
Package ‘streamsampler’
September 30, 2025

Title Characterize and Subsample Stream Data

Version 0.1.0

Description Characterize daily stream discharge and water quality data
and subsample water quality data. Provide dates, discharge, and water
quality measurements and 'streamsampler' can find gaps, get summary
statistics, and subsample according to common stream sampling protocols.
Stream sampling protocols are described in Lee et al. (2016) <doi:10.1016/j.jhydrol.2016.08.059>
and Lee et al. (2019) <doi:10.3133/sir20195084>.

License CC0

URL https://github.com/Kyle-Hurley/streamsampler

BugReports https://github.com/Kyle-Hurley/streamsampler/issues

Encoding UTF-8

RoxygenNote 7.3.3

Suggests dataRetrieval (>= 2.7.16), knitr, rmarkdown, testthat (>=
3.0.0)

Config/testthat/edition 3

Depends R (>= 4.1)

LazyData true

Imports slider (>= 0.3.1), stats

VignetteBuilder knitr

Copyright This software is in the public domain because it contains
materials that originally came from the United States
Geological Survey, an agency of the United States Department of
Interior. For more information, see the official USGS copyright
policy at
https://www.usgs.gov/information-policies-and-instructions/copyrights-and-credits

NeedsCompilation no

Author Kyle Hurley [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0002-6469-3769>),

Jeff Chanat [aut] (ORCID: <https://orcid.org/0000-0002-3629-7307>)

1

https://doi.org/10.1016/j.jhydrol.2016.08.059
https://doi.org/10.3133/sir20195084
https://github.com/Kyle-Hurley/streamsampler
https://github.com/Kyle-Hurley/streamsampler/issues
https://orcid.org/0009-0002-6469-3769
https://orcid.org/0000-0002-3629-7307

2 eval_dates

Maintainer Kyle Hurley <kp.hurley87@gmail.com>

Repository CRAN

Date/Publication 2025-09-30 08:30:09 UTC

Contents
eval_dates . 2
eval_sign . 3
find_gaps . 4
local_x_index . 5
qw_stats . 7
rollmean_date . 8
streamdat . 10
subsample . 11
subsample_routine . 14
summarize_seasons . 16
thresholds . 18

Index 21

eval_dates Evaluate completeness of dates

Description

Evaluate the completeness of a sequence of dates compared to a hypothetically complete record of
dates. eval_dates() will aggregate the dates by different time periods such as day, week, month,
quarter, or year. Intended to be used on a water quality record.

Usage

eval_dates(dates, rec_start, rec_end, by = "day")

Arguments

dates A vector of dates to be evaluated. Must be of class ’Date’.

rec_start The start date of the recording period. Must be of class ’Date’.

rec_end The end date of the recording period. Must be of class ’Date’.

by A character string specifying the time period for aggregation. One of "day",
"week", "month", "quarter", or "year". Default is "day".

eval_sign 3

Value

A data.frame with one row and two columns:

Name Type Description
pct_complete numeric Percent coverage of the dates
n_miss integer Number of missing time periods

Examples

dates <- seq.Date(as.Date("2020-01-01"), as.Date("2020-12-31"), by = "day")
rec_start <- as.Date("2020-01-01")
rec_end <- as.Date("2020-12-31")

Evaluate by day
eval_dates(dates, rec_start, rec_end, by = "day")

Evaluate by week
eval_dates(dates, rec_start, rec_end, by = "week")

Evaluate by month
eval_dates(dates, rec_start, rec_end, by = "month")

Evaluate by quarter
eval_dates(dates, rec_start, rec_end, by = "quarter")

Evaluate by year
eval_dates(dates, rec_start, rec_end, by = "year")

Example with missing dates
dates_with_na <- dates
dates_with_na[c(10, 20, 30)] <- NA
eval_dates(dates_with_na, rec_start, rec_end, by = "day")

eval_sign Evaluate the sign of data

Description

Evaluate a numeric vector for the proportions of positive (> 0), negative (<= 0), and NA values.
Intended to be used on a water quality record.

Usage

eval_sign(values)

Arguments

values A numeric vector to be evaluated.

4 find_gaps

Value

A data frame with one row and seven columns:

Name Type Description
n_pos integer number of non-negative values in the data
pos_pct numeric percentage of non-negative values in the data
n_neg integer number of negative values in the data
neg_pct numeric percentage of negative values in the data
n_na integer number of NA values in the data
na_pct numeric percentage of NA values in the data
tot_pct numeric sum of pos_pct, neg_pct, and na_pct

Examples

data <- c(-1, -2, 0, 1, 2, 3, -3, -4, 4)
eval_sign(data)

data_all_positive <- c(1, 2, 3, 4, 5)
eval_sign(data_all_positive)

data_all_negative <- c(-1, -2, -3, -4, -5)
eval_sign(data_all_negative)

data_mixed <- c(-1, 0, 1, 2, -2, -3, NA)
eval_sign(data_mixed)

find_gaps Identify gaps in a sequence of dates

Description

Identify gaps in a sequence of dates and return a data frame with the number of missing days, start
and end dates, and the starting location of the gap in the vector. Intended to be used on a (near)
daily water quality record.

Usage

find_gaps(dates)

Arguments

dates A vector of dates to be evaluated. Must be ’Date’ class.

local_x_index 5

Value

A data frame with the following columns:

Name Type Description
n_days integer The number of days in the gap
start date The start date of the gap
end date The end date of the gap
location integer The location index of the gap in the original dates vector

Examples

dates <- as.Date(c("2020-01-01", "2020-01-03", "2020-01-04", "2020-01-10", "2020-01-15"))
find_gaps(dates)

dates_no_gaps <- seq.Date(as.Date("2020-01-01"), as.Date("2020-01-05"), by = "day")
find_gaps(dates_no_gaps)

dates_with_na <- as.Date(c("2020-01-01", "2020-01-03", NA, "2020-01-10"))
find_gaps(dates_with_na)

local_x_index Find indexed local minima/maxima

Description

Identify local minima or maxima of a vector across a sliding date window. Intended to be used on
a (near) daily water quality record.

Usage

local_max_index(
dates,
values,
look_behind = 2,
look_ahead = 2,
look_units = "days"

)

local_min_index(
dates,
values,
look_behind = 2,
look_ahead = 2,
look_units = "days"

)

6 local_x_index

Arguments

dates A vector of dates of ’Date’ class. There are 2 restrictions:

• The vector must be in ascending order; duplicates are allowed
• The vector cannot have missing values (i.e., no NA)

values A vector of numeric values. The values must be in correspondence with dates,
meaning the ith element in values must correspond to the ith date in dates.

look_behind, look_ahead
The number of look_units before and after the center date to include in the
sliding window to determine local maxima or minima.

look_units One of "days", "weeks", or "months". The units to give look_ahead and look_behind.

Details

The size of the moving window is adjusted to be shorter at the ends of a record. For example, at the
start of a record only the first element of the record plus the values included in the look_ahead are
evaluated.

Any object that can be added or subtracted from the dates with + and - can be used for look_behind
and look_ahead. By default, these are both 2 days. This creates a 5-day sliding window where the
3rd day is the element evaluated.

If an element in values is NA, then FALSE is returned. If a group of elements within a window is all
NA, then FALSE is returned.

Value

A logical vector with the same length as dates and values.

Examples

Works as expected
date_vec <- seq.Date(

from = as.Date("2020-01-01"),
to = as.Date("2020-01-06"),
by = "day"

)
num_vec <- c(10, 11, 50, 9, 8, 100)

results <- local_max_index(
dates = date_vec,
values = num_vec

)
print(data.frame(

"date" = date_vec,
"value" = num_vec,
"local_max" = results

))

Different look_ahead/behind
date_vec <- seq(

qw_stats 7

from = as.Date("2020-01-01"),
to = as.Date("2020-02-01"),
by = "day"

)
set.seed(123)
num_vec <- sample(30:300, length(date_vec), replace = TRUE)

results <- local_max_index(
dates = date_vec,
values = num_vec,
look_behind = 1,
look_ahead = ,
look_units = "days"

)
print(data.frame(

"date" = date_vec,
"value" = num_vec,
"local_max" = results

))

qw_stats Calculate summary statistics

Description

Evaluate the completeness of a record compared to a hypothetical "ideal" record and simple statis-
tics. Intended to be used on a (near) daily water quality record.

Usage

qw_stats(dates, values, rec_start, rec_end, by = "day")

Arguments

dates A vector of dates to be evaluated. Must be of class Date.

values A numeric vector to be evaluated. Must be of class numeric.

rec_start The start date of the recording period. Must be of class Date.

rec_end The end date of the recording period. Must be of class Date.

by The time interval to use for the evaluation. One of "day", "week", "month",
"quarter", or "year". Default is "day".

Value

A data frame with 1 row and 22 columns:

Name Type Description
rec_startDate Date Start date of ideal record

8 rollmean_date

rec_endDate Date End date of ideal record
n_miss_dates integer Number of missing time periods (as specified by by) within the recording period.
pct_complete_dates numeric Percentage of the time period (as specified by by) covered by the dates
value_startDate Date Date of the first values in the record
value_endDate Date Date of the last values in the record
n_value integer Number of non-NA values
n_pos integer Number of non-negative values in the data
pos_pct numeric Percentage of non-negative values in the data
n_neg integer Number of negative values in the data
neg_pct numeric Percentage of negative values in the data
n_na integer Number of NA values in the data
na_pct numeric Percentage of NA values in the data
tot_pct numeric sum of pos_pct, neg_pct, and na_pct
Min. numeric Minimum of values
Q1 numeric 25th percentile of values
Median numeric Median (50th percentile) of values
Mean numeric Mean of values
Q3 numeric 75th percentile of values
Max. numeric Maximum of values
std numeric Standard deviation of values
vari numeric Variance of values

Examples

data <- data.frame(
date_col = as.Date(c("2020-01-01", "2020-01-02", "2020-01-03", "2020-01-04", "2020-01-05")),
var_col = c(1.2, 2.3, 3.1, NA, 4.5)

)
rec_start <- as.Date("2020-01-01")
rec_end <- as.Date("2020-01-05")
qw_stats(data$date_col, data$var_col, rec_start, rec_end, by = "day")

data_no_missing <- data.frame(
date_col = as.Date(c("2020-01-01", "2020-01-02", "2020-01-03", "2020-01-04", "2020-01-05")),
var_col = c(1.2, 2.3, 3.1, 4.5, 5.6)

)
qw_stats(data_no_missing$date_col, data_no_missing$var_col, rec_start, rec_end, by = "day")

data_weekly <- data.frame(
date_col = as.Date(c("2020-01-01", "2020-01-08", "2020-01-15", "2020-01-22", "2020-01-29")),
var_col = c(1.2, 2.3, 3.1, 4.5, 5.6)

)
qw_stats(data_weekly$date_col, data_weekly$var_col, rec_start, rec_end, by = "week")

rollmean_date Rolling mean of values indexed by date

rollmean_date 9

Description

Calculate the rolling mean of a set of numbers indexed by date.

Usage

rollmean_date(
dates,
values,
look_behind = 2,
look_ahead = 0,
look_units = "days"

)

Arguments

dates A vector of dates of ’Date’ class.

values Numeric values. The values must be in correspondence with dates, meaning
the ith element in values must correspond to the ith date in dates.

look_behind, look_ahead
The number of look_units before and after the center date to include in the
sliding window.

look_units One of "days", "weeks", or "months". The units to give look_ahead and look_behind.

Details

The amount of time to include in the rolling mean is defined by look_behind and look_ahead. All
values within the look-behind, the index, and the look-ahead will be used to calculate the average.
If look_behind is 5 days and look_ahead is 0 days, then all values within the 5 days before the
current index (i.e., the 6th day) will be included - it is a 6-day moving average. If look_behind is
5 days and look_ahead is 5 days, then it is a 11-day moving average centered on the 6th day.

The mean is calculated without NA values. If one value in the window is NA, then the rolling mean
is that of all values within the window which are not NA.

Value

A numeric vector with length equal to dates and values.

Examples

date_vec <- seq.Date(
from = as.Date("2020-01-01"),
to = as.Date("2020-01-05"),
by = "day"

)
num_vec <- c(2, 3, 4, 20, 10)
results <- rollmean_date(

dates = date_vec,
values = num_vec,
look_behind = 2

10 streamdat

)
data.frame(

"date" = date_vec,
"values" = num_vec,
"roll_mean" = results

)

Missing data and 10-day moving window
date_vec <- seq.Date(

from = as.Date("2020-01-01"),
to = as.Date("2020-03-31"),
by = "day"

)
set.seed(123)
num_vec <- sample(1:30, length(date_vec), replace = TRUE)
set.seed(123)
r <- sample(1:length(date_vec), 20)
results <- rollmean_date(

dates = date_vec[-r],
values = num_vec[-r],
look_behind = 5,
look_ahead = 4
)

head(
data.frame(

"date" = date_vec[-r],
"values" = num_vec[-r],
"roll_mean" = results

),
10

)

streamdat Stream Discharge and Specific Conductivity

Description

Approximately 15 years of daily average discharge and specific conductivity of the Brandywine
Creek at Wilmington, DE - stream gage number 01481500.

Usage

streamdat

Format

A data frame with 5,844 rows and 3 columns:

date Date of measurement

subsample 11

q Discharge in cubic feet per second

sc Specific conductivity in microsiemens per centimeter at 25 degrees Celsius

Source

https://waterdata.usgs.gov/monitoring-location/01481500/#parameterCode=00060&period=
P7D&showMedian=false

subsample Convert a daily record to discrete

Description

Sample a daily or near-daily data set to one containing infrequent but periodic records based on a
random sampling protocol. Intended to be used on a (near) daily water quality record.

Usage

subsample(
dates,
values,
thresh_ref,
season_start = 10,
n_seasons = 4,
half_win = 2,
threshold = 0.8,
n_samples = 1,
freq = "month",
n_et_samples = 8,
season_weights = rep(1, n_seasons),
target = "none",
look_behind = 2,
look_ahead = 2,
look_units = "days",
seed = 123

)

Arguments

dates A vector of dates of ’Date’ class.

values Numeric values. The values must be in correspondence with dates, meaning
the ith element in values must correspond to the ith date in dates.

thresh_ref Numeric values to calculate a threshold. See ’Details’. The values must be
in correspondence with dates, meaning the ith element in thresh_ref must
correspond to the ith date in dates.

https://waterdata.usgs.gov/monitoring-location/01481500/#parameterCode=00060&period=P7D&showMedian=false
https://waterdata.usgs.gov/monitoring-location/01481500/#parameterCode=00060&period=P7D&showMedian=false

12 subsample

season_start The starting month of the first season, specified as an integer from 1 to 12.
Default is 10 (October).

n_seasons The number of seasons in a year. Must be a factor of 12. Default is 4.

half_win The half width of the window of years to group thresh_ref by. See ’Details’.

threshold The quantile of thresh_ref above which values is sampled n_et_samples
times per year.

n_samples Integer of the number of below-threshold samples to be selected from values at
a frequency defined by freq.

freq Character of the frequency at which below-threshold samples are selected. May
be "week", "month", "quarter", or "year". See ’Details’.

n_et_samples Integer of the number of yearly exceeds-threshold samples to be selected from
values. See ’Details’.

season_weights A vector of integers of the weights to assign to seasons for random sampling of
exceeds-threshold values. Based on the rank of the seasonal average thresh_ref
(from highest to lowest). Must have length equal to the number of seasons
(n_seasons). See ’Details’.

target One of "none" or "peaks". See ’Details’.
look_behind, look_ahead

When target is "peaks", the number of look_units before and after the center
date to include in the sliding window to determine local maxima.

look_units One of "days", "weeks", or "months". The units to give look_ahead and look_behind.

seed An integer which determines the state for the random number generator. Ensures
random sampling is reproducible.

Details

values are randomly selected based on a provided sampling protocol using dates as an index and
thresh_ref as a classifier. Elements in values equal to or less than their seasonal threshold are
randomly sampled according the protocol set by n_samples and freq. n_et_samples elements
in values greater than the threshold are randomly sampled for each year in values. This re-
sults in n_samples of below-threshold values for each unique freq and n_et_samples of exceeds-
threshold values for each unique year.

Elements in values and thresh_ref must correspond with their respective values in dates.

subsample() is psuedo-random across time in that values are selected randomly in rolling chunks
of time determined by freq. If, for example, freq is "week" and n_samples is 1, then the result
will be 1 randomly selected below-threshold, non-NA value for each week. However, the selected
values could be very close in time (e.g., Saturday and Sunday).

Thresholds are calculated based on groupings of seasonally adjusted years, accounting for seasons
split across years. For example, if n_seasons = 4 and season_start = 12, then season 1 includes
December of e.g. 2020, January 2021, and February 2021. The year is considered to begin in
December and is designated by the year in which it ends (i.e., the seasonally adjusted year); 2021 in
this example. If half_win is 2, the default, then a total of 5 years is used to calculate the threshold.
For example, when half_win is 2, the threshold for season 1 of 2021 is the quantile defined by
threshold of all season 1 values in 2019, 2020, 2021, 2022, and 2023.

subsample 13

The selection of exceeds-threshold values is always across an entire year with no guarantee of timing
between selected values. Setting threshold to values near 1 would result in a smaller sample pool
since there would conceivably be fewer values above 0.9 than 0.8 - thus increasing the likelihood of
selected exceeds-threshold values being "far" apart in time.

Both n_samples and n_et_samples are adjusted lower when the number of unique dates in the
defined freq is less than the number of unique dates in a complete freq. This adjustment is calcu-
lated by multiplying the number of unique dates in the given freq and the number of *_samples,
dividing the number of dates in the complete freq, and then rounding to the nearest whole number.
For example, when n_samples is 2 and freq is “week” but only 1 unique sample date exists for a
given week, then n_samples is adjusted to 1 ((1 * 2) / 7) –> 1).

season_weights influences the random sampling of exceeds-threshold values by weighting the
values according to the rank of the seasonal average of thresh_ref for the respective adjusted year.
For example, if n_seasons is 2 and season_weights is c(2, 1) then each season with the highest
seasonal average of thresh_ref values is given a weight of 2 and each season with the lowest
is given a weight of 1 - making the exceeds-threshold values occurring in the highest ranking
seasons more likely to be selected than if the weight was 1. See the details for the prob argument
in sample() for more information.

When target is "none", the random selection of exceeds-threshold values is influenced only by
season_weights. When "peaks", the weights are doubled for values corresponding to local max-
ima, exceeds-threshold thresh_ref values.

Value

A data.frame with the following columns:

Name Type Description
date Date Date
adj_year integer Adjusted year
season integer Season number ’1’:n_seasons
value numeric Input values
thresh_ref numeric Input thresh_ref values
threshold numeric Seasonal threshold quantile of thresh_ref
is_peak logical TRUE when thresh_ref value is local maximum. Only when target is "peaks". TRUE/FALSE
selection_type character Type of randomly selected value "not_selected" (a record not sampled), "below_threshold" (sampled record with value at or below threshold), or "exceeds_threshold" (sampled record with value above threshold)
weight integer Weight assigned to the value
ys_rank integer Unique year-season rank of the seasonal average thresh_ref

Examples

Randomly sample using defaults
df <- subsample(

dates = streamdat$date, values = streamdat$sc, thresh_ref = streamdat$q,
)
Plotting function
create_plot <- function(df, log_xfrm = "x", xlab, ylab) {

plot(
df$thresh_ref[df$selection_type == "not_selected"],

14 subsample_routine

df$value[df$selection_type == "not_selected"],
pch = 21, col = "gray",
xlab = xlab, ylab = ylab,
main = "Subsampled Daily Data",
log = log_xfrm

)
points(

df$thresh_ref[df$selection_type != "not_selected"],
df$value[df$selection_type != "not_selected"],
pch = 16, cex = 1.5,
col = c(

"below_threshold" = "#42047E",
"exceeds_threshold" = "#07A49E"

)[df$selection_type[df$selection_type != "not_selected"]]
)
legend(

"topright",
legend = c("Not Sampled", "Below Threshold", "Exceeds Threshold"),
col = c("gray", "#42047E", "#07A49E"),
pch = c(21, 16, 16),
bty = "n"

)
}
Plot
create_plot(df, "x", "Discharge (CFS)", "Specific Conductivity (uS/cm)")

df <- subsample(
dates = streamdat$date, values = streamdat$sc, thresh_ref = streamdat$q,
target = "peaks",
season_weights = c(2, 1, 1, 1) # default is four seasons

)
create_plot(df, "x", "Discharge (CFS)", "Specific Conductivity (uS/cm)")

df <- subsample(
dates = streamdat$date, values = streamdat$sc, thresh_ref = streamdat$sc,
target = "peaks",
n_samples = 1, freq = "week",
n_et_samples = 12,
half_win = 3

)
df <- merge(streamdat, df, by.x = c("date", "sc"), by.y = c("date", "value"))
df <- df[, !colnames(df) %in% c("thresh_ref")]
colnames(df)[c(2, 3)] <- c("value", "thresh_ref")
create_plot(df, "x", "Discharge (CFS)", "Specific Conductivity (uS/cm)")

subsample_routine Convert a daily record to periodic discrete

subsample_routine 15

Description

#’ Subsample a daily or near-daily data set to one containing infrequent but regularly recurring
records based on a specified frequency. Intended to be used on a (near) daily water quality record.

Usage

subsample_routine(dates, values, day = 15, freq = "month")

Arguments

dates A vector of dates of ’Date’ class.

values Numeric values. The values must be in correspondence with dates, meaning
the ith element in values must correspond to the ith date in dates.

day An integer specifying the day of the specified frequency. See ’Details’.

freq A character string indicating the frequency of selection. Must be one of "day",
"week", or "month". See ’Details’.

Value

A data.frame with the following columns:

Name Type Description
date Date Date
value numeric Input values
selection_type character Type of randomly selected value "not_selected" (an observation not selected), "routine" (selected record)

Examples

create_plot <- function(df, log_xfrm = "x", xlab, ylab, subtitle) {
plot(

df$q[df$selection_type == "not_selected"],
df$value[df$selection_type == "not_selected"],
pch = 21, col = "gray",
xlab = xlab, ylab = ylab,
main = paste0("Subsampled Daily Data\n", subtitle),
log = log_xfrm

)
points(

df$q[df$selection_type != "not_selected"],
df$value[df$selection_type != "not_selected"],
pch = 16, cex = 1.5,
col = c(

"routine" = "#42047E"
)[df$selection_type[df$selection_type != "not_selected"]]

)
legend(

"topright",
legend = c("Not Selected", "Routine"),
col = c("gray", "#42047E"),

16 summarize_seasons

pch = c(21, 16),
bty = "n"

)
}

15th of each month
sroutine <- subsample_routine(

dates = streamdat$date, values = streamdat$sc,
day = 15, freq = "month"

)
df <- merge(streamdat[, -3], sroutine)
create_plot(

df, "x", "Discharge (CFS)",
"Specific Conductivity (uS/cm)", "Subsampled on 15th of each month"

)

Every Wednesday
sroutine <- subsample_routine(

dates = streamdat$date, values = streamdat$sc,
day = 4, freq = "week"

)
df <- merge(streamdat[, -3], sroutine)
create_plot(

df, "x", "Discharge (CFS)",
"Specific Conductivity (uS/cm)", "Subsampled on every Wednesday"

)

Every 60th day
sroutine <- subsample_routine(

dates = streamdat$date, values = streamdat$sc,
day = 60, freq = "day"

)
df <- merge(streamdat[, -3], sroutine)
create_plot(

df, "x", "Discharge (CFS)",
"Specific Conductivity (uS/cm)", "Subsampled every 60th day"

)

summarize_seasons Seasonal and monthly value ranking

Description

Summarize data by calculating average values for each month and season, and the year-season rank.
Allows for flexible season definitions by specifying a season start month and the number of seasons.
Intended to be used on a (near) daily water quality record.

Usage

summarize_seasons(dates, values, season_start = 10, n_seasons = 4)

summarize_seasons 17

Arguments

dates A vector of dates of ’Date’ class.

values Numeric values. The values must be in correspondence with dates, meaning
the ith element in values must correspond to the ith date in dates.

season_start The starting month of the first season, specified as an integer from 1 to 12.
Default is 10 (October).

n_seasons The number of seasons in a year. Must be a factor of 12. Default is 4.

Details

The start of a season, season_start, may be any integer from 1 to 12, indicating the month which
is the start of the first season. For example season_start = 1 makes the first season start in January
while season_start = 10 makes the season start in October.

The seasonal average accounts for seasons split across years. For example, if n_seasons = 4 and
season_start = 12, then season 1 includes December of e.g. 2020, January 2021, and February
2021. The year is considered to begin in December and is designated by the year in which it ends
(i.e., the seasonally adjusted year). Thus, the seasonal average for season 1 of 2021 would be
calculated from December 2020 to February 2021.

Value

A list with two data frames:

Name Type Description
year numeric Year
month numeric Month
avg_value numeric Mean of the values for that year and month

monthly

Name Type Description
adj_year numeric Adjusted year based on season_start
season integer Season number; 1 being the first season of the year
avg_value numeric Mean of the values for that ’adj_year’ and ’season’
ys_rank numeric Rank of the ’avg_value’ for that ’adj_year’ and ’season’; 1 being the highest ’avg_value’

seasonal

Examples

Four seasons starting in October
date_vec <- seq.Date(

from = as.Date("2020-05-03"),
to = as.Date("2023-10-17"),
by = "day"

18 thresholds

)
set.seed(123)
num_vec <- sample(30:3000, length(date_vec), replace = TRUE)
Four seasons starting in October
results <- summarize_seasons(

dates = date_vec,
values = num_vec,
season_start = 10,
n_seasons = 4

)
print(head(results$monthly))
print(head(results$seasonal))
Three seasons starting in January
results <- summarize_seasons(

dates = date_vec,
values = num_vec,
season_start = 1,
n_seasons = 3

)
print(head(results$monthly))
print(head(results$seasonal))

thresholds Find thresholds for each season

Description

Calculate the threshold for each unique season in a window of years. Values exceeding these thresh-
olds would be considered "high" based on the specified quantile. Intended to be used on a (near)
daily water quality record.

Usage

thresholds(
dates,
values,
season_start = 10,
n_seasons = 4,
half_win = 2,
threshold = 0.8

)

Arguments

dates A vector of dates of ’Date’ class.

values Numeric values. The values must be in correspondence with dates, meaning
the ith element in values must correspond to the ith date in dates.

thresholds 19

season_start The starting month of the first season, specified as an integer from 1 to 12.
Default is 10 (October).

n_seasons The number of seasons in a year. Must be a factor of 12. Default is 4.

half_win The half width of the window of years to group thresh_ref by. See ’Details’.

threshold The quantile of thresh_ref above which values is sampled n_et_samples
times per year.

Details

Thresholds are calculated based on groupings of seasonally adjusted years. If half_win is 2, the
default, then a total of 5 years is used to calculate the threshold. Years are adjusted such that the
year starts on the first of the month of the first season, as determined by season_start, and end one
year later, and is designated by the calendar year in which it ends. For example, when half_win is
2, the threshold for season 1 of 2021 is the quantile defined by threshold of all season 1 values in
2019, 2020, 2021, 2022, and 2023.

Value

A data frame with three columns:

Name Type Description
season integer Season of the threshold
threshold numeric Seasonal threshold
center_year integer Middle year of the window

Examples

date_vec <- seq.Date(
from = as.Date("2020-05-03"),
to = as.Date("2023-10-17"),
by = "day"

)
set.seed(123)
q_vec <- stats::runif(length(date_vec), min = -50, max = 150)
df <- data.frame("date" = date_vec, "q" = q_vec)

results <- thresholds(
dates = date_vec,
values = q_vec

)
print(head(results))

Define seasons differently
results <- thresholds(

dates = date_vec,
values = q_vec,
season_start = 1,
n_seasons = 3,
half_win = 2,

20 thresholds

threshold = 0.9
)
print(head(results))

Index

∗ datasets
streamdat, 10

eval_dates, 2
eval_sign, 3

find_gaps, 4

local_max_index (local_x_index), 5
local_min_index (local_x_index), 5
local_x_index, 5

qw_stats, 7

rollmean_date, 8

sample(), 13
streamdat, 10
subsample, 11
subsample_routine, 14
summarize_seasons, 16

thresholds, 18

21

	eval_dates
	eval_sign
	find_gaps
	local_x_index
	qw_stats
	rollmean_date
	streamdat
	subsample
	subsample_routine
	summarize_seasons
	thresholds
	Index

