
Package ‘postcard’
July 1, 2025

Type Package

Title Estimating Marginal Effects with Prognostic Covariate Adjustment

Version 1.0.1

Description Conduct power analyses and inference of marginal effects.
Uses plug-in estimation and influence functions to perform robust inference,
optionally leveraging historical data to increase precision with
prognostic covariate adjustment. The methods are described in
Højbjerre-Frandsen et al. (2025) <doi:10.48550/arXiv.2503.22284>.

License MIT + file LICENSE

URL https://novonordisk-opensource.github.io/postcard/,

https://github.com/NovoNordisk-OpenSource/postcard

BugReports https://github.com/NovoNordisk-OpenSource/postcard/issues

Imports cli, Deriv, dplyr, earth, generics, magrittr, options,
parsnip, rlang, rsample, stats, stringr, tidyselect, tune,
utils, workflowsets, xgboost, yardstick

Suggests gggrid, ggplot2, knitr, LiblineaR, MASS, ranger, rmarkdown,
testthat (>= 3.0.0), withr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Mathias Lerbech Jeppesen [aut, cre],
Emilie Hojbjerre-Frandsen [aut],
Novo Nordisk A/S [cph]

Maintainer Mathias Lerbech Jeppesen <mathiasljeppesen@outlook.com>

Repository CRAN

Date/Publication 2025-07-01 07:10:02 UTC

1

https://doi.org/10.48550/arXiv.2503.22284
https://novonordisk-opensource.github.io/postcard/
https://github.com/NovoNordisk-OpenSource/postcard
https://github.com/NovoNordisk-OpenSource/postcard/issues


2 default_learners

Contents

default_learners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
fit_best_learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
glm_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
power_linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
power_marginaleffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
prog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
rctglm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
rctglm_methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
rctglm_with_prognosticscore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Index 25

default_learners Creates a list of learners

Description

This function creates a list of learners compatible with the learners argument of fit_best_learner,
which is used as the default argument.

Usage

default_learners()

Value

a named list of learners, where each element consists of a

• model: A parsnip model specification

• grid: A data.frame with columns corresponding to tuning parameters

Examples

default_learners()



fit_best_learner 3

fit_best_learner Find the best learner in terms of RMSE among specified learners using
cross validation

Description

Find the best learner in terms of RMSE among specified learners using cross validation

Usage

fit_best_learner(
preproc,
data,
cv_folds = 5,
learners = default_learners(),
verbose = options::opt("verbose")

)

Arguments

preproc A list (preferably named) with preprocessing objects: formulas, recipes, or
workflows::workflow_variables(). Passed to workflowsets::workflow_set().

data A data frame.

cv_folds a numeric with the number of cross-validation folds used when fitting and eval-
uating models

learners a list (preferably named) containing named lists of elements model and option-
ally grid. The model element should be a parsnip model specification, which
is passed to workflowsets::workflow_set as the model argument, while the grid
element is passed as the grid argument of workflowsets::option_add

verbose numeric verbosity level. Higher values means more information is printed in
console. A value of 0 means nothing is printed to console during execution (De-
faults to 2, overwritable using option ’postcard.verbose’ or environment variable
’R_POSTCARD_VERBOSE’)

Details

Ensure data compatibility with the learners.

Value

a trained workflow

See Also

See rctglm_with_prognosticscore() for a function that utilises this function to perform prog-
nostic covariate adjustment.



4 glm_data

Examples

# Generate some synthetic 2-armed RCT data along with historical controls
n <- 100
dat_rct <- glm_data(

Y ~ 1+2*x1+3*a,
x1 = rnorm(n, 2),
a = rbinom (n, 1, .5),
family = gaussian()

)
dat_hist <- glm_data(

Y ~ 1+2*x1,
x1 = rnorm(n, 2),
family = gaussian()

)

# Fit a learner to the historical control data
learners <- list(

mars = list(
model = parsnip::set_engine(

parsnip::mars(
mode = "regression", prod_degree = 3

),
"earth"

)
)

)
fit <- fit_best_learner(

preproc = list(mod = Y ~ .),
data = dat_hist,
learners = learners

)

# Use it fx. to predict the "control outcome" in the 2-armed RCT
predict(fit, new_data = dat_rct)

glm_data Generate data simulated from a GLM

Description

Provide a formula, variables and a family to generate a linear predictor using the formula and pro-
vided variables before using the inverse link of the family to generate the GLM modelled mean, mu,
which is then used to simulate the response with this mean from the generating function according
to the chosen family.

Usage

glm_data(formula, ..., family = gaussian(), family_args = list(sd = 1))



options 5

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are given
under ‘Details’ in the glm documentation.

... a data.frame with columns corresponding to variables used in formula, a
named list of those variables, or individually provided named arguments of
variables from

family the family of the response. this can be a character string naming a family
function, a family function or the result of a call to a family function

family_args a named list with values of arguments passed to family relevant r<family_name>
function for simulating the data

Value

a data.frame

Examples

# Generate a gaussian response from a single covariate
glm_data(Y ~ 1+2*x1,

x1 = rnorm(10))

# Generate a gaussian response from a single covariate with non-linear
# effects. Specify that the response should have standard deviation sqrt(3)
glm_data(Y ~ 1+2*abs(sin(x1)),

x1 = runif(10, min = -2, max = 2),
family_args = list(sd = sqrt(3)))

# Generate a negative binomial response
glm_data(Y ~ 1+2*x1-x2,

x1 = rnorm(10),
x2 = rgamma(10, shape = 2),
family = MASS::negative.binomial(2))

# Provide variables as a list/data.frame
glm_data(resp ~ 1+2*x1-x2,

data.frame(
x1 = rnorm(10),
x2 = rgamma(10, shape = 2)

),
family = MASS::negative.binomial(2))

options postcard Options



6 power_linear

Description

Internally used, package-specific options. All options will prioritize R options() values, and fall
back to environment variables if undefined. If neither the option nor the environment variable is set,
a default value is used.

Arguments

verbose numeric verbosity level. Higher values means more information is printed in
console. A value of 0 means nothing is printed to console during execution (De-
faults to 2, overwritable using option ’postcard.verbose’ or environment variable
’R_POSTCARD_VERBOSE’)

Checking Option Values

Option values specific to postcard can be accessed by passing the package name to env.

options::opts(env = "postcard")

options::opt(x, default, env = "postcard")

Options

verbose numeric verbosity level. Higher values means more information is printed in console.
A value of 0 means nothing is printed to console during execution

default: 2

option: postcard.verbose
envvar: R_POSTCARD_VERBOSE (evaluated if possible, raw string otherwise)

See Also

options getOption Sys.setenv Sys.getenv

power_linear Power and sample size estimation for linear models

Description

variance_ancova provides a convenient function for estimating a variance to use for power and
sample size approximation.

The power_gs and samplesize_gs functions calculate the Guenther-Schouten power approxima-
tion for ANOVA or ANCOVA. The approximation is based in (Guenther WC. Sample Size Formulas
for Normal Theory T Tests. The American Statistician. 1981;35(4):243–244) and (Schouten HJA.
Sample size formula with a continuous outcome for unequal group sizes and unequal variances.
Statistics in Medicine. 1999;18(1):87–91).

The function power_nc calculates the power for ANOVA or ANCOVA based on the non-centrality
parameter and the exact t-distributions.

See more details about each function in Details and in sections after Value.



power_linear 7

Usage

variance_ancova(formula, data, inflation = 1, deflation = 1)

power_gs(variance, ate, n, r = 1, margin = 0, alpha = 0.05)

samplesize_gs(variance, ate, r = 1, margin = 0, power = 0.9, alpha = 0.05)

power_nc(variance, df, ate, n, r = 1, margin = 0, alpha = 0.05)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description used in stats::model.frame() to create a data.frame with
response and covariates. This data.frame is used to estimate the R2, which is
then used to find the variance. See more in details.

data a data frame, list or environment (or object coercible by as.data.frame to a
data frame), containing the variables in formula. Neither a matrix nor an array
will be accepted.

inflation a numeric to multiply the marginal variance of the response by. Default is 1
which estimates the variance directly from data. Use values above 1 to obtain a
more conservative estimate of the marginal response variance.

deflation a numeric to multiply the R2 by. Default is 1 which means the estimate of R2

is unchanged. Use values below 1 to obtain a more conservative estimate of the
coefficient of determination. See details about how R2 related to the estimation.

variance a numeric variance to use for the approximation. See more details in documen-
tation sections of each power approximating function.

ate a numeric minimum effect size that we should be able to detect.

n a numeric with number of participants in total. From this number of participants
in the treatment group is n1 = (r/(1 + r))n and the control group is n1 =
(1/(1 + r))n.

r a numeric allocation ratio r = n1/n0. For one-to-one randomisation r=1.

margin a numeric superiority margin (for non-inferiority margin, a negative value can
be provided).

alpha a numeric significance level. The critical value used for testing corresponds to
using the significance level for a two-sided test. I.e. we use the quantile 1−α/2
of the null distribution as the critical value.

power a numeric giving the desired power when calculating the sample size

df a numeric degrees of freedom to use in the t-distribution.

Details

This details section provides information about relation between arguments to functions and the
formulas described in sections below for each power approximation formula.

Note that all entities that carry the same name as an argument and in the formula will not be men-
tioned below, as they are obviously linked (n, r, alpha)



8 power_linear

• ate: β1 − β0

• margin: ∆s

• variance: σ̂2(1− R̂2)

Finding the variance to use for approximation:
The variance_ancova function estimates σ2(1−R2) in data and returns it as a numeric that can
be passed directly as the variance in power_gs. Corresponds to estimating the power from using
an lm with the same formula as specified in variance_ancova.
The user can estimate the variance any way they see fit.

Value

All functions return a numeric. variance_ancova returns a numeric with a variance estimated
from data to used for power estimation and sample size estimation. power_xx and samplesize_xx
functions return a numeric with the power or sample size approximation.

Guenther-Schouten power approximation

The estimation formula in the case of an ANCOVA model with multiple covariate adjustment is
(see description for reference):

n =
(1 + r)2

r

(z1−α/2 + z1−β)
2σ̂2(1− R̂2)

(β1 − β0 −∆s)2
+

(z1−α/2)
2

2

where R̂2 =
σ̂⊤
XY Σ̂−1

X σ̂XY

σ̂2 , we denote by σ̂2 an estimate of the variance of the outcome, Σ̂X and
estimate of the covariance matrix of the covariates, and σ̂XY a p-dimensional column vector con-
sisting of an estimate of the covariance between the outcome variable and each covariate. In the
univariate case R2 is replaced by ρ2

Power approximation using non-centrality parameter

The prospective power estimations are based on (Kieser M. Methods and Applications of Sample
Size Calculation and Recalculation in Clinical Trials. Springer; 2020). The ANOVA power is
calculated based on the non-centrality parameter given as

nc =

√
r

(1 + r)2
· n · β1 − β0 −∆s

σ
,

where we denote by σ2 the variance of the outcome, such that the power can be estimated as

1− β = 1− Ft,n−2,nc

(
F−1
t,n−2,0(1− α/2)

)
.

The power of ANCOVA with univariate covariate adjustment and no interaction is calculated based
on the non-centrality parameter given as

nc =

√
rn

(1 + r)2
β1 − β0 −∆s

σ
√
1− ρ2

,



power_linear 9

such that the power can be estimated as

1− β = 1− Ft,n−3,nc

(
F−1
t,n−3,0(1− α/2)

)
.

The power of ANCOVA with either univariate covariate adjustment and interaction or multiple
covariate adjustement with or without interaction is calculated based on the non-centrality parameter
given as

nc =
β1 − β0 −∆s√(

1
n1

+ 1
n0

+X⊤
d ((n− 2)ΣX)

−1
Xd

)
σ2

(
1− R̂2

) .

where Xd =
(
X

1

1 −X
1

0, . . . , X
p

1 −X
p

0

)⊤
, R̂2 =

σ̂⊤
XY Σ̂−1

X σ̂XY

σ̂2 , we denote by σ̂2 an estimate of

the variance of the outcome, Σ̂X and estimate of the covariance matrix of the covariates, and σ̂XY

a p-dimensional column vector consisting of an estimate of the covariance between the outcome
variable and each covariate. Since we are in the case of randomized trials the expected difference
between the covariate values between the to groups is 0. Furthermore, the elements of Σ−1

X will be
small, unless the variances are close to 0, or the covariates exhibit strong linear dependencies, so
that the correlations are close to 1. These scenarios are excluded since they could lead to potentially
serious problems regarding inference either way. These arguments are used by Zimmermann et. al
(Zimmermann G, Kieser M, Bathke AC. Sample Size Calculation and Blinded Recalculation for
Analysis of Covariance Models with Multiple Random Covariates. Journal of Biopharmaceutical
Statistics. 2020;30(1):143–159.) to approximate the non-centrality parameter as in the univariate
case where ρ2 is replaced by R2.

Then the power for ANCOVA with d degrees of freedom can be estimated as

1− β = 1− Ft,d,nc

(
F−1
t,d,0),0(1− α/2)

)
.

Examples

# Generate a data set to use as an example
dat_gaus <- glm_data(Y ~ 1+2*X1-X2+3*A,

X1 = rnorm(100),
X2 = rgamma(100, shape = 2),
A = rbinom(100, size = 1, prob = 0.5),
family = gaussian())

# Approximate the power using no adjustment covariates
va_nocov <- var(dat_gaus$Y)
power_gs(n = 200, variance = va_nocov, ate = 1)

# Approximate the power with a model adjusting for both variables in the
# data generating process

## First estimate the variance sigma^2 * (1-R^2)
va_cov <- variance_ancova(Y ~ X1 + X2 + A, dat_gaus)
## Then estimate the power using this variance
power_gs(n = 100, variance = va_cov, ate = 1.8, margin = 1, r = 2)



10 power_marginaleffect

# Approximate the sample size needed to obtain 90% power with same model as
# above
samplesize_gs(

variance = va_cov, ate = 1.8, power = 0.9, margin = 1, r = 2
)

# No adjustment covariates
power_nc(n = 200, variance = va_nocov, df = 199, ate = 1)
# Adjusting for all covariates in data generating process
power_nc(n = 200, variance = va_cov, df = 196, ate = 1.8, margin = 1, r = 2)

power_marginaleffect Power approximation for estimating marginal effects in GLMs

Description

The functions implements the algorithm for power estimation described in Powering RCTs for
marginal effects with GLMs using prognostic score adjustment by Højbjerre-Frandsen et. al (2025).
See a bit more context in details and all details in reference.

Usage

power_marginaleffect(
response,
predictions,
target_effect,
exposure_prob,
var1 = NULL,
kappa1_squared = NULL,
estimand_fun = "ate",
estimand_fun_deriv0 = NULL,
estimand_fun_deriv1 = NULL,
inv_estimand_fun = NULL,
margin = estimand_fun(1, 1),
alpha = 0.05,
tolerance = 0.001,
verbose = options::opt("verbose"),
...

)

Arguments

response a vector of mode numeric with the response variable from comparator partici-
pants

predictions a vector of mode numeric with predictions of the response

https://arxiv.org/abs/2503.22284
https://arxiv.org/abs/2503.22284


power_marginaleffect 11

target_effect a numeric minimum effect size that we should be able to detect. See more in
details.

exposure_prob a numeric with the probability of being in "group 1" (rather than group 0). See
more in details.

var1 a numeric variance of the potential outcome corresponding to group 1, or a
function with a single argument meant to obtain var1 as a transformation of
the variance of the potential outcome corresponding to group 0. See more in
details.

kappa1_squared a numeric mean-squared error from predicting potential outcome corresponding
to group 1, or a function with a single arguments meant to obtain kappa1_squared
as a transformation of the MSE in group 0. See more in details.

estimand_fun a function with arguments psi1 and psi0 specifying the estimand. Alternative,
specify "ate" or "rate_ratio" as a character to use one of the default estimand
functions. See more details in the "Estimand" section of rctglm.

estimand_fun_deriv0

a function specifying the derivative of estimand_fun wrt. psi0. As a default
the algorithm will use symbolic differentiation to automatically find the deriva-
tive from estimand_fun

estimand_fun_deriv1

a function specifying the derivative of estimand_fun wrt. psi1. As a default
the algorithm will use symbolic differentiation to automatically find the deriva-
tive from estimand_fun

inv_estimand_fun

(optional) a function with arguments psi0 and target_effect, so estimand_fun(psi1
= y, psi0 = x) = z and inv_estimand_fun(psi0 = x, target_effect = z) =
y for all x, y, z. If left as NULL, the inverse will be found numerically.

margin a numeric superiority margin. As a default, the estimand_fun is evaluated with
the same counterfactual means psi1 and psi0, corresponding to a superiority
margin assuming no difference (fx. 0 for ATE and 1 for rate ratio).

alpha a numeric significance level. The critical value used for testing corresponds to
using the significance level for a two-sided test. I.e. we use the quantile 1−α/2
of the null distribution as the critical value.

tolerance passed to all.equal when comparing calculated target_effect from derivations
and given target_effect during numeric derivation of inv_estimand_fun.
Thus only relevant when inv_estimand_fun is NULL.

verbose numeric verbosity level. Higher values means more information is printed in
console. A value of 0 means nothing is printed to console during execution (De-
faults to 2, overwritable using option ’postcard.verbose’ or environment variable
’R_POSTCARD_VERBOSE’)

... arguments passed to stats::uniroot, which is used to find the inverse of estimand_fun,
when inv_estimand_fun is NULL.



12 power_marginaleffect

Details

The reference in the description shows in its "Prospective power" section a derivation of a variance
bound

v↑2∞ = r′ 20 σ2
0 + r′ 21 σ2

1 + π0π1

(
|r′0|κ0

π0
+

|r′1|κ1

π1

)2

where r′a is the derivative of the estimand_fun with respect to Ψa, σ2
a is the variance of the potential

outcome corresponding to group a, πa is the probability of being assigned to group a, and κa is the
expected mean-squared error when predicting the potential outcome corresponding to group a.

The variance bound is then used for calculating a lower bound of the power using the distributions
corresponding to the null and alternative hypotheses H0 : Ψ̂ ∼ F0 = N (∆, v↑2∞/n) and H1 : Ψ̂ ∼
F1 = N (Ψ, v↑2∞/n). See more details in the reference.

Relating arguments to formulas:
• response: Used to obtain both σ2

0 (by taking the sample variance of the response) and κ0.
• predictions: Used when calculating the MSE κ0.
• var1: σ2

1 . As a default, chosen to be the same as σ2
0 . Can specify differently through this

argument fx. by
– Inflating or deflating the value of σ2

0 by a scalar according to prior beliefs. Fx. specify
var1 = function(x) 1.2 * x to inflate σ2

0 by 1.2.
– If historical data is available for group 1, an estimate of the variance from that data can

be provided here.
• kappa1_squared: κ1. Same as for var1, default is to assume the same value as kappa0_squared,

which is found by using the response and predictions vectors. Adjust the value according
to prior beliefs if relevant.

• target_effect: Ψ.
• exposure_prob: π1

Value

a numeric with the estimated power.

See Also

See power_linear for power approximation functionalities for linear models.

Examples

# Generate a data set to use as an example
n <- 100
exposure_prob <- .5

dat_gaus <- glm_data(Y ~ 1+2*X1-X2+3*A+1.6*A*X2,
X1 = rnorm(n),
X2 = rgamma(n, shape = 2),
A = rbinom(n, size = 1, prob = exposure_prob),
family = gaussian())



power_marginaleffect 13

# ---------------------------------------------------------------------------
# Obtain out-of-sample (OOS) prediction using glm model
# ---------------------------------------------------------------------------
gaus1 <- dat_gaus[1:(n/2), ]
gaus2 <- dat_gaus[(n/2+1):n, ]

glm1 <- glm(Y ~ X1 + X2 + A, data = gaus1)
glm2 <- glm(Y ~ X1 + X2 + A, data = gaus2)
preds_glm1 <- predict(glm2, newdata = gaus1, type = "response")
preds_glm2 <- predict(glm1, newdata = gaus2, type = "response")
preds_glm <- c(preds_glm1, preds_glm2)

# Obtain power
power_marginaleffect(

response = dat_gaus$Y,
predictions = preds_glm,
target_effect = 2,
exposure_prob = exposure_prob

)

# ---------------------------------------------------------------------------
# Get OOS predictions using discrete super learner and adjust variance
# ---------------------------------------------------------------------------
learners <- list(

mars = list(
model = parsnip::set_engine(

parsnip::mars(
mode = "regression", prod_degree = 3

),
"earth"

)
),

lm = list(
model = parsnip::set_engine(

parsnip::linear_reg(),
"lm"

)
)

)
lrnr1 <- fit_best_learner(preproc = list(mod = Y ~ X1 + X2 + A),

data = gaus1,
learners = learners)

lrnr2 <- fit_best_learner(preproc = list(mod = Y ~ X1 + X2 + A),
data = gaus2,
learners = learners)

preds_lrnr1 <- dplyr::pull(predict(lrnr2, new_data = gaus1))
preds_lrnr2 <- dplyr::pull(predict(lrnr1, new_data = gaus2))
preds_lrnr <- c(preds_lrnr1, preds_lrnr2)

# Estimate the power AND adjust the assumed variance in the "unknown"
# group 1 to be 20% larger than in group 0
power_marginaleffect(

response = dat_gaus$Y,



14 prog

predictions = preds_lrnr,
target_effect = 2,
exposure_prob = exposure_prob,
var1 = function(var0) 1.2 * var0

)

prog Extract information about the fitted prognostic model

Description

Extracts the prognostic_info list element from an rctglm_prog object. See ’Value’ at rct-
glm_with_prognosticscore for more details.

Usage

prog(x)

## S3 method for class 'rctglm_prog'
prog(x)

Arguments

x an object of class rctglm_prog (returned by rctglm_with_prognosticscore)

Value

a list with the structure described of prognostic_info in the Value section of rctglm_with_prognosticscore.

See Also

The generic rctglm_with_prognosticscore() for which this method works.

Examples

# Generate some data
n <- 100
b0 <- 1
b1 <- 1.5
b2 <- 2
W1 <- runif(n, min = -2, max = 2)
exposure_prob <- .5

dat_treat <- glm_data(
Y ~ b0+b1*abs(sin(W1))+b2*A,
W1 = W1,
A = rbinom(n, 1, exposure_prob)

)



rctglm 15

dat_notreat <- glm_data(
Y ~ b0+b1*abs(sin(W1)),
W1 = W1

)

learners <- list(
mars = list(
model = parsnip::set_engine(

parsnip::mars(
mode = "regression", prod_degree = 3

),
"earth"

)
)

)
ate <- rctglm_with_prognosticscore(

formula = Y ~ .,
exposure_indicator = A,
exposure_prob = exposure_prob,
data = dat_treat,
family = gaussian(),
estimand_fun = "ate",
data_hist = dat_notreat,
learners = learners)

prog(ate)

rctglm Fit GLM and find any estimand (marginal effect) using plug-in estima-
tion with variance estimation using influence functions

Description

The procedure uses plug-in-estimation and influence functions to perform robust inference of any
specified estimand in the setting of a randomised clinical trial, even in the case of heterogeneous
effect of covariates in randomisation groups. See Powering RCTs for marginal effects with GLMs
using prognostic score adjustment by Højbjerre-Frandsen et. al (2025) for more details on method-
ology.

Usage

rctglm(
formula,
exposure_indicator,
exposure_prob,
data,
family = gaussian,

https://arxiv.org/abs/2503.22284
https://arxiv.org/abs/2503.22284


16 rctglm

estimand_fun = "ate",
estimand_fun_deriv0 = NULL,
estimand_fun_deriv1 = NULL,
cv_variance = FALSE,
cv_variance_folds = 10,
verbose = options::opt("verbose"),
...

)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are given
under ‘Details’ in the glm documentation.

exposure_indicator

(name of) the binary variable in data that identifies randomisation groups. The
variable is required to be binary to make the "orientation" of the estimand_fun
clear.

exposure_prob a numeric with the probability of being in "group 1" (rather than group 0) in
groups defined by exposure_indicator.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which the function is called.

family a description of the error distribution and link function to be used in the model.
For glm this can be a character string naming a family function, a family function
or the result of a call to a family function. For glm.fit only the third option is
supported. (See family for details of family functions.)

estimand_fun a function with arguments psi1 and psi0 specifying the estimand. Alternative,
specify "ate" or "rate_ratio" as a character to use one of the default estimand
functions. See more details in the "Estimand" section of rctglm.

estimand_fun_deriv0

a function specifying the derivative of estimand_fun wrt. psi0. As a default
the algorithm will use symbolic differentiation to automatically find the deriva-
tive from estimand_fun

estimand_fun_deriv1

a function specifying the derivative of estimand_fun wrt. psi1. As a default
the algorithm will use symbolic differentiation to automatically find the deriva-
tive from estimand_fun

cv_variance a logical determining whether to estimate the variance using cross-validation
(see details of rctglm).

cv_variance_folds

a numeric with the number of folds to use for cross validation if cv_variance
is TRUE.

verbose numeric verbosity level. Higher values means more information is printed in
console. A value of 0 means nothing is printed to console during execution (De-



rctglm 17

faults to 2, overwritable using option ’postcard.verbose’ or environment variable
’R_POSTCARD_VERBOSE’)

... Additional arguments passed to stats::glm()

Details

The procedure assumes the setup of a randomised clinical trial with observations grouped by a bi-
nary exposure_indicator variable, allocated randomly with probability exposure_prob. A GLM
is fit and then used to predict the response of all observations in the event that the exposure_indicator
is 0 and 1, respectively. Taking means of these predictions produce the counterfactual means psi0
and psi1, and an estimand r(psi0, psi1) is calculated using any specified estimand_fun.

The variance of the estimand is found by taking the variance of the influence function of the esti-
mand. If cv_variance is TRUE, then the counterfactual predictions for each observation (which are
used to calculate the value of the influence function) is obtained as out-of-sample (OOS) predictions
using cross validation with number of folds specified by cv_variance_folds. The cross validation
splits are performed using stratified sampling with exposure_indicator as the strata argument
in rsample::vfold_cv.

Read more in vignette("model-fit").

Value

rctglm returns an object of class inheriting from "rctglm".

An object of class rctglm is a list containing the following components:

• estimand: A data.frame with plug-in estimate of estimand, standard error (SE) estimate and
variance estimate of estimand

• estimand_funs: A list with

– f: The estimand_fun used to obtain an estimate of the estimand from counterfactual
means

– d0: The derivative with respect to psi0

– d1: The derivative with respect to psi1

• means_counterfactual: A data.frame with counterfactual means psi0 and psi1

• fitted.values_counterfactual: A data.frame with counterfactual mean values, obtained
by transforming the linear predictors for each group by the inverse of the link function.

• glm: A glm object returned from running stats::glm within the procedure

• call: The matched call

Estimands

As noted in the description, psi0 and psi1 are the counterfactual means found by prediction using
a fitted GLM in the binary groups defined by exposure_indicator.

Default estimand functions can be specified via "ate" (which uses the function function(psi1,
psi0) psi1-psi0) and "rate_ratio" (which uses the function function(psi1, psi0) psi1/psi0).
See more information on specifying the estimand_fun in vignette("model-fit").

As a default, the Deriv package is used to perform symbolic differentiation to find the derivatives
of the estimand_fun.



18 rctglm

See Also

See how to extract information using methods in rctglm_methods.

Use rctglm_with_prognosticscore() to include prognostic covariate adjustment.

See vignettes

Examples

# Generate some data to showcase example
n <- 100
exp_prob <- .5

dat_gaus <- glm_data(
Y ~ 1+1.5*X1+2*A,
X1 = rnorm(n),
A = rbinom(n, 1, exp_prob),
family = gaussian()

)

# Fit the model
ate <- rctglm(formula = Y ~ .,

exposure_indicator = A,
exposure_prob = exp_prob,
data = dat_gaus,
family = gaussian)

# Pull information on estimand
estimand(ate)

## Another example with different family and specification of estimand_fun
dat_binom <- glm_data(

Y ~ 1+1.5*X1+2*A,
X1 = rnorm(n),
A = rbinom(n, 1, exp_prob),
family = binomial()

)

rr <- rctglm(formula = Y ~ .,
exposure_indicator = A,
exposure_prob = exp_prob,
data = dat_binom,
family = binomial(),
estimand_fun = "rate_ratio")

odds_ratio <- function(psi1, psi0) (psi1*(1-psi0))/(psi0*(1-psi1))
or <- rctglm(formula = Y ~ .,

exposure_indicator = A,
exposure_prob = exp_prob,
data = dat_binom,
family = binomial,
estimand_fun = odds_ratio)



rctglm_methods 19

rctglm_methods Methods for objects of class rctglm

Description

Methods mostly to extract information from model fit and inference. See details for more informa-
tion on each method.

Usage

estimand(object)

## S3 method for class 'rctglm'
estimand(object)

est(object)

## S3 method for class 'rctglm'
coef(object, ...)

## S3 method for class 'rctglm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

object an object of class rctglm
... additional arguments passed to methods
x an object of class rctglm
digits a numeric with the number of digits to display when printing

Details

The function estimand (or short-hand version est) can be used to extract a data.frame with an
estimated value and standard error of the estimand.

A method for the generic coef has been added for rctglm (i.e., coef.rctglm), which uses the method
coef.glm to extract coefficient information from the underlying glm fit in the procedure.

Value

estimand/est returns a data.frame with columns Estimate and Std. Error with the estimate
and standard error of the estimand.

coef returns a named numeric, being the result of the glm method of coef on the glm object
contained within an rctglm object.

See Also

The generic rctglm() which these are methods for.



20 rctglm_with_prognosticscore

Examples

# Generate some data to showcase example
n <- 100
exposure_prob <- .5
dat_binom <- glm_data(

Y ~ 1+1.5*X1+2*A,
X1 = rnorm(n),
A = rbinom(n, 1, exposure_prob),
family = binomial()

)

# Fit the model
ate <- rctglm(formula = Y ~ .,

exposure_indicator = A,
exposure_prob = exposure_prob,
data = dat_binom,
family = binomial,
estimand_fun = "ate")

print(ate)
estimand(ate)
coef(ate)

rctglm_with_prognosticscore

Use prognostic covariate adjustment when fitting an rctglm

Description

The procedure uses fit_best_learner to fit a prognostic model to historical data and uses the model
to produce counterfactual predictions as a prognostic score that is then adjusted for as a covariate in
the rctglm procedure. See Powering RCTs for marginal effects with GLMs using prognostic score
adjustment by Højbjerre-Frandsen et. al (2025) for more details.

Usage

rctglm_with_prognosticscore(
formula,
exposure_indicator,
exposure_prob,
data,
family = gaussian,
estimand_fun = "ate",
estimand_fun_deriv0 = NULL,
estimand_fun_deriv1 = NULL,
cv_variance = FALSE,
cv_variance_folds = 10,
...,

https://arxiv.org/abs/2503.22284
https://arxiv.org/abs/2503.22284


rctglm_with_prognosticscore 21

data_hist,
prog_formula = NULL,
cv_prog_folds = 5,
learners = default_learners(),
verbose = options::opt("verbose")

)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are given
under ‘Details’ in the glm documentation.

exposure_indicator

(name of) the binary variable in data that identifies randomisation groups. The
variable is required to be binary to make the "orientation" of the estimand_fun
clear.

exposure_prob a numeric with the probability of being in "group 1" (rather than group 0) in
groups defined by exposure_indicator.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which the function is called.

family a description of the error distribution and link function to be used in the model.
For glm this can be a character string naming a family function, a family function
or the result of a call to a family function. For glm.fit only the third option is
supported. (See family for details of family functions.)

estimand_fun a function with arguments psi1 and psi0 specifying the estimand. Alternative,
specify "ate" or "rate_ratio" as a character to use one of the default estimand
functions. See more details in the "Estimand" section of rctglm.

estimand_fun_deriv0

a function specifying the derivative of estimand_fun wrt. psi0. As a default
the algorithm will use symbolic differentiation to automatically find the deriva-
tive from estimand_fun

estimand_fun_deriv1

a function specifying the derivative of estimand_fun wrt. psi1. As a default
the algorithm will use symbolic differentiation to automatically find the deriva-
tive from estimand_fun

cv_variance a logical determining whether to estimate the variance using cross-validation
(see details of rctglm).

cv_variance_folds

a numeric with the number of folds to use for cross validation if cv_variance
is TRUE.

... Additional arguments passed to stats::glm()

data_hist a data.frame with historical data on which to fit a prognostic model



22 rctglm_with_prognosticscore

prog_formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the prognostic model to be fitted to data_hist. Passed in a list
as the preproc argument in fit_best_learner(). As a default, the formula
is created by modelling the response (assumed to have the same name as in
formula) using all columns in data_hist.

cv_prog_folds a numeric with the number of cross-validation folds used when fitting and eval-
uating models

learners a list (preferably named) containing named lists of elements model and option-
ally grid. The model element should be a parsnip model specification, which
is passed to workflowsets::workflow_set as the model argument, while the grid
element is passed as the grid argument of workflowsets::option_add

verbose numeric verbosity level. Higher values means more information is printed in
console. A value of 0 means nothing is printed to console during execution (De-
faults to 2, overwritable using option ’postcard.verbose’ or environment variable
’R_POSTCARD_VERBOSE’)

Details

Prognostic covariate adjustment involves training a prognostic model (using fit_best_learner) on
historical data (data_hist) to predict the response in that data.

Assuming that the historical data is representative of the comparator group in a “new” data set
(group 0 of the binary exposure_indicator in data), we can use the prognostic model to predict
the counterfactual outcome of all observations (including the ones in the comparator group for
which the prediction of counterfactual outcome coincides with a prediction of actual outcome).

This prediction, which is called the prognostic score, is then used as an adjustment covariate in the
GLM (the prognostic score is added to formula before calling rctglm with the modified formula).

See much more details in the reference in the description.

Value

rctglm_with_prognosticscore returns an object of class rctglm_prog, which inherits from rct-
glm.

An rctglm_prog object is a list with the same components as an rctglm object (see the Value
section of rctglm for a breakdown of the structure), but with an additional list element of:

• prognostic_info: List with information about the fitted prognostic model on historical data.
It has components:

– formula: The formula with symbolic description of how the response is modelled as
function of covariates in the models

– model_fit: A trained workflow - the result of fit_best_learner
– learners: A list of learners used for the discrete super learner
– cv_folds: The amount of folds used for cross validation
– data: The historical data used for cross validation when fitting and testing models



rctglm_with_prognosticscore 23

See Also

Method to extract information of the prognostic model in prog. Function used to fit the prognostic
model is fit_best_learner().

See rctglm() for the function and class this inherits from.

Examples

# Generate some data
n <- 100
b0 <- 1
b1 <- 1.5
b2 <- 2
W1 <- runif(n, min = -2, max = 2)
exp_prob <- .5

dat_treat <- glm_data(
Y ~ b0+b1*abs(sin(W1))+b2*A,
W1 = W1,
A = rbinom (n, 1, exp_prob)

)

dat_notreat <- glm_data(
Y ~ b0+b1*abs(sin(W1)),
W1 = W1

)

learners <- list(
mars = list(
model = parsnip::set_engine(

parsnip::mars(
mode = "regression", prod_degree = 3

),
"earth"

)
),

lm = list(
model = parsnip::set_engine(

parsnip::linear_reg(),
"lm"

)
)

)
ate <- rctglm_with_prognosticscore(

formula = Y ~ .,
exposure_indicator = A,
exposure_prob = exp_prob,
data = dat_treat,
family = gaussian(),
estimand_fun = "ate",
data_hist = dat_notreat,
learners = learners)



24 rctglm_with_prognosticscore

# Pull information on estimand
estimand(ate)



Index

all.equal, 11
as.data.frame, 7

coef, 19
coef.rctglm, 19
coef.rctglm (rctglm_methods), 19

default_learners, 2

est, 19
est (rctglm_methods), 19
estimand, 19
estimand (rctglm_methods), 19

family, 16, 21
fit_best_learner, 2, 3, 20, 22
fit_best_learner(), 22, 23

glm, 5, 16, 21
glm_data, 4

options, 5

power_gs (power_linear), 6
power_linear, 6, 12
power_marginaleffect, 10
power_nc (power_linear), 6
print.rctglm (rctglm_methods), 19
prog, 14, 23

rctglm, 11, 15, 16, 19–22
rctglm(), 19, 23
rctglm_methods, 18, 19
rctglm_with_prognosticscore, 14, 20
rctglm_with_prognosticscore(), 3, 14, 18
rsample::vfold_cv, 17

samplesize_gs (power_linear), 6
stats::glm, 17
stats::glm(), 17, 21
stats::model.frame(), 7

stats::uniroot, 11

variance_ancova (power_linear), 6

workflows::workflow_variables(), 3
workflowsets::option_add, 3, 22
workflowsets::workflow_set, 3, 22
workflowsets::workflow_set(), 3

25


	default_learners
	fit_best_learner
	glm_data
	options
	power_linear
	power_marginaleffect
	prog
	rctglm
	rctglm_methods
	rctglm_with_prognosticscore
	Index

