Package 'nLTT'

May 6, 2025

Type Package

Title Calculate the NLTT Statistic

Version 1.4.10

Description Provides functions to calculate the normalised Lineage-Through-Time (nLTT) statistic, given two phylogenetic trees. The nLTT statistic measures the difference between two Lineage-Through-Time curves, where each curve is normalised both in time and in number of lineages.

License GPL-2

Imports ape, coda, testit

Suggests TreeSim, DDD, ggplot2, Hmisc, knitr, lintr, microbenchmark, plyr, reshape2, rmarkdown, TESS, testthat, DAISIE

NeedsCompilation no

RoxygenNote 7.3.2

Encoding UTF-8

VignetteBuilder knitr

URL https://github.com/thijsjanzen/nLTT

BugReports https://github.com/thijsjanzen/nLTT/issues

Author Thijs Janzen [aut, cre], Richèl J.C. Bilderbeek [aut] (ORCID: <https://orcid.org/0000-0003-1107-7049>), Pedro Neves [ctb]

Maintainer Thijs Janzen <thijsjanzen@gmail.com>

Repository CRAN

Date/Publication 2025-05-06 13:00:02 UTC

Contents

nLTT-package	 •						 			•						2
abc_smc_nltt	 •						 									3
check_input_event_times	 •					•	 							•		5

check_phylogenies	6
check_step_type	6
check_time_unit	7
default_params_doc	7
exampleTrees	8
get_average_nltt_matrix	9
get_branching_times	9
get_nltt_values	10
get_norm_brts	11
get_norm_n	12
get_n_lineages	12
get_phylogeny_nltt_matrix	13
mcmc_nltt	13
nLTTstat	14
nLTTstat_exact	15
nltts_diff	16
nltt_diff	18
nltt_diff_exact	19
nltt_diff_exact_brts	
nltt_diff_exact_calc_extinct	21
nltt_diff_exact_extinct	
nltt_diff_exact_norm_brts	
nltt_lines	
nltt_plot	
stretch_nltt_matrix	25
	27
	- 41

Index

nLTT-package

Package providing functions to visualize the normalized Lineage-Through-Time statistic, and calculate the difference between two nLTT curves

Description

This package provides a function to visualize the normalized Lineage-Through-Time (nLTT) statistic, where the number of lineages relative to the maximum number of lineages in a phylogenetic tree is plotted against the relative time between the most common recent ancestor and the present. Furthermore the package provides a function to calculate the difference between two nLTT curves, including two different distance measurements.

Updates: Version 1.4.9: improve DESCRIPTION Version 1.4.8: minor improvements to code Version 1.4.7: Fixed noSuggest error, to comply _R_CHECK_DEPENDS_ONLY_ Version 1.4.6: Fixed testing, to comply _R_CHECK_LENGTH_1_CONDITION_. Version 1.4.4: Added support for phylogenies with extinct lineages. Version 1.4.3: Added support for log transformation before normalization.

abc_smc_nltt

Version 1.4: Added the following four functions: get_branching_times, get_n_lineages, get_norm_brts and get_norm_n. Furthermore, vignette building has improved, and the underlying code base has been polished up as well.

Version 1.3.1: Added walkthrough vignette, and updated several typos in the manual Version 1.3: Version 1.3 adds a lot of extended functionality: firstly, we have added functions to calculate, and plot, the average nLTT across a number of phylogenies. Furthermore, we have added vignettes, and we have added a GitHub repository. On the GitHub repository the vignettes are separately accessible through the wiki. Lastly we have added an extra option to the nLTT functions, where the user can specify if the used trees are rooted, or not. Under the hood, some changes have been made as well, the majority of the code is now conforming to the lintR code conventions, and we have written formalized tests that check correctness of all code (code coverage 100

Version 1.2.1: updated comments and coding style to adhere to the general coding rules. Backwards compatibility has been favoured for the nLTT stat functions. ABC related functions are no longer backwards compatible (variable names have been changed to adhere to coding style).

Version 1.2: added an "exact" nLTT function. This function is faster for small trees, and provides an exact measurement of the nLTT function. Comparison between "old" and "exact" estimates show that these are highly correlated, although the "exact" values are slightly higher than the "old" values. The "exact" function should generally be preferred, unless dealing with extremely large trees (500+ tips) in which case the old function is much faster.

Version 1.2: updated the example for the ABC_SMC_nLTT function, prior generating and prior density functions are now more realistic

Version 1.1.1: fixed a minor bug in the ABC_SMC_nLTT function

Version 1.1.1: removed some intermediate output in ABC_SMC_nLTT function

Version 1.1: Made a universal nLTT function called "nLTTstat", with argument "distanceMethod", this serves as a more elegant wrapper for the functions "normLTTdiffABS" and "normLTTdiffSQ" Version 1.1: Updated references in the manual

Author(s)

Thijs Janzen

Maintainer: Thijs Janzen <thijsjanzen@gmail.com>

References

Janzen, T. Hoehna, S., Etienne, R.S. (2015) Approximate Bayesian Computation of diversification rates from molecular phylogenies: introducing a new efficient summary statistic, the nLTT. Methods in Ecology and Evolution. <doi:10.1111/2041-210X.12350>

abc_smc_nltt A function to perform Approximate Bayesian Computation within a Sequential Markov Chain (ABC-SMC), for diversification analysis of phylogenetic trees.

Description

This function performs ABC-SMC as described in Toni 2009 for given diversification model, provided a phylogenetic tree. ABC-SMC is not limited to only using the normalized LTT as statistic.

Usage

```
abc_smc_nltt(
    tree, statistics, simulation_function, init_epsilon_values,
    prior_generating_function, prior_density_function,
    number_of_particles = 1000, sigma = 0.05, stop_rate = 1e-05
)
```

Arguments

tree	an object of class "phylo"; the tree upon which we want to fit our diversification model
statistics	A vector containing functions that take a tree as an argument and return a single scalar value (the statistic).
simulation_fund	ction
	A function that implements the diversification model and returns an object of class "phylo".
init_epsilon_va	alues
	A vector containing the initial threshold values for the summary statistics from the vector statistics.
prior_generatir	ng_function
	Function to generate parameters from the prior distribution of these parameters (e.g. a function returning lambda and mu in case of the birth-death model)
prior_density_f	function
	Function to calculate the prior probability of a set of parameters.
number_of_parti	icles
	Number of particles to be used per iteration of the ABC-SMC algorithm.
sigma	Standard deviation of the perturbance distribution (perturbance distribution is a gaussian with mean 0).
stop_rate	If the acceptance rate drops below stopRate, stop the ABC-SMC algorithm and assume convergence.

Value

A matrix with n columns, where n is the number of parameters you are trying to estimate.

Author(s)

Thijs Janzen

References

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M.P.H. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface, 6(31), 187-202.

Examples

```
## Not run:
prior_gen <- function() {</pre>
 return( rexp(n=2, rate=0.1) )
}
prior_dens <- function(val) {</pre>
 return( dexp( val[1], rate = 0.1) * dexp( val[2], rate = 0.1) )
}
require(TESS)
treeSim <- function(params) {</pre>
 t <- TESS.sim.age(n=1, lambda = params[1], mu = params[2], age = 10)[[1]]
  return(t)
}
obs <- treeSim(c(0.5,0.1))</pre>
statWrapper <- function(tree1) {</pre>
  return( nLTTstat_exact(tree1, obs, "abs"))
}
stats <- c(statWrapper)</pre>
results <- abc.smc.nltt(</pre>
  obs, stats, treeSim, init_epsilon_values = 0.2,
 prior_generating_function = prior_gen,
 prior_density_function = prior_dens,
 number_of_particles = 1000, sigma = 0.05, stop_rate = 1e-5
)
```

End(Not run) # end of dontrun

check_input_event_times

Checks that event times are correct

Description

Checks event_times and event_times2 are of the appropriate class and have expected characteristics for correct calculation of NLTT in nltt_diff_exact_extinct.

```
check_input_event_times(event_times, event_times2, time_unit)
```

event_times	event times of the first phylogeny
<pre>event_times2</pre>	event times of the second phylogeny
time_unit	the time unit of the branching times
	• "ago: " the branching times are postive, as these are in time units ago
	• "since: " the branching times are negative, as these are in time units since

Value

Nothing. Throws error with helpful error message if event_times and event_times2 are not correct.

Author(s)

Pedro Neves and Richèl Bilderbeek and Thijs Janzen

present

check_phylogenies Check if the input is a valid collection of one or more phylogenies

Description

Will stop if not

Usage

```
check_phylogenies(phylogenies)
```

Arguments

phylogenies a collection of one or more phylogenies, where the phylogenies are of type phylo. This collection can both be a list of phylo or a multiphylo.

check_step_type Check if the step type is valid

Description

Will stop if not

Usage

check_step_type(step_type)

check_time_unit

Arguments

step_type	when between two points, where the second point has both a higher x and y coordinat, which y coordinat to follow. 'step_type' can be:
	• lower maintain the y-coordinat of the leftmost point
	• upper already use the y-coordinat of the rightmost point

check_time_unit (

Check if the time unit is valid

Description

Will stop if not

Usage

check_time_unit(time_unit)

Arguments

time_unit	the time unit of the branching times
	• "ago: " the branching times are postive, as these are in time units ago
	• "since: " the branching times are negative, as these are in time units since
	present

Author(s)

Richèl J.C. Bilderbeek

<pre>default_params_doc</pre>	This function does nothing.	It is intended to inherit is parameters'
	documentation.	

Description

This function does nothing. It is intended to inherit is parameters' documentation.

```
default_params_doc(dt, phylogenies, step_type, time_unit)
```

dt	The timestep resolution, a value bigger than zero and less or equal to one. 1/dt is the number of points that will be evaluated
phylogenies	a collection of one or more phylogenies, where the phylogenies are of type phylo. This collection can both be a list of phylo or a multiphylo.
step_type	when between two points, where the second point has both a higher x and y coordinat, which y coordinat to follow. 'step_type' can be:
	lower maintain the y-coordinat of the leftmost pointupper already use the y-coordinat of the rightmost point
time_unit	the time unit of the branching times
	• "ago: " the branching times are postive, as these are in time units ago
	• "since: " the branching times are negative, as these are in time units since present

Note

This is an internal function, so it should be marked with @noRd. This is not done, as this will disallow all functions to find the documentation parameters

Author(s)

Richèl J.C. Bilderbeek

exampleTrees	example trees to test the functionality of the package	

Description

100 phylogenetic trees of class phylo, generated using the sim.globalBiDe.age function from the TESS package, with lambda = 0.3, mu = 0.1, age = 10.

Usage

```
data(exampleTrees)
```

Format

A list containing objects of class phylo.

Examples

```
data(exampleTrees);
obs <- exampleTrees[[1]];
nltt_plot(obs);
```

get_average_nltt_matrix

Get the average nLTT from a collection of phylogenies

Description

Get the average nLTT from a collection of phylogenies

Usage

```
get_average_nltt_matrix(phylogenies, dt = 0.001)
```

Arguments

phylogenies	the phylogenies, supplied as either a list or a multiPhylo object, where the phylogenies are of type 'phylo'
dt	The timestep resolution, where 1/dt is the number of points evaluated

Value

A matrix of timepoints with the average number of (normalized) lineages through (normalized) time

Author(s)

Richèl J.C. Bilderbeek

Examples

get_average_nltt_matrix(c(ape::rcoal(10), ape::rcoal(20)))

get_branching_times Collect the branching times from the stem age

Description

Collect the branching times from the stem age

Usage

```
get_branching_times(phylogeny)
```

Arguments

phylogeny a phylogeny of class 'phylo'

branching times, in time units before the present

Author(s)

Richèl Bilderbeek

Examples

```
phylogeny <- ape::read.tree(text = "((a:2,b:2):1,c:3);")
phylogeny$root.edge <- 2 # nolint ape variable name
   all.equal(as.vector(nLTT::get_branching_times(phylogeny)), c(5, 3, 2))</pre>
```

get_nltt_values Get the nLTT values in time

Description

Collect the nLTT values in time over all phylogenies in the long form.

Usage

```
get_nltt_values(phylogenies, dt)
```

Arguments

phylogenies	the phylogenies, supplied as either a list or a multiPhylo object, where the phy- logenies are of type 'phylo'
dt	The timestep resolution, where 1/dt is the number of points evaluated

Value

A dataframe of timepoints with the nLTT value of each phylogeny in time

Author(s)

Richèl Bilderbeek

See Also

Usenltts_diff to compare nLTT statistic between one focal tree and a set of one or more other trees

get_norm_brts

Examples

```
# Create some random phylogenies
phylogeny1 <- ape::rcoal(10)
phylogeny2 <- ape::rcoal(20)
phylogeny3 <- ape::rcoal(30)
phylogeny4 <- ape::rcoal(40)
phylogeny5 <- ape::rcoal(50)
phylogeny6 <- ape::rcoal(60)
phylogenies <- c(phylogeny1, phylogeny2, phylogeny3,
phylogeny4, phylogeny5, phylogeny6, phylogeny7
)
# Obtain the nLTT values
dt <- 0.2
nltt_values <- get_nltt_values(phylogenies, dt = dt)</pre>
```

get_norm_brts Collect the normalized branching times from the stem age

Description

Collect the normalized branching times from the stem age

Usage

get_norm_brts(phylogeny)

Arguments

phylogeny a phylogeny of class 'phylo'

Value

branching times, in time units before the present

Author(s)

Richèl Bilderbeek

Examples

```
phylogeny <- ape::read.tree(text = "((a:2,b:2):1,c:3);")
phylogeny$root.edge <- 2 # nolint ape variable name
  all(nLTT::get_branching_times(phylogeny) == c(5, 3, 2))</pre>
```

get_norm_n

Description

Collect the normalized number of lineages from the stem age

Usage

```
get_norm_n(phylogeny)
```

Arguments

phylogeny a phylogeny of class 'phylo'

Value

branching times, in time units before the present

Author(s)

Richèl Bilderbeek

Examples

```
phylogeny <- ape::read.tree(text = "((a:2,b:2):1,c:3);")
phylogeny$root.edge <- 2 # nolint ape variable name
  all.equal(as.vector(nLTT::get_branching_times(phylogeny)), c(5, 3, 2))</pre>
```

get_n_lineages Collect the number of lineages from the stem age

Description

Collect the number of lineages from the stem age

Usage

```
get_n_lineages(phylogeny)
```

Arguments

phylogeny a phylogeny of class 'phylo'

Value

number of lineages, will go from 1 to the number of tips, if there is a stem, will go from 2 to the number of tips if there is no stem

Author(s)

Richèl Bilderbeek

Examples

```
phylogeny <- ape::read.tree(text = "((a:2,b:2):1,c:3);")
    all.equal(as.vector(nLTT::get_n_lineages(phylogeny)), c(2, 3))
phylogeny$root.edge <- 2 # nolint ape variable name
    all.equal(as.vector(nLTT::get_n_lineages(phylogeny)), c(1, 2, 3))</pre>
```

get_phylogeny_nltt_matrix

Extract the nLTT matrix from a phylogeny

Description

Extract the nLTT matrix from a phylogeny

Usage

get_phylogeny_nltt_matrix(phylogeny)

Arguments

phylogeny A phylogeny of type phylo

Value

a matrix

Author(s)

Richèl Bilderbeek

mcmc_nltt

function, using a Monte Carlo Markov Chain

Description

function, using a Monte Carlo Markov Chain

Usage

```
mcmc_nltt(
   phy,
   likelihood_function,
   parameters,
   logtransforms,
   iterations,
   burnin = round(iterations/3),
   thinning = 1,
   sigma = 1
)
```

Arguments

phy	phylo Vector of weights
likelihood_fun	ction
	function Function that calculates the likelihood of our diversification model, given the tree. function should be of the format function(parameters, phy).
parameters	vector Initial parameters to start the chain.
logtransforms	scalar Whether to perform jumps on logtransformed parameters (TRUE) or not (FALSE)
iterations	scalar Length of the chain
burnin	scalar Length of the burnin, default is 30% of iterations
thinning	scalar Size of thinning, $default = 1$
sigma	scalar Standard deviation of the jumping distribution, which is N(0, sigma).

Value

mcmc An MCMC object, as used by the package "coda".

nLTTstat	Calculate the difference between two normalized Lineage-Through-
	Time curves, given two phylogenetic trees.

Description

This function takes two ultrametric phylogenetic trees, calculates the normalized Lineage-Through-Time statistic for both trees and then calculates the difference between the two statistics.

Usage

14

nLTTstat_exact

Arguments

tree1	an object of class "phylo"
tree2	an object of class "phylo"
distance_method	
	Chosen measurement of distance between the two nLTT curves, options are (case sensitive): - "abs": use the absolute distance - "squ": use the squared distance;
ignore_stem	a boolean whether to ignore the stem length
log_transform	a boolean wether to log-transform the number of lineages before normalization

Value

The difference between the two nLTT statistics

Author(s)

Thijs Janzen

Examples

```
data(exampleTrees)
nltt_plot(exampleTrees[[1]])
nltt_lines(exampleTrees[[2]], lty=2)
nLTTstat(
    exampleTrees[[1]], exampleTrees[[2]],
    distance_method = "abs", ignore_stem = TRUE)
```

```
nLTTstat_exact
```

Calculate the exact difference between two normalized Lineage-Through-Time curves, given two phylogenetic trees.

Description

This function takes two ultrametric phylogenetic trees, calculates the normalized Lineage-Through-Time statistic for both trees and then calculates the exact difference between the two statistics. Whereas the function nLTTstat uses an approximation to calculate the difference (which is faster for large trees), the function nLTTstat_exact calculates the exact difference, and should generally be preferred. Although the estimates are highly similar, nLTTstat_exact tends to return slightly higher values.

tree1	an object of class "phylo"
tree2	an object of class "phylo"
distance_method	1
	Chosen measurement of distance between the two nLTT curves, options are
	(case sensitive):
	- "abs": use the absolute distance.
	- "squ": use the squared distance
ignore_stem	a boolean whether to ignore the stem length
log_transform	a boolean wether to log-transform the number of lineages before normalization

Value

The exact difference between the two nLTT statistics

Author(s)

Thijs Janzen

Examples

```
data(exampleTrees)
nltt_plot(exampleTrees[[1]])
nltt_lines(exampleTrees[[2]], lty = 2)
nLTTstat_exact(
    exampleTrees[[1]],
    exampleTrees[[2]],
    distance_method = "abs",
    ignore_stem = TRUE
)
```

nltts_diff

Calculates the nLTT statistic between each phylogeny in a collection compared to a same focal/reference tree

Description

Calculates the nLTT statistic between each phylogeny in a collection compared to a same focal/reference tree

```
nltts_diff(
   tree,
   trees,
   distance_method = "abs",
   ignore_stem = TRUE,
   log_transform = FALSE
)
```

nltts_plot

Arguments

tree	One phylogenetic tree
trees	A collection of one or more phylogenetic trees
distance_metho	d
	(string) absolute, or squared distance?
ignore_stem	(logical) Should the phylogeny its stem be ignored?
log_transform	(logical) Should the number of lineages be log-transformed before normaliza- tion?

Value

the nLTT statistic values, as a numeric vector of the same length as trees

Author(s)

Richèl J.C. Bilderbeek

See Also

use nltt_diff to compare two phylogenies

Examples

```
tree <- ape::rcoal(4)
trees <- c(ape::rcoal(4), ape::rcoal(4))
nltts <- nltts_diff(tree, trees)</pre>
```

nltts_plot

```
Get the average nLTT from a collection of phylogenies
```

Description

Get the average nLTT from a collection of phylogenies

```
nltts_plot(
   phylogenies,
   dt = 0.001,
   plot_nltts = FALSE,
   xlab = "Normalized Time",
   ylab = "Normalized Lineages",
   replot = FALSE,
   ...
)
```

phylogenies	a collection of one or more phylogenies, where the phylogenies are of type phylo. This collection can both be a list of phylo or a multiphylo.
dt	The timestep resolution, a value bigger than zero and less or equal to one. 1/dt is the number of points that will be evaluated
plot_nltts	Also plot each nLLT line
xlab	Label on the x axis
ylab	Label on the y axis
replot	If false, start a clean plot. If true, plot the new data over the current
	Plotting options

Value

Nothing

Author(s)

Richèl J.C. Bilderbeek

Examples

```
nltts_plot(c(ape::rcoal(10), ape::rcoal(10)))
nltts_plot(c(ape::rcoal(10), ape::rcoal(20)), dt = 0.1)
```

nltt_diff	Calculates the exact difference between the lineage through time
	curves of tree1 & tree2 (normalized in time and for the number of linescos)
	lineages)

Description

Calculates the exact difference between the lineage through time curves of tree1 & tree2 (normalized in time and for the number of lineages)

```
nltt_diff(
   tree1,
   tree2,
   distance_method = "abs",
   ignore_stem = TRUE,
   log_transform = FALSE
)
```

nltt_diff_exact

Arguments

tree1	(phylo) First phylogenetic tree
tree2	(phylo) Second phylogenetic tree
distance_method	1
	(string) absolute, or squared distance?
ignore_stem	logical Should the phylogeny its stem be ignored?
log_transform	(logical) Should the number of lineages be log-transformed before normalization?

Value

(scalar) normalized Lineage-Through-Time difference between tree1 & tree2

Author(s)

Thijs Janzen

See Also

use nltts_diff to compare a collection of phylogenies to one focal/reference tree

nltt_diff_exact	Calculates the exact, difference between the lineage through time
	curves of tree1 & tree2 (normalized in time and for the number of lineages)

Description

Calculates the exact, difference between the lineage through time curves of tree1 & tree2 (normalized in time and for the number of lineages)

```
nltt_diff_exact(
   tree1,
   tree2,
   distance_method = "abs",
   ignore_stem = TRUE,
   log_transform = FALSE
)
```

tree1	(phylo) First phylogenetic tree
tree2	(phylo) Second phylogenetic tree
distance_method	1
	(string) absolute, or squared distance?
ignore_stem	(logical) Should the phylogeny its stem be ignored?
log_transform	(logical) Should the number of lineages be log-transformed before normalization?

Value

(scalar) normalized Lineage-Through-Time difference between tree1 & tree2

Author(s)

Thijs Janzen

nltt_diff_exact_brts Calculates the exact difference between the nLTT curves of the branching times

Description

Calculates the exact difference between the nLTT curves of the branching times

Usage

```
nltt_diff_exact_brts(
    b_times,
    lineages,
    b_times2,
    lineages2,
    distance_method = "abs",
    time_unit = "since"
)
```

Arguments

b_times	branching times of the first phylogeny,
lineages	the number of lineages, usually one to the number of lineages
b_times2	branching times of the first phylogeny
lineages2	the number of lineages, usually one to the number of lineages
distance_method	
	how the difference between the two nLTTs is summed

	• "abs: " the absolute distance between the two nLTTs is summed
	• "squ: " the squared distance between the two nLTTs is summed
time_unit	the time unit of the branching times
	• "ago: " the branching times are postive, as these are in time units ago

• "since: " the branching times are negative, as these are in time units since present

Author(s)

Thijs Janzen and Richèl Bilderbeek

```
nltt_diff_exact_calc_extinct
```

Calculates the exact difference between the nLTT curves of the event times. This includes extinction events.

Description

Calculates the exact difference between the nLTT curves of the event times. This includes extinction events.

Usage

```
nltt_diff_exact_calc_extinct(
    event_times,
    species_number,
    event_times2,
    species_number2,
    distance_method
}
```

)

Arguments

Author(s)

Thijs Janzen and Richèl Bilderbeek and Pedro Neves

Examples

```
# Generate data
n <- 10
b_times_n <- (seq(1, n) / n)
lineages_n <- b_times_n
b_times2_n <- b_times_n * b_times_n
lineages2_n <- b_times2_n
# Calculate nLTT
out <- nLTT::nltt_diff_exact_calc_extinct(
    event_times = b_times_n,
    species_number = lineages_n,
    event_times2 = b_times2_n,
    species_number2 = lineages2_n,
    distance_method = "abs"
)
#'
```

nltt_diff_exact_extinct

Calculates the exact difference between the nLTT curves of the event times. This includes extinction events.

Description

Takes branching times such as (for example) as returned by the DDD package.

Usage

```
nltt_diff_exact_extinct(
    event_times,
    species_number,
    event_times2,
    species_number2,
    distance_method = "abs",
    time_unit = "since",
    normalize = TRUE
)
```

Arguments

event_times	event times of the first phylogeny	
species_number	the number of species at each event time of the first phylogeny	
event_times2	event times of the second phylogeny	
species_number2		
	the number of species at each event time of the second phylogeny	

22

distance_method	
	how the difference between the two nLTTs is summed
	 "abs: " the absolute distance between the two nLTTs is summed "squ: " the squared distance between the two nLTTs is summed
time_unit	the time unit of the branching times
	 "ago: " the branching times are postive, as these are in time units ago "since: " the branching times are negative, as these are in time units since present
normalize	should the output be normalized? Default is TRUE.

Author(s)

Pedro Neves and Richèl Bilderbeek and Thijs Janzen

Examples

```
# Generate data
n <- 10
b_times_n <- (seq(1, n) / n)
lineages_n <- b_times_n
b_times2_n <- b_times_n * b_times_n
lineages2_n <- b_times2_n
# Calculate nLTT
out <- nLTT::nltt_diff_exact_extinct(
    event_times = b_times_n,
    species_number = lineages_n,
    event_times2 = b_times2_n,
    species_number2 = lineages2_n,
    time_unit = "ago",
    distance_method = "abs"
)
```

nltt_diff_exact_norm_brts Calculates the exact difference between the nLTT curves of the branching times

Description

Calculates the exact difference between the nLTT curves of the branching times

Usage

```
nltt_diff_exact_norm_brts(
    b_times_n,
    lineages_n,
    b_times2_n,
    lineages2_n,
    distance_method
)
```

Arguments

b_times_n	branching times of the first phylogeny			
lineages_n	the number of lineages, usually one to the number of lineages			
b_times2_n	branching times of the first phylogeny			
lineages2_n	the number of lineages, usually one to the number of lineages			
distance_method				
	(string) absolute, or squared distance?			

Author(s)

Thijs Janzen and Richèl Bilderbeek

Description

This is a modified version of the ape function ltt.lines: add the normalized Lineage-Through-Time statistic of a phylogenetic tree to an already existing plot

Usage

nltt_lines(phy, ...)

Arguments

phy	an object of class "phylo"
	further graphical arguments that can be passed to lines()

Author(s)

Thijs Janzen

Examples

```
data(exampleTrees)
nltt_plot(exampleTrees[[1]])
nltt_lines(exampleTrees[[2]], lty=2)
```

24

nltt_plot

Description

This function uses a modified version of the ltt.plot function from "ape" to plot the normalized number of lineages through normalized time, where the number of lineages is normalized by dividing by the number of tips of the tree, and the time is normalized by the total time between the most common recent ancestor and the present, such that t(MRCA) = 0 & t(present) = 1.

Usage

nltt_plot(
 phy, xlab = "Normalized Time", ylab = "Normalized Lineages", ...)

Arguments

phy	an object of class "phylo"
xlab	a character string (or a variable of mode character) giving the label for the <i>x</i> -axis (default is "Normalized Time").
ylab	a character string (or a variable of mode character) giving the label for the <i>y</i> -axis (default is "Normalized Lineages").
	further graphical arguments that can be passed to plot()

Author(s)

Thijs Janzen

Examples

```
data(exampleTrees)
nltt_plot(exampleTrees[[1]])
```

stretch_nltt_matrix Stretch matrix 'm' with a timestep resolution of 'dt'.

Description

Stretch matrix 'm' with a timestep resolution of 'dt'.

Usage

stretch_nltt_matrix(m, dt, step_type)

m	A matrix of 2 columns and at least 2 rows
dt	The resulution, a value e [0.0001, 1]. If 'dt' is set to a very small value, this function will stop
step_type	when between two points, where the second point has both a higher x and y coordinat, which y coordinat to follow. 'step_type' can be:
	• lower maintain the y-coordinat of the leftmost point

• upper already use the y-coordinat of the rightmost point

Value

The stretched matrix

Author(s)

Richèl J.C. Bilderbeek

Examples

```
m <- matrix( c(c(0.0, 1.0), c(0.5, 1.0)), ncol = 2, nrow = 2)
expected <- matrix(
    c(
        c(0.0, 0.5, 1.0), # Timepoints
        c(0.5, 0.5, 1.0) # Values
    ),
    ncol = 2, nrow = 3
)
result <- stretch_nltt_matrix(m = m, dt = 0.5, step_type = "lower")
all.equal(result, expected)</pre>
```

Index

* datasets exampleTrees, 8 abc_smc_nltt, 3 check_input_event_times, 5 check_phylogenies, 6 check_step_type, 6 check_time_unit, 7 default_params_doc, 7 exampleTrees, 8 get_average_nltt_matrix,9 get_branching_times, 9 get_n_lineages, 12 get_nltt_values, 10get_norm_brts, 11 get_norm_n, 12 get_phylogeny_nltt_matrix, 13 $\texttt{mcmc_nltt}, \texttt{13}$ multiphylo, 6, 8, 18 nLTT (nLTT-package), 2 nLTT-package, 2 nltt_diff, 17, 18 nltt_diff_exact, 19 nltt_diff_exact_brts, 20 nltt_diff_exact_calc_extinct, 21 nltt_diff_exact_extinct, 5, 22 nltt_diff_exact_norm_brts, 23 nltt_lines, 24 nltt_plot, 25 nltts_diff, 10, 16, 19 nltts_plot, 17 nLTTstat, 14 nLTTstat_exact, 15

phylo, 6, 8, 18

stop, 6, 7
stretch_nltt_matrix, 25