| Title: | Implementation of the Radar-Boxplot | 
| Version: | 1.0.5 | 
| Description: | Creates the radar-boxplot, a plot that was created by the author during his Ph.D. in forest resources. The radar-boxplot is a visualization feature suited for multivariate classification/clustering. It provides an intuitive deep understanding of the data. | 
| Suggests: | ggplot2 | 
| Depends: | R (≥ 3.5) | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.1.2 | 
| URL: | https://github.com/caiohamamura/radarBoxplot-R, https://radarboxplot.r-forge.r-project.org/ | 
| BugReports: | https://github.com/caiohamamura/radarBoxplot-R/issues | 
| Author: | Caio Hamamura [aut, cre] | 
| Maintainer: | Caio Hamamura <caiohamamura@gmail.com> | 
| Repository: | CRAN | 
| Repository/R-Forge/Project: | radarboxplot | 
| Repository/R-Forge/Revision: | 16 | 
| Repository/R-Forge/DateTimeStamp: | 2021-10-06 17:10:06 | 
| Date/Publication: | 2021-10-07 07:40:16 UTC | 
| NeedsCompilation: | no | 
| Packaged: | 2021-10-06 17:28:07 UTC; rforge | 
Function to plot the radar-boxplot
Description
Function to plot the radar-boxplot
Usage
radarBoxplot(x, ...)
## S3 method for class 'formula'
radarBoxplot(x, data, ...)
## Default S3 method:
radarBoxplot(
  x,
  y,
  IQR = 1.5,
  use.ggplot2 = FALSE,
  mfrow = NA,
  oma = c(5, 4, 0, 0) + 0.1,
  mar = c(0, 0, 1, 1) + 0.1,
  innerPolygon = list(),
  outerPolygon = list(),
  innerBorder = list(),
  outerBorder = list(),
  medianLine = list(),
  outlierPoints = list(),
  nTicks = 4,
  ticksArgs = list(),
  axisArgs = list(),
  labelsArgs = list(),
  angleOffset = NA,
  ...
)
Arguments
| x | a data frame or matrix of attributes or a formula describing the attributes for the class | 
| ... | parameter to allow the usage of S3 methods | 
| data | dataset for fomula variant for which formula was defined | 
| y | a response vector | 
| IQR | numeric. The factor to multiply the IQR to define the outlier threshold. Default 1.5 | 
| use.ggplot2 | if ggplot2 are available it will use ggplot for plotting: Default FALSE | 
| mfrow | mfrow argument for defining the subplots nrows and ncols: Default will calculate the minimum square | 
| oma | outer margins of the subplots: Default c(5,4,0,0) + 0.1 | 
| mar | margins of the subplots: Default c(0,0,1,1) + 0.1 | 
| innerPolygon | a list of optional arguments to override Q2-Q3 'graphics::polygon()' style: Default list() | 
| outerPolygon | a list of optional arguments to override the outer (range) 'graphics::polygon()' default style: Default list() | 
| innerBorder | a list of optional arguments to override the inner border 'graphics::lines()' default style: Default list() | 
| outerBorder | a list of optional arguments to override the outer border 'graphics::lines()' default style: Default list() | 
| medianLine | a list of optional arguments to override the median line 'graphics::lines()' default style: Default list() | 
| outlierPoints | a list of optional arguments to override the outliers 'graphics::points()' default style: Default list() | 
| nTicks | number of ticks for the radar chart: Default 4 | 
| ticksArgs | a list of optional arguments to override radar ticks 'graphics::lines()' default style: Default list() | 
| axisArgs | a list of optional arguments to override radar axis 'graphics::lines()' default style: Default list() | 
| labelsArgs | a list of optional arguments to override labels 'graphics::text()' default style: Default list() | 
| angleOffset | offset for rotating the plots: Default will let the top free of axis to avoid its label overlapping the title | 
Examples
library(radarBoxplot)
data("winequality_red")
# Regular
radarBoxplot(quality ~ ., winequality_red)
# Orange and green pattern with grey median
radarBoxplot(quality ~ ., winequality_red,
             use.ggplot2=FALSE, medianLine=list(col="grey"),
             innerPolygon=list(col="#FFA500CC"),
             outerPolygon=list(col=rgb(0,.7,0,0.6)))
# Plot in 2 rows and 3 columns
# change columns order (counter clockwise)
radarBoxplot(quality ~ volatile.acidity + citric.acid +
             residual.sugar + fixed.acidity + chlorides +
             free.sulfur.dioxide + total.sulfur.dioxide +
             density + pH + sulphates + alcohol,
             data = winequality_red,
             mfrow=c(2,3))
Red Wine Quality Dataset
Description
Related to red vinho verde wine samples, from the north of Portugal. The goal is to model wine quality based on physicochemical tests
Usage
winequality_red
Format
A data frame with 1599 rows and 12 variables:
Source
https://archive.ics.uci.edu/ml/datasets/wine+quality
References
P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.
White Wine Quality Dataset
Description
Related to white vinho verde wine samples, from the north of Portugal. The goal is to model wine quality based on physicochemical tests
Usage
winequality_white
Format
A data frame with 4898 rows and 12 variables:
Source
https://archive.ics.uci.edu/ml/datasets/wine+quality
References
P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.