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Abstract

Stochastic volatility (SV) models are nonlinear state-space models that enjoy increas-
ing popularity for Ątting and predicting heteroskedastic time series. However, due to the
large number of latent quantities, their efficient estimation is non-trivial and software that
allows to easily Ąt SV models to data is rare. We aim to alleviate this issue by presenting
novel implementations of Ąve SV models delivered in two R packages. Several unique
features are included and documented. As opposed to previous versions, stochvol is now
capable of handling linear mean models, conditionally heavy tails, and the leverage effect
in combination with SV. Moreover, we newly introduce factorstochvol which caters for
multivariate SV. Both packages offer a user-friendly interface through the conventional
R generics and a range of tailor-made methods. Computational efficiency is achieved via
interfacing R to C++ and doing the heavy work in the latter. In the paper at hand, we
provide a detailed discussion on Bayesian SV estimation and showcase the use of the new
software through various examples.

Keywords: Bayesian inference, state-space model, heteroskedasticity, dynamic correlation, dy-
namic covariance, factor stochastic volatility, Markov chain Monte Carlo (MCMC), leverage
effect, asymmetric return distribution, heavy tails, Ąnancial time series.

Preface

This vignette corresponds to the article of the same name published in the Journal of Sta-
tistical Software (Hosszejni and Kastner 2021a). The version at hand might receive mi-
nor updates as time goes by. Further information about citing stochvol can be obtained
in R by installing the package, e.g., through install.packages("stochvol"), and calling
citation("stochvol").

1. Introduction

Time dependent variance is an indispensable ingredient of Ąnancial and economic time series
modeling. Already Markowitz (1952) concerns himself with methods that take into account
heteroskedasticity in a better way than a rolling window estimation. By 1982, two fundamen-
tally different approaches had been developed to cater to these needs. On the one hand, Engle
(1982) lays the groundwork for a family of time varying volatility models, most notably the
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generalized autoregressive conditional heteroskedasticity model (GARCH, Bollerslev 1986).
These models feature conditionally deterministic changes in the variance. Taylor (1982), on
the other hand, addresses heteroskedasticity in his seminal work with a non-linear latent state
space model, later coined the stochastic volatility (SV) model. There, the volatility process
evolves in a stochastic manner. Despite some empirical evidence in favor of SV models over
their corresponding GARCH counterparts (Jacquier, Polson, and Rossi 1994; Ghysels, Har-
vey, and Renault 1996; Kim, Shephard, and Chib 1998; Nakajima 2012), SV and its variants
enjoy little publicity among practitioners. As Bos (2012) underlines, one reason for this might
be the lack of standard software. In response, Kastner (2016) provides a Ąrst version of the
R (R Core Team 2021) package stochvol but fails to feature conditional non-Gaussianity,
asymmetry (the so-called leverage effect), and multivariate generalizations.

We address these shortcomings in the manuscript at hand. First, we extend stochvol (Hossze-
jni and Kastner 2021b) with several practically relevant univariate methods. Second, we
introduce the new companion package factorstochvol (Kastner and Hosszejni 2021) which
focuses on the multivariate case. The extended stochvol now provides the means for the
Bayesian estimation of vanilla SV, heavy-tailed SV, SV with leverage, and heavy-tailed SV
with leverage (Harvey and Shephard 1996; Omori, Chib, Shephard, and Nakajima 2007;
Nakajima and Omori 2012). Moreover, the package also handles these models naturally when
embedded into a linear model or an autoregressive (AR) context. The factorstochvol package
implements an efficient method for the Bayesian estimation of the factor SV model (Kastner,
Frühwirth-Schnatter, and Lopes 2017). Among other features, the package provides several
automatic factor identiĄcation schemes, hierarchical shrinkage priors (variations of the nor-
mal gamma prior, Griffin and Brown 2010), and an array of intuitive visualization methods
for the high-dimensional posteriors.

The remainder of this paper is structured as follows. We formally introduce the univariate
and the multivariate models in Sections 2 and 3, respectively, including a discussion about
prior distributions and a brief overview of the estimation methods. In Section 4, we unveil
the new samplers of the stochvol package through three example models. We describe the
factorstochvol package in Section 5, and then we conclude.

2. Univariate SV models

We begin by introducing the vanilla SV model with linear regressors, henceforth simply called
the SV model. This is a minor but important extension of the SV model without regressors.
We also settle the notation and establish a baseline model that we generalize and reuse
throughout the manuscript. Consequently, we proceed with three generalized models: the SV
model with StudentŠs t errors (SVt), the SV model with leverage (SVl), and their combination,
the SV model with StudentŠs t errors and leverage (SVtl). Finally, we close the section after
discussing prior distributions and Markov chain Monte Carlo (MCMC) sampling.

2.1. Model speciĄcations

The key feature of the SV model is its stochastic and time-varying speciĄcation of the variance
evolution. In particular, the log-variance is assumed to follow an AR(1) process. This feature
unites the following models.
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Vanilla SV with linear regressors

Let y = (y1, . . . , yn)⊤ denote a vector of observations. The SV model assumes the following
structure for y,

yt = xtβ + exp(ht/2)εt,

ht+1 = µ + φ(ht − µ) + σηt,

εt ∼ N (0, 1),

ηt ∼ N (0, 1),

(1)

where N (b, B) denotes the normal distribution with mean b ∈ R and variance B ∈ R
+,

and εt and ηt are independent. The log-variance process h = (h1, . . . , hn)⊤ is initialized
by h0 ∼ N (µ, σ2/(1 − φ2)). X = (x⊤

1 , . . . , x⊤
n )⊤ is an n × K matrix containing in its tth

row the vector of K regressors at time t. The K regression coefficients are collected in
β = (β1, . . . , βK)⊤. We refer to ϑ = (µ, φ, σ) as the SV parameters: µ is the level, φ is the
persistence, and σ (also called volvol) is the standard deviation of the log-variance.

SV with Student’s t errors

Several authors have suggested to use non-normal conditional residual distributions for stochas-
tic volatility modeling. Examples include the StudentŠs t distribution (Harvey, Ruiz, and
Shephard 1994), the extended generalized inverse Gaussian (Silva, Lopes, and Migon 2006),
(semi-)parametric residuals (Jensen and Maheu 2010; Delatola and Griffin 2011), or the gen-
eralized hyperbolic skew StudentŠs t distribution (Nakajima and Omori 2012). We implement
StudentŠs t errors for the observation equation in stochvol. Formally,

yt = xtβ + exp(ht/2)εt,

ht+1 = µ + φ(ht − µ) + σηt,

εt ∼ tν(0, 1),

ηt ∼ N (0, 1),

(2)

where εt and ηt are independent. tν(a, b) is the StudentŠs t distribution with ν degrees of
freedom, mean a, and variance b. The single difference between Equation 1 and Equation 2
is that here the observations are conditionally t distributed. Hence, Equation 2 generalizes
Equation 1 through the new parameter ν as the StudentŠs t distribution converges in law to
the standard normal distribution when ν goes to inĄnity.

SV with leverage

Propositions for asymmetric innovations include non-parametric distributions (Jensen and
Maheu 2014), skewed distributions (Nakajima and Omori 2012), and distributions featuring
correlation with the variance process, also called the leverage effect (Harvey and Shephard
1996; Jacquier, Polson, and Rossi 2004). We implement the leverage effect in the stochvol

package. Formally,

yt = xtβ + exp(ht/2)εt,

ht+1 = µ + φ(ht − µ) + σηt,

εt ∼ N (0, 1),

ηt ∼ N (0, 1),

(3)
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where the correlation matrix of (εt, ηt) is

Σ
ρ =



1 ρ
ρ 1



. (4)

The vector ζ = (µ, φ, σ, ρ)⊤ collects the SV parameters. The new parameter compared to
Equation 1 is a correlation term ρ which relates the residuals of the observations to the
innovations of the variance process. Equation 1 is therefore a special case of Equation 3 with
a pre-Ąxed ρ = 0.

SV with Student’s t errors and leverage

Some authors have proposed the combination of t errors with the leverage effect (Jacquier
et al. 2004; Omori et al. 2007; Nakajima and Omori 2009). We implement the common
generalization of Equation 2 and Equation 3. Formally,

yt = xtβ + exp(ht/2)εt,

ht+1 = µ + φ(ht − µ) + σηt,

εt ∼ tν(0, 1),

ηt ∼ N (0, 1),

(5)

where the correlation matrix of (εt, ηt) is Σ
ρ as in Equation 4.

2.2. Prior distributions

We a priori assume β ∼ NK(bβ, Bβ), where Nl(b, B) is the l-dimensional normal distribution
with mean vector b and variance-covariance matrix B. For small values in the diagonal of
Bβ, this prior enforces shrinkage towards bβ; for large values in the diagonal, the prior turns
rather uninformative. By setting bβ to the zero vector and Bβ to a scaled identity matrix,
the prior distribution becomes the Bayesian analogue to ridge regression (see, e.g., Park and
Casella 2008, for a discussion of this and other shrinkage priors).

The level µ ∈ R is unrestricted, hence we can apply the common µ ∼ N (bµ, Bµ) prior.
Depending on the application, a fairly uninformative distribution is the usual choice, e.g.,
setting bµ = 0 and Bµ ≥ 100 for daily asset log returns. In our experience, the exact values
of the prior mean and prior variance of µ do not strongly affect the estimation results unless
Bµ is small.

To achieve stationarity in the variance process, a restricted persistence φ ∈ (−1, 1) is needed.
To this end, we assume (φ + 1)/2 ∼ B(aϕ, bϕ), where B(aϕ, bϕ) is the beta distribution
with shape parameters aϕ and bϕ. The selection of the shape parameters may be relatively
inĆuential with many data sets. In Ąnancial applications with daily asset log returns, the
variance tends to be highly persistent, i.e., φ ≈ 1. Such domain knowledge can be used as
prior information by allocating more probability to positive high values of φ, e.g., by setting
aϕ ≳ 5 and bϕ ≈ 1.5. As an alternative, when stationarity is not assumed, the untruncated
prior φ ∼ N (bϕ, Bϕ) can also be applied.

The volvol is positive but we would like allow σ to approach 0 as closely as needed Ű
that allows us to be less informative and to improve the estimates. Following Frühwirth-
Schnatter and Wagner (2010) and Kastner and Frühwirth-Schnatter (2014), we advocate
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σ ∼ ♣N (0, Bσ)♣ instead, where ♣N (0, Bσ)♣ denotes the half normal distribution. It corresponds
to σ2 ∼ G(1/2, 1/(2Bσ)), where G(a, b) is the gamma distribution with shape parameter a
and rate parameter b. As an alternative, the commonly applied and convenient conjugate
gamma prior on σ−2 can be assumed. However, it bounds σ away from 0 and it is therefore
in our view an unsatisfactory choice.

As a last step in fully specifying the vanilla SV model in Equation 1, the variance process
is initialized a priori with its stationary distribution, i.e., h0 ∼ N (µ, σ2/(1 − φ2)). This
consistently extends our prior assumptions about h following a stationary AR(1) process.
As an alternative, when stationarity is not assumed, h0 ∼ N (µ, Bh) can be applied with a
constant variance Bh.

The SV models with StudentŠs t errors additionally require the prior speciĄcation of the
degrees of freedom parameter ν. To ascertain interpretability of the scaling exp(ht/2), we
ensure Ąnite second moments of y by enforcing ν > 2. As a reviewer recommended, we
follow (Geweke 1993) and equip ν with an exponential prior ν − 2 ∼ E(λν), where λν is the
rate of the exponential distribution.

Finally, in the case of the SV models with leverage, we employ the translated and scaled beta
distribution for ρ ∈ (−1, 1) as in Omori et al. (2007), i.e., (ρ + 1)/2 ∼ B(aρ, bρ). We Ąnd
that the posterior estimates of ρ can be sensitive to its prior distribution, thus, some care is
needed when setting the hyperparameters in practice. In our experience, slightly informative
choices such as aρ = bρ ≈ 4 work well in Ąnancial applications.

2.3. Estimation

All methods implemented in stochvol and factorstochvol rely on the Bayesian paradigm.1

Bayesian analysis aims to estimate model parameters through Bayesian updating. By using
probability distributions to represent information, BayesŠ theorem can be employed to update
the prior information to the posterior information by incorporating the observations. This
approach has the advantage of providing full uncertainty quantiĄcation in a probabilistic
framework without relying on asymptotic results; moreover, so-called shrinkage priors can be
used to regularize the posterior and guard against overĄtting. For an introductory textbook
on Bayesian statistics, see, for instance, McElreath (2015).

When the posterior distribution is not available analytically, one customarily resorts to
approximations such as perfect simulation (Huber 2015), approximate Bayesian computa-
tion (Sisson, Fan, and Beaumont 2018), adaptive Monte Carlo methods (Roberts and Rosen-
thal 2007), or MCMC methods. When computationally feasible, MCMC is a valuable tool
that provides draws from the posterior distribution in question. That way, MCMC approx-
imates the posterior distribution similarly to a histogram approximating a density. For a
more in-depth introduction on MCMC methods, see, for instance, Brooks, Gelman, Jones,
and Meng (2011).

The estimation algorithm of SV, SVt, SVl, and SVtl all resemble the original methodology
developed in Kastner and Frühwirth-Schnatter (2014) for the vanilla SV model. Namely, to
draw from the posterior distribution of h efficiently, the MCMC sampler resorts to approx-
imate mixture representations of Equations 1, 2, 3 and 5 similar to the ones in Kim et al.

1At this point we would also like to point out works aiming at estimating stochastic volatility and related
models within the frequentist framework, see, e.g., Abanto-Valle, Langrock, Chen, and Cardoso (2017); Creal
(2017), and in particular the recent stochvolTMB package (Wahl 2020).



6 Modeling Stochastic Volatility in R

(1998) and Omori et al. (2007). Doing so yields a conditionally Gaussian state space model for
which efficient sampling methods are available (Frühwirth-Schnatter 1994; Carter and Kohn
1994). Following Rue (2001) and McCausland, Miller, and Pelletier (2011), we draw the full
vector h Şall without a loopŤ (AWOL).

When StudentŠs t errors with unknown degrees of freedom are used, we handle the added
complication through the well-known representation of the t distribution as a scale mixture
of Gaussians. This requires additional Gibbs and independence Metropolis-Hastings steps
documented in Kastner (2015). Furthermore, we deal with the increased complexity in the
posterior space of the leverage case by repeated ancillarity-sufficiency interweaving strate-
gies (ASIS, Yu and Meng 2011) steps in the sampling scheme, see Hosszejni and Kastner
(2019) for details.

To verify the correctness of the implementation, unit tests are included in the package which
can be run by devtools::test() (Wickham, Hester, and Chang 2020). In particular, a
variant of GewekeŠs test (Geweke 2004) is part of the test suite. In this test, we exploit that
the sampling distribution of the model parameters during the Geweke test is identical to their
preset prior distribution. Therefore, the cumulative distribution function maps the sample to
a uniform distribution, which in turn is mapped to a normal distribution using the normal
distributionŠs quantile function. If the user chooses to execute the automated unit tests in
stochvol, the system evaluates the thinned and transformed sample using the shapiro.test()

function, where the thinning of the sample is done to approximate independent sampling.

For maximal computational effectiveness, all sampling algorithms are implemented in the
compiled language C++ (ISO/IEC 2017) with the help of the R package Rcpp (Eddelbuettel
and François 2011). Matrix computations make use of the efficient C++ template library
Armadillo (Sanderson and Curtin 2016) through the R package RcppArmadillo (Eddelbuettel
and Sanderson 2014).2 After sampling, the resulting R objects make use of plotting and
summary functions of the R package coda (Plummer, Best, Cowles, and Vines 2006).

3. Multivariate SV models

A key difficulty accompanying dynamic covariance estimation is the relatively high number
of unknowns compared to the number of observations. More precisely, letting m denote
the cross-sectional dimension, the corresponding covariance matrix Σt contains m(m + 1)/2
degrees of freedom, a quadratic term in m. Table 1 illustrates the Şcurse of dimensionalityŤ
for various values of m. One way to break this curse is to use latent factors and thereby
achieve a sparse representation of Σt.

3.1. The factor SV model

Latent factor models embody the idea that even high dimensional systems are driven by only
a few sources of randomness. These few sources of randomness control a few factors, which
in turn account for the interactions between the observations. Moreover, latent factor models
provide an efficient tool for dynamic covariance matrix estimation. They allow for a reduction
in the number of unknowns. A conventional latent factor model with r factors implies the

2For explicit run time discussions please see Kastner and Frühwirth-Schnatter (2014) and Hosszejni and
Kastner (2019). For the possibility to use multi-core computing within a single MCMC chain and potential
speed gains when doing so, please see Kastner (2019).



Darjus Hosszejni, Gregor Kastner 7

m free elements of Σt free elements of Σt per data point

1 1 1
10 55 5.5
100 5050 50.5
1000 500500 500.5

Table 1: Absolute and relative numbers of free elements of the time-varying covariance matrix
Σt for different numbers of component series m.

m free elements of Σt free elements of Σt per data point

10 44 4.4
100 494 4.94
1000 4994 4.994

Table 2: Absolute and relative numbers of free elements of the time-varying covariance matrix
Σt in a factor model for different numbers of component series m and number of factors r = 4.

decomposition

Σt = Σ̌t + Σ̄t, (6)

where rank(Σ̌t) = r < m, and Σ̄t is the diagonal matrix containing the variances of the
idiosyncratic errors. The rank assumption on the symmetric Σ̌t gives rise to the factorization
Σ̌t = ΨΨ⊤, where Ψ ∈ R

m×r contains mr − r(r − 1)/2 free elements (see, e.g., the pivoted
Cholesky algorithm in Higham 1990). Hence, m(r + 1) − r(r − 1)/2 free elements remain in
Σt, now only linear in m. Table 2 illustrates the Şbroken curse of dimensionalityŤ for various
values of m and r = 4.

In the following, we describe the factor SV model employed in the factorstochvol package.
We model the observations yt = (yt1, . . . , ytm)⊤ as follows.

yt ♣ β, Λ, ft, Σ̄t ∼ Nm(β + Λft, Σ̄t),

ft ♣ Σ̃t ∼ Nr(0, Σ̃t),
(7)

where ft = (ft1, . . . , ftr)⊤ is the vector of factors, β = (β1, . . . , βm)⊤ is an observation-speciĄc
mean, and Λ ∈ R

m×r is a tall matrix holding the factor loadings. The covariance matrices
Σ̄t and Σ̃t are both diagonal representing independent vanilla SV processes.

Σ̄t = diag(exp(h̄t1), . . . , exp(h̄tm)),

Σ̃t = diag(exp(h̃t1, . . . , exp(h̃tr))),

h̄ti ∼ N (µ̄i + φ̄i(h̄t−1,i − µ̄i), σ̄2
i ), i = 1, . . . , m,

h̃tj ∼ N (µ̃j + φ̃j(h̃t−1,j − µ̃j), σ̃2
j ), j = 1, . . . , r.

(8)

For a more theoretical treatment of factor SV from a Bayesian point of view, the reader is
referred to, e.g., Pitt and Shephard (1999), Aguilar and West (2000), Chib, Nardari, and
Shephard (2006), and Han (2006).

Based on Equation 7, we can reformulate Equation 6 as

Σt = ΛΣ̃tΛ
⊤ + Σ̄t, (9)
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from which several identiĄcation issues are apparent: the order, the sign, and the scale of
the factors is unidentiĄed. More speciĄcally, for any generalized permutation matrix3 P of
size r × r, we Ąnd another valid decomposition Σt = Λ

′
Σ̃

′
t(Λ

′)⊤ + Σ̄t, where Λ
′ = ΛP −1

and Σ̃
′
t = P Σ̃tP

⊤. We resolve the ambiguity in the scale of the factors by Ąxing the level of
their log-variance to zero, i.e., µ̃j = 0 for j = 1, . . . , r. Sign and order identiĄcation can be
enforced through restrictions on the factor loadings matrix Λ. Several options are available
in factorstochvol for restricting Λ, for details see Section 5.2.

3.2. Prior distributions

Priors need to be speciĄed for the mean, the latent log-variance processes, and for the factor
loadings matrix Λ. We choose βj ∼ N (bβ, Bβ), independently for j = 1, . . . , m. For small
values of Bβ , this shrinks βj toward bβ; for large values of Bβ , the prior is fairly uninformative.

The log-variance processes have the same prior speciĄcation as in the univariate case in
Section 2.2. For Λ, three types of priors are currently implemented in factorstochvol. All three
can be written in the form Λij ∼ N (0, τ2

ij) independently for each applicable i ∈ ¶1, . . . m♢
and j ∈ ¶1, . . . , r♢. First, one can Ąx all the τ2

ijs Ű not necessarily to the same value Ű a priori.
This results in a normal prior for each element of the loadings matrix.

The second type is a hierarchical prior which has been developed to induce more Ćexible and
potentially stronger shrinkage,

Λij ♣ τ2
ij ∼ N (0, τ2

ij), τ2
ij ♣ λ2

i ∼ G(a, aλ2
i /2). (10)

This distribution is termed normal gamma prior by Griffin and Brown (2010) and implies a
conditional variance V(Λij ♣ λ2

i ) of 2/λ2
i and an unconditional excess kurtosis of 3/a. The

value of a is treated as a structural parameter to be Ąxed by the user, where choosing a
small (≲ 1) enforces strong shrinkage towards zero, while choosing a large (≳ 1) imposes
little shrinkage. The case a = 1 is a special case termed the Bayesian Lasso prior (Park and
Casella 2008). The parameter λ2

i is estimated from the data with λ2
i ∼ G(c, d).

The third type is a slight modiĄcation of the second. Because variances in each row of
the factor loadings matrix Λ can be seen as Şrandom effectsŤ from the same underlying
distribution, the prior in Equation 10 induces row-wise shrinkage with element-wise adaption.
Analogously, one could also consider column-wise shrinkage with element-wise adaption, i.e.,

Λij ♣ τ2
ij ∼ N (0, τ2

ij), τ2
ij ♣ λ2

j ∼ G(a, aλ2
j/2), (11)

with the corresponding prior λ2
j ∼ G(c, d).

3.3. Estimation

Bayesian estimation in the factor SV model builds on the univariate vanilla SV implementa-
tions in stochvol and features several levels of efficiency boosting. To alleviate the problem of
potentially slow convergence in high dimensions, it is carried out via a sampler that utilizes
several variants of ASIS. The sampling details implemented in factorstochvol are described in

3A generalized permutation matrix has the zeroŰnon-zero pattern of a permutation matrix, but it is allowed
to have any non-zero values instead of just ones. Hence, a generalized permutation matrix not only permutes
but also scales and switches the sign of its multiplier.
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Kastner et al. (2017, using Gaussian priors for the factor loadings) as well as Kastner (2019,
using hierarchical shrinkage priors for the factor loadings).

Similarly to stochvol and in an attempt to make computation time bearable even in higher
dimensions, factorstochvolŠs main sampler is written in C++. It uses the R package Rcpp

to ease communication between R and C++. The univariate SV parts are borrowed from
stochvol and interfaced through its C/C++-level updating function update_fast_sv(). In
doing so, moving between interpreted R code and compiled C++ code at each MCMC iteration
is avoided.

4. The stochvol package

The stochvol package provides means for Ątting univariate SV, SVt, SVl, and SVtl models via
its sampling routines svsample(), svtsample(), svlsample(), and svtlsample(), respec-
tively. In the following, we describe a recommended workĆow with stochvol. First, we discuss
estimation, visualization, and prediction using default settings. Then, we show how to adapt
the values of the prior hyperparameters and how to conĄgure the sampling mechanism.

4.1. Preparing the data and running the MCMC sampler

We estimate three models that exemplify the features and the user interface of stochvol. Using
the exrates data found in the package, we model the EURCHF exchange rate (the price of
1 euro in Swiss franc) in the period between March 1, 2011 and March 1, 2012 (260 data
points) in three different ways.4

AR(1) model with SV residuals

The Ąrst example is an AR(1) model with SV residuals, i.e., Equation 1 turns into

yt ♣ yt−1, β0, β1, ht ∼ N (β0 + β1yt−1, exp(ht)),

ht+1 ♣ ϑ, ht ∼ N (µ + φ(ht − µ), σ2).

Using this model, we test whether the exchange rate follows a random walk with SV. In this
case, we expect the posteriors of β0 and β1 to concentrate around 0 and 1, respectively.

In order to estimate this AR(1)-SV model, we need to prepare the input y as a numeric

sequence of length n and pass it as the Ąrst input argument to svsample() as follows:

R> set.seed(1)

R> library("stochvol")

R> data("exrates")

R> ind <- which(exrates$date >= as.Date("2011-03-01") &

+ exrates$date <= as.Date("2012-03-01"))

R> CHF_price <- exrates$CHF[ind]

R> res_sv <- svsample(CHF_price, designmatrix = "ar1")

4In the original article, the period between March 1, 2008 and March 1, 2012 (1028 data points) is used.
Here, to reduce compilation time and document size for CRAN, this shorter period is employed.
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We set designmatrix = "ar1" to use the AR(1) speciĄcation. More generally, designmatrix

can take character values of the form "ar0" for a constant mean model, or "ar1", "ar2",
etc., for AR(1), AR(2), and so on.

Constant mean model with SVt residuals

The second example is a constant mean model with SVt residuals, i.e., Equation 2 becomes

yt ♣ β0, ht, ν ∼ tν(β0, exp(ht/2)),

ht+1 ♣ ϑ, ht ∼ N (µ + φ(ht − µ), σ2).

If the returns are heavy-tailed, most of the posterior mass of ν concentrates on low values,
e.g., smaller than 20. Otherwise, there is little evidence for high kurtosis.

We compute the log returns by applying logret() on the previously calculated CHF_price.
Then, to estimate the constant mean model with heavy tailed SV residuals, we pass the vector
of log returns to svtsample() with designmatrix set to "ar0".

R> set.seed(2)

R> CHF_logret <- 100 * logret(CHF_price)

R> set.seed(2)

R> CHF_logret <- 100 * logret(CHF_price)

R> res_svt <- svtsample(CHF_logret, designmatrix = "ar0")

Multiple regression with SVl residuals

The third example is a multiple regression model with an intercept, two regressors, and SVl
residuals; that is, Equation 3 turns into



yt

ht+1

 ∣

∣

∣

∣

∣

ht, ζ,



xt1

xt2



, β0,



β1

β2



∼ N2



β0 + β1xt1 + β2xt2

µ + φ(ht − µ)



, Σ
ρ



,

Σ
ρ =



exp(ht) ρσ exp(ht/2)
ρσ exp(ht/2) σ2



.

For illustration, we regress EURCHF log returns onto the contemporaneous log returns on
EURUSD and EURJPY, the value of 1 euro per US dollar and Japanese yen, respectively.

To estimate a multiple regression model using stochvol, we need to prepare a numeric matrix
X of dimension n × K, where rows correspond to time points and columns to covariates. We
create an intercept as the Ąrst column of X, and we set the second and the third columns
to the EURUSD log returns and the EURJPY log returns, respectively; Ąnally, we use the
columns of X as covariates in the multiple regression.5

R> set.seed(3)

R> X <- cbind(constant = 1, 100 * logret(exrates$USD[ind]),

+ 100 * logret(exrates$JPY[ind]))

R> res_svl <- svlsample(CHF_logret, designmatrix = X,

+ thin = 20)

5Thinning is applied in order to reduce the size of the PDF document on CRAN.



Darjus Hosszejni, Gregor Kastner 11

Figure 1: The default plot of an estimated model. The top row shows a summary of the
posterior of the daily volatility (in percent) 100 exp(h/2) through its median (black) and
5% and 95% quantiles (gray). The remaining panels summarize the Markov chains of the
parameters µ, φ, σ, and ρ. In particular, the middle row presents trace plots and the bottom
row shows prior (gray, dashed) and posterior (black, solid) densities.

4.2. Visualizing the results

Often, the joint posterior distribution of model parameters and latent quantities mark the goal
of a Bayesian analysis. To inspect it, one can look at summary statistics and various types
of visualizations of marginal posterior distributions. Also, it is recommended to examine the
Markov chain for possible convergence issues Ű this happens usually by investigating trace
plots of posterior quantities. For this reason, inspired by the coda package, stochvol provides
its own instances of the R generic functions plot() and summary(). In order to introduce the
tools that stochvol provides for analyzing MCMC output, we brieĆy examine the results of
the third example (multiple regression with SVl errors) in the remaining part of the section.

First, we plot the output of the estimation.

R> plot(res_svl, showobs = FALSE, dates = exrates$date[ind[-1]])

The result is shown in Figure 1. We see in the Ąrst row a summary of the posterior density
of the volatility. Apart from its median, we also receive a quantiĄcation of the uncertainty
through the 5% and the 95% quantiles at each time point. In the second row, we can follow
the evolution of the Markov chain of the SV parameters. In this example, they are µ, φ, σ,
and ρ. Lastly, we see prior and posterior density plots of the parameters in the third row in
gray and black, respectively. They show high persistence and signiĄcant leverage.

Next, we observe the AR coefficients.
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Figure 2: Trace plots and estimated kernel densities of posterior draws from p(β ♣ y).

R> for (i in seq_len(3)) {

+ coda::traceplot(svbeta(res_svl)[, i])

+ coda::densplot(svbeta(res_svl)[, i], show.obs = FALSE)

+ }

The result is shown in Figure 2. On the left hand side, we do not spot any signs of convergence
or mixing problems in the trace plots. On the right hand side, we see that none of the posterior
densities of β0, β1, and β2 concentrate around 0, hence the covariates seem to have an impact
on the dependent variable.

As the Ąnal step, we print a numeric summary of the estimation results.

R> summary(res_svl, showlatent = FALSE)

Summary of 'svdraws' object

Prior distributions:

mu ~ Normal(mean = 0, sd = 100)

(phi+1)/2 ~ Beta(a = 5, b = 1.5)

sigma^2 ~ Gamma(shape = 0.5, rate = 0.5)

nu ~ Infinity

rho ~ Beta(a = 4, b = 4)

beta ~ MultivariateNormal(...)

Stored 1000 MCMC draws after a burn-in of 2000.

Thinning: 20.
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Posterior draws of SV parameters (thinning = 20):

mean sd 5% 50% 95% ESS

mu -0.2385 1.9430 -2.714 -0.4573 3.5228 294

phi 0.9983 0.0021 0.994 0.9991 1.0000 727

sigma 0.0695 0.0167 0.045 0.0682 0.0996 635

rho -0.1399 0.1296 -0.352 -0.1389 0.0700 624

exp(mu/2) 1.8965 6.5278 0.257 0.7956 5.8208 294

sigma^2 0.0051 0.0025 0.002 0.0046 0.0099 635

Posterior draws of regression coefficients (thinning = 20):

mean sd 5% 50% 95% ESS

beta_0 -0.056 0.029 -0.11 -0.055 -0.0096 1000

beta_1 -0.091 0.060 -0.20 -0.089 0.0036 1065

beta_2 0.255 0.064 0.15 0.254 0.3635 960

For brevity, we set showlatent = FALSE in order not to print all the 1027 latent states. The
output shows the length of the burn-in and the number of draws, the prior speciĄcation of the
parameters, and a concise summary of the marginal posterior distributions of the parameters
µ, φ, σ, and ρ, and additionally of the level of the volatility exp(µ/2) and of σ2, and of the
vector of regression coefficients β. This posterior summary is a table consisting of columns for
the posterior mean and standard deviation, the 5%, 50%, and 95% quantiles. The user can
inĆuence the shown quantiles by passing a sequence of values between 0 and 1 to svsample(),
svtsample(), svlsample(), or svtlsample() via the argument quantiles.

The last column in the table depicts the so-called effective sample size (ESS), a measure of the
quality of a converged MCMC chain. Formally, ESS of a Markov chain C is deĄned through
M/(1 + 2

∑

∞

s=1 ρeff(s)), where M is the length of C and ρeff(s) denotes the autocorrelation
function for lag s among the elements of C. In principle, ESS is the sample size of a serially
uncorrelated chain bearing the same Monte Carlo error as our (marginal) chain. Intuitively
speaking, this means that ESS is the number of independent and identically distributed draws
that were acquired and gives a sense of how well our chain has explored the posterior space.
Higher values of ESS indicate better mixing.

4.3. Prediction with stochvol

We employ our estimated model to predict log returns for the remaining days in the data set.
To do so, we Ąrst prepare the covariates for the next 4 days and pass them via the argument
newdata of the generic predict() function along with the estimation output. Note that we
need 5 days of price data to obtain 4 returns.6

R> set.seed(4)

R> pred_ind <- seq(tail(ind, 1), length.out = 5)

R> pred_X <- cbind(constant = 1, 100 * logret(exrates$USD[pred_ind]),

+ 100 * logret(exrates$JPY[pred_ind]))

R> pred_svl <- predict(res_svl, 4, newdata = pred_X)

As we have access to the entire distribution of future log returns, we can quantify the uncer-
tainty around our predictions through quantiles. In the following code snippet, we visualize

6In the original document, the next 25 days are predicted; here, we restrict ourselves to the next Ąve days.



14 Modeling Stochastic Volatility in R

Figure 3: Multi-step ahead predictive distributions (solid, gray and black) and observations
(dashed, red).

the k-step-ahead predictive distributions for k = 1, . . . , 24, along with the truly observed
values. The result is in Figure 3.

R> obs_CHF <- 100 * logret(exrates$CHF[pred_ind])

R> qs <- t(apply(predy(pred_svl), 2, quantile, c(0.05, 0.5, 0.95)))

R> ts.plot(cbind(qs, obs_CHF), xlab = "Periods ahead", lty = c(rep(1, 3), 2),

+ col = c("gray80", "black", "gray80", "red"))

4.4. Rolling window estimation

Inspired by ugarchroll() in the R package rugarch (Ghalanos 2020), we introduce the
suite of wrapper functions svsample_roll(), svtsample_roll(), svlsample_roll(), and
svtlsample_roll(), built around their corresponding routines svsample(), svtsample(),
svlsample(), and, respectively, svtlsample(), to simplify rolling window estimation of SV
models. In this estimation method, either a Ąxed width time window is moving through the
time series or a sequence of expanding time windows with the same starting time point covers
larger and larger chunks of the observations, and the same model is estimated in all time win-
dows independently. Next, each estimated model is employed for out-of-sample prediction,
typically one day to one week ahead of the time window. Lastly, the set of predicted values
might be used to evaluate the model Ąt.

In Bayesian statistics, a natural approach for assessing the predictive power of a model is
through its posterior predictive distribution. Its density, also called the predictive density, is
deĄned as

p(yt+1 ♣ yo
[1:t]) =

∫

K

p(yt+1 ♣ yo
[1:t], κ)p(κ ♣ yo

[1:t])dκ, (12)

where κ collects all unobserved variables, i.e., κ = (µ, φ, σ, ρ, ν, h, β)⊤ in the most general
case of SVtl, and the domain of integration K is the set of all possible values for κ. We
follow Geweke and Amisano (2010) in our notation by using a superscript o for the vector of
observed values yo

[1:t] = (y1, y2, . . . , yt)
⊤. Equation 12 can be seen as the integration of the

predictive likelihood over the posterior distribution of all parameters and therefore it accounts
for posterior parameter uncertainty for the predicted values.

The integral in Equation 12 has no closed form and its dimensionality increases with t; it is
intractable. Hence, we rely on Monte Carlo integration and we simulate from the posterior
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predictive distribution. For the evaluation of the predictive density at an observation x = yo
t+1,

called the predictive likelihood, we apply the computation

p(x ♣ yo
[1:t]) ≈

1

M

M
∑

m=1

p(x ♣ yo
[1:t], κ(m)), (13)

where κ(m) denotes the mth posterior sample from the estimation procedure of the SV model.
For other applications, the quantiles of the posterior predictive distribution, henceforth the
predictive quantiles, might be of interest. We estimate the q% quantile through random
variates simulated from yt+1 ∼ p(yt+1 ♣ yo

[1:t]), which we acquire by repeating two steps for
m = 1, . . . , M :

Step 1. Simulate κ(m) from the SV posterior p(κ ♣ yo
[1:t]), and

Step 2. Simulate y
(m)
t+1 from p(yt+1 ♣ yo

[1:t], κ(m)).

Lastly, we take the q% quantile of the sample vector (y
(1)
t+1, y

(2)
t+1, . . . , y

(M)
t+1 )⊤ as the approximate

q% quantile of the predictive density. We implement the estimation of both the predictive
likelihood and predictive quantiles in stochvol.

All four rolling window routines svsample_roll(), svtsample_roll(), svlsample_roll(),
and svtlsample_roll() bear the same programming interface. They expect as their Ąrst
argument the input data y[1:L], which is of length L. For estimating the SV model in each time
window j = 1, . . . , J in the moving or expanding window scheme, the sub-vector y[j:(t+j−1)],
or, respectively, y[1:(t+j−1)], is taken as data and is used to predict nahead ≥ 1 time steps
ahead. The width t of the Ąrst time window can be determined from L, J , and nahead. The
following example demonstrates how the rolling window sampling routines can be called in
stochvol.

R> set.seed(5)

R> res <- svsample_roll(CHF_logret, n_ahead = 1, forecast_length = 30,

+ refit_window = "moving", calculate_quantile = c(0.01, 0.05),

+ calculate_predictive_likelihood = TRUE)

Argument n_ahead is used to set nahead, forecast_length is used to set J , and refit_window

expects either "moving" or "expanding" to set the rolling window scheme to moving or ex-
panding, respectively. Argument calculate_quantile expects a vector of numbers between
0 and 1; the numbers are interpreted as the quantiles to be predicted. Furthermore, if
calculate_predictive_likelihood is set to TRUE, the function estimates the predictive
likelihood. Lastly, the output res is a list of length J , i.e., one element for each time window.
It contains the respective posterior quantile and predictive likelihood results together with all
posterior parameter draws for κ.

4.5. Specifying the prior hyperparameters

As discussed in Section 2.2, the prior distributions need to be speciĄed before the esti-
mation process can start. Concerning the common model parameters µ, φ, and σ, all of
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svsample(), svtsample(), svlsample(), and svtlsample() expect through their input ar-
guments priormu, priorphi, and priorsigma values for (bµ,

√

Bµ), (aϕ, bϕ), and Bσ, re-
spectively. Furthermore, all sampling functions accept the argument priorbeta to set an
independent prior for the regression coefficients by providing (bβ, sβ), where bβ and sβ are the
common mean and, respectively, the common standard deviation. For a general multivariate
normal distribution, the specify_priors() interface exists, which we detail later in this Sec-
tion. The prior for ν can be inĆuenced in svtsample() and svtlsample() by passing λν as
the argument priornu. Finally, svlsample() and svtlsample() take the numeric sequence
(aρ, bρ) through the input argument priorrho.

The code snippet below shows all the default values of the prior hyperparameters.

R> svsample(CHF_logret, priormu = c(0, 100), priorphi = c(5, 1.5),

+ priorsigma = 1, priorbeta = c(0, 10000))

R> svtsample(CHF_logret, priormu = c(0, 100), priorphi = c(5, 1.5),

+ priorsigma = 1, priorbeta = c(0, 10000), priornu = 0.1)

R> svlsample(CHF_logret, priormu = c(0, 100), priorphi = c(5, 1.5),

+ priorsigma = 1, priorbeta = c(0, 10000), priorrho = c(4, 4))

R> svtlsample(CHF_logret, priormu = c(0, 100), priorphi = c(5, 1.5),

+ priorsigma = 1, priorbeta = c(0, 10000), priornu = 0.1,

+ priorrho = c(4, 4))

As an alternative to the concise interface above, a broader set of prior distributions can be
speciĄed via an object created by the specify_priors() function. The function has an input
argument for each model parameter: mu, phi, sigma2, nu, rho, beta, and additionally one
for the variance of h0 called latent0_variance. There is a list of accompanying functions
that create distributions in stochvol: sv_beta() has arguments shape1 and shape2 and it
is accepted for phi and rho; sv_constant() has argument value and it is accepted for
mu, phi, sigma2, nu, rho, and latent0_variance; sv_normal() has arguments mean and
sd and it is accepted for mu and phi; sv_multinormal() has arguments mean and either
sd and dim or precision, and it is accepted for beta; sv_exponential() has argument
rate and it accepted for nu; sv_gamma() has arguments shape and rate and it is accepted
for sigma2; sv_inverse_gamma() has arguments shape and scale and it is accepted for
sigma2; and sv_infinity() has no arguments and it is accepted for nu hence turning the
StudentŠs t distribution into a normal distribution. Additionally, latent0_variance accepts
the character value "stationary". All four sampling methods accept the prior speciĄcation
object through the input argument priorspec.

All input arguments for specify_priors are optional, their default values and how they are
used is seen below.

R> ps <- specify_priors(mu = sv_normal(mean = 0, sd = 100),

+ phi = sv_beta(shape1 = 5, shape2 = 1.5), rho = sv_constant(0),

+ sigma2 = sv_gamma(shape = 0.5, rate = 0.5), nu = sv_infinity(),

+ beta = sv_multinormal(mean = 0, sd = 10000, dim = 1),

+ latent0_variance = "stationary")

R> svsample(CHF_logret, priorspec = ps)
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4.6. Setting up the Markov chain

When conducting Bayesian inference using an MCMC sampling scheme, the number of draws
from the posterior distribution, the length of the so-called burn-in phase, the initial values of
the Markov chain, and the various strategies of storing the results are all of general interest.
The input arguments draws and burnin settle the Ąrst two points. A sample size of burnin

+ draws is acquired from the posterior distribution out of which the Ąrst burnin number of
draws are thrown away. The default is to draw 10000 elements after a burnin of 1000 for SV
models without leverage, and draw 20000 elements after a burnin of 2000 for SV models with
leverage, which in our experience is enough for most applications.

As for the initial values, startpara and startlatent provide a way to set them. The
argument startpara is expected to be a named list mapping parameter names to starting
values, and startlatent must be a sequence of length m that contains starting values for
h. Default values are set to be the prior mean for φ, σ, ν, and ρ, these have only minor
inĆuence on the Markov chain. The default value for β is the ordinary least squares estimator
(X⊤X)−1X⊤y, where X denotes the regression design matrix and y denotes the vector of
observations. After setting β, the level of log-variance µ is initialized according to the Bayesian
linear regression

log(y2
t ) = µ + ξt,

µ ∼ N (bµ, Bµ),
(14)

where ξt ∼ N (−1.27, 4.934). Equation 14 results from the Ąrst line of Equation 1 by Ąxing
ht at its stationary expected value µ and then taking x 7→ log(x2) of both sides. The ho-
moskedastic error term ξt is acquired as the Laplace approximation to log(ε2

t ) (Harvey and
Shephard 1996). At the end, by default all values of the vector startlatent are set to the
initial value of µ.

It is customary to start independent Markov chains in parallel and stochvol provides facilities
for that in all of its sampling procedures. The argument n_chains is expected to be a positive
integer, it sets the number of independent chains. Additionally, arguments parallel, n_cpus,
and cl can be used to control parallelism used by stochvol. To overwrite the default sequential
execution strategy, parallel is to be set either to "snow", to employ the so-called ŞSNOWŤ
clusters, or to "multicore" to use the ŞmulticoreŤ type computation (R Core Team 2021).
Next, argument n_cpus should be set to the physical number of parallel processing units to be
used. Finally, in case ŞSNOWŤ is applied, the sampling routines optionally accept an already
running ŞSNOWŤ cluster through argument cl.

As mentioned earlier, the sampling algorithms for the latent states h in stochvol rely on
a Gaussian mixture approximation as in Omori et al. (2007) and Kastner and Frühwirth-
Schnatter (2014). The approximation tends to be very good, therefore the default setting is
not to correct for model misspeciĄcation. However, this correction can be enabled in all of the
sampling routines through the expert argument as shown for svsample() in the following.

R> set.seed(3)

R> y <- svsim(50)$y

R> svsample(y, expert = list(correct_model_misspecification = TRUE))

Lastly, stochvol provides three ways to economize storage during and after the execution of
the sampler. Setting the integer argument thinpara to ι tells the sampler to store only
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every ιth draw of the vector of parameters, and supplying a value for thinlatent does the
same for h. Finally, one has the opportunity not to store the full vector h but only its last
value by setting keeptime = "last". The default behavior is to store every draw after the
burn-in phase.

5. The factorstochvol package

The most common workĆow of using factorstochvol for Ątting multivariate factor SV models
consists of the following steps: (1) Prepare the data, (2) decide on an identiĄcation structure,
(3) specify the prior hyperparameters, (4) run the sampler, (5) investigate the output and
visualize the results, and (6) predict (if required). These steps are described in detail in the
following sections.

5.1. Preparing the data

The workhorse in factorstochvol is the sampling function fsvsample(). It expects the data to
come in form of a matrix Y = (y1, . . . , yn)⊤ with n rows and m columns. For illustration, we
use the exchange rate data set in stochvol which contains 3140 daily observations of exchanges
rates for 23 currency pairs against EUR, ranging from March 3, 2000 to April 4, 2012. To
keep the analysis simple and computation times moderate, we however only model the last
201 days of the Ąrst six series in alphabetical order (Australian dollar, Canadian dollar, Swiss
franc, Czech koruna, Danish krone, Great British pound) for further analysis. Instead of
using the nominal exchange rates we compute log returns. This leaves us with a data set of
size n = 200 and m = 6.7 The data is prepared using the code snippet below and visualized
in Figure 4 using the zoo package (Zeileis and Grothendieck 2005).

R> library("factorstochvol")

R> library("zoo")

R> data("exrates", package = "stochvol")

R> m <- 6

R> n <- 200

R> y <- 100 * logret(tail(exrates[, seq_len(m)], n + 1))

R> y <- zoo(y, order.by = tail(exrates$date, n))

R> plot(y, main = "", xlab = "Time")

5.2. Deciding on an identiĄcation structure

The likelihood in factor models is invariant to certain factor transformations such as reordering
of factors and their loadings or sign switches thereof. In addition to this, it is often multimodal.
Consequently, identifying the factor loadings is far from trivial. The most common way to
address this issue in factor SV models is to impose a lower-diagonal factor loadings matrix
where all elements above the diagonal are set to zero (e.g., Aguilar and West 2000; Chib et al.
2006; Han 2006; Zhou, Nakajima, and West 2014). To use this constraint in factorstochvol, the
argument restrict = "upper" can be passed to the main sampling function fsvsample().

7In the original paper, n = 1000 is used.
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Figure 4: Percentage log returns of six EUR exchange rates.

Evidently, this practice imposes an order dependence, as, e.g., the Ąrst variable is not allowed
to load on anything else but the Ąrst factor.

A rather ad hoc method for automatically ordering the data is implemented in the helper func-
tion preorder(). After a maximum likelihood factor model Ąt to the data (using factanal()

from the stats package with the default varimax rotation), the series are ordered as follows:
The variable with the highest loading on factor 1 is placed Ąrst, the variable with the high-
est loading on factor 2 second (unless this variable is already placed Ąrst, in which case the
variable with the second highest loading is taken), et cetera. For the data set at hand, this
would imply the following ordering for a two-factor model.

R> preorder(y, factors = 2)

According to this algorithm, the second series should be placed Ąrst and the third series
should be placed second. Thereafter, the alphabetical ordering remains.

To achieve this effect without reordering the data, a logical matrix of size m×r can be passed
to fsvsample() via restrict, where the entry TRUE means that this element is restricted to
zero; FALSE means that it is to be estimated from the data. Similarly to preorder(), the
function findrestrict() tries to automate this procedure. Again, the maximum likelihood
estimates from a static factor analysis are used; however, findrestrict() uses a slightly
different algorithm than the one above: The variable with the lowest absolute loadings on
factors 2, 3, . . . , r (relative to factor 1) is determined to lead the Ąrst factor, the variable with
the lowest absolute loadings on factors 3, 4, . . . , r (relative to factors 1 and 2) is placed second,
et cetera. Below is the result for the data set at hand.

R> findrestrict(y, factors = 2)

If fsvsample() is called with the argument restrict = "auto", it automatically invokes
findrestrict() with the appropriate number of factors. Using restrict = "none" (the
default) causes the sampler not to place any constraints on the loadings matrix; thus, the
resulting posterior draws may be unstable or suffer from multiple local modes. If, however,
inference on the factor loadings themselves is not the primary concern of the analysis, leaving



20 Modeling Stochastic Volatility in R

the factor loadings unidentiĄed may be the preferred option. This is in particular the case
when inference for the covariance matrix is sought, as this only depends on Λ through the
rotation-invariant transformation of Equation 9. For a more elaborate discussion of these is-
sues, we refer the reader to Sentana and Fiorentini (2001) who discuss automatic identiĄcation
through heteroskedasticity. A comparison of log predictive scores under different identiĄcation
schemes for factor SV models is given in Kastner et al. (2017); see also Frühwirth-Schnatter
and Lopes (2018) for related issues in static factor models. To continue with the current
example, we chose not to place any a priori restrictions on the factor loadings matrix while
using a row-wise normal-gamma shrinkage prior on the factor loadings matrix (cf. Kastner
2019).

5.3. Specifying prior hyperparameters

Apart from the obvious prior choice about the number of factors and the identiĄcation scheme
discussed above, a number of hyperparameter choices are available in factorstochvol. Regard-
ing the log-variance processes, the interface is analogous to that of svsample(). In the
following, i = 1, . . . , m and j = 1, . . . , r index the idiosyncratic and the factor log-variance
processes, respectively. The pair of common prior hyperparameters (bβ , Bβ) can be passed
as a sequence of length two to priorbeta. The common prior of µ̄i can be set by passing a
sequence of length two Ű the mean and the standard deviation of the normal distribution Ű to
priormu; the common priors of φ̄i and φ̃j can also be set by passing sequences of length two Ű
the parameters of the corresponding beta distribution Ű to priorphiidi and to priorphifac,
respectively; similarly, the common priors of σ̄i and σ̃j can be speciĄed via the arguments
priorsigmaidi and priorsigmafac, respectively, that accept as positive numbers the scale
Bσ of the corresponding gamma distribution.

As discussed in Section 3.2, factorstochvol offers three speciĄcations as priors for Λ, controlled
through the argument priorfacloadtype. To use the Ąrst option (priorfacloadtype =

"normal"), one needs to Ąx the values of τij a priori. The user can pass these Ąxed values
to fsvsample() via the argument priorfacload, either as an m × r matrix with positive
entries or as a single positive number which will be recycled accordingly. For the second op-
tion, the normal gamma prior with row-wise or column-wise shrinkage (priorfacloadtype =

"rowwiseng" and priorfacloadtype = "colwiseng", respectively), the value of argument
priorfacload is then interpreted as the shrinkage parameter a. Both speciĄcations of the
normal gamma prior need the values c and d. They can be set as a two-element vector passed
to the argument priorng.

5.4. Running the MCMC sampler

Running the sampler corresponds to invoking fsvsample(). Apart from the prior settings
discussed above, its most important arguments are listed below with the default value in
brackets. For a complete list of all arguments and more details, see ?fsvsample.

• y: the data;

• factors [1]: the number of factors;

• draws [1000]: the number of MCMC samples to be drawn after burnin;

• thin [1]: the amount of thinning (every thinth draw is kept);
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• burnin [1000]: the length of the burn-in period, i.e., the number of MCMC draws to be
discarded before the samples are considered to emerge from the stationary distribution,

• zeromean [TRUE]: a logical value indicating whether β is to be estimated from the data
or whether β is set to zero (the default);

• keeptime ["last"]: either "all", meaning that all latent log volatilities are being
monitored at all points in time, or "last", meaning that the latent log volatility draws
are only stored at t = n, the last point in time; the latter setting is the default to avoid
excessive memory usage in higher dimensions;

• heteroskedastic [TRUE]: indicator(s) to turn off stochastic volatility for the idiosyn-
cratic variances, the factor variances, or both;

• samplefac [TRUE]: indicator to turn off sampling of the factors; useful to work with
observed instead of latent factors (see Kastner 2019, for a use case of this);

• runningstore [6]: to avoid having to store all MCMC draws, fsvsampleŠs default is to
compute and store the Ąrst two ergodic moments of some interesting quantities (namely
log variances, factors, volatilities, covariance matrices, correlation matrices, communali-
ties) only; the default (runningstore = 6) is to compute and store everything; however,
one can set runningstore to a lower number to save computation time; the argument
runningstoremoments [2] can further be used to modify the number of moments to be
stored;

• runningstorethin [10]: indicates how often ergodic moments should be calculated,
where 1 means that this should be done at every iteration and higher numbers lessen
both runtime as well as accuracy;

• quiet [FALSE]: a logical indicator determining the verbosity of fsvsample.

For our illustrative example, most settings are left at their default values. The number of
factors is increased from one to two, instead of 1000 we sample 3000 draws8, we estimate a
constant mean, a thinning of 10 is used, and quiet is set to TRUE.

R> set.seed(1)

R> res <- fsvsample(y, factors = 2, draws = 3000, zeromean = FALSE,

+ thin = 10, quiet = TRUE)

5.5. Investigating the output and visualizing the results

The resulting object

R> res

holds a rich amount of information. In particular, it contains

8In the original paper, 10000 draws are sampled.
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Figure 5: Trace plot and empirical autocorrelation function of the log determinant of the
model-implied covariance matrix at t = n.

• draws of certain posterior quantities such as the factors f , the factor loadings Λ, the
various factor and idiosyncratic SV parameters, the latent factor and idiosyncratic log
variances h̃ and h̄, and the intercept β,

• conĄguration settings such as the number of draws, potential restrictions on the loadings
matrix, prior hyperparameters, etc.,

• running moments (such as means and standard deviations) of quantities of interest,
depending on the values of runningstore and runningstoremoments speciĄed when
calling fsvsample(),

• the data input y.

For more details, please investigate str(res) and/or ?fsvsample.

Using covmat(), one can extract the MCMC draws of the implied covariance matrices for all
points in time which have been stored during sampling. By default, this is the last point in
time (keeptime = "last"), and thus

R> dim(cov_n <- covmat(res))

shows that we have stored 300 posterior draws of a 6 × 6 covariance matrix at one point in
time, t = n = 200. To check convergence, one can take a look at the trace plot and the
autocorrelation function of the log determinant, i.e.,

R> logdet <- function (x) log(det(x))

R> logdet_n <- apply(cov_n[,,,1], 3, logdet)

R> ts.plot(logdet_n)

R> acf(logdet_n, main = "")

The results are visualized in Figure 5; decent mixing for this quantity is apparent.

To assess the mixing speed of each individual covariance matrix element, one can check, e.g.,
the estimated effective sample size (out of 300 draws kept) which is implemented in coda.
Again, no major convergence problems are apparent.
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Figure 6: Three estimated correlation matrices and their posterior uncertainty depicted using
circles. Inner (outer) radii of the circles illustrate to the posterior mean minus (plus) two
standard deviations. Colors blue and red represent negative and positive values, respectively.
Furthermore, the transparency of the circles represents the posterior mean. Note that the
diagonal is left white as it trivially contains ones (without uncertainty).

R> round(apply(cov_n, 1:2, coda::effectiveSize))

Assuming that runningstore was set sufficiently high when sampling, several convenience
functions can be used for quick visualizations without having to post-process the MCMC
draws. For example, to visualize the time-varying correlation matrices, consider

R> corimageplot(res, these = seq(1, n, length.out = 3), plotCI = "circle",

+ plotdatedist = 2, date.cex = 1.1)

which produces the three estimated posterior correlation matrices depicted in Figure 6. Set-
ting plotCI = "circle" visualizes posterior uncertainty Ű inner and outer radii correspond
to the posterior mean plus/minus two standard deviations, respectively.

To get an idea about how the marginal volatilities evolve over time, voltimeplot() can be
used. To exemplify,

R> palette(RColorBrewer::brewer.pal(7, "Dark2")[-5])

R> voltimeplot(res, legend = "top")

yields the estimated volatilities in Figure 7. The Ąnancial crisis of 2008 and the capping of
CHFŠs appreciation in September 2011 are clearly visible, while DKKŠs volatility (relative to
EUR) is practically zero. Note that voltimeplot() respects palette changes. In the above
example, RcolorBrewer (Neuwirth 2014) is used. Moreover,

R> palette(RColorBrewer::brewer.pal(6, "Dark2"))

R> cortimeplot(res, 1)

R> cortimeplot(res, 2)

yields the estimated pairwise correlations in Figure 8. While, relative to EUR, the estimated
correlation between AUD and CAD appears to be relatively stable over time, correlations with
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CHF can become negative at times. To visualize the communalities, i.e., the proportions of
variances explained through the latent factors, invoke

R> comtimeplot(res, maxrows = 6)

which yields the estimated communalities in Figure 9.

To gain an even deeper understanding of the estimated model, we now turn towards exam-
ining the latent factors and their variances themselves. To visualize the loadings, the functions
facloadpairplot(), facloadcredplot(), facloadpointplot(), facloadtraceplot(), and
facloaddensplot() are available; the former two are exempliĄed in Figure 10. Moreover,
we can see the factor log variances produced through logvartimeplot(res, show = "fac").
Similarly, logvartimeplot(res, show = "idi") produces plots of the idiosyncratic log vari-
ances which are displayed in Figure 11.

R> facloadpairplot(res)

R> facloadcredplot(res)

R> logvartimeplot(res, show = "fac")

R> logvartimeplot(res, show = "idi", maxrows = 6)

In addition to the above, there is the plotting function paratraceplot() which produces
trace plots of all parameters associated with the log variances processes: mean, persistence,
and volatility of log variances.

In order to provide some guidance when it comes to selecting the number of factors, fac-

torstochvol ships with the function evdiag(). It computes and visualizes the eigenvalues of
Λ

⊤
Λ which can be used as a rough guide in analogy to a scree plot for static factor models.

To use it, one can Ąt a model with a relatively large number of factors and assess the impor-
tance of each of these (in descending order). For example, the code below produces Figure 12,
hinting at a model with no more than four factors.

R> set.seed(6)

R> largemodel <- fsvsample(y, factors = 6)

R> evdiag(largemodel)

5.6. Predicting covariances, correlations, and future observations

One of the main use cases of factorstochvol might be to predict covariance and correlation
matrices of time series. To this end, predcov() and predcor() yield draws from the pos-
terior predictive distribution of these, deĄned in analogy to Equation 12. For instance, the
code below can be used to obtain one-step-ahead posterior predictive means and standard
deviations for the correlation matrix on April 5, 2012 (using data up to April 4 only).

R> set.seed(4)

R> predcor1 <- predcor(res)

R> round(apply(predcor1[,,,1], 1:2, mean), 2)

R> round(apply(predcor1[,,,1], 1:2, sd), 2)
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To obtain draws from the posterior predictive distribution of new data points, one can simply
draw from the corresponding mixture of multivariate normals. In Figure 13, these draws are
visualized via heatpairs() from LSD (Schwalb, Tresch, Torkler, Duemcke, Demel, Ripley,
and Venables 2018).

R> set.seed(5)

R> predcov_1 <- predcov(res)

R> preddraws <- t(res$beta)

R> for (i in seq_len(NROW(preddraws)))

+ preddraws[i,] <- preddraws[i,] + chol(predcov_1[,,i,1]) %*% rnorm(m)

R> plotlims <- quantile(preddraws, c(0.01, 0.99))

R> LSD::heatpairs(preddraws, labels = colnames(y), cor.cex = 1.5, gap = 0.3,

+ xlim = plotlims, ylim = plotlims)

To conclude, we note that convenience functions such as predloglik() or predloglikWB()

may aid in approximating predictive likelihoods (cf., e.g., Geweke and Amisano 2010). For
instance, assuming that the actually observed value of yn+1 = yn+2 = (0, 0, 0, 0, 0, 0)⊤, we
can approximate the one and two step ahead log predictive scores through code along the
following lines.

R> set.seed(6)

R> predloglik(res, matrix(0, nrow = 2, ncol = m), ahead = 1:2, each = 10)

For a more detailed analysis of the out-of-sample performance of factorstochvol for exchange
rate data, we refer to Kastner et al. (2017); for a predictive exercise on stock market data,
please see Kastner (2019).

6. Summary and discussion
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Figure 13: Predictive draws from the one-step-ahead posterior predictive distribution (above
the diagonal) and empirical correlation coefficients (below the diagonal).

We extended the work of Kastner (2016) to other SV models, including the univariate heavy-
tailed SV, the SV model with leverage, and the multivariate factor SV model. We show-
cased the features that are the most important to end users in R: estimation through the
sampler functions, visualization, summary, and prediction methods. Due to its more in-
volved nature, however, we did not include the description of the C++ interface. Two func-
tions called update_fast_sv() and update_general_sv() are exported and programmers
have the possibility to access the samplers in stochvol directly from C++ after linking to
the compiled package. For usage examples, see the implementations of factorstochvol or
shrinkTVP (Knaus, Bitto-Nemling, Cadonna, and Frühwirth-Schnatter 2020). Source code
is available in the GitHub repositories https://github.com/gregorkastner/stochvol and
https://github.com/gregorkastner/factorstochvol.
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