Package ‘simecol’

June 24, 2025

Version 0.9-3

Title Simulation of Ecological (and Other) Dynamic Systems
Depends R (>= 3.2), deSolve, methods

Imports graphics, grDevices, stats, utils, minqa

Suggests tcltk, FME, lattice

LazyLoad yes

Maintainer Thomas Petzoldt <thomas.petzoldt@tu-dresden.de>

Description An object oriented framework to simulate
ecological (and other) dynamic systems. It can be used for
differential equations, individual-based (or agent-based) and other
models as well. It supports structuring of simulation scenarios (to avoid copy
and paste) and aims to improve readability and re-usability of code.

License GPL (>=2)

URL https://github.com/tpetzoldt/simecol/
NeedsCompilation yes

Author Thomas Petzoldt [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4951-6468>)

Repository CRAN
Date/Publication 2025-06-24 11:40:02 UTC

Contents
simecol-package L 2
addtoenyv L e e e e e e e e 6
approxTime 7
as.simObj L 8
CA . e 9
chemostat L. e e e e e e e 11
COMWAY + v v vt e e e e e e e e e e e e e e e e e 12
diffusion e e 14
editParms L e e e 16

https://github.com/tpetzoldt/simecol/
https://orcid.org/0000-0002-4951-6468

2 simecol-package

eightneighbours 17
fitOdeModel e 18
fromtoby L e 22
initialize-methods 22
Meration e e e e 24
listOrNULL-class o oo e e e e e e 26
IV e 27
IV e 28
mixNamedVec e e e e 30
modelFit-class e e e 31
modelFit-method 31
neighbours L e e e e e 32
observero 35
odeModel e e e e 37
P-CONSLIAIN o ot i s e e 40
PAIMS .« . o o vt e e e e e e e 41
PCUSETIES . . o v v v o e 43
Peaks . . e e 44
plot-methods 45
print-methods 46
SEdit . . . L 47
seedfill e 48
sim-methods L 49
ssqOdeModel e 50
UPCA o v v v v e e e e e e e e e e e e e e e e e e 52
Index 54
simecol-package Simulation of Ecological (and Other) Dynamic Systems
Description

An object oriented framework to simulate ecological (and other) dynamic systems. It can be used
for differential equations, individual-based (or agent-based) and other models as well. It supports
structuring of simulation scenarios (to avoid copy and paste) and aims to improve readability and
re-usability of code.

Details
The DESCRIPTION file:
Package: simecol
Version: 0.9-3
Title: Simulation of Ecological (and Other) Dynamic Systems

Authors@R: c(person("Thomas","Petzoldt", role = c("aut", "cre"), email = "thomas.petzoldt@tu-dresden.de", comment = c(
Depends: R (>= 3.2), deSolve, methods
Imports: graphics, grDevices, stats, utils, minqa

simecol-package 3

Suggests: tcltk, FME, lattice

LazyLoad: yes

Maintainer: ~ Thomas Petzoldt <thomas.petzoldt@tu-dresden.de>

Description: An object oriented framework to simulate ecological (and other) dynamic systems. It can be used for different:
License: GPL (>=2)

URL: https://github.com/tpetzoldt/simecol/
Author: Thomas Petzoldt [aut, cre] (ORCID: <https://orcid.org/0000-0002-4951-6468>)
Archs: x64

The simecol package is intended to give users (scientists and students) an interactive environment
to implement, distribute, simulate and document ecological and other dynamic models without the
need to write long simulation programs. An object oriented framework using the S4 class system
provides a consistent but still flexible approach to implement simulation models of different types:

* differential equation (ODE, PDE) models (class odeModel),

* grid-oriented individual-based models (class gridModel), and
* particle diffusion-type models (class rwalkModel),

e individual-based models (class indbasedModel),

* other model types by deriving a user specified subclass from simObj.

Each simulation model is implemented as S4 object (superclass simObj) with the following slots:

* main = function(time, init, parms, ...): a function holding the main equations of the
model,

* equations: an optional non-nested list holding arbitrary sub-equations (sub-models) of the
model. Sub-equations can be interdependent and can be called directly from within main or
initfunc.

* parms: a list (or vector for some classes) with constant model parameters,

* times: vector of time steps or vector with three named values from, to, by specifying the
simulation time steps. The from-to-by form can be edited with editParms.

e init: initial state (start values) of the simulation. This is typically a named vector (state
variables in odeModels) or matrix (e.g. initial grid of gridModels).

* inputs: time dependend or spatially resolved external inputs can be specified as data frame
or matrix (more efficient). Performance optimized versions of approx (see approxTime) are
available.

* solver: afunction or a character string specifying the numerical algorithm used, e.g. "1soda”,
"rk4" or "euler” from package deSolve). In contrast to "euler” that can be used for dif-
ference equations (i.e. main returns derivatives), "iterator” is intended for models where
main returns the new state (i.e for individual-based models). It is also possible to reference
own algorithms (solvers) that are defined in the user workspace or to assign solver functions
directly.

* observer: optional slot which determines the data stored during the simulation. A user-
provided observer function can also be used to write logging information to the screen or to
the hard-disk, to perform run-time visualisation, or statistical analysis during the simulation.

The observer-mechanism works only with i teration solvers. It is not available for odeModels.

4 simecol-package

e out: this slot holds the simulation results after a simulation run as data frame (if the return
value of main is a vector) or as list (otherwise). The type of data stored in out can be manip-
ulated by providing a user-definded observer function.

e initfunc: this slot can hold an optional function which is called automatically when a new
object is created by new or when it is re-initialized by initialize or sim.
simObj model objects should be defined and created using the common S4 mechanisms (new).

Normally, a simObj object can contain all data needed to run simulations simply by entering the
model object via source() or data() and then to run and plot the model with plot(sim(obj)).

Accessor functions (with names identical to the slot names) are provided to get or set model pa-
rameters, time steps, initial values, inputs, the solver, the main and sub-equations, an observer or
an initfunc and to extract the model outputs. It is also possible to modify the components of the
simecol objects directly, e.g. the model equations of a model 1v with 1v@main, but this is normally
not recommended as there is no guarantee that this will work in a compatible way in future versions.

Models of different type are provided as data and some more in source code (see directory exam-
ples).

The examples can be used as a starting point to write own simObj objects and to distribute them to
whomever you wish.

The package is supplemented with several utility functions (e.g. seedfill or neighbours), which
can be used independently from simObj objects.

Author(s)
Thomas Petzoldt [aut, cre] (ORCID: <https://orcid.org/0000-0002-4951-6468>)

References

Petzoldt, T. and K. Rinke (2007) simecol: An Object-Oriented Framework for Ecological Modeling
in R. Journal of Statistical Software, 22(9). doi:10.18637/jss.v022.i09

See Also

CA, chemostat, conway, diffusion, lv, 1v3, upca.

Examples

(1) Quick Start Examples

data(lv) # load basic Lotka-Volterra model

Not run:
require("tcltk")
lv <- editParms(lv)

End(Not run)
parms(1lv)
main(lv)

1v <- sim(1lv)
plot(lv)

https://doi.org/10.18637/jss.v022.i09

simecol-package

results <- out(lv)

Not run:

data(conway) # Conway's game of life
init(conway) <- matrix(@, 10, 10)
times(conway) <- 1:100

conway <- editInit(conway) # enter some "1"
sim(conway, animate=TRUE, delay=100)

End(Not run)

(2) Define and run your own simecol model

lv <- new("odeModel”,
main = function (time, init, parms) {
with(as.list(c(init, parms)), {
dn1 <- k1 * N1 - k2 * N1 * N2
dn2 <- - k3 * N2 + k2 * N1 x N2
list(c(dn1, dn2))

»
}
parms = c(kl = 0.2, k2 =0.2, k3 =0.2),
times = c(from = @, to = 100, by = 0.5),
init = c(N1 = 0.5, N2 = 1),
solver = "lsoda”

)

1v <- sim(1lv)
plot(lv)

(3) The same in matrix notation; this allows generalization ====
#it to multi-species interaction models with > 2 species. ====

LVPP <- new("odeModel",
main = function(t, n, parms) {
with(parms, {
dn <= r xn +nx*x (A %% n)
list(c(dn))
»
1
parms = list(
growth/death rates
r =ckl =0.2, k3 = -0.2),
interaction matrix
A = matrix(c(0.0, -0.2,
0.2, 0.0),
nrow = 2, ncol = 2, byrow=TRUE)

)?

times = c(from = @, to = 100, by = 0.5),
init = c(N1 = 0.5, N2 = 1),

solver = "lsoda”

6 addtoenv

plot(sim(LVPP))
addtoenv Add Functions from a Non-nested List of Named Functions to a Com-
mon Environment
Description

Create and set an environment where elements (e.g. functions) within a non-nested named list of
functions see each other. This function is normally used within other functions.

Usage

addtoenv(L, p = parent.frame())

Arguments
L a non-nested list of named functions.
p the environment where the functions are assigned to. Defaults to the parent
frame.
Details

This function is used by the ‘solver functions’ of simecol.

Value

The list of functions within a common environment.

Note

This is a very special function that uses environment manipulations. Its main purpose is to ‘open’
the access to interdependend functions within a common list structure (function list).

See Also

attach, environment

Examples

eq <- list(f1 = function(x, y) X +y,
f2 = function(a, x, y) a x f1(x, y)
)

fx <= function(eq) {
eq <- addtoenv(eq)
print(1s())
print(environment(eq$f1))

approxTime 7

f1(3,4) + f2(1,2,3)

3
fx(eq)
eq$f2(2,3,4) # should give an error outside fx
environment (eq$f2) # should return R_GlobalEnv again
approxTime Linear Interpolation with Complete Matrices or Data Frames
Description

Return a data frame, matrix or vector which linearly interpolates data from a given matrix or data
frame.
Usage

approxTime(x, xout, ...)
approxTimel(x, xout, rule = 1)

Arguments
X a matrix or data frame with numerical values giving coordinates of points to
be interpolated. The first column needs to be in ascending order and is inter-
preted as independent variable (e.g. time), the remaining columns are used as
dependent variables.
xout a vector (or single value for approxTime1) of independend values specifying
where interpolation has to be done.
rule an integer describing how interpolation is to take place outside the interval
[min(x), max(x)]. If rule is 1 then NAs are returned for such points and if it
is 2, the value at the closest data extreme is used.
optional parameters passed to approx.
Details

The functions can be used for linear interpolation with a complete matrix or data frame. This can
be used for example in the main function of an odeModel to get input values at a specified time
xout. The version approxTimel is less flexible (only one single value for xout and only linear
interpolation) but has increased performance. Both functions are faster if x is a matrix instead of a
data frame.

Value

approxTime returns a matrix resp. data frame of the same structure as x containing data which
interpolate the given data with respect to xout. approxTimel is a performance optimized special
version with less options than the original approx function. It returns an interpolated vector.

8 as.simObj

See Also

approxfun

Examples

inputs <- data.frame(time = 1:10, y1 = rnorm(10), y2 = rnorm(10, mean = 50))
input <- approxTime(inputs, c(2.5, 3), rule = 2)

as.simObj Coerce simObj Objects to Lists and Vice-Versa

Description

These functions can be used to coerce (i.e. convert) simecol model objects (simObj objects) to
ordinary lists.

Usage
S4 method for signature 'list'
as.simObj(x, ...)
S4 method for signature 'simObj'
as.list(x, ...)

alternative usage:
as(x, "list")
as(x, "simObj")

Arguments
X object to be coerced
for compatibility
Details

Function as.list converts a simObj model to an ordinary list with an additional element ’class’
storing the class name of the original object.

Function as.simObj converts in the opposite direction where the type of the object to be created
is determined by a class name stored in the list element ’class’. If it is missing or contains a non-
existing class name, an error message is printed. Additional list elements which are not slot names
of the corresponding S4 object are omitted.

See Also

odeModel, new, as, as.list, simecol-package

CA 9

Examples

data(lv3)
11v3 <- as(lv3, "list")
olv3 <- as(1llv3, "simObj")

11v3 <- as.list(1lv3)
olv3 <- as.simObj(1l1lv3)

dput(as.list(lv3), control="useSource")

Not run:

save human readable object representation
dput(as.list(lv3), file="1lv3.R", control=c("all"))
read it back and test it

1_1v3 <- dget("1lv3.R")

o_lv3 <- as.simObj(1_1v3)

plot(sim(o_1v3))

End(Not run)

CA Stochastic Cellular Automaton

Description

simecol example: This model simulates a stochastic cellular automaton.

Usage

data(conway)

Format

An S4 object according to the gridModel specification. The object contains the following slots:

main functions with the state transition rules of Coway’s Game of Life.
parms a list with two vector elements:

pbirth probability of birth,
pdeath death probability, dependend on neighbors.

times number of time steps to be simulated.

init a matrix, giving the initial state of the cellular grid (default: rectangle in the middle of the
grid).

Details

To see all details, please have a look into the implementation below.

10

See Also

sim, parms, init, times.

Examples

HH#:

Basic Usage:
work with the example

HH#:

data(CA)
times(CA)["to"] <- 10
plot(sim(CA))

set.seed(345)
times(CA)["to"] <- 50
CA <- sim(CA)

library(lattice)
tcol <- (terrain.colors(13))[-13]
x <- out(CA, last=TRUE)
x <- ifelse(x == 0, NA, x)
levelplot(x,

cuts = 11,

col.regions = tcol,

colorkey = list(at = seq(@, 55, 5))
)

Implementation:
The code of the CA model

CA <- new("gridModel”,
main = function(time, init, parms) {
z <- init
nb <- eightneighbors(z)
pgen <- 1 - (1 - parms$pbirth)*nb
zgen <- ifelse(z == 0 &
runif(z) < pgen, 1, @)
zsurv <- ifelse(z >= 1 &
runif(z) < (1 - parms$pdeath),
z+ 1, 0)
zgen + zsurv
1
parms = list(pbirth = .02, pdeath = 0.01),
times = c(from = 1, to = 50, by = 1),
init = matrix(@, nrow = 40, ncol = 40),
solver = "iteration”
)
init(CA)[18:22,18:22] <- 1

HH#:

chemostat

11

chemostat Chemostat Model

Description

simecol example: Model of continuos culture of microorganisms (chemostat).

Usage

data(chemostat)

Format

An S4 object according to the odeModel specification. The object contains the following slots:

main the differential equations for substrate (S) and cells (X).
parms a vector with the named parameters of the model:

vm maximum growth rate of the cells,

km half saturation constant,

Y yield coefficient (conversion factor of substrate into cells).
D dilution rate,

SO substrate concentration in the inflow.

times simulation time and integration interval.

init vector with start values for substrate (S) and cells (X).

To see all details, please have a look into the implementation below.

See Also

simecol-package, sim, parms, init, times.

Examples

HH#:

Basic Usage:
work with the example

HH#:

data(chemostat)
plot(sim(chemostat))

parms(chemostat)["D"] <- 0.9
plot(sim(chemostat))

HH#:

Implementation:

12

The code of the chemostat model

HH#:

chemostat <- new("odeModel”,
main = function(time, init, parms, inputs = NULL) {
with(as.list(c(init, parms)), {
mu <- vm * S/(km + S) # Monod equation
dx1 <= mu * X = D % X # cells, e.g. algae
dx2 <- D *(S@ - S) - 1/Y x mu *x X # substrate, e.g. phosphorus
list(c(dx1, dx2))

b))
1
parms = c(
vm = 1.0, # max growth rate, 1/d
km = 2.0, # half saturation constant, mumol / L
Y =100, # cells /mumol Substrate
D =0.5, # dilution rate, 1/d
SO = 10 # substrate in inflow, mumol / L
),

times = c(from=0, to=40, by=.5),
init = c(X=10, S=10), # cells / L; Substrate umol / L
solver = "lsoda”

conway

conway The Classical Coway’s Game of Life

Description

simecol example: This model simulates a deterministic cellular automaton.

Usage

data(conway)

Format

An S4 object according to the gridModel specification. The object contains the following slots:

main functions with the state transition rules.
parms A list with two vector elements:

srv number of neighbours, necessary to survive,
gen number of neighbours, necessary to generate a new cell.

times number of time steps to be simulated,

init matrix with the initial state of the cellular grid (default: random).

Details

To see all details, please have a look into the implementation below.

conway 13

References

Gardner, Martin (1970) The Fantastic Combinations of John Conway’s New Solitaire Game ’Life.’
Scientific American, October 1970.

See Also

sim, parms, init, times.

Examples

H
HH

Basic Usage:
explore the example

B
HH
#

data(conway)
plot(sim(conway))

more interesting start conditions

m <- matrix(Q, 40, 40)

m[5:35, 19:21] <- 1

init(conway) <- m

plot(sim(conway), col=c("white", "green"), axes = FALSE)

change survival rules

parms(conway) <- list(srv = c(3,4), gen = c(3, 4))
plot(sim(conway), col = c("white"”, "green"), axes = FALSE)
Not run:

require("tcltk")

init(conway) <- matrix(@, 10, 10)

conway <- editInit(conway) # enter some "1"

sim(conway, animate = TRUE, delay = 100)

HH#:

Implementation:
The code of Conways Game of Life

HH#:

conway <- new("gridModel”,
main = function(time, init, parms) {
X <- init
nb <- eightneighbours(x)
surviv <= (x > 0 & (nb %in% parms$srv))
gener <- (x == @ & (nb %in% parms$gen))

X <- (surviv + gener) > 0@
return(x)
1
parms = list(srv = c(2, 3), gen = 3),
times = 1:17,
init = matrix(round(runif(1000)), ncol = 40),
solver = "iteration”

)

End(Not run)

14 diffusion

diffusion A Random Walk Particle Diffusion Model

Description

simecol example: This is a random walk (basic particle diffusion) model.

Usage

data(diffusion)

Format

An S4 object according to the rwalkModel specification. The object contains the following slots:

main A function with the movement rules for the particles.
parms A list with the following components:

ninds number of simulated particles,
speed speed of the particles,

area vector with 4 elements giving the coordinates (left, bottom, right, top) of the coordinate
system.

times Simulation time (discrete time steps, by-argument ignored).

init Data frame holding the start properties (Cartesian coordinates x and y and movement angle
a) of the particles.

Details

To see all details, please have a look into the implementation.

See Also

sim, parms, init, times.

Examples

HH#
HH
HH

Basic Usage:

explore the example

Not run:

data(diffusion)

(1) minimal example
plot(sim(diffusion))

show "grid of environmental conditions”
image (inputs(diffusion))

(2) scenario

diffusion 15

it with homogeneous environment (no "refuge” in the middle)
no_refuge <- diffusion # Cloning of the whole model object
inputs(no_refuge) <- matrix(1, 100, 100)

plot(sim(no_refuge))

Advanced Usage:
Assign a function to the observer-slot.

observer(diffusion) <- function(state, ...) {
numerical output to the screen
cat("mean x=", mean(state$x),
", mean y=", mean(state$y),
", sd x=", sd(state$x),
", sd y=", sd(state$y), "\n")
animation
par (mfrow=c(2,2))
plot(state$x, state$y, xlab="x", ylab="y", pch=16, col="red", xlim=c(@, 100))
hist(states$y)
hist(state$x)
default case: return the state --> iteration stores it in "out”
state

3

sim(diffusion)

remove the observer and restore original behavior
observer(diffusion) <- NULL

diffusion <- sim(diffusion)

End(Not run)

HA
HH

Implementation:
The code of the diffusion model.
Note the use of the "initfunc"”-slot.
diffusion <- rwalkModel(
main = function(time, init, parms, inputs = NULL) {
speed <- parms$speed
xleft <- parms$areal1]
xright <- parms$areal2]
ybottom <- parms$areal[3]
ytop <- parms$areal4]

X <- init$x # x coordinate

y <- init$y # y coordinate

a <- init$a # angle (in radians)
n <- length(a)

Rule 1: respect environment (grid as given in "inputs")
1a) identify location on "environmental 2D grid” for each individual
i.j <= array(c(pmax(1, ceiling(x)), pmax(1, ceiling(y))), dim=c(n, 2))

16

editParms

1b) speed dependend on "environmental conditions”
speed <- speed * inputs[i.j]

Rule 2:
a <- (a+

Random Walk
2 % pi / runif(a))

dx <- speed * cos(a)
dy <- speed * sin(a)
<- x + dx
<-y +dy

Rule 3: Wrap Around

x <- ifelse(x > xright, xleft, x)
y <- ifelse(y > ytop, ybottom, y)
x <- ifelse(x < xleft, xright, x)
y <- ifelse(y < ybottom, ytop, y)
data.frame(x=x, y=y, a=a)

}?

times = c(from=0, to=100, by=1),

parms = list(ninds=50, speed = 1, area = c(0, 100, @, 100)),
solver = "iteration”,

initfunc = function(obj) {

ninds <-
xleft <-
xright <-
ybottom <-
ytop <=

objeinit <-

obj@parms$ninds

obj@parms$areal1]

obj@parms$areal2]

obj@parms$areal3]

obj@parms$areal4]

data.frame(x = runif(ninds) * (xright - xleft) + xleft,
y = runif(ninds) * (ytop - ybottom) + ybottom,
a = runif(ninds) * 2 x pi)

inp <- matrix(1, nrow=100, ncol=100)
inp[, 45:55] <- 0.2
inputs(obj) <- inp

obj

editParms

Edit ‘parms’, ‘init’ or ‘times’ Slot of ‘simecol’ Objects

Description

The functions invoke an editor dialog for parameters, initial values or time steps of simObj ob-
jects and then assign the new (edited) version of x in the user’s workspace. A Tcl/Tk version or
spreadsheet editor is displayed if possible, depending on the structure of the respective slot.

Usage

editParms(x)
editTimes(x)

editInit(x)

eightneighbours 17

Arguments

X A valid instance of the simObj class.

See Also

sEdit, simObj, parms, times, init, edit

Examples

Not run:

require("tcltk")

data(lv) # load basic Lotka-Volterra model
lv <- editParms(lv)

plot(sim(1lv))

data(conway) # Conway's game of life
init(conway) <- matrix(@, 10, 10)

conway <- editInit(conway) # enter some "1"
sim(conway, animate = TRUE, delay = 100)

End(Not run)

eightneighbours Count Number of Neighbours in a Rectangular Cellular Grid.

Description
This function returns the sum of the eight neibours of a cell within a matrix. It can be used to
simulate simple cellular automata, e.g. Conway’s Game of Life.
Usage
eightneighbours(x)
eightneighbors(x)
Arguments
X The cellular grid, which typically contains integer values of zero (dead cell) or
one (living cell).
Value

A matrix with the same structure as x, but with the sum of the neighbouring cells of each cell.

See Also

seedfill, neighbours, conway

18 fitOdeModel

Examples

n <- 89; m <- 80

x <- matrix(rep(@, m*n), nrow = n)
x[round(runif (1500, 1, m*n))] <- 1
uncomment this for another figure
#x[40, 20:60] <- 1

image(x, col=c("wheat"”, "grey"”, "red"))
X2 <- X
for (i in 2:10){

nb <- eightneighbours(x)

survive with 2 or 3 neighbours
xsurv <- ifelse(x > @ & (nb == 2 | nb ==3), 1, @)

generate for empty cells with 3 neigbours
xgen <- ifelse(x == @ & nb == 3, 1, @)

x <= ((xgen + xsurv)>0)
x2 <- ifelse(x2>1, 1, x2)
x2 <- ifelse(x>0, 2, x2)

image(x2, col=c("wheat”, "grey"”, "red"), add=TRUE)

fitOdeModel Parameter Fitting for odeModel Objects

Description

Fit parameters of odeModel objects to measured data.

Usage

fitOdeModel(simObj, whichpar = names(parms(simObj)), obstime, yobs,
sd.yobs = as.numeric(lapply(yobs, sd)), initialize = TRUE,
weights = NULL, debuglevel = @, fn = ssqOdeModel,
method = c(”"Nelder-Mead”, "BFGS", "CG", "L-BFGS-B", "SANN", "PORT",

"newuoa”, "bobyga"),
lower = -Inf, upper = Inf, scale.par =1,
control = list(), ...)
Arguments
simObj a valid object of class odeModel,
whichpar character vector with names of parameters which are to be optimized (subset of

parameter names of the simObj),

obstime vector with time steps for which observational data are available,

fitOdeModel 19

yobs data frame with observational data for all or a subset of state variables. Their
names must correspond exacly with existing names of state variables in the
odeModel,

sd.yobs vector of given standard deviations (or scale) for all observational variables

given in yobs. If no standard deviations (resp. scales) are given, these are
estimated from yobs,

initialize optional boolean value whether the simObj should be re-initialized after the as-
signment of new parameter values. This can be necessary in certain models to
assign consistent values to initial state variables if they depend on parameters.

weights optional weights to be used in the fitting process. See cost function (currently
only ssqOdeModel) for details.

debuglevel a positive number that specifies the amount of debugging information printed,

fn objective function, i.e. function that returns the quality criterium that is mini-

mized, defaults to ssqOdeModel,

method optimization method, see n1lminb for the PORT algorithm, newuoa resp. bobyga
for the newuoa and bobyqa algorithms, and optim for all other methods,

lower, upper bounds of the parameters for method L-BFGS-B, see optim, PORT see nlminb
and bobyga bobyga. The bounds are also respected by other optimizers by
means of an internal transformation of the parameter space (see p.constrain).
In this case, named vectors are required.

scale.par scaling of parameters for method PORT see nlminb. In many cases, automatic
scaling (scale.par =1) does well, but sometimes (e.g. if parameter ranges
differ several orders of magnitude) manual adjustment is required. Often you get
a reasonable choice if you set scale.par = 1/upper. The parameter is ignored
by all other methods. For "Nelder-Mead”, "BFGS", "CG" and "SANN" parameter
scaling occurs as a side effect of parameter transformation with p.constrain.

control a list of control parameters for optim resp. nlminb,

additional parameters passed to the solver method (e.g. to 1soda).

Details

This function works currently only with odeModel objects where parms is a vector, not a list.

Note also that the control parameters of the PORT algorithm are different from the control parame-
ters of the other optimizers.

Value

A list with the optimized parameters and other information, see optim resp. nlminb for details.

References

Gay, D. M. (1990) Usage Summary for Selected Optimization Routines. Computing Science Tech-
nical Report No. 153. AT&T Bell Laboratories, Murray Hill, NJ.

Powell, M. J. D. (2009). The BOBYQA algorithm for bound constrained optimization without
derivatives. Report No. DAMTP 2009/NA06, Centre for Mathematical Sciences, University of
Cambridge, UK.

20 fitOdeModel

See Also

ssqOdeModel, optim, nlminb, bobyga
Note also that package FME function modFit has even more flexible means to fit model parameters.

Examples are given in the package vignettes.

Examples
======== load example model =========
data(chemostat)

#source("chemostat.R")

derive scenarios
csl <- c¢s2 <- chemostat

generate some noisy data

parms(cs1)[c("vm", "km")] <- c(2, 10)

times(cs1) <- c(from=0, to=20, by=2)

yobs <- out(sim(cs1))

obstime <- yobs$time

yobs$time <- NULL

yobs$S <- yobs$S + rnorm(yobs$S, sd= 0.1 * sd(yobs$S))*2
yobs$X <- yobs$X + rnorm(yobs$X, sd= 0.1 * sd(yobs$X))

time steps for simulation, either small for rk4 fixed step
times(cs2)["by"] <- 0.1
solver(cs2) <- "rk4"

or, faster: use lsoda and and return only required steps that are in the data
times(cs2) <- obstime
solver(cs2) <- "lsoda”

Nelder-Mead (default)
whichpar <- c("vm”, "km")

res <- fitOdeModel(cs2, whichpar=whichpar, obstime, yobs,
debuglevel=0,
control=list(trace=TRUE))

coef(res)

assign fitted parameters to the model, i.e. as start values for next step
parms(cs2)[whichpar] <- coef(res)

alternatively, L-BFGS-B (allows lower and upper bounds for parameters)
res <- fitOdeModel(cs2, whichpar=c("vm”, "km"), obstime, yobs,
debuglevel=0, fn = ssqOdeModel,
method = "L-BFGS-B"”, lower = 0,
control=list(trace=TRUE),

fitOdeModel

atol=1e-4, rtol=le-4)
coef(res)

alternative 2, transform parameters to constrain unconstrained method
Note: lower and upper are *named* vectors
res <- fitOdeModel(cs2, whichpar=c("vm", "km"), obstime, yobs,
debuglevel=0, fn = ssgOdeModel,
method = "BFGS", lower = c(vm=0, km=0), upper=c(vm=4, km=20),
control=list(trace=TRUE),
atol=le-4, rtol=le-4)

coef(res)

alternative 3a, use PORT algorithm
parms(cs2)[whichpar] <- c(vm=1, km=2)

lower <- c(vm=0, km=0)
upper <- c(vm=4, km=20)

res <- fitOdeModel(cs2, whichpar=c("vm", "km"), obstime, yobs,
debuglevel=0, fn = ssgOdeModel,
method = "PORT"”, lower = lower, upper = upper,
control=list(trace=TRUE),
atol=1e-4, rtol=le-4)

coef(res)

alternative 3b, PORT algorithm with manual parameter scaling

res <- fitOdeModel(cs2, whichpar=c("vm", "km"), obstime, yobs,
debuglevel=0, fn = ssgOdeModel,
method = "PORT"”, lower = lower, upper = upper, scale.par = 1/upper,
control=list(trace=TRUE),
atol=T1e-4, rtol=le-4)

coef(res)

set model parameters to fitted values and simulate again
parms(cs2)[whichpar] <- coef(res)

times(cs2) <- c(from=0, to=20, by=1)

ysim <- out(sim(cs2))

plot results

par(mfrow=c(2,1))

plot(obstime, yobs$X, ylim = range(yobs$X, ysim$X))
lines(ysim$time, ysim$X, col="red")

plot(obstime, yobs$S, ylim= range(yobs$S, ysim$S))
lines(ysim$time, ysim$S, col="red")

22 initialize-methods

fromtoby Create Regular Sequence from ’from-to-by’ Vector

Description

This function creates a sequence from named vectors with the names from, to and by.

Usage

fromtoby (times)

Arguments

times A named vector with the names from, to and by.

Details

Named vectors with from, to and by can be used in simecol to specify time steps.

Value

The appropriate vector with a sequence, generated by seq.

See Also

seq

Examples

times <- c(from=1, to=5, by=0.1)
fromtoby(times)

initialize-methods Methods for Function ‘initialize’ in Package ‘simecol’

Description
This function is used to initialize objects derived from the simObj superclass, it is by default auto-
matically called during object creation and by sim.

Usage

S4 method for signature 'simObj'
initialize(.Object, ...)

initialize-methods 23

Arguments
.Object simObj instance which is to be re-initialized.
provided for compatibility with the default method of initialize, or slots of
the object which is to be created (in case of new).
Methods

.Object = ""ANY" Generic function: see new.
.Object = "'simObj" The initialize function is normally called implicitly by new to create new
objects. It may also be called explicitly to return a cloned and re-initialized object.

The simecol version of initialize provides an additonal mechanism to call a user specified
function provided in the initfun slot of a simObj instance that can perform computations
during the object creation process. The initfunc must have obj as its only argument and
must return the modified version of this obj, see examples below. As a side effect end to
ensure consistency, initialize clears outputs stored in slot out from former simulations.

See Also

simObj, new

Examples

Note: new calls initialize and initialize calls initfunc(obj)
lv_efr <- new("odeModel”,

main = function (time, init, parms, ...) {
X <- init
p <- parms

S <- approxTimel(inputs, time, rule=2)["s.in"]
dx1 <= S *x p["k1"] * x[1] - p["k2"] * x[1] * x[2]
dx2 <- - p["k3"] * x[2] + p["k2"] * x[1] x x[2]
list(c(dx1, dx2))

1

parms = c(k1=0.2, k2=0.2, k3=0.2),

times = c(from=0, to=100, by=0.5),

init = c(prey=0.5, predator=1),

solver = "lsoda",

initfunc = function(obj) {
tt <- fromtoby(times(obj))
inputs(obj) <- as.matrix(data.frame(

time = tt,
s.in = pmax(rnorm(tt, mean=1, sd=0.5), 0)
))
obj
}

)
plot(sim(lv_efr)) # initialize called automatically
plot(sim(lv_efr)) # automatic initialization, different figure
lv_efr<- initialize(lv_efr) # re-initialize manually

plot(sim(lv_efr, initialize = FALSE)) # simulation with that configuration

24 iteration

iteration Discrete Simulation

Description

Solver function to simulate discrete ecological (or other) dynamic models. It is normally called
indirectly from sim.

Usage

iteration(y, times=FALSE, func=FALSE, parms=FALSE, animate = FALSE, ...)

Arguments

y the initial values for the system. If y has a name attribute, the names will be
used to label the output matrix.

times times at which explicit estimates for y are desired. The first value in times must
be the initial time.

func a user-supplied function that computes the values of the next time step (not the
derivatives !!!) in the system (the model defininition) at time t. The user-supplied
function func must be called as: yprime = func(t, y, parms). t is the current
time point in the integration, y is the current estimate of the variables in the ode
system, and parms is a vector of parameters (which may have a names attribute,
desirable in a large system).

The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose second element is
a vector (possibly with a names attribute) of global values that are required at
each point in times.

parms vector or list holding the parameters used in func that should be modifiable
without rewriting the function.

animate Animation during the simulation (if available for the specified class.

optional arguments passed to the plot function if animate=TRUE.

Details

The solver method iteration is used to simulate discrete event models. Normally, this function is
run indirectly from sim.

In contrast to differential equation solvers, the main function of the model must not return the first
derivative but instead and explicitly the new state at the specified times.

The actual value of time is available in the main function as time and the current increment as
parms["DELTAT"] or parms$DELTAT. It is element of a vector if parms is a vector and it is a list if
parms is a list.

iteration 25

If iteration is used for difference equations (see example dlogist below), it is mandatory to multi-
ply the incremental part with DELTAT to ensure that variable time steps are correctly respected and
that the first row of the simulation outputs contains the states at .

The default i teration method of class simObj supports the observer mechanism. This means that
a function stored in slot observer is called during each iteration step with the return value of main
as its first argument. You can use this to control the amount of data stored during each iteration step
(e.g. whole population or only mean values for individual based models), to do run-time animation
or to write log files.

As an alternative for models of class odeModel, the iteration method of package deSolve may be
used as a user-defined solver function. This is slightly faster and the output supports the extended
plotting functions, but then no observers are possible and no implicit DELTAT variable.

Value

A list of the model outputs (states . ..) for each timestep.

See Also

sim, observer, parms, 1soda, rk4, euler, iteration.

Examples

data(conway)

plot after simulation:
plot(sim(conway), delay=100)

plot during simulation
sim(conway, animate=TRUE, delay=100)

discrete version of logistic growth equation
Note: function main returns the *new value*, not the derivative

dlogist <- new("odeModel”,
main = function (time, init, parms, ...) {
x <- init
with(as.list(parms), {
X <= x+r*xx* (1 -x/K) * DELTAT
*** add to old value rannrr gspecial parameter with time step
list(c(x))
»
i
parms = c(r=0.1, K=10),
times = seq(@, 100, 1),
init = c(population=0.1),
solver = "iteration"” #!!!

)

plot(sim(dlogist))

26 listOrNULL-class

alternative with function that returns the derivative
discrete steps are realized with the euler method

dlogist <- new("odeModel”,
main = function (time, init, parms, ...) {
X <- init
with(as.list(parms), {
Xx<-r*xx*x(1-x/K)
list(c(x))
»
1
parms = c(r=0.1, K=10),
times = seq(@, 100, 1),

init = c(population=0.1),
solver = "euler”

)

plot(sim(dlogist))

second alternative: use of the "iteration” solver from
package deSolve, that supports extended plotting functions

dlogist <- new("odeModel”,
main = function (time, init, parms, ...) {
x <- init[1]
with(as.list(parms), {
X<=Xx+r*xxx*x (1 -x/K)
*** add to old value
list(c(x))
1)
3
parms c(r=0.1, K=10),
times = seq(@, 100, 1),

init = c(population=0.1),
solver = function(y, times, func, parms, ...)
ode(y, times, func, parms, ..., method="iteration")
)
plot(sim(dlogist))
1istOrNULL-class Helpful Union Classes
Description

Classes representing either list or NULL (i.e. empty), function or NULL, function or character
vector, numeric vector or list, or list or data.frame.

Iv 27

Objects from the Class

These classes are virtual: No objects may be created from it.

Methods

No methods exist for these classes.

See Also
simObj

lv Lotka-Volterra Predator-Prey Model

Description

simecol example: basic Lotka-Volterra predator prey-model.

Usage
data(lv)

Format
An S4 object according to the odeModel specification. The object contains the following slots:
main Lotka-Volterra equations for predator and prey.

parms Vector with the named parameters of the model:

k1 growth rate of the prey population,
k2 encounter rate of predator and prey,
k3 death rate of the predator population.

times Simulation time and integration interval.

init Vector with start values for predator and prey.

Details

To see all details, please have a look into the implementation.

References

Lotka, A. J. 1925. Elements of physical biology. Williams and Wilkins, Baltimore.

Volterra, V. (1926). Variazionie fluttuazioni del numero d’individui in specie animali conviventi.
Mem. Acad.Lincei, 2, 31-113.

See Also

simecol-package, sim, parms, init, times.

28 Iv3

Examples

HH#:

Basic Usage:

explore the example
data(lv)

print(lv)

plot(sim(1lv))

parms(lv) <- c(k1=0.5, k2=0.5, k3=0.5)
plot(sim(1lv))

HH#
H#
HH

Implementation:
The code of the Lotka-Volterra-model

HH#
HH#
HH

1lv <- new("odeModel”,

main = function (time, init, parms) {
X <- init
p <- parms
dx1 <= p["k1"] * x[1] - p["k2"] * x[1] * x[2]
dx2 <= - p["k3"] * x[2] + p["k2"] * x[1] * x[2]
list(c(dx1, dx2))

1

parms = c(k1=0.2, k2=0.2, k3=0.2),

times = c(from=0, to=100, by=0.5),

init = c(prey=0.5, predator=1),
solver = "rk4"
)
1v3 Lotka-Volterra-Type Model with Resource, Prey and Predator
Description

simecol example: predator prey-model with three equations: predator, prey and resource (e.g. nu-
triens, grassland).

Usage
data(lv3)

Format
A valid S4 object according to the odeModel specification. The object contains the following slots:

main Lotka-Volterra equations for predator prey and resource.

parms Vector with named parameters of the model:

Iv3

c growth rate of the prey population,

d encounter rate of predator and prey,

e yield factor (allows conversion with respect to d),
f death rate of the predator population,

g recycling parameter.

inputs Time series specifying external delivery of resource.
times Simulation time and integration interval.
init Vector with start values for s, p and k.

s Resource (e.g. grassland or phosphorus).
p Producer (prey).
k Consumer (predator).

solver Character string specifying the integration method.

See Also

simecol-package, sim, parms, init, times.

Examples

HH
HH

Basic Usage:
explore the example

HH
HH

data(lv3)

plot(sim(1lv3))
times(1v3)["by"] <- 5 # set maximum external time step to a large value
plot(sim(1lv3)) # wrong! automatic time step overlooks internal inputs

plot(sim(lv3, hmax = 1)) # integration with correct maximum internal time step

HH#:

Implementation:
The code of the model
1v3 <- new("odeModel”,
main = function(time, init, parms, inputs) {
s.in <- approxTimel(inputs, time, rule = 2)["s.in"]
with(as.list(c(init, parms)),{
ds <- s.in - b*sxp + gxk
dp <- c*s*p - dxk#*p
dk <- expxk - fxk
list(c(ds, dp, dk), s.in = s.in)
»

h
parms = c(b = 0.1, c=0.1, d=0.1, e = 0.1, f =0.1, g = 0),
times = c(from = @, to = 200, by = 1),
inputs = as.matrix(
data.frame(
time = c(@, 99, 100, 101, 200),
s.in = c(@.1, 0.1, 0.5, 0.1, 0.1)

29

30 mixNamedVec

)

) ’
init = c(s =1, p=1, k = 1), # substrate, producer, consumer
solver = "lsoda"
)
mixNamedVec Mix Two Named Vectors, Resolving Name Conflicts
Description

The function mixes two named vectors. The resulting vectors contains all elements with unique
name and only one of the two versions of the elements which have the same name in both vectors.

Usage

mixNamedVec(x, y, resolve.conflicts = c("x", "y"), warn = TRUE)
Arguments

X first named vector,

y second named vector,

resolve.conflicts
name of the vector from which all elements are taken,

warn an indicator if a warning should be given if elements are not unique. This ar-
gument should usually set to FALSE, but the default is TRUE to be on the safe
side.
Value

a vector with all elements from one vector and only these elements of the second, that have a unique
name not contained in the other vector.

Author(s)

Thomas Petzoldt

See Also

which

modelFit-class

Examples

x <- c(a=1, b=2, c=3)
y <= c(a=1, b=3, d=3)

mixNamedVec(x, y)
mixNamedVec(x, y, resolve.conflicts="x")

mixNamedVec(x, y, resolve.conflicts="x", warn=FALSE)
mixNamedVec(x, y, resolve.conflicts="y", warn=FALSE)

without names, returns vector named in "resolve conflicts”
x <- as.vector(x)

y <- as.vector(y)

mixNamedVec(x, y)

mixNamedVec(x, y, resolve.conflicts="y")

names partly
x <- c(4, a=1,
y <- c(a=1, 6,

mixNamedVec(x, y)
mixNamedVec(x, y, resolve.conflicts="y")

31

modelFit-class Class of Fitted Model Parameters

Description

Class that contains parameters and other information returned by fitOdeModel.

Methods

coef, deviance, print

See Also

fitOdeModel

modelFit-method Show Results of Model Fits

Description

Functions to access the results of parameter fits.

32

Usage

S4 method for signature
coef(object, ...)

S4 method for signature
deviance(object, ...)

S4 method for signature
summary (object, ...)

S4 method for signature
x$name

S4 method for signature
x[i, j, ..., drop=TRUE]

S4 method for signature

'modelFit'

'modelFit'

'modelFit'

'modelFit'

'modelFit'

'modelFit'

xLli, 3,

Arguments
object, x

i’j
name

drop

See Also

.1

’modelFit’ object from which to extract element(s).

indices specifying elements to extract. Indices are numeric or character vectors
or empty (missing) or NULL.

a literal character string or a name (possibly backtick quoted). For extraction,
this is normally partially matched to the names of the object.

For matrices and arrays. If TRUE the result is coerced to the lowest possible
dimension.

other arguments pased to the methods

fitOdeModel, Extract

neighbours

Count Number of Neighbours on a Rectangular Grid.

Description

This is the base function for the simulation of deterministic and stochastic cellular automata on

rectangular grids.

Usage

neighbours(x, state = NULL, wdist = NULL, tol = 1e-4, bounds = 0)
neighbors(x, state = NULL, wdist = NULL, tol = 1e-4, bounds = 0)

neighbours

Arguments

X

state

wdist

tol

bounds

Details

33

Matrix. The cellular grid, in which each cell can have a specific state value, e.g.
zero (dead cell) or one (living cell) or the age of an individual.

A value, whose existence is checked within the neighbourhood of each cell.

The neighbourhood weight matrix. It has to be a square matrix with an odd
number of rows and columns).

Tolerance value for the comparision of state with the state of each cell. If tol
is a large value, then more than one state can be checked simultaneously.

A vector with either one or four values specifying the type of boundaries, where
0 means open boundaries and 1 torus-like boundaries. The values are specified
in the order bottom, left, top, right.

The performance of the function depends on the size of the matrices and the type of the boundaries,
where open boundaries are faster than torus like boundaries. Function eightneighbours is even

faster.

Value

A matrix with the same structure as x with the weighted sum of the neigbours with values between
state - tol and state + tol.

See Also

seedfill, eightneighbours, conway

Examples

#it

Demonstration of the neighborhood function alone

#it

weight matrix for neighbourhood determination
wdist <- matrix(c(0.5,0.5,0.5,0.5,0.5,

state matrix
n <- 20; m<- 20

1.0,1.
1.0,1.
,1.0,1.
0.5,0.

x <- matrix(rep(@, m * n), nrow = n)

set state

x[1, 5] <-
x[n, 15] <-
x[5, 2] <-

of some cells to 1
x[10, 10] <- 1

_

34

neighbours

x[15, m] <-1
#x[n, 11 <- 1 # corner

opar <- par(mfrow = c(2, 2))

start population

image (x)

open boundaries

image(matrix(neighbours(x, wdist = wdist, bounds = @), nrow = n))

torus (donut like)

image(matrix(neighbours(x, wdist = wdist, bounds = 1), nrow = n))

cylinder (left and right boundaries connected)

image(matrix(neighbours(x, wdist = wdist, bounds = c(@, 1, @, 1)), nrow = n))
par(opar) # reset graphics area

#H
The following example demonstrates a "plain implementation” of a
stochastic cellular automaton i.e. without the simecol structure.
#H

A simecol implementation of this can be found in

the example directory of this package (file: stoch_ca.R).

#H#
mycolors <- function(n) {
col <- c("wheat"”, "darkgreen")
if (n>2) col <- c(col, heat.colors(n - 2))
col
3
pj <- 0.99 # survival probability of juveniles
pa <- 0.99 # survival probability of adults
ps <- 0.1 # survival probability of senescent
ci <- 1.0 # "seeding constant”
adult <- 5 # age of adolescence
old <- 10 # age of senescence

Define a start population
n <- 80

m <- 80

X <= rep(@, m*n)

stochastic seed
x[round(runif(20,1,m*n))] <- adult
dim(x)<- c(n, m)

rectangangular seed in the middle
x[38:42, 38:42] <- 5

plot the start population
image(x, col = mycolors(2))

e
Simulation loop (hint: increase loop count)

B — oo o
for (i in 1:10){

observer 35

rule 1: reproduction
1.1 which cells are adult? (only adults can generate)
ad <- ifelse(x >= adult & x < old, x, 0)

1.2 how much (weighted) adult neighbours has each cell?
nb <- neighbours(ad, wdist = wdist)

1.3 a proportion of the seeds develops juveniles
simplified version, you can also use probabilities
genprob <- nb x runif(nb) * ci

xgen <- ifelse(x == @ & genprob >= 1, 1, 0)

rule 2: growth and survival of juveniles

xsurvj <- ifelse(x >= 1 & x < adult & runif(x) <= pj, x+1, 0)
rule 2: growth and survival of adults

xsurva <- ifelse(x >= adult & x < old & runif(x) <= pa, x+1, 0)
rule 2: growth and survival of senescent

xsurvs <- ifelse(x >= old & runif(x) <= ps, x+1, @)

make resulting grid of complete population
X <- xgen + Xsurvj + xsurva + Xsurvs

plot resulting grid

image(x, col = mycolors(max(x) + 1), add = TRUE)

if (max(x) == @) stop("extinction”, call. = FALSE)
3

modifications: pa<-pj<-0.9

additional statistics of population structure
with table, hist, mean, sd,

observer Get or Set an Observer Functions to an ‘simObj’ Object

Description
Get or set a user-defined observer to enable user-specified storage of simulation results, visualisation
or logging.

Usage

observer(obj, ...)
observer(obj) <- value

Arguments
obj A valid simObj instance.
value A function specifying an observer, see Details.

Reserved for method consistency.

36 observer

Details

The observer can be used with solver iteration or a user-defined solver function. It does not work
with differential equations solvers.

The observer is a function with the following arguments:
function(state)

or:

function(state, time, i, out, y)

Where state is the actual state of the system, time and i are the simulation time and the indexof
the time step respectively, out is the output of the actual simulation collected so far. The original
object used in the simulation is passed via y and can be used to get access on parameter values or
model equations.

If available, the observer function is called for every time step in the iteration. It can be used for
calculations “on the fly” to reduce memory of saved data, for user-specified animation or for logging
purposes.

If the value returned by observer is a vector, than resulting out will be a data. frame, otherwise it
will be a list of all states.

Value
The observer function either modifies obj or it returns the assigned observer function or NULL (the
default).

See Also

iteration for the iteration solver,
parms for accessor and replacement functions of other slots,

simecol-package for an overview of the package.

Examples

load model "diffusion”
data(diffusion)

solver(diffusion) # solver is iteration, supports observer
times(diffusion) <- c(from=0, to=20, by=1) # to can be increased, to e.g. 100

== Example 1

assign an observer for visualisation
observer(diffusion) <- function(state) {
numerical output to the screen
cat("mean x=", mean(state$x),
", mean y=", mean(state$y),
", sd x=", sd(state$x),
", sd y=", sd(state$y), "\n")
animation
par(mfrow = c(2, 2))

odeModel 37

plot(state$x, state$y, xlab = "x", ylab = "y", pch = 16,
col = "red”, xlim = c(0, 100))

hist(state$y)

hist(state$x)

default case:
return the state --> iteration stores full state in "out”
state

}

sim(diffusion)

#i## == Example 2

an extended observer with full argument list
observer(diffusion) <- function(state, time, i, out, y) {
numerical output to the screen
cat("index =", i,
", time =", time,
", sd x=", sd(state$x),
", sd y=", sd(state$y), "\n")
animation
par(mfrow = c(2, 2))
plot(state$x, state$y, xlab = "x", ylab = "y", pch = 16,
col = "red”, xlim = c(@, 100))
hist(state$y)
hist(state$x)
if (is.matrix(out)) # important because out may be NULL for the first call
matplot(out[,1], out[,-1]) # dynamic graph of sd in both directions

"

return a vector with summary information
c(times = time, sdx=sd(state$x), sdy=sd(state$y))
3

diffusion <- sim(diffusion)

== Restore default

observer(diffusion) <- NULL # delete observer
diffusion <- sim(diffusion)

odeModel Generating-functions (Constructors) to Create Objects of Classes
‘odeModel’, ‘rwalkModel’ and ‘gridModel’.

Description

These functions can be used to create simObj instances without using new explicitly.

38 odeModel

Usage

odeModel (obj = NULL, main = NULL,
equations = NULL, times = c(from = @, to = 10, by = 1),
init = numeric(@), parms = numeric(Q),
inputs = NULL, solver = "rk4", initfunc = NULL)

gridModel (obj = NULL, main = NULL,
equations = NULL, times = c(from=0, to=10, by=1),
init = matrix(@), parms = list(),
inputs = NULL, solver = "iteration”, initfunc = NULL)

rwalkModel (obj = NULL, main = NULL,
equations = NULL, times = c(from = @, to = 10, by = 1),
init = NULL, parms = list(),
inputs = NULL, solver = "iteration”, initfunc = NULL)

indbasedModel (obj = NULL, main = NULL,
equations = NULL, times = c(from = @, to = 10, by = 1),
init = NULL, parms = list(),
inputs = NULL, solver = "iteration”, initfunc = NULL)

Arguments
obj Unnamed arguments are regarded as objects of the corresponding class. If obj
is omitted, the new object is created from scratch.
main The main equations of the model.
equations The sub-models (sub-equations and of the model).
times A vector of time steps or a vector with three named values from, to, by spec-
ifying the simulation time steps. The ‘from-to-by’ form can be edited with
editParms.
init Initial values (start values) of the state variable given as named vector.
parms A vector or list (depending on the respective class) of constant parameters.
inputs Optional time-dependend input variables (matrix or data frame).
solver The solver used to integrate the model.
initfunc The function is called by the initialize mechanism and allows direct access
and manipulation of all slots of the object in creation
Details

These functions provide an alternative way to create simObj instances in addition to the standard
S4 new mechanism. The functions are provided mainly for compatibility with older versions of
simecol.

See simecol-package and the examples for details about the slots.

Value

The function returns an S4 object of type odeModel, rwalkModel, gridModel

odeModel

See Also

new, simecol-package

Examples

(1) Define and run your own simecol model with new

lv <- new("odeModel”,
main = function (time, init, parms)
with(as.list(c(init, parms)), {
dn1 <= k1 * N1 - k2 * N1 * N2
dn2 <- - k3 * N2 + k2 * N1 * N2
list(c(dn1, dn2))

»

1
parms = c(kl = 0.2, k2 = 0.2, k3 =
times = c(from = @, to = 100, by =
init = ¢(N1 = 0.5, N2 = 1),
solver = "lsoda”

)

... or use the generating function

lv <- odeModel(
main = function (time, init, parms)
with(as.list(c(init, parms)), {
dn1 <- k1 * N1 - k2 * N1 * N2
dn2 <- - k3 * N2 + k2 * N1 x N2
list(c(dn1, dn2))

»
}
parms = c(kl = 0.2, k2 = 0.2, k3 =
times = c(from = @, to = 100, by =
init = c(N1 = 0.5, N2 = 1),
solver = "lsoda”

)

lv <- sim(1lv)
plot(lv)

0.5),

(2) Conway's Game of Life

set.seed(23) # to make it reproducible

conway <- new("gridModel”,

main = function(time, x, parms) {
nb <- eightneighbours(x)
surviv <- (x > 0 & (nb %in% parms$srv))
gener <- (x == 0 & (nb %in% parms$gen))
X <- (surviv + gener) > 0@
return(x)

}?

40 p.constrain

parms = list(srv = c(2, 3), gen = 3),

times = 1:17,
init = matrix(round(runif(1000)), ncol=40),
solver = "iteration”

)

sim(conway, animate=TRUE)

p.constrain Transform Data Between Unconstrained and Box-constrained Scale

Description

These functions can be used to transform a vector of data or parameters between unconstrained
[-Inf, Inf] and box-constrained representation (interval [lower, upper]).

Usage
p.constrain(p, lower = -Inf, upper = Inf, f = 1)
p.unconstrain(p, lower = -Inf, upper = Inf, f = 1)
Arguments
p vector of data (e.g. model parameters),
lower, upper vectors with lower resp. upper bounds used for transformation,
f optional scaling factor.
Details

These functions are employed by fitOdeModel ssgOdeModel in order to be able to use the uncon-
strained optimizers of optim for constrained optimization.

The transformation functions are

p = tan(mw/2 - (2p — upper — lower) /(upper — lower)) - 1/ f

and its inverse

p = (upper + lower) /2 + (upper — lower) - arctan(f - p’) /7

Value

vector with transformed (resp. back-transformed) values.

parms 41

References
This trick seems to be quite common, but in most cases it is preferred to apply optimizers that can
handle constraints internally.

Reichert, T. (1998) AQUASIM 2.0 User Manual. Computer Program for the Identification and
Simulation of Aquatic Systems. Swiss Federal Institute for Environmental Science and Technology
(EAWAG), CH - 8600 Duebendorf Switzerland, https://www.eawag.ch/de/abteilung/siam/
software/.

See Also
fitOdeModel, ssqOdeModel

Examples

xx <- seq(-100, 100, 2)
plot(xx, yy<-p.constrain(xx, -20, 45), type="1")
points(p.unconstrain(yy, -20, 45), yy, col="red")

parms Accessor Functions for ‘simObj’ Objects

Description
Get or set simulation model parameters, main or sub-equations, initial values, time steps or solvers
and extract simulation results.

Usage
parms(obj, ...)

parms(obj) <- value

main(obj, ...)
main(obj) <- value

equations(obj, ...)
equations(obj) <- value

init(obj, ...)
init(obj) <- value

inputs(obj, ...)
inputs(obj) <- value

times(obj, ...)
times(obj) <- value

solver(obj, ...)

https://www.eawag.ch/de/abteilung/siam/software/
https://www.eawag.ch/de/abteilung/siam/software/

42 parms

solver(obj) <- value

#observer(obj, ...)
#observer(obj) <- value

initfunc(obj, ...)
initfunc(obj) <- value

out(obj, ...)
out(obj) <- value

Arguments
obj A valid simObj instance.
value Named list, vector, function or other data structure (depending on the slot and
model class) with the same structure as the value returned by parms. Either all
or a subset of values (e.g. single elements of vectors or lists) can be changed at
once.
Reserved for method consistency.
Details

These are the accessing functions for parms, times etc.

Please take care of the semantics of your model when changing slots. All, element names, data
structure and values have to correspond to you model object definition. For example in init the
applied names must exactly correspond to the names and number (!) of state variables. The restric-
tions of parms or equations are less strict (additional values for “future use” are allowed).

The function times allows either to assign or to modify a special vector with three elements named
from, to and by or to overwrite times with an un-named sequence (e.g. seq(1, 100, 0.1).

To ensure object consistency function out cannot assign arbitrary values. It can only extract or
delete the contents (by assigning NULL) of the out-slot.

Value

A list, named vector, matrix or function (for main slot) or list of functions (equation slot) or other
appropriate data structure depending on the class of the model object.

See Also

General explanation of the slots can be found in simecol-package.

Usage of the observer slot is found in the special help file observer.

Examples

data(lv)

parms(1lv)

parms(1lv) <- c(kl = 0.2, k2 = 0.5, k3 =0.3)
parms(lv)["k2"] <- 0.5

pcuseries 43

data(conway)
parms(conway)
parms(conway)$srv <- c(2, 2)
parms (conway)

add a new named parameter value
parms(1v)["dummy”] <- 1

remove dummy parameter

parms(lv) <- parms(lv)[names(parms(lv)) != "dummy"]

simulation and extraction of outputs
lv <= sim(lv)
o <- out(lv)

remove outputs from object
out(lv) <- NULL

store object persistently to the disk

Not run:

save(lv, file = "lv.Rdata") # in binary form
dput(as.list(lv), file = "1lv-list.R") # in text form

End(Not run)

pcuseries Generate Plackett Bivariate Random Numbers

Description

Generate bivariate uniform random numbers according to the Plackett distribution.

Usage

pcu(x, alpha = rho2alpha(rho), rho)
pcuseries(n, alpha = rho2alpha(rho), rho, min = @, max = 1)

alpha2rho(alpha)
rho2alpha(rho)

Arguments
n number of observations.
X vector of uniformly [0, 1] distributed real numbers.
alpha association coefficient of the Plackett distribution.
rho Pearson correlation coefficient.

min, max lower and upper limits of the distribution. Must be finite.

44 peaks

Details

The functions can be used to generate bivariate distributions with uniform marginals. Function
pcu generates a vector of uniform random values of length(x) which are correlated to the corre-
sponding vector x, pcuseries generates an auto-correlated series, and alpha2rho resp. rho2alpha
convert between the Pearson correlation coefficient and the association measure of the Plackett dis-
tribution.

References
Johnson, M., Wang, C., & Ramberg, J. (1984). Generation of multivariate distributions for statistical
applications. American Journal of Mathematical and Management Sciences, 4, 225-248.

Nelsen, R. B. (2006). An Introduction to Copulas. Springer, New York.

See Also

runif

Examples

X <= runif(100)

y <- pcu(x, rho = 0.8)
plot(x, y)

cor(x, y)

X <- pcuseries(1000, rho=0.8)
plot(x, type="1")

acf(x)

pacf(x)

peaks Find Peaks Within xy-Data

Description
The function returns maxima (values which have only smaller neighbours) and minima (values
which have only larger neighbours).

Usage

peaks(x, y=NULL, mode="maxmin")

Arguments
X,y the coordinates of given points.
mode specifies if both maxima and minima (mode="maxmin") or only maxima (mode="max")

or minima (mode="min") are requested.

plot-methods 45

Value

A list with x and y coordinates of all peaks.

See Also

approx, upca

Examples

x <- sin(seq(@, 10, 0.1))
plot(x)
points(peaks(x), col="red"”, pch=15)

plot-methods Methods for Function plot in Package ‘simecol’

Description

Methods for function plot in package simecol.

Usage

S4 method for signature 'simObj,missing'’

plot(x, vy, ...)
S4 method for signature 'odeModel,missing'

plot(x, vy, ...)

S4 method for signature 'odeModel,odeModel'
plot(x, vy, ...)

S4 method for signature 'gridModel,missing'
plot(x, y, index=1:length(x@out), delay=0, ...)

S4 method for signature 'rwalkModel,missing'’
plot(x, y, index=1:length(x@out), delay=0, ...)

Arguments

X an object of class simObj,
y either a second odeModel object or ignored,
index index of time steps to be plotted,
delay delay (in ms) between consecutive images (for gridModels) or xy-plots (for

rwalkModels),

optional plotting parameters.

46 print-methods

Methods

x ="ANY",y="ANY" Generic function: see plot.
x = "'simObj", ... template function, does nothing and only issues a warning.

x = "odeModel", ... plots time series of the state variables where one or more odeModel objects
can be supplied. Optional plotting parameters are possible, too. See plot.deSolve for details.

x = ""gridModel", ... displays a series of images for the simulated grid.

x = "rwalkModel", ... displays a series of x-y plots of the simulated individuals.

print-methods Methods for Function ‘print’ in Package ‘simecol’

Description

Methods for function print in Package simecol.

Usage
S4 method for signature 'simObj'
print(x, all = FALSE, ...)
Arguments
X an object of class simObj or one of its subclasses.
all specifies whether all slots are printed. Default is that only not-empty slots are

printed and the contents of out are suppressed.

optional parameters passed to print.

Methods

x ="ANY" generic function: see print.

x = "simObj"" prints the contents (slots) of the simObj object.

sEdit 47

sEdit Simple editing

Description

Simple Editing of Vectors, Lists of Vectors and Other Objects.

Usage
sEdit(x, title = "Please enter values:")
Arguments
X A named object that you want to edit.
title A title for the dialog box.
Details

If called with a vector or list of vectors and if Tcl/Tk is installed, a dialog box is shown in which
data can be entered. If the x is not of type vector or list of vectors, a default editing method is called.

Value

An object with the same type like x.

See Also

edit editParms

Examples

Not run:

require("tcltk")

named vector

vec <-c(a=1, b =20, c =0.03)

new <- sEdit(vec)

unnamed vector

sedit(numeric(10))

list of vectors

Ist <- list(vec = vec, test = 1:10)

sEdit(1lst)

list with numeric and character vectors mixed
1st <- list(vec = vec, test = c("a", "b", "c"))
sEdit(1lst)

End(Not run)

48 seedfill

seedfill Color Fill Algorithm

Description

Fills a bounded area within a numeric matrix with a given number (color).

Usage
seedfill(z, x=1, y=1, fcol=0, bcol=1, tol=1e-6)

Arguments
z a matrix containing an image (double precision values are possible).
X,y start coordinates of the filled area.
fcol numeric value of the fill color.
bcol numeric value of the border value.
tol numeric value of border color tolerance.
Details
The function implements a basic color fill algorithm for use in image manipulation or cellular
automata.
Value

A matrix with the same structure as z.

See Also

neighbours

Examples

define a matrix
z<-matrix(@, nrow=20, ncol=20)

draw some lines
z[10,]1<-z[,10] <- 1
z[5,] <-z[,5] <- 3

plot matrix and filled variants
par(mfrow=c(2, 2))

image(z)

image(seedfill(z))

image(seedfill(z ,x=15, y=15, fcol=1, bcol=3))
image(seedfill(z, x=7, y=7, fcol=3, bcol=1))

sim-methods 49

sim-methods Simulation of ’simObj’ model objects

Description

This function provides the core functionality of the ‘simecol’ package. Several methods depending
on the class of the model are available.

Usage
sim(obj, initialize=TRUE, ...)
sim(obj, animation=FALSE, delay=0, ...)
Arguments
obj an object of class simObj or one of its subclasses.
initialize re-initialize the object if the object contains a user-defined initializing func-
tion (initfunc). Setting initialize to FALSE can be useful to avoid time-
consuming computations during initialization or to reproduce simulations of
models which assign random values during the initialization process.
animation logical value to switch animation on (for classes gridModel and rwalkModel.
delay delay (in ms and in addition to the time needed for the simulation) between
consecutive images (for gridModels) or xy-plots (for rwalkModels).
optional parameters passed to the solver function (e.g. hmax for 1soda).
Details

sim re-initializes the model object (if initialize==TRUE and calls the appropriate solver, spec-
ified in the solver-slot. Objects of class rwalkModel and indbasedModel are simulated by the
default simObj method. If you derive own sublasses from simObj it may be neccessary to write an
appropriate sim method and/or solver function.

Value

The function returns the complete simObj instance with the simulation results in the out slot.

Methods

obj = "'simObj" simulates the respective model object with optional animation.
obj = "odeModel" simulates the respective model object.
obj = "indbasedModel" simulates the respective model object with optional animation.

obj = "gridModel" simulates the respective model object with optional animation.

50

Examples

data(lv)
plot(sim(1lv))

1v2 <- 1v

ssqOdeModel

parms(lv2)["k1"] <- 0.5

1v2 <- sim(1lv2)
plot(out(lv2))

ssqOdeModel

Sum of Squares Between odeModel and Data

Description

Compute the sum of squares between a given data and an odeModel object.

Usage
ssqOdeModel (p,

sd.yobs = as
initialize =
debuglevel =

Arguments

p
simObj
obstime
yobs

sd.yobs

initialize

lower., upper.

weights

debuglevel

pnames

simObj, obstime, yobs,

.numeric(lapply(yobs, sd)),

TRUE, lower. = -Inf, upper. = Inf, weights = NULL,
@, ..., pnames = NULL)

vector of named parameter values of the model (can be a subset),
a valid object of class odeModel,
vector with time steps for which observational data are available,

data frame with observational data for all or a subset of state variables. Their
names must correspond exacly with existing names of state variables in the
odeModel.

vector of given standard deviations for all observational variables given in yobs.
If no standard deviations are given, these are estimated from yobs.

optional boolean value whether the simObj should be re-initialized after the
assignment of new parameter values. This can be necessary in certain models to
assign consistent values to initial state variables if they depend on parameters.

named vectors with lower and upper bounds used in the optimisation,

optional weights to be used in the fitting process. Should be NULL or a data
frame with the same structure as yobs. If non-NULL, weighted least squares is
used with weights (that is, minimizing sum(w*e*2)); otherwise ordinary least
squares is used.

a positive number that specifies the amount of debugging information printed,
additional parameters passed to the solver method (e.g. 1soda),

names of the parameters, optionally passed from fitOdeModel. This argument is
a workaround for R versions below 2.8.1. It may be removed in future versions
of simecol.

ssqOdeModel 51

Details

This is the default function called by function fitOdeModel. The source code of this function can
be used as a starting point to develop user-defined optimization criteria (cost functions).

Value

The sum of squared differences between yobs and simulation, by default weighted by the inverse
of the standard deviations of the respective variables.

See Also

fitOdeModel, optim, p.constrain

Examples

data(chemostat)
cs1 <- chemostat

generate some noisy data
parms(cs1)[c("vm", "km")] <- c(2, 10)
times(cs1) <- c(from = @, to = 20, by
yobs <- out(sim(cs1))

obstime <- yobs$time

yobs$time <- NULL

yobs$S <- yobs$S + rnorm(yobs$S, sd
yobs$X <- yobs$X + rnorm(yobs$X, sd

2)

1
[S]

.1 * sd(yobs$S))*2
.1 * sd(yobs$X))

1
S

SSQ between model and data
ssqOdeModel (NULL, cs1, obstime, yobs)

SSQ between model and data, different parameter set
ssqOdeModel (p=c(vm=1, km=2), cs1, obstime, yobs)

SSQ between model and data, downweight second observation

(both variables)

weights <- data.frame(X=rep(1, nrow(yobs)), S = rep(1, nrow=(yobs)))
ssgOdeModel (p=c(vm=1, km=2), csl1, obstime, yobs, weights=weights)

downweight 3rd data set (row)
weights[3,] <- 0.1
ssqOdeModel (p=c(vm=1, km=2), cs1, obstime, yobs, weights=weights)

give one value double weight (e.g. 4th value of S)
weights$S[4] <- 2
ssqOdeModel (p=c(vm=1, km=2), csl1, obstime, yobs, weights=weights)

52 upca

upca The Uniform Period Chaotic Amplitude Model

Description

simecol example: resource-predator-prey model, which is able to exhibit chaotic behaviour.

Usage

data(upca)

Format

S4 object according to the odeModel specification. The object contains the following slots:

main The differential equations for predator prey and resource with:

u resource (e.g. grassland or phosphorus),
v producer (prey),

w consumer (predator).
equations Two alternative (and switchable) equations for the functional response.
parms Vector with the named parameters of the model, see references for details.
times Simulation time and integration interval.
init Vector with start values for u, v and w.

solver Character string with the integration method.

Details

To see all details, please have a look into the implementation below and the original publications.

References

Blasius, B., Huppert, A., and Stone, L. (1999) Complex dynamics and phase synchronization in
spatially extended ecological systems. Nature, 399 354-359.

Blasius, B. and Stone, L. (2000) Chaos and phase synchronization in ecological systems. Interna-
tional Journal of Bifurcation and Chaos, 10 2361-2380.

See Also

sim, parms, init, times.

upca

Examples

HH#:

Basic Usage:
explore the example

HH#:

data(upca)
plot(sim(upca))

omit stabilizing parameter wstar
parms(upca)["wstar”] <- @

plot(sim(upca))

change functional response from

Holling II (default) to Lotka-Volterra

equations(upca)$f <- function(x, y, k) x xy

plot(sim(upca))

Implementation:

The code of the UPCA model

upca <- new("odeModel”,
main = function(time, init, parms) {

u <- init[1]
v <- init[2]
w <- init[3]
with(as.list(parms), {
du <- a*u - alphal * f(u,
dv <= -b *x v + alphal x f(u,
- alpha2 *x f(v,
dw <- -c * (w - wstar) + alpha2 * f(v,
list(c(du, dv, dw))
»
1
equations = list(
f1 = function(x, y, k){x*xy}, #
f2 = function(x, y, k){xxy / (1+k*x)} #
),

times = c(from=0, to=100, by=0.1),

v, k1)
v, k1) +
w, k2)
w, k2)

Lotka-Volterra
Holling II

parms = c(a=1, b=1, c=10, alphal=0.2, alpha2=1,

k1=0.05, k2=0, wstar=0.006),
init = c(u=10, v=5, w=0.1),
solver = "lsoda”

)

equations(upca)$f <- equations(upca)$f

2

53

Index

x arith
approxTime, 7

* array
eightneighbours, 17
neighbours, 32
seedfill, 48

* classes
listOrNULL-class, 26
modelFit-class, 31

+ datasets
CA, 9
chemostat, 11
conway, 12
diffusion, 14
1v, 27
1v3, 28
upca, 52

x distribution
pcuseries, 43

* environment
addtoenv, 6

* hplot
plot-methods, 45

* manip
fromtoby, 22

+ methods
initialize-methods, 22
plot-methods, 45
print-methods, 46
sim-methods, 49

* misc
as.simObj, 8
fitOdeModel, 18
iteration, 24
mixNamedVec, 30
p.constrain, 40
peaks, 44
simecol-package, 2
ssqOdeModel, 50

54

* print

print-methods, 46
* programming

addtoenv, 6

observer, 35

odeModel, 37

parms, 41

sim-methods, 49
* utilities

editParms, 16

sEdit, 47
[(modelFit-method), 31
[,modelFit-method (modelFit-method), 31
[[(modelFit-method), 31
[[,modelFit-method (modelFit-method), 31
$ (modelFit-method), 31
$,modelFit-method (modelFit-method), 31

addtoenv, 6

alpha2rho (pcuseries), 43

approx, 45

approxfun, 8

approxTime, 3,7

approxTimel (approxTime), 7

as, 8

as.list, §

as.list,simObj-method (as.simObj), 8
as.simObj, 8

as.simObj,list-method (as.simObj), 8
attach, 6

bobyqa, 19, 20

CA, 4,9

chemostat, 4, 11

coef, 31

coef,modelFit-method (modelFit-method),
31

coerce,list,simObj-method (as.simObj), 8

coerce,simObj,list-method (as.simObj), 8

INDEX

conway, 4, 12, 17, 33

deviance, 31

deviance,modelFit-method
(modelFit-method), 31

diffusion, 4, 14

edit, 17,47

editInit (editParms), 16
editInit,simObj-method (editParms), 16
editInit-methods (editParms), 16
editParms, 16,47
editParms,simObj-method (editParms), 16
editParms-methods (editParms), 16
editTimes (editParms), 16

editTimes, simObj-method (editParms), 16
editTimes-methods (editParms), 16
eightneighbors (eightneighbours), 17
eightneighbours, 17, 33

environment, 6

equations (parms), 41

equations, simObj-method (parms), 41
equations-methods (parms), 41
equations<- (parms), 41
equations<-,simObj-method (parms), 41
equations<--methods (parms), 41
euler, 25

Extract, 32

fitOdeModel, 18, 31, 32, 40, 41, 51
fromtoby, 22
functionOrcharacter-class
(listOrNULL-class), 26
functionOrNULL-class
(listOrNULL-class), 26

gridModel, 9, 12
gridModel (odeModel), 37
gridModel-class (simecol-package), 2

indbasedModel (odeModel), 37

indbasedModel-class (simecol-package), 2

init, 10, 11,13, 14,17,27,29, 52

init (parms), 41

init,simObj-method (parms), 41

init-methods (parms), 41

init<- (parms), 41

init<-,gridModel,ANY-method (parms), 41

init<-,gridModel,matrix-method (parms),
41

55

init<-,simObj,ANY-method (parms), 41

init<--methods (parms), 41

initfunc (parms), 41

initfunc, simObj-method (parms), 41

initfunc-methods (parms), 41

initfunc<- (parms), 41

initfunc<-,simObj-method (parms), 41

initfunc<--methods (parms), 41

initialize,simObj-method
(initialize-methods), 22

initialize-methods, 22

inputs (parms), 41

inputs, simObj-method (parms), 41

inputs-methods (parms), 41

inputs<- (parms), 41

inputs<-,simObj-method (parms), 41

inputs<--methods (parms), 41

iteration, 3,24, 25, 36

iteration,gridModel-method (iteration),
24

iteration,numeric-method (iteration), 24

iteration,odeModel-method (iteration),
24

iteration,simObj-method (iteration), 24

iteration-methods (iteration), 24

listOrdata.frame-class
(listOrNULL-class), 26

listOrNULL-class, 26

1soda, 19, 25, 50

1v, 4,27

1v3, 4,28

main (parms), 41
main,simObj-method (parms), 41
main-methods (parms), 41

main<- (parms), 41
main<-,simObj-method (parms), 41
main<--methods (parms), 41
mixNamedVec, 30
modelFit-class, 31
modelFit-method, 31

modFit, 20

names, 24

neighbors (neighbours), 32
neighbours, 4, 17,32, 48
new, 4, 8, 23, 39

newuoa, /9

56

nlminb, 79, 20
numericOrlist-class (1istOrNULL-class),
26

observer, 25, 35, 42
observer,simObj-method (observer), 35
observer-methods (observer), 35
observer<- (observer), 35
observer<-,simObj-method (observer), 35
observer<--methods (observer), 35
odeModel, 8, 11, 18, 19, 27, 28, 37, 50, 52
odeModel-class (simecol-package), 2
optim, 719, 20, 40, 51

out (parms), 41

out,gridModel-method (parms), 41
out,odeModel-method (parms), 41
out,simObj-method (parms), 41
out-methods (parms), 41

out<- (parms), 41

out<-,simObj-method (parms), 41
out<--methods (parms), 41

p.constrain, 19,40, 51

p.unconstrain (p.constrain), 40

parms, 10, 11,13, 14,17, 25,27, 29, 36, 41, 52

parms,simObj-method (parms), 41

parms-methods (parms), 41

parms<- (parms), 41

parms<-,simObj-method (parms), 41

parms<--methods (parms), 41

pcu (pcuseries), 43

pcuseries, 43

peaks, 44

plot, 46

plot,ANY,ANY-method (plot-methods), 45

plot,gridModel,missing-method
(plot-methods), 45

plot,odeModel,missing-method
(plot-methods), 45

plot,odeModel, odeModel-method
(plot-methods), 45

plot,rwalkModel,missing-method
(plot-methods), 45

plot,simObj,missing-method
(plot-methods), 45

plot-methods, 45

plot.deSolve, 46

print, 31, 46

print,ANY-method (print-methods), 46

INDEX

print,simObj-method (print-methods), 46
print-methods, 46

rho2alpha (pcuseries), 43

rk4, 25

runif, 44

rwalkModel, /4

rwalkModel (odeModel), 37
rwalkModel-class (simecol-package), 2

sEdit, 17,47

seedfill, 4, 17, 33,48

seq, 22

show, simObj-method (print-methods), 46

sim, 10, 11, 13, 14, 24, 25, 27, 29, 52

sim (sim-methods), 49

sim, gridModel-method (sim-methods), 49

sim, odeModel-method (sim-methods), 49

sim, simObj-method (sim-methods), 49

sim-methods, 49

simecol (simecol-package), 2

simecol-package, 2

simObj, 17, 23,27

simObj (simecol-package), 2

simObj-class (simecol-package), 2

solver (parms), 41

solver,simObj-method (parms), 41

solver-methods (parms), 41

solver<- (parms), 41

solver<-,simObj-method (parms), 41

solver<--methods (parms), 41

ssqOdeModel, 19, 20, 40, 41, 50

summary,modelFit-method
(modelFit-method), 31

times, 10, 11,13, 14, 17,27, 29, 52
times (parms), 41
times,simObj-method (parms), 41
times-methods (parms), 41

times<- (parms), 41
times<-,simObj-method (parms), 41
times<--methods (parms), 41

upca, 4, 45, 52

which, 30

	simecol-package
	addtoenv
	approxTime
	as.simObj
	CA
	chemostat
	conway
	diffusion
	editParms
	eightneighbours
	fitOdeModel
	fromtoby
	initialize-methods
	iteration
	listOrNULL-class
	lv
	lv3
	mixNamedVec
	modelFit-class
	modelFit-method
	neighbours
	observer
	odeModel
	p.constrain
	parms
	pcuseries
	peaks
	plot-methods
	print-methods
	sEdit
	seedfill
	sim-methods
	ssqOdeModel
	upca
	Index

