
Package ‘spconf’
November 3, 2024

Title Computing Scales of Spatial Smoothing for Confounding Adjustment

Version 1.0.1

Author Kayleigh Keller [aut, cre],
Maddie Rainey [aut]

Maintainer Kayleigh Keller <kayleigh.keller@colostate.edu>

Description Computes the effective range of a smoothing matrix,
which is a measure of the distance to which smoothing occurs.
This is motivated by the application of spatial splines for adjusting
for unmeasured spatial confounding in regression models, but the
calculation of effective range can be applied to smoothing
matrices in other contexts. For algorithmic details, see Rainey and Keller
(2024) ``spconfShiny: an R Shiny application...'' <doi:10.1371/journal.pone.0311440>
and Keller and Szpiro (2020)
``Selecting a Scale for Spatial Confounding Adjustment'' <doi:10.1111/rssa.12556>.

Depends R (>= 3.5)

Imports flexclust, mgcv

Suggests splines, testthat (>= 2.1.0)

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.1

NeedsCompilation no

Repository CRAN

Date/Publication 2024-11-03 12:20:02 UTC

Contents
computeS . 2
computeTPRS . 3
compute_effective_range . 4
compute_lowCurve . 6
find_first_zero_cross . 7
find_zeros_cross . 8
fitLoess . 8

1

https://doi.org/10.1371/journal.pone.0311440
https://doi.org/10.1111/rssa.12556

2 computeS

Index 10

computeS Compute Smoothing Matrix

Description

Calculates the smoothing (or "hat") matrix from a design matrix.

Usage

computeS(x, inds = 1:nrow(x))

Arguments

x Matrix of spline values, assumed to have full rank. A data frame is coerced into
a matrix.

inds Column indices of smoothing matrix to return (corresponding to rows in x).

Details

Given a matrix X of spline values, this computes S=X(X'X)^(-1)X'. When x has many rows, this
can be quite large. The inds argument can be used to return a subset of columns from S.

Value

An N -by-n matrix, where n is the length of inds and N is the number of rows in x.

See Also

compute_effective_range

Examples

Simple design matrix case
X <- cbind(1, rep(c(0, 1), each=4))
S <- computeS(X)
More complex example
xloc <- runif(n=100, min=0, max=10)
X <- splines::ns(x=xloc, df=4, intercept=TRUE)
S <- computeS(X)
S2 <- computeS(X, inds=1:4)

computeTPRS 3

computeTPRS Create TPRS basis

Description

Compute TPRS basis for given spatial coordinates

Usage

computeTPRS(coords, maxdf, rearrange = TRUE, intercept = FALSE)

arrangeTPRS(tprs, intercept = FALSE)

Arguments

coords Data frame containing the coordinates.

maxdf Largest number of splines to include in TPRS basis

rearrange Logical indicator of whether to rearrange the columns of TPRS basis.

intercept Logical indicator of whether or not to remove the intercept column from the
basis when rearrange is TRUE.

tprs Matrix of TPRS basis values (from computeTPRS).

Details

computeTPRS creates a thin-plate regression spline (TPRS) basis from a two-dimensional set of
coordinate locations using the mgcv package.

The output from mgcv is structured to have the linear terms as the last columns of the matrix. Use
arrangeTPRS() to arrange the matrix columns to be in order of increasing resolution. Specifi-
cally, it moves the last two columns to the left of the matrix and the third-from last column, which
corresponds to the intercept, is optionally removed.

Value

An n-by-k matrix of spline basis functions where n is the number of rows in coords and k is equal
to maxdf

Examples

x <- runif(100)
y <- runif(100)
mat <- computeTPRS(data.frame(x, y), maxdf=4)

4 compute_effective_range

compute_effective_range

Compute effective range

Description

Calculates the effective range for a spline basis matrix.

Usage

compute_effective_range(
X,
coords = X[, c("x", "y")],
df = 3,
nsamp = min(1000, nrow(X)),
smoothedCurve = FALSE,
newd = seq(0, 1, 100),
scale_factor = 1,
returnFull = FALSE,
cl = NULL,
namestem = "tprs",
inds = NULL,
verbose = FALSE,
span = 0.1

)

compute_effective_range_nochecks(
X,
inds,
newd,
D,
smoothedCurve = FALSE,
scale_factor = 1,
returnFull = FALSE,
cl = NULL,
span = 0.1

)

Arguments

X Matrix of spline values. See namestem for expected column names.

coords Matrix of point coordinates. Defaults to the x and y columns of X, but can have
a different number of columns for settings with different dimensions.

df Degrees of freedom for which effective range should be computed.

nsamp Number of observations from X from which to sample. Defaults to minimum of
1,000 and nrow(X).

compute_effective_range 5

smoothedCurve Should the effective range be computed using the procedure introduced by Keller
and Szpiro, 2020, (TRUE) or the procedure introduced by Rainey and Keller,
2024, (FALSE). See Details.

newd Distance values at which to make loess predictions. Should correspond to dis-
tances in the same units as coords. Only needed when smoothedCurve is TRUE.

scale_factor Factor by which range should be scaled. Often physical distance corresponding
to resolution of grid. Defaults to 1, so that range is reported on the same scale
as distance in coords. Only needed when smoothedCurve is TRUE.

returnFull Should the mean and median curves be returned (TRUE), or just the range value
of where they first cross zero (FALSE).

cl Cluster object, or number of cluster instances to create. Defaults to no paral-
lelization.

namestem Stem of names of columns of X corresponding to evaluated splines. Defaults to
"", meaning names of the form 1, 2, ...

inds Indices of observations to use for computation. Passed to computeS.

verbose Control printing of a df counter to console.

span Passed to fitLoess. If too small, then can lead to unstable loess estimates. Only
needed when smoothedCurve is TRUE.

D Distance matrix for coordinates.

Details

Using the given spline basis and the inputted coordinates, the effective bandwidth is computed
for the given degrees of freedom. This is accomplished by computing a distance matrix from the
coordinates and a smoothing matrix from the basis. Setting smoothedCurve = TRUE (see Keller
and Szpiro, 2020, for details), for each column of smoothing weights, a LOESS curve is fit to the
smoothing weights as a function of the distances, and the distance where the curve first crosses
zero is obtained. Setting smoothedCurve = FALSE (see Rainey and Keller, 2024, for details), for
each column of smoothing weights, the smallest distance that corresponds with the first negative
smoothing weight is obtained. Then, for both procedures, the median of the obtained distances is
reported as the effective bandwidth.

The columns of X are selected by name, and so are assumed to have a numeric value in the column
name that indicates the spline number. For example, the columns containing the first three splines
should be "1", "2", and "3". IF there is a fixed character prefix, that can be supplied via namestem.
For example, if the columns are "s1", "s2", "s3", then set namestem="s".

Value

The effective bandwidth for each value of df. If returnFull = FALSE, then this is a vector of the
same length as df. If returnFull = TRUE and smoothedCurve = TRUE, this is a list that additionally
contains values of the pointwise median and mean of the smoothed curves.

References

Keller and Szpiro (2020). Selecting a scale for spatial confounding adjustment. Journal of the Royal
Statistical Society, Series A https://doi.org/10.1111/rssa.12556.

6 compute_lowCurve

Rainey and Keller (2024). spconfShiny: An R Shiny application for calculating the spatial scale of
smoothing splines for point data. PLOS ONE https://doi.org/10.1371/journal.pone.0311440

See Also

compute_lowCurve

Examples

M <- 16
tprs_df <- 10
si <- seq(0, 1, length=M+1)[-(M+1)]
gridcoords <- expand.grid(x=si, y=si)
tprsX <- computeTPRS(coords = gridcoords, maxdf = tprs_df+1)
compute_effective_range(X=tprsX, coords=gridcoords, df=3:10, smoothedCurve=FALSE)

xloc <- runif(n=100, min=0, max=10)
X <- splines::ns(x=xloc, df=4, intercept=TRUE)
colnames(X) <- paste0("s", 1:ncol(X))
xplot <- 0:10
compute_effective_range(X=X, coords=as.matrix(xloc), df=2:4, newd=xplot,

namestem="s", smoothedCurve = TRUE)

compute_lowCurve Compute loess curves for smoothing matrix

Description

Calculates a loess curve for the smoothing matrix entries, as a function of distance between points.

Usage

compute_lowCurve(S, D, newd, cl = NULL, span = 0.1)

Arguments

S Smoothing matrix, or a subset of columns from a smoothing matrix.

D Distance matrix, or a subset of columns from a distance matrix.

newd Distances to use for loess prediction.

cl Cluster object, or number of cluster instances to create. Defaults to no paral-
lelization.

span Passed to fitLoess

find_first_zero_cross 7

Details

For each column in S, a loess curve is fit to the values as a function of the distances between points,
which are taken from the columns of D. Thus, the order of rows and columns in S should match the
order of rows and columns in D. For a large number of locations, this procedure may be somewhat
slow. The cl argument can be used to parallelize the operation using clusterMap.

Value

List with three elements: n-by-N matrix, where n is the length of newd and N is the number of
columns in S; a vector of length n giving the median curve value; a vector of length n giving the
mean curve value.

See Also

computeS fitLoess

Examples

xloc <- runif(n=100, min=0, max=10)
X <- splines::ns(x=xloc, df=4, intercept=TRUE)
S <- computeS(X)
d <- as.matrix(dist(xloc))
xplot <- 0:10
lC <- compute_lowCurve(S, D=d, newd=xplot)
matplot(xplot, lC$SCurve, type="l", col="black")
points(xplot, lC$SCurveMedian, type="l", col="red")

find_first_zero_cross Find zero

Description

Calculates the zero of a function by linear interpolation between the first two points either side of
zero.

Usage

find_first_zero_cross(x)

Arguments

x Function values, assumed to be ordered

Value

Index of first value of x that lies below 0. Decimal values will be returned using a simple interpola-
tion of the two values straddling 0.

8 fitLoess

See Also

find_zeros_cross, compute_effective_range

find_zeros_cross Find distance to first zero

Description

For a set of distance and smoothing matrix values, determines the smallest distance that corresponds
with negative value for each column of the smoothing matrix.

Usage

find_zeros_cross(D, S)

Arguments

D Distance matrix, or a subset of columns from a distance matrix.

S Smoothing matrix, or a subset of columns from a smoothing matrix.

Value

Vector of length equal to the number of columns in D and S. Each value is the smallest observed
distance (from a column of D) that has a negative value in the corresponding column of S.

fitLoess Fit a loess curve

Description

Wrapper function for fitting and predicting from loess().

Usage

fitLoess(y, x, newx = x, span = 0.5, ...)

Arguments

y Dependent variable values

x Independent variable values

newx Values of x to use for prediction.

span Controls the amount of smoothing. Passed to loess; see that function for details.

... Additional arguments passed to loess

fitLoess 9

Value

A vector of the same length of newx providing the predictions from a loess smooth.

Examples

x <- seq(0, 5, length=50)
y <- cos(4*x) + rnorm(50, sd=0.5)
xplot <- seq(0, 5, length=200)
lfit <- fitLoess(y=y, x=x, newx=xplot, span=0.2)
plot(x, y)
points(xplot, lfit, type="l")

Index

arrangeTPRS (computeTPRS), 3

clusterMap, 7
compute_effective_range, 2, 4, 8
compute_effective_range_nochecks

(compute_effective_range), 4
compute_lowCurve, 6, 6
computeS, 2, 5, 7
computeTPRS, 3

find_first_zero_cross, 7
find_zeros_cross, 8, 8
fitLoess, 5–7, 8

loess, 8

10

	computeS
	computeTPRS
	compute_effective_range
	compute_lowCurve
	find_first_zero_cross
	find_zeros_cross
	fitLoess
	Index

