
Periodic Autoregressive Time Series Models in

R: The partsm Package.
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Abstract

This introduction to the R package partsm is a (slightly) modified
version of López-de Lacalle (2005).

It is well-known that some of the macroeconomic time series dis-
play stochastic trends, moreover, when working with seasonally ob-
served data stochastic seasonal cycles may exist as well. When these
components, trend and seasonality, do not evolve independently, tra-
ditional differencing filters may not be suitable. According to periodic
autoregressive time series models, a seasonally varying autoregressive
parameters and a periodic differencing filter are proposed for that case.

This paper focuses on practical issues showing the use of the partsm
R-package. This package allows the user to check for periodicity in the
data, fit a periodic autoregressive model of order p, PAR(p), select the
periodic autoregressive lag order parameter, test for periodic integra-
tion, fit a periodically integrated autoregressive model up to order 2,
PIAR, as well as to perform out-of-sample forecasts.
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1. Introduction

It is well-known that some of the macroeconomic time series display stochas-
tic trends, moreover, when working with seasonally observed data stochastic
seasonal cycles may exist as well. When these components, trend and sea-
sonality, do not evolve independently, traditional differencing filters may not

∗I acknowledge Matthieu Stigler’s contribution for the upgrade and maintenance of the
package.
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be suitable. According to periodic autoregressive time series models, a sea-
sonally varying autoregressive parameters and a periodic differencing filter
are proposed for that case. For a review of this literature see Franses (1996),
Franses and Paap (2004), and references therein.

This paper focuses on practical issues showing the use of the partsm R-
package. This package allows the user to check for periodicity in the data,
fit a periodic autoregressive model of order p, PAR(p), select the periodic
autoregressive lag order parameter, test for periodic integration, fit a peri-
odically integrated autoregressive model up to order 2, PIAR, as well as to
perform out-of-sample forecasts.

The remaining of the paper is organized as follows. Section 2 briefly re-
views the statistical issues the partsm R-package is concerned, namely peri-
odic autoregressive models and periodic integration. Section 3 describes the
package. Section 4 puts into practice the tools implemented in the package
showing how to use them and interpreting the results accordingly.

2. Theoretical overview

This section reviews the main theoretical concerns entailed in the process of
fitting periodic models and testing for a unit root in PAR models. To have a
further insight into this models see Franses (1996), Franses and Paap (2004),
and references therein. PAR models are intended for seasonally observed
data, particularly quarterly and monthly data. To save space, hereafter we
will consider quarterly data, S = 4.

2.1. Notation and representation of PAR models

The univariate representation of a PAR(p) model is as follows,

yt = ϕ1syt−1 + ...+ ϕpsyt−p + ϵt, ϵt ∼ iid(0, 1), (1)

for s = 1, ..., 4, for t = 1, 2, ..., n, where n is the number of observations.
Hence, the autoregressive parameters vary with the season for each lag.

Since a PAR(p) entails four different AR(p) models, one for each season, it is
useful to rewrite (1) as the multivariate representation or vector of quarters
representation.

Φ0 Ys,T = Φ1 Ys,T−1 + ...+ΦP Ys,T−P + ϵT , ϵT ∼ iid(0, 1), (2)

where Φ0,Φ1, ...,ΦP are (4× 4) parameter matrices with the parameters in
(1) as follows:

Φ0 (i, j) = 1 if i = j

= 0 if j > i
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= −ϕi−j,i if j < y

Φk (i, j) = ϕi+4k−j,i,

for i, j = 1, 2, 3, 4 and k = 1, 2, ..., P . The univariate model of order p turns
into a multivariate model of order P = 1+[(p−1)/4], where [x] is the integer
part of x.

Notice that in (1) each lag leads to previous observations in the seasonally
observed data, whereas in (2) lags have effect on the annually observed data
in each season. That is, yt−1 is the observation immediately previous to yt,
and Ys,T−1 is the observation in season s previous to the year T .

Finally, if the roots of the factorized AR(p) model related to each season
are all real values, the PAR(p) model can be represented as

yt − αs yt−1 = β1s (yt−1 − αs−1 yt−2) + ...+ (3)

+ β(p−1)s (yt−(p−1) − αs−(p−1) yt−p) + ϵt, ϵt ∼ iid(0, 1).

called the periodically differenced form of (1).

2.2. Periodic integration

Basically, a time series with a unit root, yt, is periodically integrated if there
exist some αs for s = 1, 2, ..., 4, in such a way that the transformed series
(1−αsB) yt does not contain a unit root, where B is the backward operator.
The definition of Franses (1996) is transcribed below.

A quarterly time series yt is said to be periodically integrated
of order 1 [PI] when the differencing filter (1 − αsB) is needed
to remove the stochastic trend from yt, where αs are seasonally
varying parameters with the property that α1α2α3α4 = 1 and
αs ̸= α for all s = 1, 2, 3, 4.

At present, the package partsm only allow to estimate periodically integrated
autoregressive models up to order 21. Taking the periodically differenced
representation, the following model can be estimated by non-linear least
squares.

yt − αsyt−1 = βs(yt−1 − αs−1yt−2) + ϵt, ϵt ∼ iid(0, 1), (4)

under the non-linear restriction
∏4

s=1 αs = 1 for s = 1, ..., 4. Obviously, for
a first order PIAR process β parameters are equal to zero. This model can
be estimated by non-linear least squares.

1PAR models use to be more parsimonious models and a first or second order model
may be suitable for the data. In Franses (1996), only one out of the eleven series analysed
required a higher order PAR model.
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Note that the restriction above is fulfilled in these particular cases, among
others. When αs = 1 for s = 1, 2, 3, 4, and αs = −1 for s = 1, 2, 3, 4. The
former case give rise to the (1 − L) differencing filter, whereas the latter
entails the (1 +L) differencing filter. Therefore, the restriction may involve
the long run unit root 1, or the seasonal unit root -1, or neither of them.

When the hypothesis above cannot be rejected it is said that the process
is a PAR process for a I(1) times series, PARI. Otherwise, the PAR model
is known as a periodically integrated AR model, PIAR, and the periodic
differencing filter is obtained from the αs estimates in equation (4).

In Section 4 we will see how to carry out this analysis following a common
strategy for the empirical analysis. First, we will take a look at the package
we will use for it.

3. The partsm package

3.1. Description

This section documents the partsm package version 1.0 built on the R lan-
guage and environment for statistical computing and graphics (Chambers,
1998; R Development Core Team, 2011). The package performs some of
the relevant tests and models for fitting periodic autoregressive time series
model introduced in the previous section.

The package is distributed under the General Public License [GPL] version
2 or newer. The terms of this license are in a file called COPYING which
you should receive with R. After reading the terms of the license, the user
will understand that the datasets and software are provided in good faith,
but the author does not warrant their accuracy nor can be held responsible
for the consequences of their use.

The source code and binaries of the package are available at CRAN (http:
//www.cran.r-project.org/). To add it as a package copy the binaries in
the subdirectory ‘library’ where R is installed2. Alternatively, download the
package source and install it with R CMD INSTALL partsm_1.0.tar.gz. To
install it from an R-console type install.packages("partsm") and select
a mirror near to your location.

3.2. Classes and methods

To store the relevant information provided by the implemented functions,
the following classes are defined: fit.partsm and fit.piartsm contain the
information from a fitted AR, PAR, or PIAR model; Ftest.partsm and

2Type R.home() in an R-console to find out the home directory.

http://www.cran.r-project.org/
http://www.cran.r-project.org/
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LRur.partsm store the information from the statistical tests in the package;
and pred.piartsm contains information on a PIAR model forecasts. For
more information, see the standard help pages of the package3

Likewise, some methods are defined for objects of the classes cited above.
To display the information in each object, the show method displays the
main results in a friendly format, whereas summary extends the information
provided by show. To build the matrices for the multivariate representation,
the PAR.MVrepr method can be applied on objects of class fit.partsm or
fit.piartsm.

4. Examples and applications

This Section complements the standard help pages provided with the pack-
age carrying out an entire application. The use and interpretation of the
functions implemented in the package is described following the same steps
as in a real application, devoting a subsection for each one of them.

It is worth describing first one of the arguments that will appear in most of
the functions. The argument called detcomp refers to the deterministic com-
ponents to include in the model. Three types of regressors can be included:
regular deterministic components, seasonal deterministic components, and
any regressor variable previously defined by the user. This argument must
be a list object with the following elements:

• regular=c(0,0,0), if the first and/or second element are set equal
to 1, it indicates that an intercept, and/or linear trend, respectively,
are included. The third element in regular is a vector indicating
which seasonal dummies should be included. If no seasonal dum-
mies are desired it must be set equal to zero. For example, regu-
lar=c(1,0,c(1,2,3)) would include an intercept, no trend, and the
first three seasonal dummies.

• seasonal=c(0,0), if an element is set equal to 1, it indicates that
seasonal intercepts, and/or seasonal trends, respectively, are included
in the model.

• regvar=0, if none regressor variables are considered, this object must
be set equal to zero, otherwise, the names of a matrix object previously
defined with the desired regressors by columns should be indicated.

We will take for the examples below the logarithms of the Real Gross Domes-
tic Product in Germany. This time series, along with the others provided
with the package, is analysed in Franses (1996). Let’s start loading the
package and the data.

3A ‘pdf’ version is available in the ‘partsm/doc’ subdirectory.
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> library(partsm)

> data("gergnp")

> lgergnp <- log(gergnp, base=exp(1))

4.1. Model order selection

The first issue we will deal with is the selection of the order for the periodic
autoregressive model. The function Fnextp.test performs a test for the
significance of prospective lag parameters of order p + 1 in an AR(p) or
PAR(p) model. It is performed as an F -statistic that sets the parameters of
order p + 1 equal to zero. We will use this statistic and the Akaike’s [AIC]
and Schwarz’s [BIC] information criteria to select the autoregressive order.
The code below computes these statistics for PAR models of order ranged
between 1 and 4.

The function fit.ar.par fits a PAR model with seasonal intercepts and
stores the results in the lmpar object of class fit.partsm. Then, the AIC
and BIC statistics are computed by means of the function AIC available in
the base R-package.

Finally, the null hypothesis ϕ(p+1),s = 0 is checked with Fnextp.test. The
F -statistics and the corresponding p-values are stored in Fnextp and Fpval,
respectively. These statistics are computed for PAR models with seasonal
intercepts.

> detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0)

> aic <- bic <- Fnextp <- Fpval <- rep(NA, 4)

> for(p in 1:4){

+ lmpar <- fit.ar.par(wts=lgergnp, detcomp=detcomp, type="PAR", p=p)

+ aic[p] <- AIC(lmpar@lm.par, k=2)

+ bic[p] <- AIC(lmpar@lm.par, k=log(length(residuals(lmpar@lm.par))))

+ Fout <- Fnextp.test(wts=lgergnp, detcomp=detcomp, p=p, type="PAR")

+ Fnextp[p] <- Fout@Fstat

+ Fpval[p] <- Fout@pval

+ }

To save space, the results of the code are reported in Table 1. PAR pa-
rameters of order 2 are significant, whereas, lag parameters up to order 4th
appear to be equal to zero. Furthermore, the AIC and BIC criteria reach
the lowest value for a second order model. Therefore, we will analyse the
properties of a second order PAR model with seasonal intercepts for the
lgergnp time series.

4.2. Test for periodic variation in the autoregressive parameters

Once a PAR model has been defined, we can check for periodicity in the au-
toregressive parameters of the model. Following the notation in (1), the func-
tion Fpar.test performs an F -test for the null hypothesis of non-periodicity,
ϕis = ϕi for s = 1, 2, ..., 4 and i = 1, 2, ..., p.
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Table 1: Periodic autoregressive order selection

Criterion Periodic autoregressive order
1 2 3 4

AIC −661.60 −680.89 −669.84 −661.54
BIC −636.30 −644.44 −622.31 −603.00
F (ϕp+1,s = 0) 8.54 0.80 1.35 2.91

p-value 0.00 0.53 0.26 0.03

When the null hypothesis is imposed an AR(p) is estimated, whereas in the
alternative a PAR(p) model is fitted. Then, based on the residual sum of
squares of each model, the F -statistic is computed. When four seasonal
intercepts are included the statistic follows an F -distribution with (3 p, n-
(4+4 p)) degrees of freedom, where n is the number of observations.

> dcsi <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0)

> out.Fparsi <- Fpar.test(wts=lgergnp, detcomp=dcsi, p=2)

> show(out.Fparsi)

----

Test for periodicity in the autoregressive parameters .

Null hypothesis: AR( 2 ) with the selected deterministic components.

Alternative hypothesis: PAR( 2 ) with the selected deterministic components.

F-statistic: 43.46 on 6 and 116 DF, p-value: 0 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> dcsit <- list(regular=c(0,0,0), seasonal=c(1,1), regvar=0)

> out.Fparsit <- Fpar.test(wts=lgergnp, detcomp=dcsit, p=2)

> show(out.Fparsit)

----

Test for periodicity in the autoregressive parameters .

Null hypothesis: AR( 2 ) with the selected deterministic components.

Alternative hypothesis: PAR( 2 ) with the selected deterministic components.

F-statistic: 8.37 on 6 and 112 DF, p-value: 1.674542e-07 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The results of the code above show that periodicity is not rejected, there-
fore, the test corroborates that a periodic model fits better to the data
rather than an AR model, which is constrained to seasonally constant pa-
rameters. With regard to the so-called deterministic components, the reader
can check that seasonal trends can be left out in the PAR(2) model. For
it, type summary(out.Fparsit) and check the t-statistics and p-values in
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the model fitted for the alternative hypothesis for the parameters denoted
as MDT..SeasTrnd.1:4.

4.3. Diagnostic for the fitted PAR model

The function Fsh.test performs an F -statistic to check whether seasonal
heteroskedasticity exist in the residuals of the fitted model, in this case, a
PAR(2) model with seasonal intercepts.

> par2 <- fit.ar.par(wts=lgergnp, type="PAR", p=2, detcomp=detcomp)

> Fsh.out <- Fsh.test(res=residuals(par2@lm.par), s=frequency(lgergnp))

> show(Fsh.out)

----

Test for seasonal heteroskedasticity .

F-statistic: 2.77 on 3 and 121 DF, p-value: 0.04469356 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Results in the code above show that seasonal heteroskedasticity is rejected
at the 5% significance level. This analysis is very limited to validate the
model and the user is suggested to carry out complementary tests such as
Ljung-Box test for autocorrelation, Box.test; Jarque-Bera test for normal-
ity, jarque.bera.test; or runs.test for randomness4. Nevertheless, this
analysis is beyond the scope of this paper and we will move on to analyze
some properties of the selected model for the lgergnp time series.

4.4. Eigenvalues of the estimated Γ ≡ Φ−1
0 Φ1 matrix

Taking the multivariate representation, as in equation (2), we can get the
eigenvalues of the estimated Γ ≡ Φ−1

0 Φ1 matrix. These eigenvalues provide
a first view on the prospective unit roots.

The function PAR.MVrepr applied on the out.par object of class fit.partsm
below, shows the matrices defined is Section 2 for the multivariate represen-
tation and some complementary information.

> out.par <- fit.ar.par(wts=lgergnp, type="PAR", detcomp=detcomp, p=2)

> out.MV <- PAR.MVrepr(out.par)

> out.MV

----

Multivariate representation of a PAR model.

Phi0:

1.000 0.000 0.000 0

4The first function is available in the base package provided with the standard distri-
bution of R. The other functions can be found in the package called tseries.
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-0.279 1.000 0.000 0

0.320 -1.237 1.000 0

0.000 -0.422 -0.637 1

Phi1:

0 0 -0.375 1.360

0 0 0.000 0.684

0 0 0.000 0.000

0 0 0.000 0.000

Eigen values of Gamma = Phi0^{-1} %*% Phi1:

0.965 0.036 0 0

Time varying accumulation of shocks:

0.173 1.182 0.492 1.360

0.140 1.158 0.573 1.064

0.118 1.054 0.552 0.881

0.134 1.160 0.594 1.010

There is only one eigen value of the Γ ≡ Φ−1
0 Φ1 matrix close to 1, hence, it

seems that there is a single unit root . Furthermore, since this value

There are not complex eigen values in the Γ ≡ Φ−1
0 Φ1 matrix. It seems to

exist a single unit root in the model. Furthermore, the eigenvalue close to
1 suggests that it may exist the long run unit root 1. We will take again a
look at this representation and will discuss the remaining of the output of
the function.

4.5. Test for a single unit root

The next step is to carry out formal tests to check whether a unit root exists.
As it has been mention in Section 2.2, a PAR model contains a unit root if∏4

s=1 αs = 1. We have also noticed that this restriction is satisfied in two
particular cases, when α1, α2, α3, and α4 are either 1 or -1. In these cases
the periodic filter collapses into the filter related to the long run unit root
1, (1 − B), and to the seasonal unit root -1, (1 + B), respectively, and the
model is known as a PAR process for a I(1) time series, PARI.

In other cases in which the restriction α1α2α3α4 = 1 is fulfilled, the series
is said to be guided by a periodically integrated AR process, PIAR. Then,
the periodically differencing filter is (1 − αsB) for s = 1, 2, ..., 4, where αs

are inferred from the data by fitting the model (4).

Taking into account these remarks, and as Franses (1996) suggests, it is a
wise analysis to test first for the non-linear restriction

∏4
s=1 αs = 1. If this

hypothesis cannot be rejected the time series contains a unit root. To see
whether the process is a PARI process with the long run seasonal unit root
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1, or the seasonal unit root -1, or a PIAR process, the following hypothesis
can be checked5,

H0 : αs = 1 for s = 1, 2, 3,

H0 : αs = −1 for s = 1, 2, 3.

The function LRurpar.test performs a likelihood ratio test for the first step
we desire to check. A one-side statistic is also computed as sign(

∏4
s=1 αs −

1) ∗LR1/2, where α̂ are the periodic differencing filter parameters estimated
under the alternative. According to this statistics, the results of the code
shows that it cannot be rejected a unit root.

> out.LR <- LRurpar.test(wts=lgergnp, detcomp=detcomp, p=2)

> show(out.LR)

----

Likelihood ratio test for a single unit root in a PAR model of order 2 .

Null hypothesis: PAR( 2 ) restricted to a unit root.

Alternative hypothesis: PAR( 2 ).

LR-statistic: 4.9

---

5 and 10 per cent asymptotic critical values:

when seasonal intercepts are included: 9.24, 7.52.

when seasonal intercepts and trends are included: 12.96, 10.50.

LRtau-statistic: -2.21

---

5 and 10 per cent asymptotic critical values:

when seasonal intercepts are included: -2.86, -2.57.

when seasonal intercepts and trends are included: -3.41, -3.12.

Now it is worth checking whether αs for s = 1, 2, 3, can be either 1 or −1.
The corresponding F -statistic for the PAR(2) model with seasonal inter-
cepts is computed by Fpari1.out. The first hypothesis is considered when
type="PARI1" is selected. According to the results below, this hypothesis,
i.e. the long run unit root 1 is rejected.

> Fpari1.out <- Fpari.piar.test(wts=lgergnp, detcomp=detcomp, p=2, type="PARI1")

> show(Fpari1.out)

----

Test for a parameter restriction in a PAR model .

F-statistic: 20.83 on 3 and 114 DF, p-value: 7.884426e-11 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

5Note that only three restrictions are checked, since αs = 1or − 1 just for s = 1, 2, 3
entails either α4 = 1 or α4 = −1.
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The reader can check that the seasonal unit root -1 is rejected as well, as we
could expect allowing for the eigen values of the estimated matrix Φ0−1Φ1.
For it, just select type="PARI-1".

4.6. Autocorrelation function for several transformations of the orig-
inal data

In this subsection we will take a look at the nonperiodic autocorrelation
function. The function acf.ext1 computes the ACF for several transfor-
mations of the data6. Table 2 shows the ACF of the original data, the first
differenced series and the periodically differenced series, removing four sea-
sonal intercepts in the last two cases. According to the results is sections
above other transformations are not worth considering.

Table 2: Estimated autocorrelation function for several transformations of
the original data

Transformations of the original data, yt
a

Lag yt ∆ yt − δ̂s (1− αsB) yt − δ̂s
0 1.00 *** 1.00 *** 1.00 ***
1 0.95 *** −0.15 . −0.12
2 0.90 *** −0.47 *** −0.20 *
3 0.89 *** −0.08 0.00
4 0.89 *** 0.71 *** 0.37 ***
5 0.84 *** −0.15 . −0.17 .
6 0.80 *** −0.42 *** −0.10
7 0.79 *** −0.05 0.06
8 0.78 *** 0.54 *** 0.02
9 0.74 *** −0.08 −0.07
10 0.70 *** −0.40 *** −0.07
11 0.69 *** −0.06 0.03
12 0.68 *** 0.49 *** 0.03
s.e. b 0 .09 0 .09 0 .09

aThe following transformations are considered: yt: Original series; ∆ yt − δ̂s: residuals
of the first differences on four seasonal dummy variables; (1 − α̂s B) yt − δ̂s: residuals of
the periodic differences on four seasonal dummy variables.

bStandard error calculated as 1/n1/2.
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The ACF of the original series shows a clearly long-memory behaviour, since
autocorrelations are significant for high orders. It can also be observed that
the periodically differenced series performs better than the first differencing

6See the standard help pages to see what transformations are considered.
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filter, since the latter does not remove the stochastic behaviour.

The periodically differenced series and the corresponding seasonal path are
displayed by plotpdiff. This function applies on object of class fit.piartsm
as out.piar built above. Figure 1 shows that the periodic differencing fil-
ter success in removing the stochastic behaviour, since the seasonal paths
(at the bottom of the Figure) are parallel to each other and do not display
trending behaviour.

4.7. Time varying impact of accumulation of shocks

The Φ0 and Φ1 matrices can be used to compute the impact of accumulation
of the shocks ϵt defined as ΓΦ−1

0 , where Γ is Φ−1
0 Φ0. That row in which the

values of the impact matrix are the highest, entails that the corresponding
season undergoes more severe impacts from the accumulation of all shocks.
Hence, it is more likely to display fluctuations in the stochastic trend. Like-
wise, the column with the highest values is related to the season that has the
largest long-run impact. Put in other words, the impact matrix allow the
practitioner to get an idea about how the stochastic trend and the seasonal
fluctuations are related.

To derive those matrices, the model (4) is estimated with fit.piar is used.
This function requires some values to initialize the non-linear estimator. By
default, initial values are computed for the non-linear model. However, in
this version there may be cases in which the estimates do not converge, giving
an error message. In this case, a numeric vector with initial values guessed
by the user can be included. The code below let fit.piar to compute initial
values, hence, there is no need to include a vector called initvalues as an
argument.

> out.piar <- fit.piar(wts=lgergnp, detcomp=detcomp, p=2)

> out.MV <- PAR.MVrepr(out.piar)

> out.MV

----

Multivariate representation of a PIAR model.

Phi0:

1.000 0.000 0.000 0

-0.962 1.000 0.000 0

0.000 -0.912 1.000 0

0.000 0.000 -1.113 1

Phi1:

0 0 0 1.025

0 0 0 0.000
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0 0 0 0.000

0 0 0 0.000

Eigen values of Gamma = Phi0^{-1} %*% Phi1:

1 0 0 0

Time varying accumulation of shocks:

1.000 1.040 1.140 1.025

0.962 1.000 1.097 0.985

0.877 0.912 1.000 0.898

0.976 1.015 1.113 1.000

Figure 1: Periodically differenced data and seasonal paths
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For the series lgergnp, the row with the highest values is the fourth column.
This means that the stochastic trend is more likely to undergo changes in
the fourth quarter. Reading the impact matrix by columns, the one with
the highest is the third column, hence, the third quarter is more sensitive to
changes in the stochastic trend.

Obviously, the results above also show that the PIAR model contains a root
that is exactly equal to 1 because that is precisely the restriction imposed
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in the parameters of the model. The other slots of the output not cited here
are matrices for internal use when making forecast in a PIAR model.

4.8. Out-of-sample forecasts

The function predictpiar makes prediction based on PIAR model of or-
der up to 2. By default seasonal intercepts are included. This function
computes one-year-ahead forecasting on the basis of the multivariate repre-
sentation. The forecast for the year T+ is YT+1 = Φ−1

0 µ+Φ−1
0 Φ1 YT . The

confidence intervals are computed deriving the multivariate moving averages
representation from the matrices for the multivariate PIAR model.

The code below performs 24 ahead forecasts in the PIAR(2) model. For
programming convenience, the number of forecasts, hpred, must be a mul-
tiple of the periodicity of the data. The output of this function provides an
object of class pred.piartsm containing the forecast, the standard errors,
the upper and lower 95 per cent confidence bound, as well as the input, i.e.,
the original data, the order of the model, and the number of predictions.

> out.pred <- predictpiar(wts=lgergnp, p=2, hpred=24)

> show(out.pred)

----

Forecasts for a PIAR model of order 2 .

fcast fse ucb lcb

1991.01 6.122634 0.01367962 6.149446 6.095822

1991.02 6.144360 0.01422858 6.172248 6.116472

1991.03 6.157955 0.02203235 6.201138 6.114772

1991.04 6.211668 0.02392444 6.258560 6.164776

1992.01 6.155275 0.02971131 6.213509 6.097041

1992.02 6.175753 0.02791604 6.230469 6.121038

1992.03 6.186578 0.03080444 6.246955 6.126201

1992.04 6.243526 0.03396765 6.310103 6.176950

1993.01 6.187916 0.03867467 6.263719 6.112114

1993.02 6.207147 0.03666875 6.279017 6.135276

1993.03 6.215201 0.03766023 6.289015 6.141387

1993.04 6.275385 0.04165992 6.357038 6.193731

1994.01 6.220557 0.04589666 6.310515 6.130600

1994.02 6.238540 0.04369798 6.324188 6.152892

1994.03 6.243824 0.04344977 6.328985 6.158662

1994.04 6.307243 0.04813842 6.401594 6.212892

1995.01 6.253198 0.05212679 6.355367 6.151030

1995.02 6.269933 0.04974351 6.367431 6.172436

1995.03 6.272447 0.04855388 6.367612 6.177281

1995.04 6.339101 0.05384298 6.444634 6.233569

1996.01 6.285840 0.05768794 6.398908 6.172771

1996.02 6.301327 0.05513003 6.409382 6.193272

1996.03 6.301070 0.05317026 6.405283 6.196856

1996.04 6.370960 0.05899853 6.486597 6.255323

’fcast’: Forecast; ’fse’: Forecast standard error;
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’ucb’: Upper confidence bound; ’lcb’: Lower condidence bound.

Remember that the data are scaled in logarithms, hence, for the results to
be interpreted, the original scale must be set. The code below makes this
task and plots a graphic with the forecast and confidence intervals displayed
in Figure 2.

> out.pred@wts <- exp(1)^out.pred@wts

> out.pred@fcast <- exp(1)^out.pred@fcast

> out.pred@ucb <- exp(1)^out.pred@ucb

> out.pred@lcb <- exp(1)^out.pred@lcb

> plotpredpiar(out.pred)

Figure 2: Forecast and confidence intervals
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E-mail: javlacalle@yahoo.es.

R-package documentation
April 2012.

http://econpapers.repec.org/software/ehubilcod/200501.htm
http://econpapers.repec.org/software/ehubilcod/200501.htm
mailto:javlacalle@yahoo.es

	Introduction
	Theoretical overview
	Notation and representation of PAR models
	Periodic integration

	The partsm package
	Description
	Classes and methods

	Examples and applications
	Model order selection
	Test for periodic variation in the autoregressive parameters
	Diagnostic for the fitted PAR model
	Eigenvalues of the estimated Gamma equiv Phi0-1Phi1 matrix
	Test for a single unit root
	Autocorrelation function for several transformations of the original data
	Time varying impact of accumulation of shocks
	Out-of-sample forecasts


