Package ‘rgenoud’

September 4, 2024
Version 5.9-0.11
Date 2024-10-03
Title R Version of GENetic Optimization Using Derivatives
Maintainer Jasjeet Singh Sekhon <jas.sekhon@yale.edu>
Description A genetic algorithm plus derivative optimizer.
Depends R (>=2.15), utils
Suggests testthat
License GPL-3

URL https://github.com/JasjeetSekhon/rgenoud
NeedsCompilation yes

Author Walter R. Mebane, Jr [aut],
Jasjeet Singh Sekhon [aut, cre],
Theo Saarinen [aut]

Repository CRAN
Date/Publication 2024-09-04 04:20:02 UTC

Contents
genoud e e e e 1
Index 14
genoud GENetic Optimization Using Derivatives
Description

Genoud is a function that combines evolutionary search algorithms with derivative-based (Newton
or quasi-Newton) methods to solve difficult optimization problems. Genoud may also be used for
optimization problems for which derivatives do not exist. Genoud, via the cluster option, supports
the use of multiple computers, CPUs or cores to perform parallel computations.

1

https://github.com/JasjeetSekhon/rgenoud

Usage

genoud

genoud(fn, nvars, max=FALSE, pop.size=1000, max.generations=100,
wait.generations=10, hard.generation.limit=TRUE, starting.values=NULL,
MemoryMatrix=TRUE, Domains=NULL, default.domains=10,
solution.tolerance=0.001, gr=NULL, boundary.enforcement=0, lexical=FALSE,
gradient.check=TRUE, BFGS=TRUE, data.type.int=FALSE, hessian=FALSE,
unif.seed=round(runif (1, 1, 2147483647L)),
int.seed=round(runif (1, 1, 2147483647L)),print.level=2, share.type=0,
instance.number=0, output.path="stdout"”, output.append=FALSE,
project.path=NULL, P1=50, P2=50, P3=50, P4=50, P5=50, P6=50, P7=50,
P8=50, P9=0, P9mix=NULL, BFGSburnin=0, BFGSfn=NULL, BFGShelp=NULL,
control=list(), optim.method=ifelse(boundary.enforcement < 2, "BFGS",
"L-BFGS-B"), transform=FALSE, debug=FALSE, cluster=FALSE, balance=FALSE,

Arguments

fn

nvars

max

pop.size

max.generations

The function to be minimized (or maximized if max=TRUE). The first argument
of the function must be the vector of parameters over which minimizing is to
occur. The function must return a scalar result (unless lexical=TRUE).

For example, if we wish to maximize the sin() function. We can simply call
genoud by genoud(sin, nvars=1,max=TRUE).

The number of parameters to be selected for the function to be minimized (or
maximized).

Maximization (TRUE) or Minimizing (FALSE). Determines if genoud minimizes
or maximizes the objective function.

Population Size. This is the number of individuals genoud uses to solve the
optimization problem. There are several restrictions on what the value of this
number can be. No matter what population size the user requests, the number
is automatically adjusted to make certain that the relevant restrictions are satis-
fied. These restrictions originate in what is required by several of the operators.
In particular, operators 6 (Simple Crossover) and 8 (Heuristic Crossover) re-
quire an even number of individuals to work on—i.e., they require two parents.
Therefore, the pop.size variable and the operators sets must be such that these
three operators have an even number of individuals to work with. If this does
not occur, the population size is automatically increased until this constraint is
satisfied.

Maximum Generations. This is the maximum number of generations that genoud
will run when attempting to optimize a function. This is a soft limit. The maxi-
mum generation limit will be binding for genoud only if hard. generation.limit
has been set equal to TRUE. If it has not been set equal to TRUE, two soft triggers
control when genoud stops: wait.generations and gradient.check.

Although the max.generations variable is not, by default, binding, it is nev-
ertheless important because many operators use it to adjust their behavior. In
essence, many of the operators become less random as the generation count gets

genoud

closer to the max.generations limit. If the limit is hit and genoud decides to
continue working, genoud automatically increases the max.generation limit.

Please see MemoryMatrix for some important interactions with memory man-
agement.

wait.generations

If there is no improvement in the objective function in this number of genera-
tions, genoud will think that it has found the optimum. If the gradient.check
trigger has been turned on, genoud will only start counting wait.generations
if the gradients are within solution.tolerance of zero. The other variables
controlling termination are max.generations and hard.generation.limit.

hard.generation.limit

starting.values

MemoryMatrix

Domains

This logical variable determines if the max.generations variable is a bind-
ing constraint for genoud. If hard.generation.limit is FALSE, then genoud
may exceed the max. generations count if either the objective function has im-
proved within a given number of generations (determined by wait.generations)
or if the gradients are not zero (determined by gradient. check).

Please see MemoryMatrix for some important interactions with memory man-
agement.

A vector or matrix containing parameter values which genoud will use at startup.
Using this option, the user may insert one or more individuals into the starting
population. If a matrix is provided, the columns should be the variables and the
rows the individuals. genoud will randomly create the other individuals.

This variable controls if genoud sets up a memory matrix. Such a matrix en-
sures that genoud will request the fitness evaluation of a given set of parameters
only once. The variable may be TRUE or FALSE. If it is FALSE, genoud will be
aggressive in conserving memory. The most significant negative implication of
this variable being set to FALSE is that genoud will no longer maintain a memory
matrix of all evaluated individuals. Therefore, genoud may request evaluations
which it has already previously requested.

Note that when nvars or pop.size are large, the memory matrix consumes
a large amount of RAM. Genoud’s memory matrix will require somewhat less
memory if the user sets hard.generation.limit equal to TRUE.

This is a nvars x2 matrix. For each variable, in the first column is the lower
bound and in the second column the upper bound. None of genoud’s start-
ing population will be generated outside of the bounds. But some of the op-
erators may generate children which will be outside of the bounds unless the
boundary.enforcement flag is turned on.

If the user does not provide any values for Domains, genoud will setup default
domains using default.domains.

For linear and nonlinear constraints please see the discussion in the Note section.

genoud

default.domains
If the user does not want to provide a Domains matrix, domains may nevertheless
be set by the user with this easy to use scalar option. Genoud will create a
Domains matrix by setting the lower bound for all of the parameters equal to -1
x default.domains and the upper bound equal to default.domains.

solution.tolerance
This is the tolerance level used by genoud. Numbers within solution.tolerance
are considered to be equal. This is particularly important when it comes to eval-
uating wait.generations and conducting the gradient. check.

gr A function to provide the gradient for the BFGS optimizer. If it is NULL, numerical
gradients will be used instead.

boundary.enforcement
This variable determines the degree to which genoud obeys the boundary con-
straints. Notwithstanding the value of the variable, none of genoud’s starting
population values will be outside of the bounds.

boundary.enforcement has three possible values: 0 (anything goes), 1 (par-
tial), and 2 (no trespassing):

0: Anything Goes This option allows any of the operators to create out-of-
bounds individuals and these individuals will be included in the population
if their fit values are good enough. The boundaries are only important when
generating random individuals.

1: partial enforcement This allows operators (particularly those operators which
use the derivative based optimizer, BFGS) to go out-of-bounds during the
creation of an individual (i.e., out-of-bounds values will often be evaluated).
But when the operator has decided on an individual, it must be in bounds to
be acceptable.

2: No Trespassing No out-of-bounds evaluations will ever be requested. In this
case, boundary enforcement is also applied to the BFGS algorithm, which
prevents candidates from straying beyond the bounds defined by Domains.
Note that this forces the use of the L-BFGS-B algorithm for optim. This
algorithm requires that all fit values and gradients be defined and finite for
all function evaluations. If this causes an error, it is suggested that the BFGS
algorithm be used instead by setting boundary.enforcement=1.

lexical This option enables lexical optimization. This is where there are multiple fit
criteria and the parameters are chosen so as to maximize fitness values in lexical
order—i.e., the second fit criterion is only relevant if the parameters have the
same fit for the first etc. The fit function used with this option should return a
numeric vector of fitness values in lexical order. This option can take on the
values of FALSE, TRUE or an integer equal to the number of fit criteria which are
returned by fn. The value object which is returned by genoud will include all
of the fit criteria at the solution. The GenMatch function makes extensive use of
this option.

gradient.check If this variable is TRUE, genoud will not start counting wait.generations un-
less each gradient is solution.tolerance close to zero. This variable has no
effect if the max . generations limit has been hit and the hard. generation.limit

genoud

BFGS

data.type.int

hessian

unif.seed

int.seed

print.level

option has been set to TRUE. If BFGSburnin < @, then it will be ignored unless
gradient.check = TRUE.

This variable denotes whether or not genoud applies a quasi-Newton derivative
optimizer (BFGS) to the best individual at the end of each generation after the
initial one. See the optim.method option to change the optimizer. Setting BFGS
to FALSE does not mean that the BFGS will never be used. In particular, if you
want BFGS never to be used, P9 (the Local-Minimum Crossover operator) must
also be set to zero.

This option sets the data type of the parameters of the function to be optimized.
If the variable is TRUE, genoud will search over integers when it optimizes the
parameters.

With integer parameters, genoud never uses derivative information. This implies
that the BFGS quasi-Newton optimizer is never used—i.e., the BFGS flag is set to
FALSE. It also implies that Operator 9 (Local-Minimum Crossover) is set to zero
and that gradient checking (as a convergence criterion) is turned off. No matter
what other options have been set to, data.type.int takes precedence—i.e., if
genoud is told that it is searching over an integer parameter space, gradient in-
formation is never considered.

There is no option to mix integer and floating point parameters. If one wants
to mix the two, it is suggested that the user pick integer type and in the objec-
tive function map a particular integer range into a floating point number range.
For example, tell genoud to search from 0 to 100 and divide by 100 to obtain a
search grid of 0 to 1.0 (by .1).

Alternatively, the user could use floating point numbers and round the appropri-
ate parameters to the nearest integer inside fn before the criterion (or criteria if
lexical = TRUE) is evaluated. In that case, the transform option can be used
to create the next generation from the current generation when the appropriate
parameters are in the rounded state.

When this flag is set to TRUE, genoud will return the hessian matrix at the so-
lution as part of its return list. A user can use this matrix to calculate standard
errors.

An integer used to seed the random number generator for doubles called in C++.
If the user wants to have reproducibility for the output of genoud, they should
either set both this and int.seed or use set.seed() before calling genoud in
R. See the note in the Note section below regarding backwards compatibility
after Version 5.9-0.0.

An integer used to seed the random number generator for integers called in C++.
If the user wants to have reproducibility for the output of genoud, they should
either set both this and unif.seed or use set.seed() before calling genoud
in R. See the note in the Note section below regarding backwards compatibility
after Version 5.9-0.0.

This variable controls the level of printing that genoud does. There are four
possible levels: 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (debug). If

share. type

instance.number

output.path

output.append

project.path

P1

genoud

level 2 is selected, genoud will print details about the population at each gen-
eration. The print.level variable also significantly affects how much detail
is placed in the project file—see project.path. Note that R convention would
have us at print level 0 (minimal printing). However, because genoud runs may
take a long time, it is important for the user to receive feedback. Hence, print
level 2 has been set as the default.

If share. type is equal to 1, then genoud, at startup, checks to see if there is
an existing project file (see project.path). If such a file exists, it initializes its
original population using it. This option can be used neither with the lexical
nor the transform options.

If the project file contains a smaller population than the current genoud run,
genoud will randomly create the necessary individuals. If the project file con-
tains a larger population than the current genoud run, genoud will kill the nec-
essary individuals using exponential selection.

If the number of variables (see nvars) reported in the project file is different
from the current genoud run, genoud does not use the project file (regardless of
the value of share. type) and genoud generates the necessary starting popula-
tion at random.

This number (starting from 0) denotes the number of recursive instances of
genoud. genoud then sets up its random number generators and other such
structures so that the multiple instances do not interfere with each other. It is
up to the user to make certain that the different instances of genoud are not writ-
ing to the same output file(s): see project.path.

For the R version of genoud this variable is of limited use. It is basically there
in case a genoud run is being used to optimize the result of another genoud run
(i.e., a recursive implementation).

This option is no longer supported. It used to allow one to redirect the out-
put. Now please use sink. The option remains in order to provide backward
compatibility for the API.

This option is no longer supported. Please see sink. The option remains in
order to provide backward compatibility for the APL

This is the path of the genoud project file. The project file prints one individ-
ual per line with the fit value(s) printed first and then the parameter values. By
default genoud places its output in a file called "genoud.pro" located in the tem-
porary directory provided by tempdir. The behavior of the project file depends
on the print.level chosen. If the print.level variable is set to 1, then the
project file is rewritten after each generation. Therefore, only the currently fully
completed generation is included in the file. If the print.level variable is
set to 2, then each new generation is simply appended to the project file. For
print.level=0, the project file is not created.

This is the cloning operator. genoud always clones the best individual each
generation. But this operator clones others as well. Please see the Operators
Section for details about operators and how they are weighted.

genoud

P2

P3

P4

P5

P6

P7

P8

P9

P9mix

BFGSburnin

BFGSfn

BFGShelp

This is the uniform mutation operator. One parameter of the parent is mutated.
Please see the Operators Section for details about operators and how they are
weighted.

This is the boundary mutation operator. This operator finds a parent and mutates
one of its parameters towards the boundary. Please see the Operators Section for
details about operators and how they are weighted.

Non-Uniform Mutation. Please see the Operators Section for details about op-
erators and how they are weighted.

This is the polytope crossover. Please see the Operators Section for details about
operators and how they are weighted.

Simple Crossover. Please see the Operators Section for details about operators
and how they are weighted.

Whole Non-Uniform Mutation. Please see the Operators Section for details
about operators and how they are weighted.

Heuristic Crossover. Please see the Operators Section for details about operators
and how they are weighted.

Local-Minimum Crossover: BFGS. This is rather CPU intensive, and should be
generally used less than the other operators. Please see the Operators Section
for details about operators and how they are weighted.

This is a tuning parameter for the P9 operator. The local-minimum crossover
operator by default takes the convex combination of the result of a BFGS op-
timization and the parent individual. By default the mixing (weight) parameter
for the convex combination is chosen by a uniform random draw between 0 and
1. The P9mix option allows the user to select this mixing parameter. It may be
any number greater than O and less than or equal to 1. If 1, then the BFGS result
is simply used.

The number of generations which are run before the BFGS is first used. Prema-
ture use of the BFGS can lead to convergence to a local optimum instead of the
global one. This option allows the user to control how many generations are run
before the BFGS is started and would logically be a non-negative integer. How-
ever, if BFGSburnin < @, the BFGS will be used if and when wait.generations
is doubled because at least one gradient is too large, which can only occur when
gradient.check = TRUE. This option delays the use of both the BFGS on the
best individual and the P9 operator.

This is a function for the BFGS optimizer to optimize, if one wants to make it
distinct from the fn function. This is useful when doing lexical optimization
because otherwise a derivative based optimizer cannot be used (since it requires
a single fit value). It is suggested that if this functionality is being used, both
the fn and BFGSfn functions obtain all of the arguments they need (except for
the parameters being optimized) by lexical scope instead of being passed in as
arguments to the functions. Alternatively, one may use the BFGShelp option
to pass arguments to BFGSfn. If print.level > 2, the results from the BFGS
optimizer are printed every time it is called.

An optional function to pass arguments to BFGSfn. This function should take
an argument named ‘initial’, an argument named ‘done’ that defaults to FALSE,

control

optim.method

transform

debug

genoud

or at least allow . .. to be an argument. BFGSfn must have an argument named
‘helper’ if BFGShelp is used because the call to optim includes the hard-coded
expression helper = do.call(BFGShelp, args = list(initial = foo.vals),
envir =environment(fn))), which evaluates the BFGShelp function in the en-
vironment of BFGSfn (fn is just a wrapper for BFGSfn) at par = foo.vals where
foo.vals contains the starting values for the BFGS algorithm. The ‘done’ ar-
gument to BFGSfn is used if the user requests that the Hessian be calculated at
the genoud solution.

A list of control parameters that is passed to optim if BFGS = TRUE or P9 > 0.
Please see the optim documentation for details.

A character string among those that are admissible for the method argument to
the optim function, namely one of "BFGS", "L-BFGS-B", "Nelder-Mead"”, "CG",
or "SANN". By default, optim.method is "BFGS" if boundary.enforcement < 2
and is "L-BFGS-B" if boundary.enforcement = 2. For discontinuous objective
functions, it may be advisable to select "Nelder-Mead"” or "SANN". If select-
ing "L-BFGS-B" causes an error message, it may be advisable to select another
method or to adjust the control argument. Note that the various arguments of
genoud that involve the four letters “BFGS” continue to be passed to optimeven
if optim.method != "BFGS".

A logical that defaults to FALSE. If TRUE, it signifies that fn will return a numeric
vector that contains the fit criterion (or fit criteria if lexical = TRUE), followed
by the parameters. If this option is used, fn should have the following general
form in its body:

par <- myTransformation(par)

criter <- myObjective(par)

return(c(criter, par))

This option is useful when parameter transformations are necessary because the
next generation of the population will be created from the current generation in
the transformed state, rather than the original state. This option can be used by
users to implement their own operators.

There are some issues that should be kept in mind. This option cannot be used
when data.type.int = TRUE. Also, this option coerces MemoryMatrix to be
FALSE, implying that the cluster option cannot be used. And, unless BFGSfn
is specified, this option coerces gradient.check to FALSE, BFGS to FALSE, and
P9 to @. If BFGSfn is specified, that function should perform the transformation
but should only return a scalar fit criterion, for example:

par <- myTransformation(par)

criter <-myCriterion(par)

return(criter)

Finally, if boundary.enforcement > @, care must be taken to assure that the
transformed parameters are within the Domains, otherwise unpredictable results
could occur. In this case, the transformations are checked for consistency with
Domains but only in the initial generation (to avoid an unacceptable loss in com-
putational speed).

This variable turns on some debugging information. This variable may be TRUE
or FALSE.

genoud 9

cluster This can either be an object of the ’cluster’ class returned by one of the makeCluster

commands in the parallel package or a vector of machine names so genoud
can setup the cluster automatically. If it is the latter, the vector should look like:
c("localhost”,"musil”, "musil”, "deckard").

This vector would create a cluster with four nodes: one on the localhost another
on "deckard" and two on the machine named "musil". Two nodes on a given
machine make sense if the machine has two or more chips/cores. genoud will
setup a SOCK cluster by a call to makePSOCKcluster. This will require the
user to type in her password for each node as the cluster is by default created via
ssh. One can add on usernames to the machine name if it differs from the current
shell: "username @musil". Other cluster types, such as PVM and MPI, which do
not require passwords can be created by directly calling makeCluster, and then
passing the returned cluster object to genoud. For an example of how to manu-
ally setup up a cluster with a direct call to makeCluster see https://github.
com/JasjeetSekhon/rgenoud. For an example of how to get around a firewall
by ssh tunneling see: https://github.com/JasjeetSekhon/rgenoud.

balance This logical flag controls if load balancing is done across the cluster. Load
balancing can result in better cluster utilization; however, increased communi-
cation can reduce performance. This option is best used if the function being
optimized takes at least several minutes to calculate or if the nodes in the cluster
vary significantly in their performance. If cluster==FALSE, this option has no
effect.

Further arguments to be passed to fn and gr.

Details

Genoud solves problems that are nonlinear or perhaps even discontinuous in the parameters of
the function to be optimized. When a statistical model’s estimating function (for example, a log-
likelihood) is nonlinear in the model’s parameters, the function to be optimized will generally not be
globally concave and may have irregularities such as saddlepoints or discontinuities. Optimization
methods that rely on derivatives of the objective function may be unable to find any optimum at all.
Multiple local optima may exist, so that there is no guarantee that a derivative-based method will
converge to the global optimum. On the other hand, algorithms that do not use derivative informa-
tion (such as pure genetic algorithms) are for many problems needlessly poor at local hill climbing.
Most statistical problems are regular in a neighborhood of the solution. Therefore, for some portion
of the search space, derivative information is useful for such problems. Genoud also works well for
problems that no derivative information exists. For additional documentation and examples please
see https://github.com/JasjeetSekhon/rgenoud.

Value
genoud returns a list with 7 objects. 8 objects are returned if the user has requested the hessian to

be calculated at the solution. Please see the hessian option. The returned objects are:

value This variable contains the fitness value at the solution. If lexical optimization
was requested, it is a vector.

par This vector contains the parameter values found at the solution.

https://github.com/JasjeetSekhon/rgenoud
https://github.com/JasjeetSekhon/rgenoud
https://github.com/JasjeetSekhon/rgenoud
https://github.com/JasjeetSekhon/rgenoud

10 genoud

gradients This vector contains the gradients found at the solution. If no gradients were
calculated, they are reported to be NA.

generations This variable contains the number of generations genoud ran for.

peakgeneration This variable contains the generation number at which genoud found the solu-
tion.

pop.size This variable contains the population size that genoud actually used. See pop.size

for why this value may differ from the population size the user requested.

operators This vector reports the actual number of operators (of each type) genoud used.
Please see the Operators Section for details.

hessian If the user has requested the hessian matrix to be returned (via the hessian
flag), the hessian at the solution will be returned. The user may use this matrix
to calculate standard errors.

Operators

Genoud has nine operators that it uses. The integer values which are assigned to each of these oper-
ators (P1- - - P9) are weights. Genoud calculates the sum of s = P1+ P2+ -- -+ P9. Each operator
is assigned a weight equal to W,, = Pin. The number of times an operator is called usually equals
cn, = Wy, X pop.size.

Operators 6 (Simple Crossover) and 8 (Heuristic Crossover) require an even number of individuals
to work on—i.e., they require two parents. Therefore, the pop. size variable and the operators sets
must be such that these three operators have an even number of individuals to work with. If this
does not occur, genoud automatically upwardly adjusts the population size to make this constraint
hold.

Strong uniqueness checks have been built into the operators to help ensure that the operators pro-
duce offspring different from their parents, but this does not always happen.

Note that genoud always keeps the best individual each generation.

genoud’s 9 operators are:

. Cloning

. Uniform Mutation

. Boundary Mutation

. Non-Uniform Crossover

. Polytope Crossover

. Simple Crossover

. Whole Non-Uniform Mutation

. Heuristic Crossover

O 0 3 O Lt AW N =

. Local-Minimum Crossover: BFGS

For more information please see Table 1 of the reference article: https://github.com/JasjeetSekhon/
rgenoud.

https://github.com/JasjeetSekhon/rgenoud
https://github.com/JasjeetSekhon/rgenoud

genoud 11

Note

The most important options affecting performance are those determining population size (pop.size)

and the number of generations the algorithm runs (max.generations,wait.generations, hard.generation.limit
and gradient.check). Search performance is expected to improve as the population size and the

number of generations the program runs for increase. These and the other options should be ad-

justed for the problem at hand. Please pay particular attention to the search domains (Domains and
default.domains). For more information please see the reference article.

Linear and nonlinear constraints among the parameters can be introduced by users in their fit func-
tion. For example, if the sum of parameters 1 and 2 must be less than 725, the following can be
placed in the fit function the user is going to have genoud maximize: if ((parml + parm2) >=
725) { return(-99999999) }. In this example, a very bad fit value is returned to genoud if the
linear constraint is violated. genoud will then attempt to find parameter values that satisfy the con-
straint.

Alternatively, one can use lexical optimization where the first criterion is a binary variable that
equals 1.0 iff (parm1 + parm2) <725 and the second criterion is the fit function, which should
also be passed to BFGSfn. All candidates where (parm1 + parm2) >= 725 will be ranked below all
candidates where (parm1 + parm2) < 725 and within these two groups, candidates will be ranked
by their fit on the second criterion. The optimal candidate is thus the one with the best fit on the
second criterion among candidates that satisfy this restriction.

In Version 5.9-0.0 we have changed the implementation of the random number generator, so results
from this version onward will not be backwards compatible.

Author(s)

Walter R. Mebane, Jr., University of Michigan, <wmebane@umich.edu>, http://www-personal.
umich.edu/~wmebane/

Jasjeet S. Sekhon, Yale University, <jas.sekhon@yale.edu>, https://github.com/JasjeetSekhon/
rgenoud

Theo Saarinen, UC Berkeley, <theo_s@berkeley.edu>

References

Mebane, Walter R., Jr. and Jasjeet S. Sekhon. 2011. "Genetic Optimization Using Derivatives: The
rgenoud Package for R." Journal of Statistical Software, 42(11): 1-26. https://www. jstatsoft.
org/v42/i11/

Sekhon, Jasjeet Singh and Walter R. Mebane, Jr. 1998. “Genetic Optimization Using Deriva-
tives: Theory and Application to Nonlinear Models.” Political Analysis, 7: 187-210. https:
//github.com/JasjeetSekhon/rgenoud

Mebane, Walter R., Jr. and Jasjeet S. Sekhon. 2004. “Robust Estimation and Outlier Detection
for Overdispersed Multinomial Models of Count Data.” American Journal of Political Science, 48

http://www-personal.umich.edu/~wmebane/
http://www-personal.umich.edu/~wmebane/
https://github.com/JasjeetSekhon/rgenoud
https://github.com/JasjeetSekhon/rgenoud
https://www.jstatsoft.org/v42/i11/
https://www.jstatsoft.org/v42/i11/
https://github.com/JasjeetSekhon/rgenoud
https://github.com/JasjeetSekhon/rgenoud

12 genoud
(April): 391-410. https://github.com/JasjeetSekhon/rgenoud

Bright, H. and R. Enison. 1979. Quasi-Random Number Sequences from a Long-Period TLP
Generator with Remarks on Application to Cryptography. Computing Surveys, 11(4): 357-370.

See Also

optim.

Examples

#maximize the sin function
sin1 <- genoud(sin, nvars=1, max=TRUE)

#minimize the sin function
sin2 <- genoud(sin, nvars=1, max=FALSE)

Not run:
#maximize a univariate normal mixture which looks like a claw
claw <- function(xx) {
x <= xx[1]
y <- (0.46*(dnorm(x,-1.0,2.0/3.0) + dnorm(x,1.0,2.0/3.0)) +
(1.0/300.0)*(dnorm(x,-0.5,.01) + dnorm(x,-1.0,.01) + dnorm(x,-1.5,.01)) +
(7.0/300.0)*(dnorm(x,0.5,.07) + dnorm(x,1.0,.07) + dnorm(x,1.5,.07)))
return(y)
3

clawl <- genoud(claw, nvars=1,pop.size=3000,max=TRUE)
End(Not run)

Not run:
#Plot the previous run
xx <- seq(-3,3,.05)
plot(xx,lapply(xx,claw),type="1",xlab="Parameter”,ylab="Fit",
main="GENOUD: Maximize the Claw Density")
points(clawl$par,clawl$value,col="red")

Maximize a bivariate normal mixture which looks like a claw.
biclaw <- function(xx) {
mNd2 <- function(x1, x2, mul, mu2, sigmal, sigma2, rho)
{
z1 <= (x1-mul)/sigmal
z2 <~ (x2-mu2)/sigma2
w <- (1.0/(2.0xpixsigmalxsigma2*sqrt(1-rhoxrho)))
w <- wxexp(-0.5%x(z1*z1 - 2*xrhoxz1%z2 + z2*z2)/(1-rho*rho))
return(w)
3
x1 <= xx[1]1+1
x2 <- xx[2]+1

y <- (0.5*mNd2(x1,x2,0.0,0.0,1.0,1.0,0.0) +
0.1%(mNd2(x1,%x2,-1.0,-1.0,0.1,0.1,0.0) +

https://github.com/JasjeetSekhon/rgenoud

genoud

mNd2(x1,x2,-0.5,-0.5,0.1,0.1,0.0) +
mNd2(x1,x2,0.0,0.0,0.1,0.1,0.0) +

mNd2(x1,x2,0.5,0.5,0.1,0.1,0.0) +

mNd2(x1,x2,1.0,1.0,0.1,0.1,0.0)))
return(y)

}

biclawl <- genoud(biclaw, default.domains=20, nvars=2,pop.size=5000,max=TRUE)

End(Not run)
For more examples see: https://github.com/JasjeetSekhon/rgenoud.

Index

* nonlinear
genoud, 1

* optimize
genoud, 1

GenMatch, 4
genoud, 1

makeCluster, 9
makePSOCKcluster, 9

optim, 4,8, 12
sink, 6

tempdir, 6

14

	genoud
	Index

