Package ‘samplr’

March 31, 2025
Type Package

Title Compare Human Performance to Sampling Algorithms
Version 1.1.0
Maintainer Lucas Castillo <lucas.castillo-marti@warwick.ac.uk>

Description Understand human performance from the perspective of sampling, both look-
ing at how people generate samples and how people use the samples they have gener-
ated. A longer overview and other re-
sources can be found at <https://sampling.warwick.ac.uk>.

License CC BY 4.0

Imports Rcpp (>= 1.0.6), ggplot2, latex2exp, pracma, stats, Ime4,
Rdpack, R6, graphics

Suggests knitr, rmarkdown, testthat (>= 3.0.0), vdiffr, bench, dplyr,
tidyr, magrittr, mvtnorm, xml2, withr, samplrData

LinkingTo Rcpp, ReppArmadillo, ReppDist, testthat,
RdMacros Rdpack

RoxygenNote 7.3.1

Encoding UTF-8

VignetteBuilder knitr

Config/testthat/edition 3

URL https://lucas-castillo.github.io/samplr/

BugReports https://github.com/lucas-castillo/samplr/issues
Depends R (>=2.10)
NeedsCompilation yes

Author Lucas Castillo [aut, cre, cph]
(<https://orcid.org/0000-0003-0274-0777>),
Yun-Xiao Li [aut, cph] (<https://orcid.org/0000-0002-3509-6618>),
Adam N Sanborn [aut, cph] (<https://orcid.org/0000-0003-0442-4372>),
European Research Council (ERC) [fnd]

Repository CRAN
Date/Publication 2025-03-31 15:30:02 UTC

https://sampling.warwick.ac.uk
https://lucas-castillo.github.io/samplr/
https://github.com/lucas-castillo/samplr/issues
https://orcid.org/0000-0003-0274-0777
https://orcid.org/0000-0002-3509-6618
https://orcid.org/0000-0003-0442-4372

2 Bayesian_Sampler

Contents
Bayesian_Sampler L 2
calc_all e e e e e 4
CalC_aUtOCOIT v v o o e e e e e e e 5
calc_levy . . .o e 5
calc_PSD e e e 6
calc_qgplot e e e e 8
calc_sigma_scaling 8
Mean_Variance e 9
plot_2d_density e e e e 10
PIOt_SEries e e 11
sampler_hmc 12
sampler_mc3 L. e e 14
sampler_mchmce e e e 16
SAMPIer_MCIeC o i e e e 17
sampler_mh 19
SAMPIET_TEC o o e e e e e e 21
Zhu23ABS . . e 22
Z dentities 27

Index 30

Bayesian_Sampler Bayesian Sampler Model
Description

As described in (Zhu et al. 2020). Vectors can be provided for each parameter, allowing multiple

estimates at once.

Usage

Bayesian_Sampler(

a_and_b,
b_and_not_a,
a_and_not_b,

not_a_and_not_b,

beta,
N,
N2 = NULL,

return = "mean”,
n_simulations

1000

Bayesian_Sampler 3

Arguments

a_and_b, b_and_not_a, a_and_not_b, not_a_and_not_b
True probabilites for the conjuctions and disjunctions of A and B. Must add to

1.

beta Prior parameter.

N Number of samples drawn

N2 Optional. Number of samples drawn for conjunctions and disjunctions. (called
N’ in the paper). If not given, it will default to N2=N. Must be equal or smaller
than N.

return Optional. Either "mean", "variance" or "simulation". Defaults to "mean".

n_simulations Optional. if return="simulation", how many simulations per possible combina-
tion of A and B. Defaults to 1000.

Value

If return="mean" or return="variance", named list with predicted probabilities for every possible
combination of A and B, or the expected variance of those predictions. If return="simulation",
simulated predictions instead. Note that if return="simulation", the named list will contain vectors
if the length of the true probabilities is 1; otherwise a matrix where each column is a queried
probability and each row a simulation

References

Zhu J, Sanborn AN, Chater N (2020). “The Bayesian Sampler: Generic Bayesian Inference Causes
Incoherence in Human Probability Judgments.” Psychological Review,127(5), 719-748. doi:10.1037/
rev0000190.

Examples

Bayesian_Sampler(
a_and_b = c(.4, .25),
b_and_not_a = c(.4, .25),
a_and_not_b = c(.1, .25),
not_a_and_not_b = c(.1, .25),
beta = 1,
N <- c(10, 12),
N2 <- c(10, 10)

)

Bayesian_Sampler(
a_and_b = c(@.05, .85),
b_and_not_a = c(.85, 0.05),
a_and_not_b = c(.05, 0.05),
not_a_and_not_b = c(0.05, 0.05),
beta = 1,
N =05,
return="simulation”

)%a

https://doi.org/10.1037/rev0000190
https://doi.org/10.1037/rev0000190

4 calc_all

calc_all Diagnostics Wrapper

Description

Calculates all diagnostic functions in the samplr package for a given chain. Optionally, plots them.

Usage

calc_all(
chain,
plot = TRUE,
max_freq = 0.1,
filter_freq = TRUE,
acf.alpha = 9.05,

acf.lag.max = 100
)
Arguments
chain Vector of n length, where n is the number of trials or sampler iterations
plot Boolean. Whether to additionally plot the diagnostics.

max_freq, filter_freq
Additional parameters to calc_PSD.

acf.alpha, acf.lag.max
Additional parameters to calc_autocorr.

Value

A list with all diagnostic calculations (a list of lists); and optionally a grid of plots.

Examples

set.seed(1)

chainl <- sampler_mh(1, "norm”, c(0,1), diag(1))
diagnostics <- calc_all(chain1[[1]1])
names(diagnostics)

calc_autocorr 5

calc_autocorr Autocorrelation Calculator

Description

Calculates the autocorrelation of a given sequence, or of the size of the steps (returns).

Usage
calc_autocorr(chain, change = TRUE, alpha = 0.05, lag.max = 100, plot = FALSE)

Arguments
chain Vector of n length, where n is the number of trials or sampler iterations
change Boolean. If true, plot the autocorrelation of the change series. If false, plot the
autocorrelation of the given chain.
alpha Measure of Type I error - defaults to .05
lag.max Length of the x axis. How far to examine the lags.
plot Boolean. Whether to additionally plot the result.
Details

Markets display no significant autocorrelations in the returns of a given asset.

Value

A vector with the standard deviations at each lag

Examples

set.seed(1)
chainl <- sampler_mh(1, "norm”, c(0,1), diag(1))
calc_autocorr(chain1[[1]], plot=TRUE)

calc_levy Levy Flights Calculator

Description
This function analyses if the length of the jumps the sampler is making (I) belongs to a Levy
probability density distribution, P(l) ~ [~#.

Usage

calc_levy(chain, plot = FALSE)

6 calc PSD

Arguments
chain Matrix of n x d dimensions, n = iterations, d = dimensions.
plot Boolean. plot Boolean. Whether to also plot the distance-frequency relation-
ship.
Details

Values of 1 =~ 2 have been used to describe foraging in animals, and produce the most effective
foraging (Viswanathan et al. 1999). See Zhu et al. (2018) for a comparison of Levy Flight and PSD
measures for different samplers in multimodal representations.

Value

If plot is true, it returns a simple plot with the log absolute difference in estimates and their fre-
quency, as well as an estimate for the p parameter. If false it returns a list with what’s required to
make the plot.

References

Viswanathan GM, Buldyrev SV, Havlin S, Da Luz MGE, Raposo EP, Stanley HE (1999). “Opti-
mizing the Success of Random Searches.” Nature, 401(6756), 911-914. doi:10.1038/44831.

Zhu J, Sanborn AN, Chater N (2018). “Mental Sampling in Multimodal Representations.” Ad-
vances in Neural Information Processing Systems, 31, 5748-5759.

Examples

set.seed(1)
chainl <- sampler_mh(1, "norm”, c(@,1), diag(1))
calc_levy(chain1[[1]], plot=TRUE)

calc_PSD Power Spectral Density Calculator

Description

This function estimates the log power spectral density against the log frequency, and calculates a
slope a.

Usage

calc_PSD(chain, max_freq = 0.1, filter_freq = TRUE, plot = FALSE)

https://doi.org/10.1038/44831

calc PSD 7

Arguments
chain Matrix of n x d dimensions, n = iterations, d = dimensions sequence
max_freq The maximum frequency to be considered in PSD if filter_freq = TRUE. See
also Details.
filter_freq Boolean. Whether PSD only considers the frequencies between 0 and max_freq.
The default setting is TRUE. See also Details.
plot Boolean. Whether to return a plot or the elements used to make it.
Details

A number of studies have reported that cognitive activities contain a long-range slowly decaying
autocorrelation. In the frequency domain, this is expressed as S(f) ~ 1/f~%, with f being fre-
quency, S(f) being spectral power, and « € [0.5,1.5] is considered 1/f scaling. See See Zhu et
al. (2018) for a comparison of Levy Flight and PSD measures for different samplers in multimodal
representations.

The default frequency range in PSD analysis extends from 0 to 0.1, which is specified by max_freq.
It is because the logarithmic spectral power density tends to flatten beyond a frequency of 0.1. As
a result, some researchers (e.g., Gilden et al. 1995; Zhu et al. 2022) estimate the value of « using
only frequencies below 0.1. When filter_freq is set to FALSE, the frequency range will be from
0 to the Nyquist frequency.

Value

Returns a list with log frequencies, log PSDs, and slope and intercept estimates.

References

Gilden D, Thornton T, Mallon M (1995). “1f Noise in Human Cognition.” Science, 267(5205),
1837-1839. ISSN 0036-8075, 1095-9203, doi:10.1126/science.7892611.

Zhu J, Ledén-Villagrd P, Chater N, Sanborn AN (2022). “Understanding the Structure of Cogni-
tive Noise.” PLoS Computational Biology, 18(8), e1010312. doi:10.1371/journal.pcbi.1010312.

Zhu J, Sanborn AN, Chater N (2018). “Mental Sampling in Multimodal Representations.” Ad-
vances in Neural Information Processing Systems, 31, 5748-5759.

Examples

set.seed(1)
chainl <- sampler_mh(1, "norm”, c(0,1), diag(1))
calc_PSD(chain1[[1]], plot= TRUE)

https://doi.org/10.1126/science.7892611
https://doi.org/10.1371/journal.pcbi.1010312

8 calc_sigma_scaling

calc_qgplot QQ-Plot Calculator

Description

Estimates values for a QQ plot of Empirical values against Theoretical values from a normal distri-
bution, for either the chain points or the distances between successive points. Optionally, returns a
plot as well as the values.

Usage
calc_qggplot(chain, change = TRUE, plot = FALSE)

Arguments
chain Vector of n length, where n is the number of trials or sampler iterations
change Boolean. If false, it calculates a qqplot of the given chain. If true, it creates a
chain of step sizes.
plot Boolean. Whether to plot the QQ plot or just return the values.
Value

A list with the theoretical and empirical quantiles, and the intercept and slope of the line connecting
the points

Examples

set.seed(1)
chainl <- sampler_mh(1, "norm”, c(0,1), diag(1))
calc_qgplot(chain1[[1]1], plot = TRUE)

calc_sigma_scaling Sigma Scaling Calculator

Description

Calculates the sigma scaling of the chain, and optionally plots the result.

Usage
calc_sigma_scaling(chain, plot = FALSE)

Arguments

chain Vector of n length, where n is the number of trials or sampler iterations

plot Boolean. Whether to additionally plot the result.

Mean_ Variance 9

Details

Sigma scaling is defined as the slope of the regression connecting log time lags and the standard
deviation of value changes across time lags. Markets show values of 0.5.

Value

A list containing the vector of possible lags, the sd of the distances at each lag, their log10 counter-
parts, and the calculated intercept and slope.

Examples

set.seed(1)
chainl <- sampler_mh(1, "norm”, c(0,1), diag(1))
calc_sigma_scaling(chain1[[1]], plot = TRUE)

Mean_Variance Mean Variance Estimates

Description

Estimates number of samples and prior parameters of the Bayesian Sampler using the Mean/Variance
relationship as shown by (Sundh et al. 2023). For consistency with the Bayesian Sampler function
we call beta the prior parameter, and b0 and b1 slope and intercept respectively.

Usage

Mean_Variance(rawData, idCol)

Arguments
rawData Dataframe with the following column variables for N repetitions of each unique
query: participant ID (’id’), response query 1, response query 2, ... , response
query N
idCol Name of the ’ID’ column.
Value

A dataframe with values for the intercept (b0) and slope (b1) of the estimated regression, as well as
estimates for N, d, and beta (termed b in the paper) for each participant.

References

Sundh J, Zhu J, Chater N, Sanborn A (2023). “A Unified Explanation of Variability and Bias in
Human Probability Judgments: How Computational Noise Explains the Mean Variance Signature.”
Journal of Experimental Psychology: General, 152(10), 2842-2860. doi:10.1037/xge0001414.

https://doi.org/10.1037/xge0001414

10 plot_2d_density

Examples

library(dplyr)

library(tidyr)

library(magrittr)

library(samplrData)

pct_to_prob <- function(x){x/100}

data <- sundh2023.meanvariance.e3 %>%
group_by(ID, querydetail) %>%
mutate(iteration = LETTERS[1:n()]1) %>%
pivot_wider(id_cols = c(ID, querydetail),

values_from = estimate, names_from = iteration) %>%

mutate(across(where(is.numeric), pct_to_prob)) %>%
ungroup %>%
select(-querydetail)

head(data)

head(Mean_Variance(data, "ID"))

plot_2d_density Density Plotter

Description

Plots a 2D map of the density of a distribution. If plot = FALSE, returns a dataframe with the

density for each cell in the grid

Usage

plot_2d_density(
start,
size,
cellsPerRow = 50,
names = NULL,
params = NULL,
weights = NULL,
customDensity = NULL,

plot = TRUE
)
Arguments
start Vector c(x, y) with the coordinates of the bottom-left corner of the map.
size Distance covered by the map. In other words, the top-right corner of the map
has coordinates c(x + size, y + size)
cellsPerRow Number of cells to plot in every row. The higher, the more resolution
names Name of the distribution from which to sample from.

params Distribution parameters.

plot_series 11

weights Distribution weights (if it’s a mix of distributions)

customDensity Instead of providing names, params and weights, the user may prefer to provide
a custom density function.

plot Whether to return a plot or a dataframe with the density in each coordinate

Value

Density Plot or dataframe

Examples

plot supported distribution
plot_2d_density(

c(-5, -5), 10, cellsPerRow = 100, names = c("mvnorm”, "mvnorm"),
params = list(list(c(-2,1), diag(2)), list(c(2,1), diag(2)))
)

plot custom distribution
customDensity_r <- function(x){
if (x[11 > @ && x[1] < 3 && x[2] < @ && x[2] > -3){
return (1)
} else {
return (0)
3
3
plot_2d_density(start = c(0,-4), size = 5, customDensity = customDensity_r)

plot_series Series Plotter

Description
Plots the value of a one-dimensional series against the iteration where it occurred. Useful to see the
general pattern of the chain (white noise, random walk, volatility clustering)

Usage

plot_series(chain, change = FALSE)

Arguments
chain Vector of n length, where n is the number of trials or sampler iterations
change Boolean. Whether to plot the series of values or the series of changes between

values.

12 sampler_hmc

Value

A series plot

Examples

set.seed(1)
chainl <- sampler_mh(1, "norm”, c(@,1), diag(1))
plot_series(chain1[[11])

sampler_hmc Hamiltonian Monte-Carlo Sampler (HMC)

Description

Hamiltonian Monte-Carlo, also called Hybrid Monte Carlo, is a sampling algorithm that uses
Hamiltonian Dynamics to approximate a posterior distribution. Unlike MH and MC3, HMC uses
not only the current position, but also a sense of momentum, to draw future samples. An introduc-
tion to HMC can be read in Betancourt (2018).

Usage

sampler_hmc(
start,
distr_name = NULL,
distr_params = NULL,
epsilon = 0.5,
L =10,
iterations = 1024,
weights = NULL,
custom_density = NULL

)
Arguments
start Vector. Starting position of the sampler.
distr_name Name of the distribution from which to sample from.

distr_params Distribution parameters.

epsilon Size of the leapfrog step

L Number of leapfrog steps per iteration

iterations Number of iterations of the sampler.

weights If using a mixture distribution, the weights given to each constituent distribution.

If none given, it defaults to equal weights for all distributions.

custom_density Instead of providing names, params and weights, the user may prefer to provide
a custom density function.

sampler_hmc 13

Details

This implementations assumes that the momentum is drawn from a normal distribution with mean
0 and identity covariance matrix (p ~ N (0, I)). Hamiltonian Monte Carlo does not support discrete
distributions.

This algorithm has been used to model human data in Aitchison and Lengyel (2016), Castillo et al.
(2024) and Zhu et al. (2022) among others.

Value

A named list containing

1. Samples: the history of visited places (an n x d matrix, n = iterations; d = dimensions)

2. Momentums: the history of momentum values (an n x d matrix, n = iterations; d = dimensions).
Nothing is proposed in the first iteration (the first iteration is the start value) and so the first
row is NA

3. Acceptance Ratio: The proportion of proposals that were accepted.

References

Aitchison L, Lengyel M (2016). “The Hamiltonian Brain: Efficient Probabilistic Inference with
Excitatory-Inhibitory Neural Circuit Dynamics.” PLOS Computational Biology, 12(12), €1005186.
doi:10.1371/journal.pcbi.1005186.

Betancourt M (2018). “A Conceptual Introduction to Hamiltonian Monte Carlo.” http://arxiv.
org/abs/1701.02434.

Castillo L, Ledn-Villagra P, Chater N, Sanborn A (2024). “Explaining the Flaws in Human Ran-
dom Generation as Local Sampling with Momentum.” PLOS Computational Biology, 20(1), 1-24.
doi:10.1371/journal.pcbi.1011739.

Zhu J, Leén-Villagra P, Chater N, Sanborn AN (2022). “Understanding the Structure of Cogni-
tive Noise.” PLoS Computational Biology, 18(8), e1010312. doi:10.1371/journal.pcbi.1010312.

Examples

result <- sampler_hmc(

distr_name = "norm”, distr_params = c(0,1),
start = 1, epsilon = .01, L = 100
)

cold_chain <- result$Samples

https://doi.org/10.1371/journal.pcbi.1005186
http://arxiv.org/abs/1701.02434
http://arxiv.org/abs/1701.02434
https://doi.org/10.1371/journal.pcbi.1011739
https://doi.org/10.1371/journal.pcbi.1010312

14 sampler_mc3

sampler_mc3 Metropolis-coupled MCMC sampler (MC3)

Description

This sampler is a variant of MH in which multiple parallel chains are run at different temperatures.
The chains stochastically swap positions which allows the coldest chain to visit regions far from its
starting point (unlike in MH). Because of this, an MC3 sampler can explore far-off regions, whereas
an MH sampler may become stuck in a particular point of high density.

Usage

sampler_mc3(
start,
distr_name = NULL,
distr_params = NULL,
sigma_prop = NULL,
nChains = 6,
delta_T = 4,
swap_all = TRUE,
iterations = 1024L,
weights = NULL,
custom_density = NULL,

alpha = 0
)
Arguments

start Either a vector or a matrix. If it is a vector, it will be the starting point of all the
chains (with length = number of dimensions). If it’s a matrix, every row will be
the starting point of one chain (and so it must have as many rows as nChains,
and as many columns as number of dimensions in the space).

distr_name Name of the distribution from which to sample from.

distr_params Distribution parameters.

sigma_prop Covariance matrix of the proposal distribution. If sampling in 1D space, it can
be instead a number.

nChains Number of chains to run.

delta_T numeric, >1. Temperature increment parameter. The bigger this number, the
steeper the increase in temperature between the cold chain and the next chain

swap_all Boolean. If true, every iteration attempts floor(nChains / 2) swaps. If false, only
one swap per iteration.

iterations Number of iterations of the sampler.

weights If using a mixture distribution, the weights given to each constituent distribution.

If none given, it defaults to equal weights for all distributions.

sampler_mc3 15

custom_density Instead of providing names, params and weights, the user may prefer to provide

a custom density function.

alpha autocorrelation of proposals parameter, from -1 to 1, with 0 being independent

Details

proposals

This algorithm has been used to model human data in Castillo et al. (2024), Zhu et al. (2022) and
Zhu et al. (2018) among others.

Value

A named list containing

1.

AN ANl

Samples: the history of visited places (an n x d x ¢ array, n = iterations; d = dimensions; ¢ =
chain index, with c==1 being the ’cold chain’)

Proposals: the history of proposed places (an n x d x c array, n = iterations; d = dimensions;
¢ = chain index, with c==1 being the ’cold chain’). Nothing is proposed in the first iteration
(the first iteration is the start value) and so the first row is NA

Acceptance Ratio: The proportion of proposals that were accepted (for each chain).
Beta Values: The set of temperatures used in each chain
Swap History: the history of chain swaps

Swap Acceptance Ratio: The ratio of swap acceptances

References

Castillo L, Le6n-Villagra P, Chater N, Sanborn A (2024). “Explaining the Flaws in Human Ran-
dom Generation as Local Sampling with Momentum.” PLOS Computational Biology, 20(1), 1-24.
doi:10.1371/journal.pcbi.1011739.

Zhu J, Leén-Villagrd P, Chater N, Sanborn AN (2022). “Understanding the Structure of Cogni-
tive Noise.” PLoS Computational Biology, 18(8), e1010312. doi:10.1371/journal.pcbi.1010312.

Zhu J, Sanborn AN, Chater N (2018). “Mental Sampling in Multimodal Representations.” Ad-
vances in Neural Information Processing Systems, 31, 5748-5759.

Examples

Sample from a normal distribution
result <- sampler_mc3(

)

distr_name = "norm"”, distr_params = c(0,1),
start = 1, sigma_prop = diag(1)

cold_chain <- result$Samples[,,1]

https://doi.org/10.1371/journal.pcbi.1011739
https://doi.org/10.1371/journal.pcbi.1010312

16

sampler_mchmc

sampler_mchmc

Metropolis-Coupled Hamiltonian Monte Carlo (MCHMC)

Description

Metropolis-Coupled version of HMC, i.e. running multiple chains at different temperatures which
stochastically swap positions.

Usage

sampler_mchmc(
start,
distr_name =
distr_params

NULL,
= NULL,

epsilon = 0.5,

L =10,

nChains =
delta_T = 4,
swap_all = T
iterations =

6,
4

UE,
1024L,

weights = NULL,
custom_density = NULL

Arguments

start
distr_name
distr_params
epsilon

L

nChains

delta_T

swap_all

iterations

weights

custom_density

Vector. Starting position of the sampler.

Name of the distribution from which to sample from.
Distribution parameters.

Size of the leapfrog step

Number of leapfrog steps per iteration

Number of chains to run.

numeric, >1. Temperature increment parameter. The bigger this number, the
steeper the increase in temperature between the cold chain and the next chain

Boolean. If true, every iteration attempts floor(nChains / 2) swaps. If false, only
one swap per iteration.

Number of iterations of the sampler.

If using a mixture distribution, the weights given to each constituent distribution.
If none given, it defaults to equal weights for all distributions.

Instead of providing names, params and weights, the user may prefer to provide
a custom density function.

sampler_mcrec 17

Details

Metropolis-Coupled HMC does not support discrete distributions.

This algorithm has been used to model human data in Castillo et al. (2024).

Value

A named list containing
1. Samples: the history of visited places (an n x d x ¢ array, n = iterations; d = dimensions; ¢ =
chain index, with c==1 being the ’cold chain’)

2. Momentums: the history of momentum values (an n x d X ¢ array, n = iterations; d = dimen-
sions; ¢ = chain index, with c==1 being the ’cold chain’). Nothing is proposed in the first
iteration (the first iteration is the start value) and so the first row is NA

. Acceptance Ratio: The proportion of proposals that were accepted (for each chain).
. Beta Values: The set of temperatures used in each chain

. Swap History: the history of chain swaps

AN W

. Swap Acceptance Ratio: The ratio of swap acceptances

References

Castillo L, Ledn-Villagrd P, Chater N, Sanborn A (2024). “Explaining the Flaws in Human Ran-
dom Generation as Local Sampling with Momentum.” PLOS Computational Biology, 20(1), 1-24.
doi:10.1371/journal.pcbi.1011739.

Examples

result <- sampler_mchmc(
distr_name = "norm"”, distr_params = c(0,1),
start = 1, epsilon = .01, L = 100

)

cold_chain <- result$Samples[,,1]

sampler_mcrec Metropolis-Coupled Recycled-Momentum HMC Sampler (MCREC)

Description

Metropolis-Coupled version of Recycled-Momentum HMC, i.e. running multiple chains at different
temperatures which stochastically swap positions.

https://doi.org/10.1371/journal.pcbi.1011739

18

sampler_mcrec

NULL,
= NULL,

Usage

sampler_mcrec(
start,
distr_name =
distr_params
epsilon = 0.5,
L =109,
alpha = 0.1,
nChains = 6,
delta_T = 4,

swap_all = TRUE,
iterations = 1024L,
weights = NULL,
custom_density = NULL

Arguments

start
distr_name
distr_params
epsilon

L

alpha
nChains
delta_T

swap_all

iterations

weights

custom_density

Details

Vector. Starting position of the sampler.

Name of the distribution from which to sample from.
Distribution parameters.

Size of the leapfrog step

Number of leapfrog steps per iteration

Recycling factor, from -1 to 1 (see Details).

Number of chains to run.

numeric, >1. Temperature increment parameter. The bigger this number, the
steeper the increase in temperature between the cold chain and the next chain

Boolean. If true, every iteration attempts floor(nChains / 2) swaps. If false, only
one swap per iteration.

Number of iterations of the sampler.

If using a mixture distribution, the weights given to each constituent distribution.
If none given, it defaults to equal weights for all distributions.

Instead of providing names, params and weights, the user may prefer to provide
a custom density function.

Metropolis-Coupled Recycled-Momentum HMC does not support discrete distributions.

This algorithm has been used to model human data in Castillo et al. (2024).

Value

A named list containing

1. Samples: the history of visited places (an n x d X ¢ array, n = iterations; d = dimensions; ¢ =
chain index, with c==1 being the ’cold chain’)

sampler_mh 19

2. Momentums: the history of momentum values (an n x d X ¢ array, n = iterations; d = dimen-
sions; ¢ = chain index, with c==1 being the ’cold chain’). Nothing is proposed in the first
iteration (the first iteration is the start value) and so the first row is NA

Acceptance Ratio: The proportion of proposals that were accepted (for each chain).
Beta Values: The set of temperatures used in each chain

Swap History: the history of chain swaps

AN

Swap Acceptance Ratio: The ratio of swap acceptances

References

Castillo L, Leén-Villagra P, Chater N, Sanborn A (2024). “Explaining the Flaws in Human Ran-
dom Generation as Local Sampling with Momentum.” PLOS Computational Biology, 20(1), 1-24.
doi:10.1371/journal.pcbi.1011739.

Examples

result <- sampler_mcrec(
distr_name = "norm”, distr_params = c(0,1),
start = 1, epsilon = .01, L = 100

)

cold_chain <- result$Samples[,,1]

sampler_mh Metropolis-Hastings (MH) Sampler

Description

This sampler navigates the proposal distribution following a random walk. At each step, it generates
anew proposal from a proposal distribution (in this case a Gaussian centered at the current position)
and chooses to accept it or reject it following the Metropolis-Hastings rule: it accepts it if the
density of the posterior distribution at the proposed point is higher than at the current point. If the
current position is denser, it still may accept the proposal with probability proposal_density /
current_density.

Usage

sampler_mh(
start,
distr_name = NULL,
distr_params = NULL,
sigma_prop = NULL,
iterations = 1024L,
weights = NULL,
custom_density = NULL,
alpha = @

https://doi.org/10.1371/journal.pcbi.1011739

20 sampler_mh
Arguments
start Vector. Starting position of the sampler.
distr_name Name of the distribution from which to sample from.
distr_params Distribution parameters.
sigma_prop Covariance matrix of the proposal distribution. If sampling in 1D space, it can
be instead a number.
iterations Number of iterations of the sampler.
weights If using a mixture distribution, the weights given to each constituent distribution.
If none given, it defaults to equal weights for all distributions.
custom_density Instead of providing names, params and weights, the user may prefer to provide
a custom density function.
alpha autocorrelation of proposals parameter, from -1 to 1, with O being independent
proposals
Details
As mentioned, the proposal distribution is a Normal distribution. Its mean is the current position,
and its variance is equal to the sigma_prop parameter, which defaults to the identity matrix if not
specified.
This algorithm has been used to model human data in many places (e.g. Castillo et al. 2024;
Dasgupta et al. 2017; Lieder et al. 2018; Zhu et al. 2022).
Value
A named list containing

1. Samples: the history of visited places (an n x d matrix, n = iterations; d = dimensions)

2. Proposals: the history of proposed places (an n x d matrix, n = iterations; d = dimensions).
Nothing is proposed in the first iteration (the first iteration is the start value) and so the first
row is NA

3. Acceptance Ratio: The proportion of proposals that were accepted.

References

Castillo L, Leén-Villagra P, Chater N, Sanborn A (2024). “Explaining the Flaws in Human Ran-
dom Generation as Local Sampling with Momentum.” PLOS Computational Biology, 20(1), 1-24.
doi:10.1371/journal.pcbi.1011739.

Dasgupta I, Schulz E, Gershman SJ (2017). “Where Do Hypotheses Come From?” Cognitive
Psychology, 96, 1-25. doi:10.1016/j.cogpsych.2017.05.001.

Lieder F, Griffiths TL, M. Huys QJ, Goodman ND (2018). “The Anchoring Bias Reflects Ra-
tional Use of Cognitive Resources.” Psychonomic Bulletin & Review, 25(1), 322-349. doi:10.3758/
$1342301712868.

Zhu J, Ledn-Villagrd P, Chater N, Sanborn AN (2022). “Understanding the Structure of Cogni-
tive Noise.” PLoS Computational Biology, 18(8), e1010312. doi:10.1371/journal.pcbi.1010312.

https://doi.org/10.1371/journal.pcbi.1011739
https://doi.org/10.1016/j.cogpsych.2017.05.001
https://doi.org/10.3758/s13423-017-1286-8
https://doi.org/10.3758/s13423-017-1286-8
https://doi.org/10.1371/journal.pcbi.1010312

sampler_rec 21

Examples

Sample from a normal distribution
result <- sampler_mh(

distr_name = "norm”, distr_params = c(0,1),
start = 1, sigma_prop = diag(1)
)

cold_chain <- result$Samples

sampler_rec Recycled-Momentum HMC Sampler (REC)

Description

Recycled-Momentum HMC is a sampling algorithm that uses Hamiltonian Dynamics to approxi-
mate a posterior distribution. Unlike in standard HMC, proposals are autocorrelated, as the mo-
mentum of the current trajectory is not independent of the last trajectory, but is instead updated by
a parameter alpha (see Details).

Usage

sampler_rec(
start,
distr_name = NULL,
distr_params = NULL,
epsilon = 0.5,
L =10,
alpha = 0.1,
iterations = 1024L,
weights = NULL,
custom_density = NULL

)
Arguments
start Vector. Starting position of the sampler.
distr_name Name of the distribution from which to sample from.

distr_params Distribution parameters.

epsilon Size of the leapfrog step

L Number of leapfrog steps per iteration

alpha Recycling factor, from -1 to 1 (see Details).

iterations Number of iterations of the sampler.

weights If using a mixture distribution, the weights given to each constituent distribution.

If none given, it defaults to equal weights for all distributions.

custom_density Instead of providing names, params and weights, the user may prefer to provide
a custom density function.

22 Zhu23ABS

Details

While in HMC the momentum in each iteration is an independent draw,, here the momentum of the
last utterance p”_1 is also involved. In each iteration, the momentum p is obtained as follows

peaxpl+(1-a?)? xv

; where v ~ N(0,1).
Recycled-Momentum HMC does not support discrete distributions.

This algorithm has been used to model human data in Castillo et al. (2024)

Value

A named list containing

1. Samples: the history of visited places (an n x d x ¢ array, n = iterations; d = dimensions; ¢ =
chain index, with c==1 being the ’cold chain’)

2. Momentums: the history of momentum values (an n x d matrix, n = iterations; d = dimensions).
Nothing is proposed in the first iteration (the first iteration is the start value) and so the first
row is NA

3. Acceptance Ratio: The proportion of proposals that were accepted (for each chain).

References

Castillo L, Le6n-Villagrd P, Chater N, Sanborn A (2024). “Explaining the Flaws in Human Ran-
dom Generation as Local Sampling with Momentum.” PLOS Computational Biology, 20(1), 1-24.
doi:10.1371/journal.pcbi.1011739.

Examples

result <- sampler_rec(
distr_name = "norm”, distr_params = c(0,1),
start = 1, epsilon = .01, L = 100

)

cold_chain <- result$Samples

Zhu23ABS Auto-correlated Bayesian Sampler by Zhu (2023)

Description

This Auto-correlated Bayesian Sampler model (ABS, Zhu et al. 2024) is developed by Zhu.

Super class

samplr: :CoreABS -> Zhu23ABS

https://doi.org/10.1371/journal.pcbi.1011739

Zhu23ABS 23

Public fields

width the standard deviation of the proposal distribution for MC3.

lambda the rate parameter of the Erlang distribution for decision time.

Methods

Public methods:

e Zhu23ABS$new()

* Zhu23ABS$simulate()

* Zhu23ABS$confidence_interval()
e Zhu23ABS$reset_sim_results()

e Zhu23ABS$clone()

Method new(): Create a new Zhu23ABS’ object.
Usage:
Zhu23ABS$new(
width,
n_chains,
nd_time,
s_nd_time,
lambda,
distr_name = NULL,
distr_params = NULL,

custom_distr = NULL,
custom_start = NULL
)
Arguments:

width anumeric value of the standard deviation of the proposal distribution for MC3.

n_chains an integer of the number of chains for the sampler.

nd_time a numeric value of the non-decision time (in seconds). When s_nd_time is not 0,
nd_time represents the lower bound of the non-decision time.

s_nd_time anumeric value of the inter-trial-variability of the non-decision time (in seconds).

lambda a numeric value of the rate parameter of the Erlang distribution for decision time.

distr_name a character string indicating the type of the posterior hypothesis distribution.

distr_params a numeric vector of the additional parameters for the posterior hypothesis dis-
tribution.

custom_distr alist of functions that define the posterior hypothesis distribution.

custom_start anumeric value of the starting point if "custom_distr" is provided.

Returns: A new *Zhu23ABS’ object.

Examples:

zhuabs <- Zhu23ABS$new(
width = 1, n_chains = 5, nd_time = 0.3, s_nd_time = 0.5,
lambda = 10, distr_name = 'norm', distr_params = 1

Zhu23ABS

Method simulate(): Simulate the ABS model.

Usage:
Zhu23ABS$simulate(stopping_rule, start_point = NA, ...)

Arguments:

stopping_rule a character string indicating the stopping rule of ABS to be applied. Possible
values are "fixed"” and "relative”. See also Details.

start_point a numeric vector setting the start point of each trial for the sampler. By default,
it’s set to NA, indicating that the starting point of the first trial is a random point from the
posterior of hypotheses, and the starting points of subsequent trials are set to the last sample
of the previous trial. For more detailed information, please refer to the vignette "Simulations
of the Autocorrelated Bayesian Sampler".

. further arguments passed to the ABS model, see also Details.

Details: The ABS model has two types of stopping rules: fixed and relative. The fixed stopping
rule means that a fixed number of samples are drawn to complete the tasks such as estimations
and confidence intervals. This rule applies to tasks such as estimation tasks. On the other
hand, the relative stopping rule means that the model counts the difference in evidence between
the two hypotheses, and terminates the sampling process whenever the accumulated difference
exceeds a threshold. This rule applies to tasks such as two-alternative force choice tasks.
When the stopping ruleis "fixed", the following arguments are required:

* n_sample an integer of the fixed number of samples for each trial.

e trial_stim a numeric vector of the stimulus of each trial.
When the stopping ruleis "relative”, the following arguments are required:

¢ delta an integer of the relative difference between the number of samples supporting each
hypothesis.

¢ dec_bdry a numeric value of the decision boundary that separates the posterior hypothesis
distribution.

e discrim a numeric value of the stimuli discriminability.

e trial_stim a factor that indicates the stimuli of each trial. It only consists of either one
level or two levels. By definition, level 1 represents the stimulus below the decision bound-
ary, while level 2 represents the stimulus above the decision boundary.

* prior_on_resp a numeric vector for the Beta prior on responses. Defaults to c(1,1) rep-
resenting the distribution Beta(1,1).

e prior_depend a boolean variable that control whether the prior on responses changes re-
garding the last stimulus. Defaults to TRUE. Please refer to the vignette for more information.

* max_iterations an integer of the maximum length of the MC3 sampler. Defaults to 1000.
The program will stop the sampling process after the length of the sampling sequence
reaches to this limitation.

No values will be return after running this method, but the field sim_results will be updated
instead. If the stopping rule is "fixed", simulation_results will be a data frame with five
columns:

1. trial: The index of trials;

2. samples: The samples of ABS sampler for the trial;

3. stimulus: The stimuli of the experiment;

4. rt: The response time;

Zhu23ABS 25

5. point_est: The response of point estimation;

On the other hand, if the stopping rule is "relative", sim_results will be a data frame with eight
columns:

1. trial: The index of trials;

. samples: The samples of ABS sampler for the trial;
. response: The response predicted by ABS;

. stimulus: The stimuli of the experiment;

| I NS I)

. accuracy: Whether the response is the same as the feedback. O represents error, and 1
represents correct;

6. rt: The response time, including both the non-decision and the decision time;
7. confidence: The confidence of the response;
8. point_est: The response of point estimation.

Examples:

trial_stim <- round(runif(5, 10, 50))

zhuabs$simulate(stopping_rule='fixed', n_sample = 5, trial_stim = trial_stim)
zhuabs$sim_results

zhuabs$reset_sim_results()
trial_stim <- factor(sample(c('left', 'right'), 5, TRUE))
zhuabs$simulate(stopping_rule='relative',

delta = 4, dec_bdry = 0,

discrim = 1, trial_stim = trial_stim

)

zhuabs$sim_results

Method confidence_interval(): This function calculates the confidence interval of the simulate
method’s results when the "fixed" stopping rule was used.

Usage:
Zhu23ABS$confidence_interval(conf_level)
Arguments:
conf_level the required confidence level.
Details: No values will be returned by this method. Instead, two new columns will be added to
the sim_results:
1. conf_interval_l: The lower bound of the confidence interval with the given level;
2. conf_interval_u: The upper bound of the confidence interval with the given level;
Examples:

zhuabs$confidence_interval (conf_level = 0.9)

Method reset_sim_results(): This function is for resetting the sim_results to run new
simulations.

Usage:
Zhu23ABS$reset_sim_results()

26 Zhu23ABS

Method clone(): The objects of this class are cloneable with this method.
Usage:
Zhu23ABS$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References

Zhu J, Sundh J, Spicer J, Chater N, Sanborn AN (2024). “The Autocorrelated Bayesian Sampler:
A Rational Process for Probability Judgments, Estimates, Confidence Intervals, Choices, Confi-
dence Judgments, and Response Times.” Psychological Review, 131(2), 456-493. doi:10.1037/
rev0000427.

Examples

B mm
Method ~Zhu23ABS$new”
B mm

zhuabs <- Zhu23ABS$new(
width = 1, n_chains = 5, nd_time = 0.3, s_nd_time = 0.5,

lambda = 10, distr_name = 'norm', distr_params = 1
)
et
Method ~Zhu23ABS$simulate”
B m o

trial_stim <- round(runif(5, 10, 50))
zhuabs$simulate(stopping_rule='fixed', n_sample = 5, trial_stim = trial_stim)
zhuabs$sim_results

zhuabs$reset_sim_results()
trial_stim <- factor(sample(c('left', 'right'), 5, TRUE))
zhuabs$simulate(stopping_rule="relative',
delta = 4, dec_bdry = 0,
discrim = 1, trial_stim = trial_stim
)

zhuabs$sim_results

oo
Method ~Zhu23ABS$confidence_interval~
H m o

zhuabs$confidence_interval(conf_level = 0.9)

https://doi.org/10.1037/rev0000427
https://doi.org/10.1037/rev0000427

Z,_identities 27

Z_identities Z Identities

Description

Calculates identities Z1 to Z18 as defined in (Costello and Watts 2016; Zhu et al. 2020). Probability
theory predicts that these will all equal 0.

Usage
Z_identities(
a = NULL,
b = NULL,

a_and_b = NULL,
a_or_b = NULL,
a_given_b = NULL,
b_given_a = NULL,
a_given_not_b = NULL,
b_given_not_a = NULL,
a_and_not_b = NULL,
b_and_not_a = NULL,

not_a = NULL,
not_b = NULL
)
Arguments

a,b,a_and_b,a_or_b,a_given_b,b_given_a, a_given_not_b, b_given_not_a,
a_and_not_b, b_and_not_a
Probability estimates given by participants

not_a, not_b Probability estimates given by participants. If not given, they’ll default to 1-a
and 1-b respectively

Details
If some of the probability estimates are not given, calculation will proceed and equalities that cannot
be calculated will be coded as NA.

Value

Dataframe with identities Z1 to Z18

References

Costello F, Watts P (2016). “People’s Conditional Probability Judgments Follow Probability The-
ory (plus Noise).” Cognitive Psychology, 89, 106—133. doi:10.1016/j.cogpsych.2016.06.006.

https://doi.org/10.1016/j.cogpsych.2016.06.006

28 Z_identities

Zhu J, Sanborn AN, Chater N (2020). “The Bayesian Sampler: Generic Bayesian Inference Causes
Incoherence in Human Probability Judgments.” Psychological Review, 127(5), 719-748. doi:10.1037/
rev0000190.

Examples

Z_identities(

a=.5,

b=.1,
a_and_b=.05,
a_or_b=.55,

a_given_b=.5,
b_given_a=.1,
a_given_not_b=.5,
b_given_not_a=.1,
a_and_not_b=.45,
b_and_not_a=.05,

)
#Get identities for a set of participants
library(magrittr)
library(dplyr)
library(tidyr)
data.frame(

ID = LETTERS[1:20],
a=runif(20),
b=runif(20),
a_and_b=runif(20),
a_or_b=runif(20),
a_given_b=runif(20),
b_given_a=runif(20),
a_given_not_b=runif(20),
b_given_not_a=runif(20),
a_and_not_b=runif(20),
b_and_not_a=runif(20),
not_a=runif(20),
not_b=runif(20)

) %%
group_by(ID) %>%
do(

Z_identities(
. $a,
.$b,
.$a_and_b,
.$a_or_b,
.$a_given_b,

.$b_given_a,
.$a_given_not_b,
.$b_given_not_a,
.$a_and_not_b,
.$b_and_not_a,
.$not_a,

.$not_b

https://doi.org/10.1037/rev0000190
https://doi.org/10.1037/rev0000190

Z,_identities

29

Index

Bayesian_Sampler, 2

calc_all, 4
calc_autocorr, 4, 5
calc_levy, 5
calc_PSD, 4, 6
calc_qgplot, 8

calc_sigma_scaling, 8

Mean_Variance, 9

plot_2d_density, 10
plot_series, 11

sampler_hmc, 12
sampler_mc3, 14
sampler_mchmc, 16
sampler_mcrec, 17
sampler_mh, 19
sampler_rec, 21
samplr: :CoreABS, 22

Z_identities, 27
Zhu23ABS, 22

30

	Bayesian_Sampler
	calc_all
	calc_autocorr
	calc_levy
	calc_PSD
	calc_qqplot
	calc_sigma_scaling
	Mean_Variance
	plot_2d_density
	plot_series
	sampler_hmc
	sampler_mc3
	sampler_mchmc
	sampler_mcrec
	sampler_mh
	sampler_rec
	Zhu23ABS
	Z_identities
	Index

