Package 'tailplots'

April 18, 2025

Title Estimators and Plots for Gamma and Pareto Tail Detection

Version 0.1.0

Author Bernhard Klar [aut, cre], Lucas Iglesias [aut]

Maintainer Bernhard Klar <Bernhard.Klar@kit.edu>

Description Estimators for two functionals used to detect Gamma or Pareto distribu-

tions, as well as distributions exhibiting similar tail behavior, as introduced by Iwashita and Klar (2023) <doi:10.1111/stan.12316> and Klar (2024) <doi:10.1080/00031305.2024.2413081>. One of these functionals, g, originally proposed by Asmussen and Lehtomaa (2017) <doi:10.3390/risks5010010>, distinguishes between logconvex and log-concave tail behavior. The package also includes methods for visualizing these estimators and their associated confidence intervals across various threshold values.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports resample

Suggests actuar

NeedsCompilation no

Repository CRAN

Date/Publication 2025-04-18 13:40:02 UTC

Contents

gamma_tail		•						•	•		•		•	•			•			•		2
gamma_tailplot																						4
pareto_tail																						5
pareto_tailplot .																						7
																						9

Index

gamma_tail

Description

This function computes the estimate of g and the associated confidence interval for g as well as alpha, the corresponding shape parameter under the assumption of a gamma model, according to Iwashita and Klar (2024). Three methods are implemented to compute the confidence intervals: a method based on the unbiased variance estimators of the underlying U-statistics, and two resampling methods (jackknife and bootstrap).

Usage

```
gamma_tail(
    x,
    d,
    confint = FALSE,
    method = c("unbiased", "bootstrap", "jackknife"),
    R = 1000,
    conf.level = 0.95,
    alpha.max = 100
)
```

Arguments

х	a vector containing the sample data.
d	the threshold for the computation of g.
confint	a boolean value indicating whether a confidence interval should be computed.
method	the method used for computing the confidence intervals (options include unbi- ased variance estimator, jackknife, and bootstrap).
R	the number of the bootstrap replicates.
conf.level	the confidence level for the interval.
alpha.max	the upper limit of the interval to be searched for the root in an internal routine (the default value of 100 should be increased in case of error).

Details

The function g introduced by Asmussen and Lehtomaa (2017) is used to distinguish between logconcave and log-convex tail behavior. It is defined as:

$$g(d) = E\left[\frac{|X_1 - X_2|}{|X_1 + X_2|} \middle| X_1 + X_2 > d\right]$$

where X_1, X_2 are independent and identically distributed (i.i.d.) positive random variables. For gamma distributions, g takes a constant value, making it a useful tool for detecting gamma-tailed distributions.

gamma_tail

This function estimates g(d) using U-statistics. The estimator $\hat{g}(d)$ is given by:

$$\hat{g}(d) = \frac{U_n^{(1)}(d)}{U_n^{(2)}(d)}, \quad d > 0,$$

where

$$U_n^{(1)}(d) = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} \frac{|X_i - X_j|}{X_i + X_j} \mathbb{1}(X_i + X_j > d),$$
$$U_n^{(2)}(d) = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} \mathbb{1}(X_i + X_j > d).$$

Confidence intervals for g(d), based on the following variance estimation methods, are also provided:

- Unbiased Variance Estimator
- Bootstrap Resampling
- Jackknife Resampling

The $(1 - \gamma)$ confidence interval for $\hat{g}_n(d)$ is given by:

$$\left[\max\!\left\{\hat{g}_n(d) \ - \ z_{1-\gamma/2} \, \frac{\hat{\sigma}_d}{\sqrt{n \, U_n^{(2)}(d)}}, \ 0\right\}, \ \min\!\left\{\hat{g}_n(d) \ + \ z_{1-\gamma/2} \, \frac{\hat{\sigma}_d}{\sqrt{n \, U_n^{(2)}(d)}}, \ 1\right\}\right].$$

Here, $z_{1-\gamma/2} = \Phi^{-1}(1-\frac{\gamma}{2})$ is the appropriate quantile of the standard normal distribution and $\hat{\sigma}_d$ is an estimator of the standard deviation based on one of the methods above.

Value

A matrix containing:

threshold	The value of the threshold d.
g.estimate	Estimate of g.
g.ci1	The lower bound of the confidence interval for g (if $confint = TRUE$).
g.ci2	The upper bound of the confidence interval for g (if $confint = TRUE$).
alpha	Estimate of the shape parameter under a gamma model.
alpha.ci1	The lower bound of the confidence interval for alpha (if confint = TRUE).
alpha.ci2	The upper bound of the confidence interval for alpha (if confint = TRUE).

References

Iwashita, T. & Klar, B. (2024). A gamma tail statistic and its asymptotics. Statistica Neerlandica 78:2, 264-280. doi:10.1111/stan.12316

Asmussen, S. & Lehtomaa, J. (2017). Distinguishing Log-Concavity from Heavy Tails. *Risks* 2017, *5*, *10*. doi:10.3390/risks5010010

Examples

```
x <- rgamma(100, shape = 2, scale = 1)
gamma_tail(x, d = 2, confint = FALSE, method = "unbiased", R = 1000)</pre>
```

gamma_tailplot Plot the estimated g and the corresponding confidence intervals

Description

This function produces a tail plot for the estimate \hat{g} over a range of thresholds for a given sample, including confidence intervals computed by one of three methods (unbiased, bootstrap or jackknife). The function also allows a choice between original and log scale.

Usage

```
gamma_tailplot(
    x,
    method = c("unbiased", "bootstrap", "jackknife"),
    R = 1000,
    conf.level = 0.95,
    ci.points = 101,
    xscale = "o"
)
```

Arguments

х	a vector containing the sample data.
method	the method used for computing the confidence intervals (options include unbi- ased variance estimator, jackknife, and bootstrap).
R	the number of the bootstrap replicates.
conf.level	the confidence level for the interval.
ci.points	the number of thresholds used in the calculation of the confidence intervals.
xscale	the scale of the x-axis (options include "o" = original, "l" = log scale, "b" = both).

Details

For more details about the estimator \hat{g} and the computation of the confidence intervals see gamma_tail.

Value

A plot showing the estimated g(d) versus threshold d, optionally on a logarithmic x-axis and including confidence intervals.

4

pareto_tail

References

Iwashita, T. & Klar, B. (2024). A gamma tail statistic and its asymptotics. Statistica Neerlandica 78:2, 264-280. doi:10.1111/stan.12316

Examples

```
x <- rgamma(2e2, 0.5, 0.2)
gamma_tailplot(x, method="unbiased", xscale="o")</pre>
```

pareto_tail

Description

This function computes the estimate of t and the associated confidence interval for t as well as alpha, the corresponding shape parameter under the assumption of a Pareto model according to Klar (2024). Three methods are implemented to compute the confidence intervals: a method based on the unbiased variance estimators of the underlying U-statistics and two resampling methods (jackknife and bootstrap).

Usage

```
pareto_tail(
    x,
    u,
    confint = FALSE,
    method = c("unbiased", "bootstrap", "jackknife"),
    R = 1000,
    conf.level = 0.95,
    alpha.max = 100
)
```

Arguments

Х	a vector containing the sample data.
u	the threshold for the computation of t.
confint	a boolean value indicating whether the confidence interval should be computed.
method	the method used for computing the confidence intervals (options include unbi- ased variance estimator, jackknife, and bootstrap).
R	the number of the bootstrap replicates.
conf.level	the confidence level for the interval.
alpha.max	the upper limit of the interval to be searched for the root in an internal routine (the default value of 100 should be increased in case of error).

Estimate of tail functional t and confidence intervals for t and alpha

-

Details

In Klar (2024) the function

$$t_X(u) = \mathbb{E}\left[\frac{|X_1 - X_2|}{X_1 + X_2} \mid \min\{X_1, X_2\} \ge u\right]$$

is proposed as a tool for detecting Pareto-type tails, where X_1, X_2, X are *i.i.d.* random variables from an absolutely continuous distribution supported on $[x_m, \infty)$. Theorem 1 in Klar (2024) shows that $t_X(u)$ is constant in u if and only if X has a Pareto distribution.

The estimator $\hat{t}_n(X_{(k)})$ can be computed recursively. For $k = 2, \ldots, n-1$,

$$\hat{t}_n(X_{(k)}) = \frac{n-k+2}{n-k} \hat{t}_n(X_{(k-1)}) - \frac{1}{\binom{n-k+1}{2}} \sum_{j=k}^n \frac{X_{(j)} - X_{(k-1)}}{X_{(j)} + X_{(k-1)}},$$

which can be evaluated efficiently starting from $\hat{t}_n(X_{(n-1)}) = (X_{(n)} - X_{(n-1)})/(X_{(n)} + X_{(n-1)})$, where $X_{(k)}$ denotes the k-th order statistic.

Confidence intervals for t(u) based on the following methods for variance estimation are also provided:

- Unbiased variance estimator
- Bootstrap resampling
- Jackknife resampling

A two-sided $(1 - \gamma)$ confidence interval for the estimator $\hat{t}_n(u)$ is :

$$\left[\max \left\{ \hat{t}_n(u) - z_{1-\frac{\gamma}{2}} \frac{\hat{\sigma}_u}{\sqrt{n U_n^{(2)}(u)}}, 0 \right\}, \min \left\{ \hat{t}_n(u) + z_{1-\frac{\gamma}{2}} \frac{\hat{\sigma}_u}{\sqrt{n U_n^{(2)}(u)}}, 1 \right\} \right],$$

where $z_{1-\frac{\gamma}{2}} = \Phi^{-1}(1-\frac{\gamma}{2})$ is the appropriate quantile of the standard normal distribution, $\hat{\sigma}_u$ is an estimator of the standard deviation of $c \hat{t}_n(u)$, for a constant c specified in section 4.1. of Klar (2024), and $U_n^{(2)}(u)$ is a U-statistic given by

$$U_n^{(2)}(u) = \frac{2}{n(n-1)} \sum_{i=1}^n (n-i) \mathbb{1}\{X_{(i)} \ge u\}.$$

Value

A matrix containing:

threshold	The value of the threshold u.
t.estimate	Estimate of the tail functional t.
t.ci1	The lower bound of the confidence interval for t (if $confint = TRUE$).
t.ci2	The upper bound of the confidence interval for t (if confint = TRUE).
alpha	Estimate of the shape parameter under a Pareto model.
alpha.ci1	The lower bound of the confidence interval for alpha (if confint = TRUE).
alpha.ci2	The upper bound of the confidence interval for alpha (if $confint = TRUE$).

pareto_tailplot

References

Klar, B. (2024). A Pareto tail plot without moment restrictions. *The American Statistician*. doi:10.1080/00031305.2024.2413081

Examples

```
x <- actuar::rpareto1(1e3, shape=1, min=1)
pareto_tail(x, round( quantile(x, c(0.1, 0.5, 0.75, 0.9, 0.95, 0.99)) ), confint = FALSE)</pre>
```

pareto_tailplot Plot the estimated t and the corresponding confidence intervals

Description

This function produces a tail plot for the estimate \hat{t} over a range of thresholds for a given sample, including confidence intervals computed by one of three methods (unbiased, bootstrap or jackknife). The function also allows a choice between original and log scale.

Usage

```
pareto_tailplot(
    x,
    method = c("unbiased", "bootstrap", "jackknife"),
    R = 1000,
    conf.level = 0.95,
    ci.points = 101,
    xscale = "b"
)
```

Arguments

х	a vector containing the sample data.
method	the method used for computing the confidence intervals (options include unbi- ased variance estimator, jackknife, and bootstrap).
R	the number of the bootstrap replicates.
conf.level	the confidence level for the interval.
ci.points	the number of thresholds used in the calculation of the confidence intervals.
xscale	the scale of the x-axis (options include "o" = original, "l" = log scale, "b" = both).

Details

For more details about the estimator \hat{t} and the computation of the confidence intervals see pareto_tail.

Value

A plot showing the estimated t(u) versus threshold u, optionally on a logarithmic x-axis and including confidence intervals. Note that on the right side of the plot, one can observe the corresponding alpha values, which indicate the shape parameter of the Pareto distribution associated with the estimated t-values.

References

Klar, B. (2024). A Pareto tail plot without moment restrictions. *The American Statistician*. doi:10.1080/00031305.2024.2413081

Examples

```
x <- actuar::rpareto1(1e3, shape=1, min=1)
pareto_tailplot(x, method="unbiased", xscale="o")</pre>
```

Index

gamma_tail, 2, 4
gamma_tailplot, 4

pareto_tail, 5, 7
pareto_tailplot, 7