced: yes

idx region president publiccap highway water utilities
<idx> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Alabama:1970 East-South~ Nixon 15033. 7326. 1656. 6051.
2 Alabama:1971 East-South~ Nixon 15502. 7526. 1721. 6255.
3 Alabama:1972 East-South~ Nixon 15972. 7765. 1765. 6442.
i 813 more rows
i 4 more variables: privatecap <dbl>, gsp <int>, labor <dbl>,
unemp <dbl>

4

2 More advanced use of dfidx

2.1 Nesting structure

One or both of the indexes may be nested in another series. In this case, the idx argument
is still a character of length two, but the nesting series is indicated as the name of the corre-
sponding index:

mn <- munnell %>% dfidx(c(region = "state", "year"))
mn <- munnell %>% dfidx(c(region = "state", president = "year"))
mn

A tibble: 816 x 9
Index: 48 (state) x 17 (year)
Balanced: yes
Nesting: state (region), year (president)

idx publiccap highway water utilities privatecap gsp labor
<idx> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>

1 Illi~:1977 62201. 26836. 7670. 27696. 146286. 168627 4656.
2 Illi~:1978 63096. 27300. 8005. 27791. 150855. 173767 4789.
3 Illi~:1979 63643. 27247. 8491. 27904. 156752. 173817 4880
i 813 more rows
i 1 more variable: unemp <dbl>

The idx column is now a tibble containing the two indexes and the nesting variables.

mn %>% idx

A tibble: 816 x 4
state region year president
<chr> <chr> <fct> <fct>

1 Illinois East-North Central 1977 Carter
2 Illinois East-North Central 1978 Carter
3 Illinois East-North Central 1979 Carter
i 813 more rows

2.2 Customized the name and the position of the idx column

By default, the column that contains the indexes is called idx and is the first column of the
returned data frame. The position and the name of this column can be set using the position
and name arguments:

5

dfidx(munnell, idx = c(region = "state", president = "year"),
name = "index", position = 4)

A tibble: 816 x 9
Index: 48 (state) x 17 (year)
Balanced: yes
Nesting: state (region), year (president)

publiccap highway water index utilities privatecap gsp labor
<dbl> <dbl> <dbl> <idx> <dbl> <dbl> <int> <dbl>

1 62201. 26836. 7670. Illi~:1977 27696. 146286. 168627 4656.
2 63096. 27300. 8005. Illi~:1978 27791. 150855. 173767 4789.
3 63643. 27247. 8491. Illi~:1979 27904. 156752. 173817 4880
i 813 more rows
i 1 more variable: unemp <dbl>

2.3 Data frames in wide format

dfidx can deal with data frames in wide format, i.e., for which each series for a given value of
the second index is a column of the data frame. This is the case of the munnell_wide tibble
that contains two series of the original data set (gsp and unemp).

data("munnell_wide", package = "dfidx")
munnell_wide <- munnell_wide %>% as_tibble

Each line is now an American state and, apart the indexes, there are now 34 series with names
obtained by the concatenation of the name of the series and the year (for example gsp_1988).
In this case a supplementary argument called varying should be provided. It is a vector of
integers indicating the position of the columns that should be merged in the resulting long
formatted data frame. The stats::reshape function is then used and the sep argument can
be also provided to indicate the separating character in the names of the series (the default
value being ".").

munnell_wide %>% dfidx(varying = 3:36, sep = "_")

Better results can be obtained using the idx and idnames previously described:

munnell_wide %>% dfidx(idx = c(region = "state"), varying = 3:36,
sep = "_", idnames = c(NA, "year"))

6

3 Getting the indexes or their names

The name (and the position) of the idx column can be obtained as a named integer (the integer
being the position of the column and the name its name) using the idx_name function:

idx_name(mn)
idx
1

To get the name of one of the indexes, the second argument, n, is set either to 1 or 2 to get
the first or the second index, ignoring the nesting variables:

idx_name(mn, 2)
[1] "year"
idx_name(idx(mn), 2)
[1] "year"

Not that idx_name can be in this case applied to a dfidx or to a idx object. To get a nesting
variable, the third argument, called m, is set to 2:

idx_name(mn, 1, 1)
[1] "state"
idx_name(mn, 1, 2)
[1] "region"

To extract one or all the indexes, the idx function is used. This function has already been
encountered when one wants to extract the idx column of a dfidx object. The same n and m
arguments as for the idx_name function can be used in order to extract a specific series. For
example, to extract the region index, which nests the state index:

id_index1 <- idx(mn, n = 1, m = 2)
id_index2 <- idx(idx(mn), n = 1, m = 2)
head(id_index1)
[1] "East-North Central" "East-North Central" "East-North Central"
[4] "East-North Central" "East-North Central" "East-North Central"
identical(id_index1, id_index2)
[1] TRUE

7

4 Data frames subsetting

Subsets of data frames are obtained using the [and the [[operators. The former returns
most of the time a data frame as the second one always returns a series.

4.1 Commands that return a data frame

Consider first the use of [. If one argument is provided, it indicates the columns that should
be selected. The result is always a data frame, even if a single column is selected. If two
arguments are provided, the first one indicates the subset of lines and the second one the
subset of columns that should be returned. If only one column is selected, the result depends
on the value of the drop argument. If TRUE, a series is returned and if FALSE, a one series
data frame is returned. An important difference between tibbles and ordinary data frames is
that the default value of drop is FALSE for the former and TRUE for the later. Therefore, with
tibbles, the use of [will always by default return a data frame.

A specific dfidx method is provided for one reason: the column that contains the indexes
should be “sticky” (we borrow this idea from the sf package2), which means that it should be
always returned while using the extractor operator, even if it is not explicitly selected.

mn[mn$unemp > 10,]

A tibble: 46 x 9
Index: 19 (state) x 8 (year)
Balanced: no
Nesting: state (region), year (president)

idx publiccap highway water utilities privatecap gsp labor
<idx> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>

1 Illi~1982 65064. 27568. 10218 27278. 154806. 159778 4593.
2 Illi~1983 64752. 27483 10436. 26833. 157096. 160856 4531.
3 Indi~1982 25109. 10619. 3297. 11193. 82361. 64042 2028
i 43 more rows
i 1 more variable: unemp <dbl>

mn[mn$unemp > 10, c("highway", "utilities")]

A tibble: 46 x 3
Index: 19 (state) x 8 (year)

2Pebesma and Bivand (2023) and Pebesma (2018).

8

Balanced: no
Nesting: state (region), year (president)

highway utilities idx
<dbl> <dbl> <idx>

1 27568. 27278. Illinois:1982
2 27483 26833. Illinois:1983
3 10619. 11193. Indiana:1982
i 43 more rows

mn[mn$unemp > 10, "highway"]

A tibble: 46 x 2
Index: 19 (state) x 8 (year)
Balanced: no
Nesting: state (region), year (president)

highway idx
<dbl> <idx>

1 27568. Illinois:1982
2 27483 Illinois:1983
3 10619. Indiana:1982
i 43 more rows

All the previous commands extract the observations where the unemployment rate is greater
than 10% and, in the first case all the series, in the second case two of them and in the third
case only one series.

4.2 Commands that return a series

A series can be extracted using any of the following commands:

mn1 <- mn[, "highway", drop = TRUE]
mn2 <- mn[["highway"]]
mn3 <- mn$highway
c(identical(mn1, mn2), identical(mn1, mn3))
[1] TRUE TRUE

The result is a xseries which inherits the idx column from the data frame it has been
extracted from as an attribute :

mn1 %>% print(n = 3)

9

Index:
48 (state) x 17 (year)

[1] 26835.52 27300.22 27247.22

class(mn1)

[1] "xseries" "numeric"

idx(mn1) %>% print(n = 3)

A tibble: 816 x 4
state region year president
<chr> <chr> <fct> <fct>

1 Illinois East-North Central 1977 Carter
2 Illinois East-North Central 1978 Carter
3 Illinois East-North Central 1979 Carter
i 813 more rows

Note that, except when dfidx hasn’t been used with drop.index = FALSE, a series which
defines the indexes is dropped from the data frame (but is one of the column of the idx
column of the data frame). It can be therefore retrieved using:

mnidxpresident %>% head

[1] Carter Carter Carter Carter Ford Ford
Levels: Carter Ford Nixon Reagan

or

idx(mn)$president %>% head

[1] Carter Carter Carter Carter Ford Ford
Levels: Carter Ford Nixon Reagan

or more simply by applying the $ operator as if the series were a stand-alone series in the data
frame :

10

mn$president %>% print(n = 3)

Index:
48 (state) x 17 (year)

[1] Carter Carter Carter
Levels: Carter Ford Nixon Reagan

In this last case, the resulting series is a xseries, ie it inherits the index data frame as an
attribute.

4.3 User defined class for extracted series

While creating the dfidx, a pkg argument can be indicated, so that the resulting dfidx object
and its series are respectively of class c("dfidx_pkg", "dfidx") and c("xseries_pkg",
"xseries") which enables the definition of special methods for dfidx and xseries objects.
For example, consider the hypothetical pnl package for panel data:

mn <- dfidx(munnell, idx = c(region = "state", president = "year"),
pkg = "pnl")

mn1 <- mn$gsp
class(mn)
[1] "dfidx_pnl" "tbl_dfidx" "dfidx" "tbl_df" "tbl"
[6] "data.frame"
class(mn1)
[1] "xseries_pnl" "xseries" "integer"

For example, we want to define a lag method for xseries_pnl objects. While lagging there
should be a NA not only on the first position of the resulting vector like for time-series, but
each time we encounter a new individual. A minimal lag method could therefore be written
as:

lag.xseries_pnl <- function(x, ...){
.idx <- idx(x)
class <- class(x)
x <- unclass(x)
id <- .idx[[1]]
lgt <- length(id)
lagid <- c("", id[- lgt])
sameid <- lagid == id

11

x <- c(NA, x[- lgt])
x[! sameid] <- NA
structure(x, class = class, idx = .idx)

}
lmn1 <- stats::lag(mn1)
lmn1 %>% print(n = 3)

Index:
48 (state) x 17 (year)

[1] NA 168627 173767

class(lmn1)

[1] "xseries_pnl" "xseries" "integer"

rbind(mn1, lmn1)[, 1:20]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
mn1 168627 173767 173817 165722 157366 163112 145792 148503 154413
lmn1 NA 168627 173767 173817 165722 157366 163112 145792 148503

[,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18]
mn1 163125 161725 166029 159778 160856 173602 178493 183849 68832
lmn1 154413 163125 161725 166029 159778 160856 173602 178493 NA

[,19] [,20]
mn1 71717 72047
lmn1 68832 71717

Note the use of stats::lag instead of lag which ensures that the stats::lag function is
used, even if the dplyr (or tidyverse) package is attached.

5 tidyverse

5.1 dplyr

dfidx supports some of the verbs of dplyr, namely, for the current version:

12

• select to select columns,
• filter to select some rows using logical conditions,
• arrange to sort the lines according to one or several variables,
• mutate and transmute for creating new series,
• slice to select some rows using their position.

dplyr’s verbs don’t work with dfidx objects for two main reasons:

• the first one is that with most of the verbs (select is an exception), the returned object
is a data.frame (or a tibble) and not a dfidx,

• the second one is that the index column should be “sticky”, which means that it should
be always returned, even while selecting a subset of columns which doesn’t include the
index column or while using transmute.

Therefore, specific methods are provided for dplyr’s verb. The general strategy consists on:

1. first save the original attributes of the argument (a dfidx object),
2. coerce to a data frame or a tibble using the as.data.frame method,
3. use dplyr’s verb,
4. add the column containing the index if necessary (i.e., while using transmute or while

selecting a subset of columns which doesn’t contain the index column),
5. change some of the attributes if necessary,
6. attach the attributes to the data frame and returns the result.

The following code illustrates the use of dplyr’s verbs applied to dfidx objects.

select(mn, highway, utilities)

A tibble: 816 x 3
Index: 48 (state) x 17 (year)
Balanced: yes
Nesting: state (region), year (president)

highway utilities idx
<dbl> <dbl> <idx>

1 26836. 27696. Illinois:1977
2 27300. 27791. Illinois:1978
3 27247. 27904. Illinois:1979
i 813 more rows

arrange(mn, desc(unemp))

13

A tibble: 816 x 9
Index: 48 (state) x 17 (year)
Balanced: yes
Nesting: state (region), year (president)

idx publiccap highway water utilities privatecap gsp labor
<idx> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>

1 West~1983 11079. 7551. 756. 2772. 35933. 20822 582.
2 Mich~1982 51956. 19881. 10759. 21316. 115911. 108627 3193.
3 West~1984 11073. 7562. 809. 2702. 36068. 21615 597.
i 813 more rows
i 1 more variable: unemp <dbl>

mutate(mn, lgsp = log(gsp), lgsp2 = lgsp ^ 2)

A tibble: 816 x 11
Index: 48 (state) x 17 (year)
Balanced: yes
Nesting: state (region), year (president)

idx publiccap highway water utilities privatecap gsp labor
<idx> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>

1 Illi~:1977 62201. 26836. 7670. 27696. 146286. 168627 4656.
2 Illi~:1978 63096. 27300. 8005. 27791. 150855. 173767 4789.
3 Illi~:1979 63643. 27247. 8491. 27904. 156752. 173817 4880
i 813 more rows
i 3 more variables: unemp <dbl>, lgsp <dbl>, lgsp2 <dbl>

transmute(mn, lgsp = log(gsp), lgsp2 = lgsp ^ 2)

A tibble: 816 x 3
Index: 48 (state) x 17 (year)
Balanced: yes
Nesting: state (region), year (president)

lgsp lgsp2 idx
<dbl> <dbl> <idx>

1 12.0 145. Illinois:1977
2 12.1 146. Illinois:1978
3 12.1 146. Illinois:1979
i 813 more rows

14

filter(mn, unemp > 10, gsp > 150000)

A tibble: 2 x 9
Index: 1 (state) x 2 (year)
Balanced: yes
Nesting: state (region), year (president)

idx publiccap highway water utilities privatecap gsp labor
<idx> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>

1 Illi~1982 65064. 27568. 10218 27278. 154806. 159778 4593.
2 Illi~1983 64752. 27483 10436. 26833. 157096. 160856 4531.
i 1 more variable: unemp <dbl>

slice(mn, 1:3)

A tibble: 3 x 9
Index: 1 (state) x 3 (year)
Balanced: yes
Nesting: state (region), year (president)

idx publiccap highway water utilities privatecap gsp labor
<idx> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>

1 Illi~:1977 62201. 26836. 7670. 27696. 146286. 168627 4656.
2 Illi~:1978 63096. 27300. 8005. 27791. 150855. 173767 4789.
3 Illi~:1979 63643. 27247. 8491. 27904. 156752. 173817 4880
i 1 more variable: unemp <dbl>

mutate(mn, gsp = ifelse(gsp < 170000, 0, gsp))

A tibble: 816 x 9
Index: 48 (state) x 17 (year)
Balanced: yes
Nesting: state (region), year (president)

idx publiccap highway water utilities privatecap gsp labor
<idx> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Illi~:1977 62201. 26836. 7670. 27696. 146286. 0 4656.
2 Illi~:1978 63096. 27300. 8005. 27791. 150855. 173767 4789.
3 Illi~:1979 63643. 27247. 8491. 27904. 156752. 173817 4880
i 813 more rows
i 1 more variable: unemp <dbl>

15

To extract a series, the pull function can be used:

mn %>% pull(utilities)

Index:
48 (state) x 17 (year)

[1] 27695.71 27791.28 27904.24 27718.08 26728.17 27256.29 22252.68
[8] 23384.86 24261.85 25032.14

6 Model building

The two main steps in R in order to estimate a model are to use the model.frame function
to construct a data frame, using a formula and a data frame and then to extract from it the
matrix of covariates using the model.matrix function.

6.1 Model frame

The default method of model.frame has as first two arguments formula and data. It returns
a data frame with a terms attribute. Some other methods exist in the stats package, for
example for lm and glm object with a first and main argument called formula. This is quite
unusual and misleading as for most of the generic functions in R, the first argument is called
either x or object.

Another noticeable method for model.frame is provided by the Formula package and, in this
case, the first argument is a Formula object, which is an extended formula which can contain
several parts on the left and/or on the right hand side of the formula.

We provide a model.frame method for dfidx objects, mainly because the idx column should
be returned in the resulting data frame. This leads to an unusual order of the arguments, the
data frame first and then the formula. The method then first extract (and subset if necessary
the idx column), call the formula/Formula method and then add to the resulting data frame
the idx column. The resulting data frame is a dfidx object.

mf_mn <- mn %>% model.frame(gsp ~ utilities + highway | unemp | labor,
subset = unemp > 10)

mf_mn

16

A tibble: 46 x 6
Index: 19 (state) x 8 (year)
Balanced: no
Nesting: state (region), year (president)

gsp utilities highway unemp labor idx
<int> <dbl> <dbl> <dbl> <dbl> <idx>

1 159778 27278. 27568. 11 4593. Illinois:1982
2 160856 26833. 27483 11 4531. Illinois:1983
3 64042 11193. 10619. 12 2028 Indiana:1982
i 43 more rows

formula(mf_mn)

gsp ~ utilities + highway + unemp + labor + (state + region +
year + president)

<environment: 0x5812a7363f60>

Note that the column that contains the indexes is at the end and not at the begining of the
returned data frame. This is because the stats::model.response function, which is used to
extract the response of a model and is not generic consider that the first column of the model
frame is the response.

6.2 Model matrix

model.matrix is a generic function and for the default method, the first two arguments are a
terms object and a data frame. In lm, the terms attribute is extracted from the model.frame
internally constructed using the model.frame function. This means that, at least in this
context, model.matrix doesn’t need a formula/term argument and a data.frame, but only a
data frame returned by the model frame method, i.e., a data frame with a terms attribute.

We use this idea for the model.matrix method for dfidx object; the only required argument
is a dfidx returned by the model.frame function. The formula is then extracted from the
dfidx and the Formula or default method is then called. The result is a matrix of class
dfidx_matrix, with a printing method that allows the use of the n argument:

mf_mn %>% model.matrix(rhs = 1) %>% print(n = 5)

[46 x 3]
(Intercept) utilities highway

1 1 27277.69 27568.50

17

2 1 26832.94 27483.00
3 1 11192.68 10618.71
4 1 11141.74 10558.11
5 1 21281.74 19996.38

mf_mn %>% model.matrix(rhs = 2:3) %>% print(n = 5)

[46 x 3]
(Intercept) unemp labor

1 1 11 4593.3
2 1 11 4530.6
3 1 12 2028.0
4 1 11 2029.5
5 1 12 3442.8

References
Bache, Stefan Milton, and Hadley Wickham. 2022. magrittr: A Forward-Pipe Operator for R.

https://CRAN.R-project.org/package=magrittr.
Baltagi, B. H. 2013. Econometric Analysis of Panel Data. 5th ed. John Wiley; Sons ltd.
Müller, Kirill, and Hadley Wickham. 2023. tibble: Simple Data Frames. https://CRAN.R-

project.org/package=tibble.
Munnell, A. 1990. “Why Has Productivity Growth Declined? Productivity and Public Invest-

ment.” New England Economic Review, 3–22.
Pebesma, Edzer. 2018. “Simple Features for R: Standardized Support for Spatial Vector Data.”

The R Journal 10 (1): 439–46. https://doi.org/10.32614/RJ-2018-009.
Pebesma, Edzer, and Roger Bivand. 2023. Spatial Data Science: With applications in R.

Chapman and Hall/CRC. https://doi.org/10.1201/9780429459016.
Wickham, Hadley, Romain François, Lionel Henry, Kirill Müller, and Davis Vaughan. 2023.

dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.

18

https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.1201/9780429459016
https://CRAN.R-project.org/package=dplyr

	Basic use of the dfidx function
	More advanced use of dfidx
	Nesting structure
	Customized the name and the position of the idx column
	Data frames in wide format

	Getting the indexes or their names
	Data frames subsetting
	Commands that return a data frame
	Commands that return a series
	User defined class for extracted series

	tidyverse
	dplyr

	Model building
	Model frame
	Model matrix

	References

