Package ‘performance’

May 22, 2025
Type Package

Title Assessment of Regression Models Performance
Version 0.14.0
Maintainer Daniel Liidecke <officialeasystats@gmail.com>

Description Utilities for computing measures to assess model quality,
which are not directly provided by R's 'base’ or 'stats' packages.
These include e.g. measures like r-squared, intraclass correlation
coefficient (Nakagawa, Johnson & Schielzeth (2017)
<doi:10.1098/rsif.2017.0213>), root mean squared error or functions to
check models for overdispersion, singularity or zero-inflation and
more. Functions apply to a large variety of regression models,
including generalized linear models, mixed effects models and Bayesian
models. References: Liidecke et al. (2021) <doi:10.21105/joss.03139>.

License GPL-3
URL https://easystats.github.io/performance/

BugReports https://github.com/easystats/performance/issues
Depends R (>=3.6)

Imports bayestestR (>= 0.15.3), insight (>= 1.2.0), datawizard (>=
1.0.2), stats, methods, utils

Suggests AER, afex, BayesFactor, bayesplot, betareg, bigutilsr,
blavaan, boot, brms, car, carData, CompQuadForm, correlation,
cplm, curl, dagitty, dbscan, DHARMa (>= 0.4.7), estimatr,
fixest, flextable, forecast, ftExtra, gamm4, ggdag, glmmTMB (>=
1.1.10), graphics, Hmisc, httr2, ICS, ICSOutlier, ISLR, ivreg,
lavaan, Ime4, Imtest, loo, MASS, Matrix, mclogit, mclust,
metadat, metafor, mgcv, mlogit, modelbased, multimode,
nestedLogit, nlme, nnet, nonnest2, ordinal, parallel,
parameters (>= 0.22.0), patchwork, pscl, psych, quantreg,
qgplotr (>= 0.0.6), randomForest, RcppEigen, reformulas,
rempsyc, rmarkdown, rstanarm, rstantools, sandwich, see (>=
0.9.0), survey, survival, testthat (>= 3.2.1), tweedie, VGAM,
withr (>= 3.0.0)

https://doi.org/10.1098/rsif.2017.0213
https://doi.org/10.21105/joss.03139
https://easystats.github.io/performance/
https://github.com/easystats/performance/issues

2 Contents

Encoding UTF-8
Language en-US
RoxygenNote 7.3.2
Config/testthat/edition 3
Config/testthat/parallel true

Config/Needs/website rstudio/bslib, r-lib/pkgdown,
easystats/easystatstemplate

Config/remdcheck/ignore-inconsequential-notes true
NeedsCompilation no

Author Daniel Liidecke [aut, cre] (ORCID:

<https://orcid.org/0000-0002-8895-3206>),

Dominique Makowski [aut, ctb] (ORCID:
<https://orcid.org/0000-0001-5375-9967>),

Mattan S. Ben-Shachar [aut, ctb] (ORCID:
<https://orcid.org/0000-0002-4287-4801>),

Indrajeet Patil [aut, ctb] (ORCID:
<https://orcid.org/0000-0003-1995-6531>),

Philip Waggoner [aut, ctb] (ORCID:
<https://orcid.org/0000-0002-7825-7573>),

Brenton M. Wiernik [aut, ctb] (ORCID:
<https://orcid.org/0000-0001-9560-6336>),

Rémi Thériault [aut, ctb] (ORCID:
<https://orcid.org/0000-0003-4315-6788>),

Vincent Arel-Bundock [ctb] (ORCID:
<https://orcid.org/0000-0003-2042-7063>),

Martin Jullum [rev],

gjoll [rev],

Etienne Bacher [ctb] (ORCID: <https://orcid.org/0000-0002-9271-5075>),

Joseph Luchman [ctb] (ORCID: <https://orcid.org/0000-0002-8886-9717>)

Repository CRAN
Date/Publication 2025-05-22 14:40:02 UTC

Contents
binned_residuals L e e 4
check_autocorrelation e 6
check_clusterstructure e e e e e e e e e e e 7
check_collinearity L 8
check_convergence L 11
check_dag 13
check_distribution e e 17
check_factorstructure e e e e 18
check_group_variation Lo L 20
check_heterogeneity_bias o 23

check_heteroscedasticity 25

https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0001-5375-9967
https://orcid.org/0000-0002-4287-4801
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0002-7825-7573
https://orcid.org/0000-0001-9560-6336
https://orcid.org/0000-0003-4315-6788
https://orcid.org/0000-0003-2042-7063
https://orcid.org/0000-0002-9271-5075
https://orcid.org/0000-0002-8886-9717

Contents

3
check_homogeneity L 26
check_itemscale e e e e 27
check_model e 28
check_multimodal e 33
check_normality 34
check outliers L e 35
check_overdispersion e 42
check_predictions L. e e 44
check residuals L e 47
check_singularity 48
check_sphericity e 51
check_symmetry e 52
check_zeroinflation 53
classify_distribution 54
compare_performance u e e e e e e e e e e e e e 55
cronbachs_alpha L 57
display.performance_model oL 58
ICC o o o e e e e e 59
item_difficulty 64
item_discrimination e 65
HEM_INTEICOT . . . v v v o o o e e e e e e e e e e e 66
item_reliability 67
item_split_half 68
[00IC e e e 69
model_performance 69
model_performance.ivrego o 70
model_performance.kmeans oL 71
model_performance.lavaano 0oL 72
model_performance.lm L 74
model_performance.merMod L Lo 75
model_performance.rma 76
model_performance.stanrteg Lo e e 78
performance_accuraCy e 80
performance_aicCo 81
performance_cv L e 83
performance_hosmer e 84
performance_logloss 85
performance_maeo e 86
performance_mse L. e e e e e 86
performance_pcp 87
performance_reliability Lo 88
performance_rmseo e e e e e e e e e 91
performance_roc e e e e e 93
performance_rse 94
performance_sCore e e 95
T2 o e e e e 96
T2_DAYES . . o e e e e e e e e e 98

r2_coxsnello 100

4 binned_residuals
I2_effon o e e e 101
r2_ferrari L. e e e 102
r2_kullback e 103
2 100 . . . e 103
r2_mcfadden L 105
r2_mckelvey e e e e e 106
2.mMIM ... e e e e 107
r2_nagelkerke L 108
12_nakagawa L. e e e e e e 109
T2 SOMETS . . o v v v v e e e e e e e e e e e 112
T2_HUL © oot e e e e e e e e 113
T2 XU v v o o e e e e e e s 113
r2_zeroinflated L. 114
simulate_residuals 115
test bf . . L 116

Index 122

binned_residuals Binned residuals for binomial logistic regression

Description

Check model quality of binomial logistic regression models.
Usage
binned_residuals(
model,
term = NULL,
n_bins = NULL,
show_dots = NULL,
ci = 0.95,
ci_type = "exact”,
residuals = "deviance”,
iterations = 1000,
verbose = TRUE,
)
Arguments
model A glm-object with binomial-family.
term Name of independent variable from x. If not NULL, average residuals for the cate-
gories of term are plotted; else, average residuals for the estimated probabilities
of the response are plotted.
n_bins Numeric, the number of bins to divide the data. If n_bins = NULL, the square

root of the number of observations is taken.

binned_residuals

show_dots

ci

ci_type

residuals

iterations

verbose

Details

Logical, if TRUE, will show data points in the plot. Set to FALSE for models with
many observations, if generating the plot is too time-consuming. By default,
show_dots = NULL. In this case binned_residuals() tries to guess whether
performance will be poor due to a very large model and thus automatically shows
or hides dots.

Numeric, the confidence level for the error bounds.

Character, the type of error bounds to calculate. Can be "exact"” (default),
"gaussian” or "boot”. "exact"” calculates the error bounds based on the exact
binomial distribution, using binom.test (). "gaussian” uses the Gaussian ap-
proximation, while "boot"” uses a simple bootstrap method, where confidence

intervals are calculated based on the quantiles of the bootstrap distribution.

Character, the type of residuals to calculate. Can be "deviance” (default),
"pearson” or "response”. It is recommended to use "response” only for
those models where other residuals are not available.

Integer, the number of iterations to use for the bootstrap method. Only used if
ci_type = "boot".

Toggle warnings and messages.

Currently not used.

Binned residual plots are achieved by "dividing the data into categories (bins) based on their fitted
values, and then plotting the average residual versus the average fitted value for each bin." (Gelman,
Hill 2007: 97). If the model were true, one would expect about 95% of the residuals to fall inside

the error bounds.

If term is not NULL, one can compare the residuals in relation to a specific model predictor. This
may be helpful to check if a term would fit better when transformed, e.g. a rising and falling pattern
of residuals along the x-axis is a signal to consider taking the logarithm of the predictor (cf. Gelman
and Hill 2007, pp. 97-98).

Value

A data frame representing the data that is mapped in the accompanying plot. In case all residuals
are inside the error bounds, points are black. If some of the residuals are outside the error bounds
(indicated by the grey-shaded area), blue points indicate residuals that are OK, while red points
indicate model under- or over-fitting for the relevant range of estimated probabilities.

Note

binned_residuals() returns a data frame, however, the print() method only returns a short
summary of the result. The data frame itself is used for plotting. The plot() method, in turn,
creates a ggplot-object.

References

Gelman, A., and Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models.
Cambridge; New York: Cambridge University Press.

6 check_autocorrelation

Examples
model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
result <- binned_residuals(model)
result

look at the data frame
as.data.frame(result)

plot
plot(result, show_dots = TRUE)

check_autocorrelation Check model for independence of residuals.

Description

Check model for independence of residuals, i.e. for autocorrelation of error terms.

Usage

check_autocorrelation(x, ...)

Default S3 method:

check_autocorrelation(x, nsim = 1000, ...)
Arguments
X A model object.

Currently not used.

nsim Number of simulations for the Durbin-Watson-Test.

Details

Performs a Durbin-Watson-Test to check for autocorrelated residuals. In case of autocorrelation,
robust standard errors return more accurate results for the estimates, or maybe a mixed model with
error term for the cluster groups should be used.

Value

Invisibly returns the p-value of the test statistics. A p-value < 0.05 indicates autocorrelated residuals.

check_clusterstructure 7

See Also

Other functions to check model assumptions and and assess model quality: check_collinearity(),
check_convergence(), check_heteroscedasticity(), check_homogeneity(), check_model(),
check_outliers(), check_overdispersion(), check_predictions(), check_singularity(),
check_zeroinflation()

Examples

m <- 1lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
check_autocorrelation(m)

check_clusterstructure
Check suitability of data for clustering

Description

This checks whether the data is appropriate for clustering using the Hopkins’ H statistic of given
data. If the value of Hopkins statistic is close to 0 (below 0.5), then we can reject the null hypothesis
and conclude that the dataset is significantly clusterable. A value for H lower than 0.25 indicates a
clustering tendency at the 90% confidence level. The visual assessment of cluster tendency (VAT)
approach (Bezdek and Hathaway, 2002) consists in investigating the heatmap of the ordered dis-
similarity matrix. Following this, one can potentially detect the clustering tendency by counting the
number of square shaped blocks along the diagonal.

Usage
check_clusterstructure(x, standardize = TRUE, distance = "euclidean”, ...)
Arguments
X A data frame.
standardize Standardize the data frame before clustering (default).
distance Distance method used. Other methods than "euclidean" (default) are exploratory
in the context of clustering tendency. See stats::dist() for list of available
methods.
Arguments passed to or from other methods.
Value

The H statistic (numeric)

8 check_collinearity

References

e Lawson, R. G., & Jurs, P. C. (1990). New index for clustering tendency and its application to
chemical problems. Journal of chemical information and computer sciences, 30(1), 36-41.

* Bezdek, J. C., & Hathaway, R. J. (2002, May). VAT: A tool for visual assessment of (cluster)
tendency. In Proceedings of the 2002 International Joint Conference on Neural Networks.
IJCNNO2 (3), 2225-2230. IEEE.

See Also

check_kmo(), check_sphericity_bartlett() and check_factorstructure().

Examples

library(performance)
check_clusterstructure(iris[, 1:41)
plot(check_clusterstructure(iris[, 1:41))

check_collinearity Check for multicollinearity of model terms

Description

check_collinearity() checks regression models for multicollinearity by calculating the (gener-
alized) variance inflation factor (VIF, Fox & Monette 1992). multicollinearity() is an alias for
check_collinearity(). check_concurvity() is a wrapper around mgcv: :concurvity(), and
can be considered as a collinearity check for smooth terms in GAMs. Confidence intervals for VIF
and tolerance are based on Marcoulides et al. (2019, Appendix B).

Usage

check_collinearity(x, ...)
multicollinearity(x, ...)

Default S3 method:
check_collinearity(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'glmmTMB'
check_collinearity(x, component = "all", ci = .95, verbose = TRUE, ...)

check_concurvity(x, ...)

check_collinearity 9

Arguments
X A model object (that should at least respond to vcov (), and if possible, also to
model.matrix() - however, it also should work without model.matrix()).
Currently not used.
ci Confidence Interval (CI) level for VIF and tolerance values.
verbose Toggle off warnings or messages.
component For models with zero-inflation component, multicollinearity can be checked
for the conditional model (count component, component = "conditional” or
component = "count"), zero-inflation component (component = "zero_inflated”
or component = "zi") or both components (component = "all"). Following
model-classes are currently supported: hurdle, zeroinfl, zerocount, MixMod
and g1lmmTMB.
Details

check_collinearity() calculates the generalized variance inflation factor (Fox & Monette 1992),

which also returns valid results for categorical variables. The adjusted VIF is calculated as VIF* (1/(2*<nlevels>)
(Fox & Monette 1992), which is identical to the square root of the VIF for numeric predictors, or

for categorical variables with two levels.

Value

A data frame with information about name of the model term, the (generalized) variance inflation
factor and associated confidence intervals, the adjusted VIF, which is the factor by which the stan-
dard error is increased due to possible correlation with other terms (inflation due to collinearity),
and tolerance values (including confidence intervals), where tolerance = 1/vif.

Multicollinearity

Multicollinearity should not be confused with a raw strong correlation between predictors. What
matters is the association between one or more predictor variables, conditional on the other vari-
ables in the model. In a nutshell, multicollinearity means that once you know the effect of one
predictor, the value of knowing the other predictor is rather low. Thus, one of the predictors doesn’t
help much in terms of better understanding the model or predicting the outcome. As a consequence,
if multicollinearity is a problem, the model seems to suggest that the predictors in question don’t
seems to be reliably associated with the outcome (low estimates, high standard errors), although
these predictors actually are strongly associated with the outcome, i.e. indeed might have strong
effect (McElreath 2020, chapter 6.1).

Multicollinearity might arise when a third, unobserved variable has a causal effect on each of the
two predictors that are associated with the outcome. In such cases, the actual relationship that
matters would be the association between the unobserved variable and the outcome.

Remember: "Pairwise correlations are not the problem. It is the conditional associations - not
correlations - that matter." (McElreath 2020, p. 169)

10 check_collinearity

Interpretation of the Variance Inflation Factor

The variance inflation factor is a measure to analyze the magnitude of multicollinearity of model
terms. A VIF less than 5 indicates a low correlation of that predictor with other predictors. A
value between 5 and 10 indicates a moderate correlation, while VIF values larger than 10 are a
sign for high, not tolerable correlation of model predictors (James et al. 2013). The adjusted VIF
column in the output indicates how much larger the standard error is due to the association with
other predictors conditional on the remaining variables in the model. Note that these thresholds,
although commonly used, are also criticized for being too high. Zuur et al. (2010) suggest using
lower values, e.g. a VIF of 3 or larger may already no longer be considered as "low".

Multicollinearity and Interaction Terms

If interaction terms are included in a model, high VIF values are expected. This portion of multi-
collinearity among the component terms of an interaction is also called "inessential ill-conditioning",
which leads to inflated VIF values that are typically seen for models with interaction terms (Fran-
coeur 2013). Centering interaction terms can resolve this issue (Kim and Jung 2024).

Multicollinearity and Polynomial Terms

Polynomial transformations are considered a single term and thus VIFs are not calculated between
them.

Concurvity for Smooth Terms in Generalized Additive Models

check_concurvity() is a wrapper around mgcv: :concurvity(), and can be considered as a
collinearity check for smooth terms in GAMs."Concurvity occurs when some smooth term in
a model could be approximated by one or more of the other smooth terms in the model." (see
?mgcv: :concurvity). check_concurvity() returns a column named VIF, which is the "worst"
measure. While mgcv: : concurvity () range between 0 and 1, the VIF valueis 1 / (1 - worst), to
make interpretation comparable to classical VIF values, i.e. 1 indicates no problems, while higher
values indicate increasing lack of identifiability. The VIF proportion column equals the "estimate"
column from mgcv: : concurvity(), ranging from 0 (no problem) to 1 (total lack of identifiability).

Note

The code to compute the confidence intervals for the VIF and tolerance values was adapted from
the Appendix B from the Marcoulides et al. paper. Thus, credits go to these authors the original
algorithm. There is also a plot ()-method implemented in the see-package.

References

* Fox, J., & Monette, G. (1992). Generalized Collinearity Diagnostics. Journal of the American
Statistical Association, 87(417), 178—183.

* Francoeur, R. B. (2013). Could Sequential Residual Centering Resolve Low Sensitivity in
Moderated Regression? Simulations and Cancer Symptom Clusters. Open Journal of Statis-
tics, 03(06), 24-44.

e James, G., Witten, D., Hastie, T., and Tibshirani, R. (eds.). (2013). An introduction to statis-
tical learning: with applications in R. New York: Springer.

https://easystats.github.io/see/articles/performance.html
https://easystats.github.io/see/

check_convergence 11

e Kim, Y., & Jung, G. (2024). Understanding linear interaction analysis with causal graphs.
British Journal of Mathematical and Statistical Psychology, 00, 1-14.

* Marcoulides, K. M., and Raykov, T. (2019). Evaluation of Variance Inflation Factors in Re-
gression Models Using Latent Variable Modeling Methods. Educational and Psychological
Measurement, 79(5), 874-882.

* McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan.
2nd edition. Chapman and Hall/CRC.

* Vanhove, J. (2019). Collinearity isn’t a disease that needs curing. webpage

e Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical
problems: Data exploration. Methods in Ecology and Evolution (2010) 1:3-14.

See Also

see::plot.see_check_collinearity() for options to customize the plot.

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_convergence(), check_heteroscedasticity(), check_homogeneity(), check_model(),
check_outliers(), check_overdispersion(), check_predictions(), check_singularity(),
check_zeroinflation()

Examples

m <- lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
check_collinearity(m)

plot results
x <- check_collinearity(m)
plot(x)

check_convergence Convergence test for mixed effects models

Description

check_convergence() provides an alternative convergence test for merMod-objects.

Usage
check_convergence(x, tolerance = 0.001, ...)
Arguments
X A merMod or glmmTMB-object.
tolerance Indicates up to which value the convergence result is accepted. The smaller

tolerance is, the stricter the test will be.

Currently not used.

https://janhove.github.io/posts/2019-09-11-collinearity/

12 check_convergence

Value

TRUE if convergence is fine and FALSE if convergence is suspicious. Additionally, the convergence
value is returned as attribute.

Convergence and log-likelihood

Convergence problems typically arise when the model hasn’t converged to a solution where the
log-likelihood has a true maximum. This may result in unreliable and overly complex (or non-
estimable) estimates and standard errors.

Inspect model convergence

Ime4 performs a convergence-check (see ?1me4: : convergence), however, as as discussed here and
suggested by one of the Ime4-authors in this comment, this check can be too strict. check_convergence()
thus provides an alternative convergence test for merMod-objects.

Resolving convergence issues

Convergence issues are not easy to diagnose. The help page on ?1me4: :convergence provides
most of the current advice about how to resolve convergence issues. Another clue might be large
parameter values, e.g. estimates (on the scale of the linear predictor) larger than 10 in (non-identity
link) generalized linear model might indicate complete separation. Complete separation can be ad-
dressed by regularization, e.g. penalized regression or Bayesian regression with appropriate priors
on the fixed effects.

Convergence versus Singularity

Note the different meaning between singularity and convergence: singularity indicates an issue with
the "true" best estimate, i.e. whether the maximum likelihood estimation for the variance-covariance
matrix of the random effects is positive definite or only semi-definite. Convergence is a question of
whether we can assume that the numerical optimization has worked correctly or not.

See Also

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_heteroscedasticity(), check_homogeneity(), check_model(),
check_outliers(), check_overdispersion(), check_predictions(), check_singularity(),
check_zeroinflation()

Examples

data(cbpp, package = "lme4")
set.seed(1)

cbpp$x <- rnorm(nrow(cbpp))
cbpp$x2 <- runif(nrow(cbpp))

model <- 1me4::glmer(
cbind(incidence, size - incidence) ~ period + x + x2 + (1 + x | herd),
data = cbpp,
family = binomial()

https://github.com/lme4/lme4/issues/120
https://github.com/lme4/lme4/issues/120#issuecomment-39920269
https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faqwhat-is-complete-or-quasi-complete-separation-in-logisticprobit-regression-and-how-do-we-deal-with-them/

check_dag 13

)

check_convergence(model)

model <- suppressWarnings(glmmTMB: :glmmTMB(
Sepal.Length ~ poly(Petal.Width, 4) x poly(Petal.Length, 4) +
(1 + poly(Petal.wWidth, 4) | Species),
data = iris
))

check_convergence(model)

check_dag Check correct model adjustment for identifying causal effects

Description

The purpose of check_dag() is to build, check and visualize your model based on directed acyclic
graphs (DAG). The function checks if a model is correctly adjusted for identifying specific rela-
tionships of variables, especially directed (maybe also "causal") effects for given exposures on an
outcome. In case of incorrect adjustments, the function suggests the minimal required variables that
should be adjusted for (sometimes also called "controlled for"), i.e. variables that at least need to
be included in the model. Depending on the goal of the analysis, it is still possible to add more
variables to the model than just the minimally required adjustment sets.

check_dag() is a convenient wrapper around ggdag: :dagify(), dagitty::adjustmentSets()
and dagitty::adjustedNodes() to check correct adjustment sets. It returns a dagitty object that
can be visualized with plot (). as.dag() is a small convenient function to return the dagitty-string,
which can be used for the online-tool from the dagitty-website.

Usage

check_dag(
outcome = NULL,
exposure = NULL,
adjusted = NULL,
latent = NULL,
effect "all"”,
coords = NULL

)

as.dag(x, ...)

14

Arguments

outcome

exposure

adjusted

latent
effect

coords

Value

check_dag

One or more formulas, which are converted into dagitty syntax. First element
may also be model object. If a model objects is provided, its formula is used
as first formula, and all independent variables will be used for the adjusted
argument. See ’Details’ and *’Examples’.

Name of the dependent variable (outcome), as character string or as formula.
Must be a valid name from the formulas provided in If not set, the first
dependent variable from the formulas is used.

Name of the exposure variable (as character string or formula), for which the
direct and total causal effect on the outcome should be checked. Must be a
valid name from the formulas provided in If not set, the first independent
variable from the formulas is used.

A character vector or formula with names of variables that are adjusted for in the
model, e.g. adjusted =c("x1", "x2") or adjusted =~ x1 + x2. If a model
object is provided in ..., any values in adjusted will be overwritten by the
model’s independent variables.

A character vector with names of latent variables in the model.

Character string, indicating which effect to check. Can be "all” (default),
"total”, or "direct”.

Coordinates of the variables when plotting the DAG. The coordinates can be
provided in three different ways:

« alist with two elements, x and y, which both are named vectors of numerics.
The names correspond to the variable names in the DAG, and the values for
x and y indicate the x/y coordinates in the plot.

* alist with elements that correspond to the variables in the DAG. Each ele-
ment is a numeric vector of length two with x- and y-coordinate.

¢ adata frame with three columns: x, y and name (which contains the variable
names).

See ’Examples’.

An object of class check_dag, as returned by check_dag().

An object of class check_dag, which can be visualized with plot(). The returned object also
inherits from class dagitty and thus can be used with all functions from the ggdag and dagitty

packages.

Specifying the DAG formulas

The formulas have following syntax:

* One-directed paths: On the left-hand-side is the name of the variables where causal effects
point to (direction of the arrows, in dagitty-language). On the right-hand-side are all variables
where causal effects are assumed to come from. For example, the formula Y ~ X1 + X2, paths
directed from both X1 and X2 to Y are assumed.

check_dag 15

* Bi-directed paths: Use ~~ to indicate bi-directed paths. For example, Y ~~ X indicates that the
path between Y and X is bi-directed, and the arrow points in both directions. Bi-directed paths
often indicate unmeasured cause, or unmeasured confounding, of the two involved variables.

Minimally required adjustments

The function checks if the model is correctly adjusted for identifying the direct and total effects of
the exposure on the outcome. If the model is correctly specified, no adjustment is needed to estimate
the direct effect. If the model is not correctly specified, the function suggests the minimally required
variables that should be adjusted for. The function distinguishes between direct and total effects,
and checks if the model is correctly adjusted for both. If the model is cyclic, the function stops and
suggests to remove cycles from the model.

Note that it sometimes could be necessary to try out different combinations of suggested adjust-
ments, because check_dag() can not always detect whether ar least one of several variables is
required, or whether adjustments should be done for all listed variables. It can be useful to copy
the dagitty-code (using as.dag(), which prints the dagitty-string into the console) into the dagitty-
website and play around with different adjustments.

Direct and total effects

The direct effect of an exposure on an outcome is the effect that is not mediated by any other variable
in the model. The total effect is the sum of the direct and indirect effects. The function checks if
the model is correctly adjusted for identifying the direct and total effects of the exposure on the
outcome.

Why are DAGs important - the Table 2 fallacy

Correctly thinking about and identifying the relationships between variables is important when it
comes to reporting coefficients from regression models that mutually adjust for "confounders" or
include covariates. Different coefficients might have different interpretations, depending on their
relationship to other variables in the model. Sometimes, a regression coefficient represents the
direct effect of an exposure on an outcome, but sometimes it must be interpreted as total effect, due
to the involvement of mediating effects. This problem is also called "Table 2 fallacy" (Westreich
and Greenland 2013). DAG helps visualizing and thereby focusing the relationships of variables in
a regression model to detect missing adjustments or over-adjustment.

References

* Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal
models for observational data. Advances in Methods and Practices in Psychological Science,
1(1), 27-42. doi:10.1177/2515245917745629

* Westreich, D., & Greenland, S. (2013). The Table 2 Fallacy: Presenting and Interpreting
Confounder and Modifier Coefficients. American Journal of Epidemiology, 177(4), 292-298.
doi:10.1093/aje/kws412

Examples

no adjustment needed
check_dag(

https://doi.org/10.1177/2515245917745629
https://doi.org/10.1093/aje/kws412

16

y ~ x +b,

non

outcome = "y",
non

exposure = "x

)

incorrect adjustment
dag <- check_dag(
y ~x+b+c,
X ~ b,
outcome = "y",
exposure = "x"
)
dag
plot(dag)

After adjusting for “b~, the model is correctly specified
dag <- check_dag(
y ~x+b+c,
X ~ b,
outcome = "y",
exposure = "x",
adjusted = "b"

)
dag

using formula interface for arguments "outcome", "exposure” and "adjusted”

check_dag(
y~x+bhb+c,
X ~ b,
outcome = ~y,
exposure = ~x,
adjusted = ~ b + ¢

if not provided, "outcome"” is taken from first formula, same for "exposure'

thus, we can simplify the above expression to
check_dag(

y ~x+b+c,

X ~ b,

adjusted = ~ b + ¢
)

use specific layout for the DAG
dag <- check_dag(
score ~ exp + b + ¢,

exp ~ b,
outcome = "score”,
exposure = "exp”,

coords = list(
x-coordinates for all nodes
X = c(score = 5, exp =4, b =3, ¢c = 3),
y-coordinates for all nodes
y = c(score = 3, exp =3, b=2, c=4)

4

check_dag

check_distribution 17

)

)
plot(dag)

alternative way of providing the coordinates
dag <- check_dag(
score ~ exp + b + c,

exp ~ b,
outcome = "score”,
exposure = "exp"”,

coords = list(
x/y coordinates for each node
score = c(5, 3),

exp = c(4, 3),
b =c(3, 2),
c =c(3, 4
)
)
plot(dag)

Objects returned by ~check_dag()™ can be used with "ggdag” or "dagitty”
ggdag: :ggdag_status(dag)

Using a model object to extract information about outcome,
exposure and adjusted variables

data(mtcars)

m <- Im(mpg ~ wt + gear + disp + cyl, data = mtcars)

dag <- check_dag(

m ’
wt ~ disp + cyl,
wt ~ am

)

dag

plot(dag)

check_distribution Classify the distribution of a model-family using machine learning
Description

Choosing the right distributional family for regression models is essential to get more accurate
estimates and standard errors. This function may help to check a models’ distributional family and
see if the model-family probably should be reconsidered. Since it is difficult to exactly predict the
correct model family, consider this function as somewhat experimental.

Usage

check_distribution(model)

18 check_factorstructure

Arguments
model Typically, a model (that should response to residuals()). May also be a nu-
meric vector.
Details

This function uses an internal random forest model to classify the distribution from a model-family.
Currently, following distributions are trained (i.e. results of check_distribution() may be one
of the following): "bernoulli”, "beta”, "beta-binomial”, "binomial”, "cauchy”, "chi”,
"exponential”, "F", "gamma"”, "half-cauchy”, "inverse-gamma”, "lognormal”, "normal”,

n n

poisson”, "poisson

non n on

"negative binomial”, "negative binomial (zero-inflated)"”, "pareto”,

non

(zero-inflated)"”, "tweedie”, "uniform” and "weibull”.

Note the similarity between certain distributions according to shape, skewness, etc. Thus, the pre-
dicted distribution may not be perfectly representing the distributional family of the underlying
fitted model, or the response value.

There is a plot() method, which shows the probabilities of all predicted distributions, however,
only if the probability is greater than zero.

Note

This function is somewhat experimental and might be improved in future releases. The final deci-
sion on the model-family should also be based on theoretical aspects and other information about
the data and the model.

There is also a plot ()-method implemented in the see-package.

Examples

data(sleepstudy, package = "lme4")
model <<- 1me4::1lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
check_distribution(model)

plot(check_distribution(model))

check_factorstructure Check suitability of data for Factor Analysis (FA) with Bartlett’s Test
of Sphericity and KMO

Description

This checks whether the data is appropriate for Factor Analysis (FA) by running the Bartlett’s Test
of Sphericity and the Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA). See
details below for more information about the interpretation and meaning of each test.

https://easystats.github.io/see/articles/performance.html
https://easystats.github.io/see/

check_factorstructure 19

Usage
check_factorstructure(x, n = NULL, ...)
check_kmo(x, n = NULL, ...)
check_sphericity_bartlett(x, n = NULL, ...)
Arguments
X A data frame or a correlation matrix. If the latter is passed, n must be provided.
n If a correlation matrix was passed, the number of observations must be specified.
Arguments passed to or from other methods.
Details

Value

Bartlett’s Test of Sphericity:

Bartlett’s (1951) test of sphericity tests whether a matrix (of correlations) is significantly different
from an identity matrix (filled with 0). It tests whether the correlation coefficients are all 0. The
test computes the probability that the correlation matrix has significant correlations among at least
some of the variables in a dataset, a prerequisite for factor analysis to work.

While it is often suggested to check whether Bartlett’s test of sphericity is significant before start-
ing with factor analysis, one needs to remember that the test is testing a pretty extreme scenario
(that all correlations are non-significant). As the sample size increases, this test tends to be always
significant, which makes it not particularly useful or informative in well-powered studies.

Kaiser, Meyer, Olkin (KMO):
(Measure of Sampling Adequacy (MSA) for Factor Analysis.)
Kaiser (1970) introduced a Measure of Sampling Adequacy (MSA), later modified by Kaiser and

Rice (1974). The Kaiser-Meyer-Olkin (KMO) statistic, which can vary from O to 1, indicates the
degree to which each variable in a set is predicted without error by the other variables.

A value of 0 indicates that the sum of partial correlations is large relative to the sum correlations,
indicating factor analysis is likely to be inappropriate. A KMO value close to 1 indicates that the
sum of partial correlations is not large relative to the sum of correlations and so factor analysis
should yield distinct and reliable factors. It means that patterns of correlations are relatively
compact, and so factor analysis should yield distinct and reliable factors. Values smaller than 0.5
suggest that you should either collect more data or rethink which variables to include.

Kaiser (1974) suggested that KMO > .9 were marvelous, in the .80s, meritorious, in the .70s,
middling, in the .60s, mediocre, in the .50s, miserable, and less than .5, unacceptable. Hair et
al. (2006) suggest accepting a value > 0.5. Values between 0.5 and 0.7 are mediocre, and values
between 0.7 and 0.8 are good.

Variables with individual KMO values below 0.5 could be considered for exclusion them from the
analysis (note that you would need to re-compute the KMO indices as they are dependent on the
whole dataset).

A list of lists of indices related to sphericity and KMO.

20 check_group_ variation

References

This function is a wrapper around the KMO and the cortest.bartlett() functions in the psych
package (Revelle, 2016).

* Revelle, W. (2016). How To: Use the psych package for Factor Analysis and data reduction.

* Bartlett, M. S. (1951). The effect of standardization on a Chi-square approximation in factor
analysis. Biometrika, 38(3/4), 337-344.

» Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401-415.

» Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark IV. Educational and psychological measure-
ment, 34(1), 111-117.

» Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.

See Also
check_clusterstructure().
Examples
library(performance)
check_factorstructure(mtcars)
One can also pass a correlation matrix

r <- cor(mtcars)
check_factorstructure(r, n = nrow(mtcars))

check_group_variation Check variables for within- and/or between-group variation

Description

Checks if variables vary within and/or between levels of grouping variables. This function can be
used to infer the hierarchical Design of a given dataset, or detect any predictors that might cause
heterogeneity bias (Bell and Jones, 2015). Use summary () on the output if you are mainly interested
if and which predictors are possibly affected by heterogeneity bias.

Usage

check_group_variation(x, ...)

Default S3 method:
check_group_variation(x, ...)

S3 method for class 'data.frame'
check_group_variation(
X,

check_group_ variation 21

select = NULL,

by = NULL,

include_by = FALSE,
numeric_as_factor = FALSE,
tolerance_numeric = 1e-04,
tolerance_factor = "crossed”,

)

S3 method for class 'check_group_variation'
summary (object, flatten = FALSE, ...)

Arguments

X A data frame or a mixed model. See details and examples.
Arguments passed to other methods

select Character vector (or formula) with names of variables to select that should be
checked. If NULL, selects all variables (except those in by).

by Character vector (or formula) with the name of the variable that indicates the
group- or cluster-ID. For cross-classified or nested designs, by can also identify
two or more variables as group- or cluster-IDs.

include_by When there is more than one grouping variable, should they be check against
each other?

numeric_as_factor
Should numeric variables be tested as factors?

tolerance_numeric
The minimal percent of variation (observed icc) that is tolerated to indicate no
within- or no between-effect.

tolerance_factor
How should a non-numeric variable be identified as varying only "within" a
grouping variable? Options are:

e "crossed" - if all groups have all unique values of X.
* "balanced” - if all groups have all unique values of X, with equal fre-

quency.
object result from check_group_variation()
flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-

cated values are removed.

Details

This function attempt to identify the variability of a set of variables (select) with respect to one
or more grouping variables (by). If x is a (mixed effect) model, the variability of the fixed effects
predictors are checked with respect to the random grouping variables.

Generally, a variable is considered to vary between groups if is correlated with those groups, and to
vary within groups if it not a constant within at least one group.

22

check_group_ variation

Numeric variables:

Numeric variables are partitioned via datawizard: : demean() to their within- and between-group
components. Then, the variance for each of these two component is calculated. Variables with
within-group variance larger than tolerance_numeric are labeled as within, variables with a
between-group variance larger than tolerance_numeric are labeled as between, and variables
with both variances larger than tolerance_numeric are labeled as both.

Setting numeric_as_factor = TRUE causes numeric variables to be tested using the following
criteria.

Non-numeric variables:
These variables can have one of the following three labels:

* between - the variable is correlated with the groups, and is fixed within each group (each
group has exactly one unique, constant value)

* within - the variable is crossed with the grouping variable, such that all possible values appear
within each group. The tolerance_factor argument controls if full balance is also required.

* both - the variable is correlated with the groups, but also varies within each group but is not
fully crossed (or, when tolerance_factor = "balanced” the variable is fully crossed, but
not perfectly balanced).

Additionally, the design of non-numeric variables is also checked to see if they are nested within
the groups or is they are crossed. This is indicated by the Design column.

Heterogeneity bias:

Variables that vary both within and between groups can cause a heterogeneity bias (Bell and
Jones, 2015). It is recommended to center (person-mean centering) those variables to avoid this
bias. See datawizard::demean() for further details. Use summary() to get a short text result
that indicates if and which predictors are possibly affected by heterogeneity bias.

Value

A data frame with Group, Variable, Variation and Design columns.

References

* Bell A, Jones K. 2015. Explaining Fixed Effects: Random Effects Modeling of Time-Series
Cross-Sectional and Panel Data. Political Science Research and Methods, 3(1), 133—-153.

See Also

For further details, read the vignette https://easystats.github.io/parameters/articles/
demean.html and also see documentation for datawizard: :demean().

Examples

data(npk)
check_group_variation(npk, by = "block")

data(iris)
check_group_variation(iris, by = "Species")

https://easystats.github.io/parameters/articles/demean.html
https://easystats.github.io/parameters/articles/demean.html

check_heterogeneity_bias 23

data(ChickWeight)
check_group_variation(ChickWeight, by = "Chick")

A subset of mlmRev::egsingle
egsingle <- data.frame(
schoolid = factor(rep(c(”2020", "2820"), times = c(18, 6))),
lowinc = rep(c(TRUE, FALSE), times = c(18, 6)),
childid = factor(rep(
c("288643371", "292020281", "292020361", "295341521"),
each = 6
),
female = rep(c(TRUE, FALSE), each = 12),
year = rep(1:6, times = 4),
math = c(
-3.068, -1.13, -0.921, 0.463, 0.021, 2.035,
-2.732, -2.097, -0.988, 0.227, 0.403, 1.623,
-2.732, -1.898, -0.921, 0.587, 1.578, 2.3,
-2.288, -2.162, -1.631, -1.555, -0.725, 0.097

result <- check_group_variation(
egsingle,
by = c("schoolid”, "childid"),
include_by = TRUE

)

result

summary (result)

data(sleepstudy, package = "lme4")
check_group_variation(sleepstudy, select = "Days"”, by = "Subject")

Or

mod <- 1lme4::1lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy)
result <- check_group_variation(mod)

result

summary (result)

check_heterogeneity_bias
Check model predictor for heterogeneity bias (Deprecated)

Description

check_heterogeneity_bias() checks if model predictors or variables may cause a heterogeneity
bias, i.e. if variables have any within-group variance (Bell and Jones, 2015).

24 check_heterogeneity_bias

We recommend using check_group_variation() instead, for a more detailed and flexible
examination of group-wise variability.

Usage
check_heterogeneity_bias(x, select = NULL, by = NULL, nested = FALSE)

Arguments

X A data frame or a mixed model object.

select Character vector (or formula) with names of variables to select that should be
checked. If x is a mixed model object, this argument will be ignored.

by Character vector (or formula) with the name of the variable that indicates the
group- or cluster-ID. For cross-classified or nested designs, by can also identify
two or more variables as group- or cluster-IDs. If the data is nested and should
be treated as such, set nested = TRUE. Else, if by defines two or more variables
and nested = FALSE, a cross-classified design is assumed. If x is a model object,
this argument will be ignored.

For nested designs, by can be:

¢ a character vector with the name of the variable that indicates the levels,
ordered from highest level to lowest (e.g. by = c("L4", "L3", "L2").

¢ a character vector with variable names in the format by = "L4/L3/L2",
where the levels are separated by /.

See also section De-meaning for cross-classified designs and De-meaning for
nested designs in datawizard: :demean().

nested Logical, if TRUE, the data is treated as nested. If FALSE, the data is treated as
cross-classified. Only applies if by contains more than one variable.

References

* Bell A, Jones K. 2015. Explaining Fixed Effects: Random Effects Modeling of Time-Series
Cross-Sectional and Panel Data. Political Science Research and Methods, 3(1), 133—-153.

See Also

For further details, read the vignette https://easystats.github.io/parameters/articles/
demean.html and also see documentation for datawizard: :demean().

For a more detailed and flexible examination of group-wise variability, see check_group_variation().

Examples

data(iris)
iris$ID <- sample(1:4, nrow(iris), replace = TRUE) # fake-ID
check_heterogeneity_bias(iris, select = c(”Sepal.Length”, "Petal.Length”), by = "ID")

https://easystats.github.io/parameters/articles/demean.html
https://easystats.github.io/parameters/articles/demean.html

check_heteroscedasticity 25

check_heteroscedasticity
Check model for (non-)constant error variance

Description

Significance testing for linear regression models assumes that the model errors (or residuals) have
constant variance. If this assumption is violated the p-values from the model are no longer reliable.

Usage
check_heteroscedasticity(x, ...)
check_heteroskedasticity(x, ...)
Arguments
X A model object.
Currently not used.
Details

This test of the hypothesis of (non-)constant error is also called Breusch-Pagan test (1979).

Value
The p-value of the test statistics. A p-value < 0.05 indicates a non-constant variance (heteroskedas-
ticity).

Note

There is also a plot ()-method implemented in the see-package.

References

Breusch, T. S., and Pagan, A. R. (1979) A simple test for heteroscedasticity and random coefficient
variation. Econometrica 47, 1287-1294.

See Also

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_convergence(), check_homogeneity(), check_model (), check_outliers(),
check_overdispersion(), check_predictions(), check_singularity(), check_zeroinflation()

https://easystats.github.io/see/articles/performance.html
https://easystats.github.io/see/

26 check_homogeneity

Examples

m <<- Im(mpg ~ wt + cyl + gear + disp, data = mtcars)
check_heteroscedasticity(m)

plot results

x <- check_heteroscedasticity(m)
plot(x)

check_homogeneity Check model for homogeneity of variances

Description

Check model for homogeneity of variances between groups described by independent variables in
a model.

Usage

check_homogeneity(x, method = "bartlett”, ...)

S3 method for class 'afex_aov'

check_homogeneity(x, method = "levene”, ...)
Arguments
X A linear model or an ANOVA object.
method Name of the method (underlying test) that should be performed to check the

homogeneity of variances. May either be "levene” for Levene’s Test for Ho-
mogeneity of Variance, "bartlett” for the Bartlett test (assuming normal dis-
tributed samples or groups), "fligner” for the Fligner-Killeen test (rank-based,
non-parametric test), or "auto”. In the latter case, Bartlett test is used if the
model response is normal distributed, else Fligner-Killeen test is used.

Arguments passed down to car: :leveneTest().

Value
Invisibly returns the p-value of the test statistics. A p-value < 0.05 indicates a significant difference
in the variance between the groups.

Note

There is also a plot ()-method implemented in the see-package.

https://easystats.github.io/see/articles/performance.html
https://easystats.github.io/see/

check_itemscale 27

See Also

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_convergence(), check_heteroscedasticity(), check_model(),
check_outliers(), check_overdispersion(), check_predictions(), check_singularity(),
check_zeroinflation()

Examples

model <<- Im(len ~ supp + dose, data = ToothGrowth)
check_homogeneity(model)

plot results

result <- check_homogeneity(model)
plot(result)

check_itemscale Describe Properties of Item Scales

Description

Compute various measures of internal consistencies applied to (sub)scales, which items were ex-
tracted using parameters: :principal_components().

Usage

check_itemscale(x, factor_index = NULL)

Arguments

X An object of class parameters_pca, as returned by parameters: :principal_components(),
or a data frame.
factor_index If x is a data frame, factor_index must be specified. It must be a numeric

vector of same length as number of columns in x, where each element is the
index of the factor to which the respective column in x.

Details

check_itemscale() calculates various measures of internal consistencies, such as Cronbach’s al-
pha, item difficulty or discrimination etc. on subscales which were built from several items. Sub-
scales are retrieved from the results of parameters: :principal_components(),i.e. based on how
many components were extracted from the PCA, check_itemscale() retrieves those variables that
belong to a component and calculates the above mentioned measures.

Value

A list of data frames, with related measures of internal consistencies of each subscale.

28 check model

Note

e [tem difficulty should range between 0.2 and 0.8. Ideal value is p+(1-p)/2 (which mostly is
between 0.5 and 0.8). See item_difficulty() for details.

* For item discrimination, acceptable values are 0.20 or higher; the closer to 1.00 the better. See
item_reliability() for more details.

* In case the total Cronbach’s alpha value is below the acceptable cut-off of 0.7 (mostly if an
index has few items), the mean inter-item-correlation is an alternative measure to indicate
acceptability. Satisfactory range lies between 0.2 and 0.4. See also item_intercor().

References

* Briggs SR, Cheek JM (1986) The role of factor analysis in the development and evalua-
tion of personality scales. Journal of Personality, 54(1), 106-148. doi: 10.1111/5.1467-
6494.1986.tb00391.x

Examples

data generation from '?prcomp', slightly modified
C <- chol(S <- toeplitz(0.97(0:15)))

set.seed(17)

X <- matrix(rnorm(1600), 100, 16)

Z <- X %*% C

pca <- parameters::principal_components(
as.data.frame(2),

rotation = "varimax"”,
n=3

)

pca

check_itemscale(pca)

as data frame
check_itemscale(
as.data.frame(2),
factor_index = parameters::closest_component(pca)

)

check_model Visual check of model assumptions

Description
Visual check of various model assumptions (normality of residuals, normality of random effects,
linear relationship, homogeneity of variance, multicollinearity).

If check_model () doesn’t work as expected, try setting verbose = TRUE to get hints about possible
problems.

check model
Usage
check_model(x, ...)

Default S3 method:
check_model(

X,
panel = TRUE,
check = "all",

detrend = TRUE,
bandwidth = "nrd",
type = "density”,
residual_type = NULL,
show_dots = NULL,
size_dot = 2,
size_line = 0.
size_title =1
size_axis_title = base_size,
base_size = 10,

alpha = 0.2,

alpha_dot = 0.8,

8,
2,

29

colors = c("#3aaf85", "#1b6cag”, "#cd201f"),

theme =
verbose

Arguments

X

panel

check

detrend

bandwidth

see: :theme_lucid”,
FALSE,

A model object.

Arguments passed down to the individual check functions, especially to check_predictions()
and binned_residuals().

Logical, if TRUE, plots are arranged as panels; else, single plots for each diag-
nostic are returned.

Character vector, indicating which checks for should be performed and plot-
ted. May be one or more of "all”, "vif"”, "qq"”, "normality”, "linearity"”,
"ncv"”, "homogeneity”, "outliers”, "reqq”, "pp_check"”, "binned_residuals”
or "overdispersion”. Note that not all check apply to all type of models (see
"Details’). "reqq” is a QQ-plot for random effects and only available for mixed
models. "ncv” is an alias for "linearity”, and checks for non-constant vari-
ance, i.e. for heteroscedasticity, as well as the linear relationship. By default, all

possible checks are performed and plotted.

Logical. Should Q-Q/P-P plots be detrended? Defaults to TRUE for linear models
or when residual_type = "normal”. Defaults to FALSE for QQ plots based on
simulated residuals (i.e. when residual_type = "simulated").

A character string indicating the smoothing bandwidth to be used. Unlike stats: :density(),
which used "nrd@" as default, the default used here is "nrd” (which seems to

30 check model

give more plausible results for non-Gaussian models). When problems with
plotting occur, try to change to a different value.

type Plot type for the posterior predictive checks plot. Can be "density"”, "discrete_dots",
"discrete_interval” or "discrete_both"” (the discrete_% options are ap-
propriate for models with discrete - binary, integer or ordinal etc. - outcomes).

residual_type Character, indicating the type of residuals to be used. For non-Gaussian models,
the default is "simulated”, which uses simulated residuals. These are based on
simulate_residuals() and thus uses the DHARMa package to return ran-
domized quantile residuals. For Gaussian models, the default is "normal”,
which uses the default residuals from the model. Setting residual_type =
"normal” for non-Gaussian models will use a half-normal Q-Q plot of the ab-
solute value of the standardized deviance residuals.

show_dots Logical, if TRUE, will show data points in the plot. Set to FALSE for models with
many observations, if generating the plot is too time-consuming. By default,
show_dots = NULL. In this case check_model() tries to guess whether perfor-
mance will be poor due to a very large model and thus automatically shows or
hides dots.

size_dot, size_line
Size of line and dot-geom:s.

base_size, size_title, size_axis_title
Base font size for axis and plot titles.

alpha, alpha_dot
The alpha level of the confidence bands and dot-geoms. Scalar from O to 1.

colors Character vector with color codes (hex-format). Must be of length 3. First color

is usually used for reference lines, second color for dots, and third color for
outliers or extreme values.

theme String, indicating the name of the plot-theme. Must be in the format "package: : theme_name”
(e.g. "ggplot2::theme_minimal").
verbose If FALSE (default), suppress most warning messages.
Details

For Bayesian models from packages rstanarm or brms, models will be "converted" to their fre-
quentist counterpart, using bayestestR: :bayesian_as_frequentist. A more advanced model-
check for Bayesian models will be implemented at a later stage.

See also the related vignette.

Value

The data frame that is used for plotting.

Posterior Predictive Checks

Posterior predictive checks can be used to look for systematic discrepancies between real and simu-
lated data. It helps to see whether the type of model (distributional family) fits well to the data. See
check_predictions() for further details.

https://easystats.github.io/bayestestR/reference/convert_bayesian_as_frequentist.html
https://easystats.github.io/performance/articles/check_model.html

check model 31

Linearity Assumption

The plot Linearity checks the assumption of linear relationship. However, the spread of dots also
indicate possible heteroscedasticity (i.e. non-constant variance, hence, the alias "ncv"” for this
plot), thus it shows if residuals have non-linear patterns. This plot helps to see whether predictors
may have a non-linear relationship with the outcome, in which case the reference line may roughly
indicate that relationship. A straight and horizontal line indicates that the model specification seems
to be ok. But for instance, if the line would be U-shaped, some of the predictors probably should
better be modeled as quadratic term. See check_heteroscedasticity() for further details.

Some caution is needed when interpreting these plots. Although these plots are helpful to check
model assumptions, they do not necessarily indicate so-called "lack of fit", e.g. missed non-linear
relationships or interactions. Thus, it is always recommended to also look at effect plots, including
partial residuals.

Homogeneity of Variance

This plot checks the assumption of equal variance (homoscedasticity). The desired pattern would be
that dots spread equally above and below a straight, horizontal line and show no apparent deviation.

Influential Observations

This plot is used to identify influential observations. If any points in this plot fall outside of Cook’s
distance (the dashed lines) then it is considered an influential observation. See check_outliers()
for further details.

Multicollinearity

This plot checks for potential collinearity among predictors. In a nutshell, multicollinearity means
that once you know the effect of one predictor, the value of knowing the other predictor is rather
low. Multicollinearity might arise when a third, unobserved variable has a causal effect on each
of the two predictors that are associated with the outcome. In such cases, the actual relation-
ship that matters would be the association between the unobserved variable and the outcome. See
check_collinearity() for further details.

Normality of Residuals

This plot is used to determine if the residuals of the regression model are normally distributed.
Usually, dots should fall along the line. If there is some deviation (mostly at the tails), this indicates
that the model doesn’t predict the outcome well for that range that shows larger deviations from the
line. For generalized linear models and when residual_type = "normal”, a half-normal Q-Q plot
of the absolute value of the standardized deviance residuals is shown, however, the interpretation
of the plot remains the same. See check_normality() for further details. Usually, for generalized
linear (mixed) models, a test comparing simulated quantile residuals against the uniform distribution
is conducted (see next section).

Distribution of Simulated Quantile Residuals

Fore non-Gaussian models, when residual_type = "simulated” (the default for generalized lin-
ear (mixed) models), residuals are not expected to be normally distributed. In this case, we generate

https://strengejacke.github.io/ggeffects/articles/introduction_partial_residuals.html
https://strengejacke.github.io/ggeffects/articles/introduction_partial_residuals.html

32

check model

simulated quantile residuals to compare whether observed response values deviate from model ex-
pectations. Simulated quantile residuals are generated by simulating a series of values from a fitted
model for each case, comparing the observed response values to these simulations, and comput-
ing the empirical quantile of the observed value in the distribution of simulated values. When
the model is correctly-specified, these quantile residuals will follow a uniform (flat) distribution.
The Q-Q plot compares the simulated quantile residuals against a uniform distribution. The plot
is interpreted in the same way as for a normal-distribution Q-Q plot in linear regression. See
simulate_residuals() and check_residuals() for further details.

Overdispersion

For count models, an overdispersion plot is shown. Overdispersion occurs when the observed
variance is higher than the variance of a theoretical model. For Poisson models, variance increases
with the mean and, therefore, variance usually (roughly) equals the mean value. If the variance is
much higher, the data are "overdispersed". See check_overdispersion() for further details.

Binned Residuals

For models from binomial families, a binned residuals plot is shown. Binned residual plots are
achieved by cutting the the data into bins and then plotting the average residual versus the average
fitted value for each bin. If the model were true, one would expect about 95% of the residuals to
fall inside the error bounds. See binned_residuals() for further details.

Residuals for (Generalized) Linear Models

Plots that check the homogeneity of variance use standardized Pearson’s residuals for generalized
linear models, and standardized residuals for linear models. The plots for the normality of residuals
(with overlayed normal curve) and for the linearity assumption use the default residuals for 1m and
glm (which are deviance residuals for glm). The Q-Q plots use simulated quantile residuals (see
simulate_residuals()) for non-Gaussian models and standardized residuals for linear models.

Troubleshooting

For models with many observations, or for more complex models in general, generating the plot
might become very slow. One reason might be that the underlying graphic engine becomes slow
for plotting many data points. In such cases, setting the argument show_dots = FALSE might help.
Furthermore, look at the check argument and see if some of the model checks could be skipped,
which also increases performance.

If check_model () doesn’t work as expected, try setting verbose = TRUE to get hints about possible
problems.

Note

This function just prepares the data for plotting. To create the plots, see needs to be installed.
Furthermore, this function suppresses all possible warnings. In case you observe suspicious plots,
please refer to the dedicated functions (like check_collinearity(), check_normality() etc.) to
get informative messages and warnings.

check multimodal 33

See Also

Other functions to check model assumptions and and assess model quality: check_autocorrelation(),
check_collinearity(), check_convergence(), check_heteroscedasticity(), check_homogeneity(),
check_outliers(), check_overdispersion(), check_predictions(), check_singularity(),
check_zeroinflation()

Examples

m <- Im(mpg ~ wt + cyl + gear + disp, data = mtcars)
check_model (m)

data(sleepstudy, package = "lme4")
m <- 1lme4::1lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
check_model(m, panel = FALSE)

check_multimodal Check if a distribution is unimodal or multimodal

Description

For univariate distributions (one-dimensional vectors), this functions performs a Ameijeiras-Alonso
et al. (2018) excess mass test. For multivariate distributions (data frames), it uses mixture mod-
elling. However, it seems that it always returns a significant result (suggesting that the distribution
is multimodal). A better method might be needed here.

Usage
check_multimodal(x, ...)
Arguments
X A numeric vector or a data frame.
Arguments passed to or from other methods.
References

* Ameijeiras-Alonso, J., Crujeiras, R. M., and Rodriguez-Casal, A. (2019). Mode testing, criti-
cal bandwidth and excess mass. Test, 28(3), 900-919.

34 check_normality

Examples

Univariate
x <= rnorm(1000)
check_multimodal (x)

X <= c(rnorm(1000), rnorm(1000, 2))
check_multimodal(x)

Multivariate
m <- data.frame(

X = rnorm(200),

y = rbeta(200, 2, 1)
)
plot(mx, my)
check_multimodal(m)

m <- data.frame(
x = c(rnorm(100), rnorm(100, 4)),
y = c(rbeta(100, 2, 1), rbeta(100, 1, 4))
)
plot(mx, my)
check_multimodal(m)

check_normality Check model for (non-)normality of residuals.

Description

Check model for (non-)normality of residuals.

Usage

check_normality(x, ...)

S3 method for class 'merMod'

check_normality(x, effects = "fixed", ...)
Arguments
X A model object.

Currently not used.

effects Should normality for residuals (" fixed") or r