
Package ‘rplanes’
July 17, 2024

Title Plausibility Analysis of Epidemiological Signals

Version 0.1.0

Description Provides functionality to prepare data and analyze plausibility of both forecasted and re-
ported epidemiological signals. The functions implement a set of plausibility algo-
rithms that are agnostic to geographic and time resolutions and are calculated indepen-
dently then presented as a combined score.

License MIT + file LICENSE

URL https://signaturescience.github.io/rplanes/

Depends R (>= 2.10)

Imports dplyr, dtw, ecp, lubridate, magrittr, purrr, readr, rlang,
stringr, tibble, tidyr, utils

Suggests DT, ggplot2, markdown, knitr, MMWRweek, rmarkdown, shiny,
shinyjs, shinyWidgets, shinycssloaders, testthat (>= 3.0.0),
tools

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author VP Nagraj [aut, cre] (<https://orcid.org/0000-0003-0060-566X>),
Desiree Williams [aut],
Amy Benefield [aut]

Maintainer VP Nagraj <nagraj@nagraj.net>

Repository CRAN

Date/Publication 2024-07-17 10:50:02 UTC

Contents
check_incomplete . 2
create_sliding_windows_df . 3

1

https://signaturescience.github.io/rplanes/
https://orcid.org/0000-0003-0060-566X

2 check_incomplete

cutter . 3
epiweek_start . 4
get_shapes . 4
is_forecast . 5
is_observed . 5
month_start . 6
plane_cover . 6
plane_diff . 7
plane_repeat . 8
plane_score . 10
plane_seed . 11
plane_shape . 12
plane_taper . 14
plane_trend . 15
plane_zero . 17
q_boundary . 18
read_forecast . 19
resolve_resolution . 20
rplanes_explorer . 21
seed_engine . 21
to_chunk . 22
to_signal . 22
valid_dates . 24
valid_location . 25

Index 26

check_incomplete Check completeness of seed and signal data

Description

This unexported helper is used internally in valid_dates to optionally issue a warning for potential
completeness of seed and signal data based on dates provided.

Usage

check_incomplete(seed_date, signal_date, resolution)

Arguments

seed_date Last date available in seed object

signal_date First date available in signal object

resolution Character vector specifying the temporal resolution (e.g., "weeks", "months")

create_sliding_windows_df 3

Value

Operates as side-effect and returns a warning() if there are the seed and signal dates combined
indicate an incomplete week or month.

create_sliding_windows_df

Sliding windows

Description

This unexported helper function is used within plane_shape() to generate sliding windows from
a vector and return a data frame where each row is a subset (a sliding window) of a time series.
The length of the each windowed time series (and therefore number of columns) is equal to "win-
dow_size". The number of windows is equal to (length(vector) - window_size) + 1. For exam-
ple, given a time series of length 38 and a window size of length 4, then there will be 35 windowed
time series (rows), with 4 time stamps each (columns).

Usage

create_sliding_windows_df(vector, window_size)

Arguments

vector A numeric or integer vector that is the time series to be used to create sliding
windows

window_size An integer specifying the size (i.e., number of elements) of the windowed time
series desired

Value

A data.frame where each row is a subset (a sliding window) of a time series.

cutter Cut into categorical differences

Description

This unexported helper function takes an input number for an observed difference and cuts it into a
categorical description (e.g., "increase", "decrease", or "stable") of the change.

Usage

cutter(x, threshold = 1)

4 get_shapes

Arguments

x Vector of length 1 with scaled difference to be categorized

threshold Limit used to define the categorical differences; default is 1

Value

Character vector of length 1 with the categorical description of difference

epiweek_start Epiweek start

Description

This unexported helper identifies the date of the first day for the epiweek of the given date. The
function is used internally inside of valid_dates.

Usage

epiweek_start(date)

Arguments

date Date to be queried

Value

Date of the first day of the epiweek for the input date.

get_shapes Determine shapes

Description

This unexported helper function is used to identify the shape in the plane_shape() function’s
scaled difference ("sdiff") method.

Usage

get_shapes(input_data, window_size)

Arguments

input_data A data frame containing at least two columns, one of which must be named
"value" with the value assessed and another named "dates" with the date for the
observed data

window_size The number of of categorical differences used to define the shape

is_forecast 5

Value

A vector with the shapes identified. Each element of the vector will include a shape, which is a clus-
ter of categorical differences (of the same size as the specified "window_size") collapsed with ";"
(e.g., c("decrease;stable;stable;stable","stable;stable;stable;increase","stable;stable;increase;increase")).

is_forecast Check forecast

Description

This function checks if the object is of class signal and forecast.

Usage

is_forecast(x)

Arguments

x Input object to be checked

Value

Logical as to whether or not the input object inherits the "signal" and "forecast" classes.

Examples

get path to example forecast file
fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes")
ex_forecast <- read_forecast(fp)
sig <- to_signal(ex_forecast, outcome="flu.admits", type="forecast", horizon=4, resolution="weeks")
is_forecast(sig)

is_observed Check observed

Description

This function checks if the object is of class signal and observed.

Usage

is_observed(x)

Arguments

x Input object to be checked

6 plane_cover

Value

Logical as to whether or not the input object inherits the "signal" and "observed" classes.

Examples

hosp <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes"))
hosp$date <- as.Date(hosp$date, format = "%Y-%m-%d")
sig <- to_signal(hosp, outcome = "flu.admits", type = "observed", resolution = "weeks")
is_observed(sig)

month_start Month start

Description

This unexported helper identifies the date of the first day of the month for the given date. The
function is used internally inside of valid_dates.

Usage

month_start(date)

Arguments

date Date to be queried

Value

Date of the first day of the month for the input date.

plane_cover Coverage component

Description

This function evaluates whether or not the evaluated signal interval covers the last observed value.
The interval used in this plausibility component is drawn from the upper and lower bounds of the
forecasted prediction interval. As such, the only accepted signal format is forecast, which will
include upper and lower bounds.

Usage

plane_cover(location, input, seed)

plane_diff 7

Arguments

location Character vector with location code; the location must appear in input and seed

input Input signal data to be scored; object must be one of forecast

seed Prepared seed

Value

A list with the following values:

• indicator: Logical as to whether or not the last value falls outside of the interval (e.g., not in
between lower and upper bounds of prediction interval) of the evaluated signal

• last_value: A vector with the last value recorded in the seed

• bounds: A list with a two elements corresponding to the upper and lower bounds of the
evaluated signal interval

Examples

read in example observed data and prep observed signal
hosp <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes"))
hosp$date <- as.Date(hosp$date, format = "%Y-%m-%d")
prepped_observed <- to_signal(hosp, outcome = "flu.admits", type = "observed", resolution = "weeks")

read in example forecast and prep forecast signal
fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes")
prepped_forecast <- read_forecast(fp) %>%

to_signal(., outcome = "flu.admits", type = "forecast", horizon = 4)

prepare seed with cut date
prepped_seed <- plane_seed(prepped_observed, cut_date = "2022-10-29")

run plane component
plane_cover(location = "08", input = prepped_forecast, seed = prepped_seed)
plane_cover(location = "47", input = prepped_forecast, seed = prepped_seed)

plane_diff Difference component

Description

This function implements the point-to-point difference plausibility component. Differences in eval-
uated signals are calculated from input values iteratively subtracted from the previous values (i.e.,
for each x at time point i, the difference will be calculated as xi - xi-1). The plausibility analysis
uses the evaluated differences to compare against the maximum difference observed and recorded
in the seed.

Usage

plane_diff(location, input, seed)

8 plane_repeat

Arguments

location Character vector with location code; the location must appear in input and seed

input Input signal data to be scored; object must be one of forecast or observed

seed Prepared seed

Value

A list with the following values:

• indicator: Logical as to whether or not the absolute value of any of the evaluated differences
exceeds the maximum difference

• values: A vector with the values assessed including the last value in seed concatenated with
the evaluated signal values

• evaluated_differences: A vector with the consecutive differences for the values

• maximum_difference: A vector with one value for the maximum difference observed in seed

Examples

read in example observed data and prep observed signal
hosp <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes"))
hosp$date <- as.Date(hosp$date, format = "%Y-%m-%d")
prepped_observed <- to_signal(hosp, outcome = "flu.admits", type = "observed", resolution = "weeks")

read in example forecast and prep forecast signal
fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes")
prepped_forecast <- read_forecast(fp) %>%

to_signal(., outcome = "flu.admits", type = "forecast", horizon = 4)

prepare seed with cut date
prepped_seed <- plane_seed(prepped_observed, cut_date = "2022-10-29")

run plane component
plane_diff(location = "10", input = prepped_forecast, seed = prepped_seed)
plane_diff(location = "51", input = prepped_forecast, seed = prepped_seed)

plane_repeat Repeat component

Description

This function evaluates whether consecutive values in observations or forecasts are repeated a k
number of times. This function takes in a forecast or observed object that is either from an observed
dataset or forecast dataset. Note that if a signal is contant (i.e., the same value is repeated for all
time points) then the repeat component will return FALSE.

plane_repeat 9

Usage

plane_repeat(location, input, seed, tolerance = NULL, prepend = NULL)

Arguments

location Character vector with location code; the location must appear in input and seed

input Input signal data to be scored; object must be one of forecast or observed

seed Prepared seed

tolerance Integer value for the number of allowed repeats before flag is raised. Default is
NULL and allowed repeats will be determined from seed.

prepend Integer value for the number of values from seed to add before the evaluated
signal. Default is NULL and the number of values will be determined from seed.

Value

A list with the following values:

• indicator: Logical as to whether or not the value is repeated sequentially k number of times.

• repeats: A tibble with repeating values found. If there are no repeats (i.e., indicator is
FALSE) then the tibble will have 0 rows.

Examples

read in example observed data and prep observed signal
hosp <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes"))
hosp$date <- as.Date(hosp$date, format = "%Y-%m-%d")
prepped_observed <- to_signal(hosp, outcome = "flu.admits", type = "observed", resolution = "weeks")

read in example forecast and prep forecast signal
fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes")
prepped_forecast <- read_forecast(fp) %>%

to_signal(., outcome = "flu.admits", type = "forecast", horizon = 4)

prepare seed with cut date
prepped_seed <- plane_seed(prepped_observed, cut_date = "2022-10-29")

run plane component
use defaults
plane_repeat(location = "12", input = prepped_forecast, seed = prepped_seed)
set tolerated repeats to 2
plane_repeat(location = "12", input = prepped_forecast, seed = prepped_seed, tolerance = 2)

use defaults
plane_repeat(location = "49", input = prepped_forecast, seed = prepped_seed)
set number of values prepended for evaluation to 4
plane_repeat(location = "49", input = prepped_forecast, seed = prepped_seed, prepend = 4)

10 plane_score

plane_score Score PLANES components

Description

This function wraps PLANES scoring for specified components across all locations in single step.

Usage

plane_score(input, seed, components = "all", args = NULL, weights = NULL)

Arguments

input Input signal data to be scored; object must be one of forecast or observed

seed Prepared seed

components Character vector specifying component; must be either "all" or any combina-
tion of "cover", "diff", "taper", "trend", "repeat", "shape", and "zero";
default is "all" and will use all available components for the given signal

args Named list of arguments for component functions. List elements must be named
to match the given component and arguments passed as a nested list (e.g., args =
list("trend" = list("sig_lvl" = 0.05))). Default is NULL and defaults for
all components will be used

weights Named vector with weights to be applied; default is NULL and all components
will be equally weighted; if not NULL then the length of the vector must equal
the number of components, with each component given a numeric weight (see
Examples). Specified weights must be real numbers greater than or equal to 1.

Value

A list with scoring results for all locations.

Examples

read in example observed data and prep observed signal
hosp <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes"))

hosp$date <- as.Date(hosp$date, format = "%Y-%m-%d")
prepped_observed <- to_signal(hosp, outcome = "flu.admits", type = "observed", resolution = "weeks")

read in example forecast and prep forecast signal
fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes")
prepped_forecast <- read_forecast(fp) %>%

to_signal(., outcome = "flu.admits", type = "forecast", horizon = 4)

prepare seed with cut date
prepped_seed <- plane_seed(prepped_observed, cut_date = "2022-10-29")

plane_seed 11

run plane scoring with all components
plane_score(input = prepped_forecast, seed = prepped_seed)

run plane scoring with select components
plane_score(input = prepped_forecast, seed = prepped_seed, components = c("cover","taper"))

run plane scoring with all components and additional args
trend_args <- list("sig_lvl" = 0.05)
repeat_args <- list("prepend" = 4, "tolerance" = 8)
shape_args <- list("method" = "dtw")
comp_args <- list("trend" = trend_args, "repeat" = repeat_args, "shape" = shape_args)
plane_score(input = prepped_forecast, seed = prepped_seed, args = comp_args)

run plane scoring with specific components and weights
comps <- c("cover", "taper", "diff")
wts <- c("cover" = 1.5, "taper" = 1, "diff" = 4)
plane_score(input = prepped_forecast, seed = prepped_seed, components = comps, weights = wts)

plane_seed Create seed

Description

This function wraps the seed_engine to operate across all locations in the input signal.

Usage

plane_seed(input, cut_date = NULL)

Arguments

input Input signal data used for seeding; must be an observed signal object

cut_date Maximum date (inclusive) for which seeding should be performed; default is
NULL and the entire input will be used for seeding

Value

A named list of length n, where multiple elements corresponding to seed characteristics and meta-
data for each of the n locations are nested in independent lists.

Examples

read in example observed data and prep observed signal
hosp <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes"))
hosp$date <- as.Date(hosp$date, format = "%Y-%m-%d")
prepped_observed <- to_signal(hosp, outcome = "flu.admits", type = "observed", resolution = "weeks")

12 plane_shape

prepare seed with no cut date
plane_seed(prepped_observed)

prepare seed with cut date
plane_seed(prepped_observed, cut_date = "2022-10-29")

plane_shape Shape component

Description

This function identifies the shape of the trajectory for a forecasted signal to compare against existing
shapes in seed data. If the shape is identified as novel, a flag is raised, and the signal is considered
implausible. See the Details section for further information.

Usage

plane_shape(location, input, seed, method = "sdiff")

Arguments

location Character vector with location code; the location must appear in input and seed

input Input signal data to be scored; object must be one of forecast

seed Prepared seed

method The method for determining shapes; must be one of "sdiff" or "dtw" (see De-
tails); default is "sdiff"

Details

The approach for determining shapes can be customized by the user with the plane_shape()
"method" argument. The two methods available are "sdiff" (default) and "dtw". Compared with
"sdiff", the "dtw" method has been shown to have a higher sensitivity, lower specificity, and much
greater computational cost in some circumstances. The "sdiff" method is recommended if compu-
tational efficiency is a concern.

The "sdiff" method will use consecutive scaled differences to construct shapes. The algorithm
operates in three steps:

1. The prepared seed data is combined with forecasted point estimates and each point-to-point
difference is calculated.

2. The differences are centered and scaled, then cut into categories. Differences greater than or
equal to one standard deviation above the mean of differences are considered an "increase".
Differences less than or equal to one standard deviation below the mean of differences are
considered a "decrease". All other differences are considered "stable".

3. The categorical differences are then combined into windows of equal size to the forecasted
horizon. Collectively these combined categorical differences create a "shape" (e.g., "increase;stable;stable;decrease").

plane_shape 13

4. Lastly, the algorithm compares the shape for the forecast to all of the shapes observed. If the
shape assessed has not been previously observed in the time series then a flag is raised and the
indicator returned is TRUE.

The "dtw" method uses a Dynamic Time Warping (DTW) algorithm to identify shapes within the
seed data and then compares the shape of the forecast input signal to the observed shapes. This is
done in three broad steps:

1. The prepared seed data is divided into a set of sliding windows with a step size of one, each
representing a section of the overall time series. The length of these windows is determined
by the horizon length of the input data signal (e.g., 2 weeks). For example, if the seed data
was a vector, c(1, 2, 3, 4, 5), and the horizon length was 2, then the sliding windows for the
observed seed data would be: c(1, 2), c(2, 3), c(3, 4), and c(4, 5). Each sliding window
is a subset of the total trajectory shape of the observed data.

2. Shape-based DTW distances are calculated for every 1x1 combination of the observed slid-
ing windows and are stored in a distance matrix. These distances calibrate the function for
identifying outlying shapes in forecast data. The algorithm finds the minimum distances for
each windowed time series to use as a baseline for "observed distances" between chunks of the
larger observed time series. The maximum of those minimum distances across the observed
time series is set as the threshold. If the minimum of the forecast:observed distance matrix is
greater than the threshold, then the forecast is inferred to be unfamiliar (i.e., a novel shape).

3. Next, the algorithm calculates the shape-based DTW distances between the forecast signal
(including the point estimate, lower, and upper bounds) and every observed sliding window. If
the distance between the forecast and any observed sliding window is less than or equal to the
threshold defined above, then this shape is not novel and no flag is raised (indicator is FALSE).

Value

A list with the following values:

• indicator: Logical as to whether or not the the shape of the evaluated signal is novel (TRUE if
shape is novel, FALSE if a familiar shape exists in the seed)

References

Toni Giorgino. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw
Package. Journal of Statistical Software, 31(7), 1-24. doi:10.18637/jss.v031.i07

Tormene, P.; Giorgino, T.; Quaglini, S. & Stefanelli, M. Matching incomplete time series with
dynamic time warping: an algorithm and an application to post-stroke rehabilitation. Artif Intell
Med, 2009, 45, 11-34. doi:10.1016/j.artmed.2008.11.007

Examples

read in example observed data and prep observed signal
hosp <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes"))

tmp_hosp <-
hosp %>%
dplyr::select(date, location, flu.admits) %>%
dplyr::mutate(date = as.Date(date))

14 plane_taper

prepped_observed <- to_signal(tmp_hosp,
outcome = "flu.admits",
type = "observed",
resolution = "weeks")

read in example forecast and prep forecast signal
prepped_forecast <- read_forecast(system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv",

package = "rplanes")) %>%
to_signal(., outcome = "flu.admits", type = "forecast", horizon = 4)

prepare seed with cut date
prepped_seed <- plane_seed(prepped_observed, cut_date = "2022-10-29")

run plane component
plane_shape(location = "37", input = prepped_forecast, seed = prepped_seed)

run plane component with DTW method
plane_shape(location = "37", input = prepped_forecast, seed = prepped_seed, method = "dtw")

plane_taper Taper component

Description

This function evaluates whether or not the evaluated signal interval tapers (i.e., decreases in width)
as horizons progress. The interval used in this plausibility component is drawn from the upper
and lower bounds of the forecasted prediction interval. As such, the only accepted signal format is
forecast, which will include upper and lower bounds.

Usage

plane_taper(location, input, seed)

Arguments

location Character vector with location code; the location must appear in input and seed

input Input signal data to be scored; object must be one of forecast

seed Prepared seed

Value

A list with the following values:

• indicator: Logical as to whether or not the prediction interval width tapers with advancing
horizons

• widths: Consecutive interval widths for forecasted data

plane_trend 15

Examples

read in example observed data and prep observed signal
hosp <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes"))
hosp$date <- as.Date(hosp$date, format = "%Y-%m-%d")
prepped_observed <- to_signal(hosp, outcome = "flu.admits", type = "observed", resolution = "weeks")

read in example forecast and prep forecast signal
fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes")
prepped_forecast <- read_forecast(fp) %>%

to_signal(., outcome = "flu.admits", type = "forecast", horizon = 4)

prepare seed with cut date
prepped_seed <- plane_seed(prepped_observed, cut_date = "2022-10-29")

run plane component
plane_taper(location = "19", input = prepped_forecast, seed = prepped_seed)
plane_taper(location = "44", input = prepped_forecast, seed = prepped_seed)

plane_trend Trend component

Description

This function identifies any change points in the forecast data or in the final observed data point.
Change points are identified by any significant change in magnitude or direction of the slope of the
time series.

Usage

plane_trend(location, input, seed, sig_lvl = 0.1)

Arguments

location Character vector with location code; the location must appear in input and seed

input Input signal data to be scored; object must be forecast

seed Prepared seed

sig_lvl The significance level at which to identify change points (between zero and one);
default is 0.1

Details

This function uses e.divisive(), which implements a hierarchical divisive algorithm to identify
change points based on distances between segments (calculated using equations 3 and 5 in Mat-
teson and James, 2014; the larger the distance, the more likely a change point). Then a permutation
test is used to calculate an approximate p-value.

The input to e.divisive() is transformed using differencing (i.e., diff(x) instead of the raw data,
x). This slightly changes the way that change points are identified, as the index aligns with the gap

16 plane_trend

between points rather than the points themselves. Instead of identifying a change point based on
the change in size between two points, it identifies change points based on the change in the change
itself. The dataframe below illustrates the difference between x and diff(x):

Index x diff(x)
1 3 6
2 9 0
3 9 28
4 37 37
5 74 1
6 75 0
7 75 0

Given this data, e.divisive(x) would identify index 5 (74) as the change point, because there was
a jump of +37 between index 4 and 5. But e.divisive(diff(x)) would pick both index 3 (28)
and 5 (1), because there was a jump of +28 from index 2 and 3, and there was a jump of -36 between
index 4 and 5.

Internally, the trend function uses an extra argument to e.divisive() for min.size = 2, which
requires a gap of at least 2 points between detecting change points. This can indirectly increase the
significance level or decrease the number of change points identified.

Value

A list with the following values:

• indicator: Logical as to whether or not the any forecast data or the final observed data point
are a significant change point

• output: An n x 7 tibble. The length of the forecast plus the observed data determine the length
of n. The columns are:

– Location: A character vector with the location code

– Index: An integer index of all observed and forecast data

– Date: The dates corresponding to all observed and forecast data (formatted as date)

– Value: The incidence of all observed and forecast data (e.g., hospitalization rates)

– Type: Indicates whether the data row is observed or forecast data

– Changepoint: Logical identifying any change point (whether in observed or forecast
data). A TRUE is returned if any point is determined a change point based on the user
defined significance level (sig_lvl).

– Flagged: Logical indicating whether or not the change point was flagged. Change points
are only flagged if they are in the forecast data or are the final observed data point. A
TRUE is returned if the Changepoint is TRUE and is a final observed data point or any
forecast point.

• flagged_dates: The date of any flagged change point(s). If there are none, NA is returned

plane_zero 17

References

Matteson, D. S., & James, N. A. (2014). A nonparametric approach for multiple change point
analysis of multivariate data. Journal of the American Statistical Association, 109(505), 334–345.
https://doi.org/10.1080/01621459.2013.849605

Matteson DS, James NA (2013). “A Nonparametric Approach for Multiple Change Point Anal-
ysis of Multivariate Data.” ArXiv e-prints. To appear in the Journal of the American Statistical
Association, 1306.4933.

Gandy, A. (2009) "Sequential implementation of Monte Carlo tests with uniformly bounded resam-
pling risk." Journal of the American Statistical Association.

Examples

read in example observed data and prep observed signal
hosp <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes"))
tmp_hosp <-

hosp %>%
dplyr::select(date, location, flu.admits) %>%
dplyr::mutate(date = as.Date(date))

prepped_observed <- to_signal(tmp_hosp, outcome = "flu.admits",
type = "observed", resolution = "weeks")

read in example forecast and prep forecast signal
prepped_forecast <- read_forecast(system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv",

package = "rplanes")) %>%
to_signal(., outcome = "flu.admits", type = "forecast", horizon = 4)

prepare seed with cut date
prepped_seed <- plane_seed(prepped_observed, cut_date = "2022-10-29")

run plane component
plane_trend(location = "05", input = prepped_forecast, seed = prepped_seed, sig_lvl = .2)
change location
plane_trend(location = "09", input = prepped_forecast, seed = prepped_seed, sig_lvl = .2)
change sig_lvl
plane_trend(location = "06", input = prepped_forecast, seed = prepped_seed, sig_lvl = .05)

plane_zero Zero component

Description

This function checks for the presence of any value(s) equal to zero in the evaluated signal. If there
are any zeros found, then the function assesses whether or not any zeros have been observed in the
seed for the given location. If so, the function will consider the evaluated zero plausible and no flag
will be raised (i.e., indicator returned as FALSE). If not, the function will consider the evaluated zero
implausible and a flag will be raised (i.e., indicator returned as TRUE).

18 q_boundary

Usage

plane_zero(location, input, seed)

Arguments

location Character vector with location code; the location must appear in input and seed

input Input signal data to be scored; object must be one of forecast or observed

seed Prepared seed

Value

A list with the following values:

• indicator: Logical as to whether or not there are zeros in evaluated signal but not in seed data

Examples

read in example observed data and prep observed signal
hosp <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes"))
hosp$date <- as.Date(hosp$date, format = "%Y-%m-%d")
prepped_observed <- to_signal(hosp, outcome = "flu.admits", type = "observed", resolution = "weeks")

read in example forecast and prep forecast signal
fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes")
prepped_forecast <- read_forecast(fp) %>%

to_signal(., outcome = "flu.admits", type = "forecast", horizon = 4)

prepare seed with cut date
prepped_seed <- plane_seed(prepped_observed, cut_date = "2022-10-29")

run plane component
plane_zero(location = "10", input = prepped_forecast, seed = prepped_seed)
plane_zero(location = "51", input = prepped_forecast, seed = prepped_seed)

q_boundary Quantile boundary

Description

This unexported helper generates a vector of lower bound, median, and upper bound for the predic-
tion interval of specified width. The function is used internally inside of read_forecast.

Usage

q_boundary(pi_width)

read_forecast 19

Arguments

pi_width Interval width as an integer

Value

Vector of quantiles corresponding to lower and upper bounds centered on median.

read_forecast Read in forecast file

Description

This function reads a probabilistic ("quantile") forecast csv file and prepares it for the to_signal
function and downstream plausibility analysis. The quantile forecast file can be either a "legacy"
or "hubverse" format (see Details for more information). The object returned is a tibble with
summarized forecast data (i.e., prediction interval) for each location and horizon in the original file.

Usage

read_forecast(file, pi_width = 95, format = "legacy")

Arguments

file Path to csv file containing quantile forecasts
pi_width Width of prediction interval as integer; default 95 corresponds to 95% prediction

interval
format Format of the probabilistic format file; must be one of "legacy" or "hubverse"

(see Details for more information); default is "legacy"

Details

The probabilistic forecast format has been used by multiple forecasting hubs. In general, this for-
mat includes one row per combination of quantile, location, target, and horizon. At each row the
forecasted value is provided. The specific format, including columns required, has changed over
time. This function accommodates the "legacy" as well as more recent "hubverse" formats. For
more details on specific columns and see the links in the References.

Value

A tibble with the following columns:

• location: Geographic unit such as FIPS code
• date: Date corresponding the forecast horizon
• horizon: Forecast horizon
• lower: Lower limit of the prediction interval for the forecast
• point: Point estimate for the forecast
• upper: Upper limit of the prediction interval for the forecast

20 resolve_resolution

References

Hubverse: https://hubdocs.readthedocs.io/en/latest/user-guide/model-output.html

Legacy: https://github.com/cdcepi/Flusight-forecast-data/tree/master/data-forecasts#
forecast-file-format

Examples

read in example forecast and prep forecast signal (legacy format)
fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes")
read_forecast(fp)

fp2 <- system.file("extdata/forecast/2023-11-04-SigSci-TSENS.csv", package = "rplanes")
read_forecast(fp2, format = "hubverse")

resolve_resolution Resolve resolution

Description

This helper function uses argument matching to resolve the resolution from input. The function also
handles casing. This will allow, for example, an input resolution of "daily" or "day" to be resolved
to "days".

Usage

resolve_resolution(resolution)

Arguments

resolution Character vector specifying the temporal resolution (e.g., "days", "weeks", "months")

Value

If the resolution matches to "days", "weeks", or "months" then the match will be returned. If not,
the function will throw an error.

https://hubdocs.readthedocs.io/en/latest/user-guide/model-output.html
https://github.com/cdcepi/Flusight-forecast-data/tree/master/data-forecasts#forecast-file-format
https://github.com/cdcepi/Flusight-forecast-data/tree/master/data-forecasts#forecast-file-format

rplanes_explorer 21

rplanes_explorer rplanes explorer app launcher

Description

The rplanes explorer app allows a user to interactively upload their own data (or view an internal
example) to explore the plausibility analysis functionality.

Usage

rplanes_explorer(...)

Arguments

... Additional arguments to be passed to shiny::runApp

Value

This function operates as a side-effect and starts the rplanes Shiny app.

Examples

Not run:
Launch the explorer app
rplanes_explorer(host = "0.0.0.0",

launch.browser = TRUE,
port = 80)

End(Not run)

seed_engine Seed engine

Description

This helper function is used inside of plane_seed to evaluate characteristics of observed data to use
for downstream plausibility analysis.

Usage

seed_engine(input, location, cut_date = NULL)

Arguments

input Input signal data used for seeding; must be an observed signal object
location Character vector with location code
cut_date Maximum date (inclusive) for which seeding should be performed; default is

NULL and the entire input will be used for seeding

22 to_signal

Value

A list of length 1 with multiple elements corresponding to seed characteristics and metadata for
the given location.

to_chunk Chunk a vector

Description

This unexported helper function creates a list with contents of a vector spit into chunks. The user
can specify how large each chunk should be with the "size" argument.

Usage

to_chunk(x, size)

Arguments

x Vector to be split into chunks as large as the "size" specified

size Width of the chunks for "x" vector

Value

A list with as many elements as the number of chunks created. Each element will include vector
with a length equal to the "size" specified.

to_signal Create signal object

Description

This function creates an object of the S3 class "signal". The user can conditionally specify either a
"forecast" or "observed" signal.

Usage

to_signal(
input,
outcome,
type = "observed",
resolution = "weeks",
horizon = NULL

)

to_signal 23

Arguments

input Data to be converted to signal; see "Details" for more information

outcome Name of the outcome column in the input data

type Signal type; must be one of "observed" or "forecast"; default is "observed"

resolution The temporal resolution of the signal; data can be aggregated daily, weekly, or
monthly; default is "weeks"; see "Details" for more information

horizon Number of time steps ahead for forecast signals; only used if type="forecast";
default is NULL

Details

The input signal data may be either "observed" or "forecast" data. Depending on the type, the input
data must conform to certain format prior to submission. In both cases, the data must be passed as
a data frame.

For "observed" data the data frame must at minimum include columns for location (geographic
unit such as FIPS code) and date (date of reported value; must be date class). The data should also
include a column that contains the outcome (e.g., case count).

For "forecast" data the data frame must include columns for location (geographic unit such as FIPS
code), date (date corresponding to forecast horizon; must be date class or character formatted as
’YYYY-MM-DD’), horizon (forecast horizon), lower (the lower limit of the prediction interval for
the forecast), point (the point estimate for the forecast), and upper (the upper limit of the prediction
interval for the forecast). Note that the read_forecast function returns data in this format.

The input data must at the daily, weekly, or monthly resolution. The "resolution" parameter is
designed to use string matching. This allows flexibility for the user, such that, for example, an input
of "day", "days", or "daily" would all resolve to a resolution of days. The same rules apply for
designating weekly or monthly resolution.

Value

An object of the class signal. The object will have a second class of either observed or forecast
depending on the value passed to the "type" argument.

Examples

hosp <- read.csv(system.file("extdata/observed/hdgov_hosp_weekly.csv", package = "rplanes"))
to_signal(hosp, outcome = "flu.admits", type = "observed", resolution = "weeks")

fp <- system.file("extdata/forecast/2022-10-31-SigSci-TSENS.csv", package = "rplanes")
ex_forecast <- read_forecast(fp)
to_signal(ex_forecast, outcome = "flu.admits", type = "forecast", horizon = 4, resolution = "weeks")

24 valid_dates

valid_dates Validate dates

Description

This function validates that there are no gaps or overlaps between dates specified in the "seed_date"
and "signal_date". During plausibility component analyses, the function is called to validate the
seed against the evaluated signal.

Usage

valid_dates(seed_date, signal_date, resolution, warn_incomplete = FALSE)

Arguments

seed_date Last date available in seed object

signal_date First date available in signal object

resolution Character vector specifying the temporal resolution (e.g., "days", "weeks", "months")

warn_incomplete

Logical as to whether or not the validation should warn for completeness of seed
and signal; default is FALSE

Value

The validation will return with a stop() if there is an overlap or gap between seed and signal dates.
Otherwise the function will invisibly return TRUE indicating that the date span is valid.

Examples

seed_date <- as.Date("2023-03-08")
signal_date <- as.Date("2023-03-15")
valid_dates(seed_date = seed_date, signal_date = signal_date, resolution="weeks")
x <- try(valid_dates(seed_date = seed_date,

signal_date = signal_date,
resolution="days"), silent=TRUE)

x
x <- try(valid_dates(seed_date = seed_date,

signal_date = signal_date,
resolution="months"), silent=TRUE)

x

valid_location 25

valid_location Validate location

Description

This unexported helper is used inside of the individual plausibility component functions (e.g.,
plane_diff()) to validate that the location specified appears in both the input signal and seed
and that the location has as many values as other locations in the seed.

Usage

valid_location(location, input, seed)

Arguments

location Character vector with location code; the location must appear in input and seed

input Input signal data to be scored; object must be forecast

seed Prepared seed

Value

The validation will return with a stop() if the location is not found in the seed or input signal.
Otherwise the function will invisibly return TRUE indicating that the location is valid.

Index

check_incomplete, 2
create_sliding_windows_df, 3
cutter, 3

e.divisive(), 15
epiweek_start, 4

forecast, 6–10, 12, 14, 15, 18, 25

get_shapes, 4

is_forecast, 5
is_observed, 5

month_start, 6

observed, 8–10, 18

plane_cover, 6
plane_diff, 7
plane_repeat, 8
plane_score, 10
plane_seed, 11, 21
plane_shape, 12
plane_taper, 14
plane_trend, 15
plane_zero, 17

q_boundary, 18

read_forecast, 18, 19, 23
resolve_resolution, 20
rplanes_explorer, 21

seed, 7–10, 12–15, 17, 18, 25
seed_engine, 11, 21
shiny::runApp, 21

to_chunk, 22
to_signal, 19, 22

valid_dates, 2, 4, 6, 24
valid_location, 25

26

	check_incomplete
	create_sliding_windows_df
	cutter
	epiweek_start
	get_shapes
	is_forecast
	is_observed
	month_start
	plane_cover
	plane_diff
	plane_repeat
	plane_score
	plane_seed
	plane_shape
	plane_taper
	plane_trend
	plane_zero
	q_boundary
	read_forecast
	resolve_resolution
	rplanes_explorer
	seed_engine
	to_chunk
	to_signal
	valid_dates
	valid_location
	Index

