
Package ‘pwr4exp’
March 17, 2025

Title Power Analysis for Research Experiments

Version 1.0.0

Description Provides tools for calculating statistical power for experiments
analyzed using linear mixed models. It supports standard designs, including
randomized block, split-plot, and Latin Square designs, while offering flexibility
to accommodate a variety of other complex study designs.

License GPL (>= 2)

URL https://github.com/an-ethz/pwr4exp,

https://an-ethz.github.io/pwr4exp/

BugReports https://github.com/an-ethz/pwr4exp/issues

Depends R (>= 2.10), stats

Suggests agricolae, AlgDesign, crossdes, FrF2, knitr, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Imports emmeans, MASS, Matrix, methods, nlme, numDeriv

NeedsCompilation no

Author Kai Wang [aut, cre, cph] (<https://orcid.org/0000-0002-6672-1121>),
Mutian Niu [aut, cph] (<https://orcid.org/0000-0003-4484-4611>)

Maintainer Kai Wang <kai.wang@usys.ethz.ch>

Repository CRAN

Date/Publication 2025-03-17 10:40:03 UTC

Contents
designCRD . 2
df.cod . 6
df.crd . 7

1

https://github.com/an-ethz/pwr4exp
https://an-ethz.github.io/pwr4exp/
https://github.com/an-ethz/pwr4exp/issues
https://orcid.org/0000-0002-6672-1121
https://orcid.org/0000-0003-4484-4611

2 designCRD

df.lsd . 8
df.rcbd . 9
df.spd . 9
milk . 10
mkdesign . 11
pwr.anova . 15
pwr.contrast . 16
pwr.summary . 17

Index 19

designCRD Creation of Standard Experimental Designs

Description

These functions facilitate the creation of standard experimental designs commonly used in agricul-
tural studies for power analysis. Unlike mkdesign which requires a pre-existing data frame, these
functions allow users to directly specify key design characteristics to generate experimental lay-
outs. Quantitative parameters describing fixed and random effects remain consistent with those in
mkdesign.

Usage

designCRD(
treatments,
label,
replicates,
formula,
beta = NULL,
means = NULL,
sigma2,
template = FALSE,
REML = TRUE

)

designRCBD(
treatments,
label,
blocks,
formula,
beta = NULL,
means = NULL,
vcomp,
sigma2,
template = FALSE,
REML = TRUE

)

designCRD 3

designLSD(
treatments,
label,
squares = 1,
reuse = c("row", "col", "both"),
formula,
beta = NULL,
means = NULL,
vcomp,
sigma2,
template = FALSE,
REML = TRUE

)

designCOD(
treatments,
label,
squares = 1,
formula,
beta = NULL,
means = NULL,
vcomp,
sigma2,
template = FALSE,
REML = TRUE

)

designSPD(
trt.main,
trt.sub,
label,
replicates,
formula,
beta = NULL,
means = NULL,
vcomp,
sigma2,
template = FALSE,
REML = TRUE

)

Arguments

treatments An integer vector where each element represents the number of levels of the
corresponding treatment factor. A single integer (e.g., treatments = n) speci-
fies one treatment factor with n levels. When multiple factors are provided, they
are arranged in a factorial treatment factor design. For example, treatments =
c(2, 3) creates a 2x3 factorial design with the first factor having 2 levels and

4 designCRD

the second factor having 3 levels.

label Optional. A list of character vectors, each corresponding to a treatment factor.
The name of each vector specifies the factor’s name, and its elements provide
the labels for that factor’s levels. If no labels are provided, default labels will
be used. For a single treatment factor, the default is list(trt = c("1", "2",
...)), and for two treatment factors, the default is list(facA = c("1", "2",
...), facB = c("1", "2", ...)). For split-plot designs, the defaults are sim-
ilar but include the ".main" and ".sub" suffixes for main plot and subplot fac-
tors. For example: list(trt.main = c("1", "2", ...), trt.sub = c("1",
"2", ...)) and list(facA.main = c("1", "2", ...), facB.main = c("1",
"2", ...), facA.sub = c("1", "2", ...), facB.sub = c("1", "2", ...)). La-
bel sets should be arranged so that the main plot factors come first, followed by
the subplot factors.

replicates The number of experimental units per treatment in a completely randomized
design or the number of experimental units (main plots) per treatment of main
plot factors.

formula A right-hand-side formula specifying the model for testing treatment effects,
with terms on the right of ~ , following lme4::lmer syntax for random effects.
If not specified, a default formula with main effects and all interactions is used
internally.

beta One of the optional inputs for fixed effects. A vector of model coefficients where
factor variable coefficients correspond to dummy variables created using treat-
ment contrast (stats::contr.treatment).

means One of the optional inputs for fixed effects. A vector of marginal or conditioned
means (if factors have interactions). Regression coefficients are required for
numerical variables. Either beta or means must be provided, and their values
must strictly follow a specific order. A template can be created to indicate the
required input values and their order. See mkdesign for more information.

sigma2 error variance.

template Default is FALSE. If TRUE, a template for beta, means, and vcomp is generated
to indicate the required input order.

REML Specifies whether to use REML or ML information matrix. Default is TRUE
(REML).

blocks The number of blocks.

vcomp A vector of variance-covariance components for random effects, if present. The
values must follow a strict order. See mkdesign.

squares The number of replicated squares. By default, 1, i.e., no replicated squares.

reuse A character string specifying how to replicate squares when there are multiple
squares. Options are: "row" for reusing row blocks, "col" for reusing column
blocks, or "both" for reusing both row and column blocks to replicate a single
square.

trt.main An integer-valued vector specifying the treatment structure at main plot level for
a split plot design, similar to treatments.

trt.sub An integer-valued vector specifying the treatment structure at sub plot level for
a split plot design, similar to treatments.

designCRD 5

Details

Each function creates a standard design as described below:

designCRD Completely Randomized Design. By default, the model formula is ~ trt for one fac-
tor and ~ facA*facB for two factors, unless explicitly specified. If the label argument is
provided, the formula is automatically updated with the specified treatment factor names.

designRCBD Randomized Complete Block Design. Experimental units are grouped into blocks,
with each treatment appearing exactly once per block (i.e., no replicates per treatment within
a block). The default model formula is ~ trt + (1|block) for one factor and ~ facA*facB
+ (1|block) for two factors. If label is provided, the fixed effect parts of the formula are
automatically updated with the specified names. The block factor is named "block" and not
changeable.

designLSD Latin Square Design. The default formula is ~ trt + (1|row) + (1|col) for one factor
and ~ facA*facB + (1|row) + (1|col) for two factors. If label is provided, the fixed effect
parts of the formula are automatically updated with the specified names. The names of row
("row") and column ("col") block factors are not changeable.

designCOD Crossover Design, which is a special case of LSD with time periods and individuals
as blocks. Period blocks are reused when replicating squares. The default formula is ~ trt +
(1|subject) + (1|period) for one factor and ~ facA*facB + (1|subject) + (1|period)
for two factors. If label is provided, the fixed effect parts of the formula are automatically
updated with the specified names. Note that "subject" and "period" are the names for the two
blocking factors and cannot be changed.

designSPD Split Plot Design. The default formula includes the main effects of all treatment factors
at both the main and sub-plot levels, their interactions, and the random effects of main plots: ~
. + (1|mainplot). If label is provided, the fixed effect parts of the formula are automatically
updated with the specified names. The experimental unit at the main plot level (i.e., the block
factor at the subplot level) is always named as "mainplot".

Value

A list object containing all essential components for power calculation. This includes:

• Structural components (deStruct): including the data frame, design matrices for fixed and
random effects, variance-covariance matrices for random effects and residuals, etc.

• Internally calculated higher-level parameters (deParam), including variance-covariance matrix
of beta coefficients (vcov_beta), variance-covariance matrix of variance parameters (vcov_varpar),
gradient matrices (Jac_list), etc.

See Also

mkdesign, pwr.anova, pwr.contrast

Examples

Evaluate the power of a CRD with one treatment factor
Create a design object
crd <- designCRD(

treatments = 4, # 4 levels of one treatment factor

6 df.cod

replicates = 12, # 12 units per level, 48 units totally
means = c(30, 28, 33, 35), # means of the 4 levels
sigma2 = 10 # error variance

)

power of omnibus test
pwr.anova(crd)

power of contrast
pwr.contrast(crd, which = "trt", contrast = "pairwise") # pairwise comparisons
pwr.contrast(crd, which = "trt", contrast = "poly") # polynomial contrasts

More examples are available in `vignette("pwr4exp")`
and on https://an-ethz.github.io/pwr4exp/

df.cod Create a data frame for Crossover design

Description

Create a data frame for Crossover design

Usage

df.cod(treatments, label, squares)

Arguments

treatments An integer vector where each element represents the number of levels of the
corresponding treatment factor. A single integer (e.g., treatments = n) speci-
fies one treatment factor with n levels. When multiple factors are provided, they
are arranged in a factorial treatment factor design. For example, treatments =
c(2, 3) creates a 2x3 factorial design with the first factor having 2 levels and
the second factor having 3 levels.

label Optional. A list of character vectors, each corresponding to a treatment factor.
The name of each vector specifies the factor’s name, and its elements provide
the labels for that factor’s levels. If no labels are provided, default labels will
be used. For a single treatment factor, the default is list(trt = c("1", "2",
...)), and for two treatment factors, the default is list(facA = c("1", "2",
...), facB = c("1", "2", ...)). For split-plot designs, the defaults are sim-
ilar but include the ".main" and ".sub" suffixes for main plot and subplot fac-
tors. For example: list(trt.main = c("1", "2", ...), trt.sub = c("1",
"2", ...)) and list(facA.main = c("1", "2", ...), facB.main = c("1",
"2", ...), facA.sub = c("1", "2", ...), facB.sub = c("1", "2", ...)). La-
bel sets should be arranged so that the main plot factors come first, followed by
the subplot factors.

squares The number of replicated squares. By default, 1, i.e., no replicated squares.

df.crd 7

Value

a data.frame representing the data structure of the design

df.crd Create a data frame of completely randomized design

Description

Create a data frame of completely randomized design

Usage

df.crd(treatments, label, replicates)

Arguments

treatments An integer vector where each element represents the number of levels of the
corresponding treatment factor. A single integer (e.g., treatments = n) speci-
fies one treatment factor with n levels. When multiple factors are provided, they
are arranged in a factorial treatment factor design. For example, treatments =
c(2, 3) creates a 2x3 factorial design with the first factor having 2 levels and
the second factor having 3 levels.

label Optional. A list of character vectors, each corresponding to a treatment factor.
The name of each vector specifies the factor’s name, and its elements provide
the labels for that factor’s levels. If no labels are provided, default labels will
be used. For a single treatment factor, the default is list(trt = c("1", "2",
...)), and for two treatment factors, the default is list(facA = c("1", "2",
...), facB = c("1", "2", ...)). For split-plot designs, the defaults are sim-
ilar but include the ".main" and ".sub" suffixes for main plot and subplot fac-
tors. For example: list(trt.main = c("1", "2", ...), trt.sub = c("1",
"2", ...)) list(facA.main = c("1", "2", ...), facB.main = c("1", "2",
...), facA.sub = c("1", "2", ...), facB.sub = c("1", "2", ...)) Label sets
should be arranged so that the main plot factors come first, followed by the sub-
plot factors.

replicates The number of experimental units per treatment.

Value

a data.frame representing the data structure of the design

8 df.lsd

df.lsd Create a data frame for Latin square design

Description

Create a data frame for Latin square design

Usage

df.lsd(treatments, label, squares = 1, reuse = c("row", "col", "both"))

Arguments

treatments An integer vector where each element represents the number of levels of the
corresponding treatment factor. A single integer (e.g., treatments = n) speci-
fies one treatment factor with n levels. When multiple factors are provided, they
are arranged in a factorial treatment factor design. For example, treatments =
c(2, 3) creates a 2x3 factorial design with the first factor having 2 levels and
the second factor having 3 levels.

label Optional. A list of character vectors, each corresponding to a treatment factor.
The name of each vector specifies the factor’s name, and its elements provide
the labels for that factor’s levels. If no labels are provided, default labels will
be used. For a single treatment factor, the default is list(trt = c("1", "2",
...)), and for two treatment factors, the default is list(facA = c("1", "2",
...), facB = c("1", "2", ...)). For split-plot designs, the defaults are sim-
ilar but include the ".main" and ".sub" suffixes for main plot and subplot fac-
tors. For example: list(trt.main = c("1", "2", ...), trt.sub = c("1",
"2", ...)) and list(facA.main = c("1", "2", ...), facB.main = c("1",
"2", ...), facA.sub = c("1", "2", ...), facB.sub = c("1", "2", ...)). La-
bel sets should be arranged so that the main plot factors come first, followed by
the subplot factors.

squares the number of replicated squares

reuse A character string specifying how to replicate squares when there are multiple
squares. Options are: "row" for reusing row blocks, "col" for reusing column
blocks, or "both" for reusing both row and column blocks to replicate a single
square.

Value

a data.frame representing the data structure of the design

df.rcbd 9

df.rcbd Create a data frame of randomized complete block design

Description

Create a data frame of randomized complete block design

Usage

df.rcbd(treatments, label, blocks)

Arguments

treatments An integer vector where each element represents the number of levels of the
corresponding treatment factor. A single integer (e.g., treatments = n) speci-
fies one treatment factor with n levels. When multiple factors are provided, they
are arranged in a factorial treatment factor design. For example, treatments =
c(2, 3) creates a 2x3 factorial design with the first factor having 2 levels and
the second factor having 3 levels.

label Optional. A list of character vectors, each corresponding to a treatment factor.
The name of each vector specifies the factor’s name, and its elements provide
the labels for that factor’s levels. If no labels are provided, default labels will
be used. For a single treatment factor, the default is list(trt = c("1", "2",
...)), and for two treatment factors, the default is list(facA = c("1", "2",
...), facB = c("1", "2", ...)). For split-plot designs, the defaults are sim-
ilar but include the ".main" and ".sub" suffixes for main plot and subplot fac-
tors. For example: list(trt.main = c("1", "2", ...), trt.sub = c("1",
"2", ...)) and list(facA.main = c("1", "2", ...), facB.main = c("1",
"2", ...), facA.sub = c("1", "2", ...), facB.sub = c("1", "2", ...)). La-
bel sets should be arranged so that the main plot factors come first, followed by
the subplot factors.

blocks the number of blocks

Value

a data.frame representing the data structure of the design

df.spd Create data frame for split-plot design

Description

Create data frame for split-plot design

10 milk

Usage

df.spd(trt.main, trt.sub, label, replicates)

Arguments

trt.main an integer-valued vector specifying the treatment structure at main plot level,
similar to df.crd.

trt.sub an integer-valued vector specifying the treatment structure at sub plot level, sim-
ilar to trt.main.

label Optional. A list of character vectors, each corresponding to a treatment factor.
The name of each vector specifies the factor’s name, and its elements provide
the labels for that factor’s levels. If no labels are provided, default labels will
be used. For a single treatment factor, the default is list(trt = c("1", "2",
...)), and for two treatment factors, the default is list(facA = c("1", "2",
...), facB = c("1", "2", ...)). For split-plot designs, the defaults are sim-
ilar but include the ".main" and ".sub" suffixes for main plot and subplot fac-
tors. For example: list(trt.main = c("1", "2", ...), trt.sub = c("1",
"2", ...)) and list(facA.main = c("1", "2", ...), facB.main = c("1",
"2", ...), facA.sub = c("1", "2", ...), facB.sub = c("1", "2", ...)). La-
bel sets should be arranged so that the main plot factors come first, followed by
the subplot factors.

replicates the number of experimental units (main plots) per treatment of main plot factors.

Value

a data.frame representing the data structure of the design

milk An exemplary dataset of a 4x4 crossover design with 2 squares

Description

Milk yield records from 8 cows over 4 different periods in a 4x4 crossover design. The design
includes 2 Latin squares, each consisting of 4 cows and 4 periods.

Usage

milk

Format

A data frame with 32 rows and 4 variables:

Cow Factor: Cow index (8 levels)
Period Factor: Period index (4 levels)
Treatment Factor: Treatment index (4 levels)
MilkYield Numeric: milk yield recordings (in kg)

mkdesign 11

Source

Simulated data for package demonstration purposes.

mkdesign Create a Design Object for Power Calculation

Description

Generate a design object for power analysis by specifying a model formula and data frame. This
object is not a true experimental design as created by design generation procedures, where random-
ization and unit allocation are performed. Instead, it serves as an object containing all necessary
information for power analysis, including design matrices, assumed values of model effects, and
other internally calculated parameters.

Usage

mkdesign(
formula,
data,
beta = NULL,
means = NULL,
vcomp = NULL,
sigma2 = NULL,
correlation = NULL,
template = FALSE,
REML = TRUE

)

Arguments

formula A right-hand-side formula specifying the model for testing treatment effects,
with terms on the right of ~ , following lme4::lmer syntax for random effects.

data A data frame with all independent variables specified in the model, matching the
design’s structure.

beta One of the optional inputs for fixed effects. A vector of model coefficients where
factor variable coefficients correspond to dummy variables created using treat-
ment contrast (stats::contr.treatment).

means One of the optional inputs for fixed effects. A vector of marginal or conditioned
means (if factors have interactions). Regression coefficients are required for
numerical variables. Either beta or means must be provided, and their values
must strictly follow a specific order. A template can be created to indicate the
required input values and their order. See "Details" for more information.

vcomp A vector of variance-covariance components for random effects, if present. The
values must follow a strict order. See "Details".

sigma2 error variance.

12 mkdesign

correlation Specifies residual (R-side) correlation structures using nlme::corClasses func-
tions. See "Details" for more information.

template Default is FALSE. If TRUE or when only the formula and data are provided, a
template for beta, means, and vcomp is generated to indicate the required input
order.

REML Specifies whether to use REML or ML information matrix. Default is TRUE.

Details

• data: A long-format data frame is required, as typically used in R for fitting linear models.
This data frame can be created manually or with the help of design creation packages such as
agricolae, AlgDesign, crossdes, or FrF2. It should include all independent variables specified
in the model (e.g., treatments, blocks, subjects). All the irrelevant variables not specified in
the model are ignored.

• template: Templates are automatically generated when only the formula and data are supplied,
or explicitly if template = TRUE. Templates serve as guides for specifying inputs:

– Template for beta: Represents the sequence of model coefficients.
– Template for means: Specifies the order of means (for categorical variables) and/or re-

gression coefficients (for continuous variables), depending on the scenario:

* Categorical variables without interactions: Requires marginal means for each level
of the categorical variable(s).

* Interactions among categorical variables: Requires conditional (cell) means for all
level combinations.

* Numerical variables without interactions: Requires regression coefficients. The in-
tercept must also be included if there are no categorical variables in the model.

* Interactions among numerical variables: Requires regression coefficients for both
main effects and interaction terms. The intercept must also be included if there are
no categorical variables in the model.

* Categorical-by-numerical interactions: Requires regression coefficients for the nu-
merical variable at each level of the categorical variable, as well as marginal means
for the levels of the categorical variable.

Note: For models containing only numerical variables, the inputs for means and beta are
identical. See the "Examples" for illustrative scenarios.

– Template for vcomp: Represents a variance-covariance matrix, where integers indicate
the order of variance components in the input vector.

• correlation: Various residual correlation structures can be specified following the instructions
from nlme::corClasses.
Note: In nlme::corAR1() and nlme::corARMA() when p=1 and q=0, the time variable must
be an integer. However, in pwr4exp, this restriction has been released, factor is also supported.

Value

A list object containing all essential components for power calculation. This includes:

• Structural components (deStruct): including design matrices for fixed and random effects,
variance-covariance matrices for random effects and residuals, etc.

mkdesign 13

• Internally calculated higher-level parameters (deParam), including variance-covariance matrix
of beta coefficients (vcov_beta), variance-covariance matrix of variance parameters (vcov_varpar),
gradient matrices (Jac_list), etc.

Examples

Using templates for specifying "means"

Create an example data frame with four categorical variables (factors)
and two numerical variables
df1 <- expand.grid(

fA = factor(1:2),
fB = factor(1:2),
fC = factor(1:3),
fD = factor(1:3),
subject = factor(1:10)

)
df1$x <- rnorm(nrow(df1)) # Numerical variable x
df1$z <- rnorm(nrow(df1)) # Numerical variable z

Categorical variables without interactions
Means of each level of fA and fB are required in sequence.
mkdesign(~ fA + fB, df1)$fixeff$means

Interactions among categorical variables
Cell means for all combinations of levels of fA and fB are required.
mkdesign(~ fA * fB, df1)$fixeff$means

Numerical variables without and with interactions, identical to beta.
Without interactions: Regression coefficients are required
mkdesign(~ x + z, df1)$fixeff$means

With interactions: Coefficients for main effects and interaction terms are required.
mkdesign(~ x * z, df1)$fixeff$means

Categorical-by-numerical interactions
Marginal means for each level of fA, and regression coefficients for x
at each level of fA are required.
mkdesign(~ fA * x, df1)$fixeff$means

Three factors with interactions:
Cell means for all 12 combinations of the levels of fA, fB, and fC are required.
mkdesign(~ fA * fB * fC, df1)

A design that mixes the above-mentioned scenarios:
- Interactions among three categorical variables (fA, fB, fC)
- A categorical-by-numerical interaction (fD * x)
- Main effects for another numerical variable (z)
The required inputs are:
- Cell means for all combinations of levels of fA, fB, and fC
- Means for each level of fD
- Regression coefficients for x at each level of fD
- Regression coefficients for z

14 mkdesign

mkdesign(~ fA * fB * fC + fD * x + z, df1)$fixeff$means

Using templates for specifying "vcomp"

Assume df1 represents an RCBD with "subject" as a random blocking factor.
Variance of the random effect "subject" (intercept) is required.
mkdesign(~ fA * fB * fC * fD + (1 | subject), df1)$varcov

Demonstration of templates for more complex random effects
Note: This example is a demo and statistically incorrect for this data
(no replicates under subject*fA). It only illustrates variance-covariance templates.
Inputs required:
- Variance of the random intercept (1st)
- Covariance between the intercept and "fA2" (2nd)
- Variance of "fA2" (3rd)
mkdesign(~ fA * fB * fC * fD + (1 + fA | subject), df1)$varcov

Power analysis for repeated measures

Create a data frame for a CRD with repeated measures
n_subject <- 6
n_trt <- 3
n_hour <- 8
trt <- c("CON", "TRT1", "TRT2")
df2 <- data.frame(
subject = as.factor(rep(seq_len(n_trt * n_subject), each = n_hour)), # Subject as a factor
hour = as.factor(rep(seq_len(n_hour), n_subject * n_trt)), # Hour as a factor
trt = rep(trt, each = n_subject * n_hour) # Treatment as a factor

)

Templates
temp <- mkdesign(formula = ~ trt * hour, data = df2)
temp$fixeff$means # Fixed effects means template

Create a design object
Assume repeated measures within a subject follow an AR1 process with a correlation of 0.6
design <- mkdesign(

formula = ~ trt * hour,
data = df2,
means = c(1, 2.50, 3.50,

1, 3.50, 4.54,
1, 3.98, 5.80,
1, 4.03, 5.40,
1, 3.68, 5.49,
1, 3.35, 4.71,
1, 3.02, 4.08,
1, 2.94, 3.78),

sigma2 = 2,
correlation = corAR1(value = 0.6, form = ~ hour | subject)

)

pwr.anova(design) # Perform power analysis

pwr.anova 15

When time is treated as a numeric variable
Means of treatments and regression coefficients for hour at each treatment level are required
df2$hour <- as.integer(df2$hour)
mkdesign(formula = ~ trt * hour, data = df2)$fixeff$means

Polynomial terms of time in the model
mkdesign(formula = ~ trt + hour + I(hour^2) + trt:hour + trt:I(hour^2), data = df2)$fixeff$means

pwr.anova Power of omnibus tests

Description

Calculates the statistical power for testing the overall effects of treatment factors and their interac-
tions, i.e., power of F-test.

Usage

pwr.anova(object, sig.level = 0.05, type = c("III", "II", "I", "3", "2", "1"))

Arguments

object a design object created in pwr4exp
sig.level significance level, default 0.05
type the type of ANOVA table requested, default Type III

Value

a data frame with numerator degrees of freedom (NumDF), denominator degrees of freedom (DenDF),
type I error rate (sig.level), and power.

See Also

mkdesign, designCRD, designRCBD, designLSD, designCOD, designSPD, pwr.summary and pwr.contrast

Examples

generate an RCBD
rcbd <- designRCBD(

treatments = c(2, 2),
label = list(facA = c("1", "2"), facB = c("1", "2")),
blocks = 12,
formula = ~ facA*facB + (1|block),
means = c(32, 35, 30, 37),
vcomp = 4,
sigma2 = 6

)
power of omnibus test
pwr.anova(rcbd)

16 pwr.contrast

pwr.contrast Power of contrasts

Description

Computes the statistical power of t-tests for comparisons among means.

Usage

pwr.contrast(
object,
which,
by = NULL,
contrast = c("pairwise", "poly", "trt.vs.ctrl"),
sig.level = 0.05,
p.adj = FALSE,
alternative = c("two.sided", "one.sided"),
strict = TRUE

)

Arguments

object a design object created in pwr4exp

which the factor of interest. Multiple factors can be combined using : or *, e.g.,
"facA*facB", which represents a single factor that combines the levels of both
factors.

by the variable to condition on

contrast A character string specifying the contrast method, one of "pairwise", "poly",
or "trt.vs.ctrl". Alternatively, a numeric vector defining a single contrast or a
(named) list of vectors specifying multiple custom contrasts. If a list is provided,
each element must be a vector whose length matches the number of levels of the
factor in each by group. In multi-factor scenarios, factor levels are combined
and treated as a single factor.

sig.level significance level, default 0.05

p.adj whether the sig.level should be adjusted using the Bonferroni method, default
FALSE

alternative one- or two-sided test. Can be abbreviated.

strict use strict interpretation in two-sided case

Value

For each by condition, returns a data frame containing the contrast value (effect), degrees of
freedom (df), type I error rate (sig.level), power, and the test direction (by alternative). When
multiple by conditions are present, the results are returned as a list.

pwr.summary 17

Examples

rcbd <- designRCBD(
treatments = c(2, 2),
label = list(facA = c("1", "2"), facB = c("1", "2")),
blocks = 12,
formula = ~ facA*facB + (1|block),
means = c(32, 35, 30, 37),
vcomp = 4,
sigma2 = 6

)

If contrast is not specified, pairwise comparisons are conducted
pwr.contrast(rcbd, which = "facA") # Marginal effect of facA
pwr.contrast(rcbd, which = "facA", by = "facB") # Conditional effect of facA within levels of facB

Custom contrast vector, identical to pairwise comparison
pwr.contrast(rcbd, which = "facA", contrast = c(1, -1))
pwr.contrast(rcbd, which = "facA", by = "facB", contrast = c(1, -1))

A single factor combining two factors
pwr.contrast(

rcbd,
which = "facA*facB",
contrast = list(
A1B1vs.A2B1 = c(1, -1, 0, 0),
A1B1vs.A2B2 = c(1, 0, 0, -1)

)
)

pwr.summary Power for model coefficients

Description

Computes the statistical power for testing (t-test) model coefficients.

Usage

pwr.summary(object, sig.level = 0.05)

Arguments

object design object

sig.level significance level, default 0.05

Value

a data frame containing model coefficients, degrees of freedom (df), type I error rate (sig.level),
power, and the test direction (alternative).

18 pwr.summary

Examples

rcbd <- designRCBD(
treatments = c(2, 2),
label = list(facA = c("1", "2"), facB = c("1", "2")),
blocks = 12,
formula = ~ facA*facB + (1|block),
means = c(32, 35, 30, 37),
vcomp = 4,
sigma2 = 6

)
pwr.summary(rcbd)

Index

∗ datasets
milk, 10

~, 4, 11

design.COD (designCRD), 2
design.CRD (designCRD), 2
design.LSD (designCRD), 2
design.RCBD (designCRD), 2
design.SPD (designCRD), 2
designCOD, 15
designCOD (designCRD), 2
designCRD, 2, 15
designLSD, 15
designLSD (designCRD), 2
designRCBD, 15
designRCBD (designCRD), 2
designSPD, 15
designSPD (designCRD), 2
df.cod, 6
df.crd, 7, 10
df.lsd, 8
df.rcbd, 9
df.spd, 9

formula, 4, 11

lme4::lmer, 4, 11

milk, 10
mkdesign, 2, 4, 5, 11, 15

nlme::corAR1(), 12
nlme::corARMA(), 12
nlme::corClasses, 12

pwr.anova, 5, 15
pwr.contrast, 5, 15, 16
pwr.summary, 15, 17

stats::contr.treatment, 4, 11

19

	designCRD
	df.cod
	df.crd
	df.lsd
	df.rcbd
	df.spd
	milk
	mkdesign
	pwr.anova
	pwr.contrast
	pwr.summary
	Index

