Package ‘modeltime’

October 22, 2024
Title The Tidymodels Extension for Time Series Modeling

Version 1.3.1

Description The time series forecasting framework for use with the 'tidymodels' ecosystem.
Models include ARIMA, Exponential Smoothing, and additional time series models
from the 'forecast' and 'prophet' packages. Refer to * " Forecasting Principles & Practice, Sec-
ond edition"
(<https://otexts.com/fpp2/>).
Refer to * " Prophet: forecasting at scale"
(<https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/>.).

URL https://github.com/business-science/modeltime,

https://business-science.github.io/modeltime/

BugReports https://github.com/business-science/modeltime/issues
License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>=3.5.0)

Imports StanHeaders, timetk (>=2.8.1), parsnip (>= 0.2.1), dials,
yardstick (>= 0.0.8), workflows (>= 1.0.0), hardhat (>= 1.0.0),
rlang (>= 0.1.2), glue, plotly, reactable, gt, ggplot2, tibble,
tidyr, dplyr (>= 1.1.0), purrr, stringr, forcats, scales,
janitor, parallel, parallelly, doParallel, foreach, magrittr,
forecast, xgboost (>= 1.2.0.1), prophet, methods, cli,
tidymodels

Suggests rstan, slider, sparklyr, workflowsets, recipes, rsample, tune
(>=0.2.0), lubridate, testthat, kernlab, glmnet, thief,
smooth, greybox, earth, randomForest, trelliscopejs, knitr,
rmarkdown (>= 2.9), webshot, qpdf, TSrepr

VignetteBuilder knitr
RoxygenNote 7.3.2

NeedsCompilation no

https://otexts.com/fpp2/
https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/
https://github.com/business-science/modeltime
https://business-science.github.io/modeltime/
https://github.com/business-science/modeltime/issues

2 Contents

Author Matt Dancho [aut, cre],
Business Science [cph]

Maintainer Matt Dancho <mdancho@business-science.io>
Repository CRAN
Date/Publication 2024-10-22 20:10:02 UTC

Contents
adam_params e e e e e e e e e e e e e e 3
adam_Teg e e e e e 6
add_modeltime_model 11
arima_boost L. e e e e e e 12
AriMA_PATAMNS .+« . v v v v v e e e e e e e e e e e e e e e e e e e 18
ATIMA_TEZ « . o v o v e e e e e e e e e e e e e e e e e e e 19
combine_modeltime_tables 23
control_modeltime e e e 25
create_model_grid L 27
Create_Xreg_TECIPE . . . v v v v v e v e e e e e e e e e e e e e 28
drop_modeltime_model 30
exp_smoothing 31
exp_smoothing params oL 37
get_arima_description L. e e e 38
get_model_description e e 39
get_tbats_description L. e e 40
log_extractors e e e e e e 40
m750 . . e 41
m750_models e 42
m750_Splits e 42
m750_training_resamples oL e e 43
MAAPE . .+« o v e 44
MAAPE_VEC .+« o v v v e 44
IMELTIC_SELS . . v o o o o e e e e e e e s 45
modeltime_accuracyo i e e e e e e e 46
modeltime_calibrate e 48
modeltime_fit_ workflowset 50
modeltime_forecast L e 52
modeltime_nested_fit L e 56
modeltime_nested_forecast e 57
modeltime_nested_refit e 59
modeltime_nested_select_best 59
modeltime_refit e 60
modeltime_residuals L L e 62
modeltime_residuals_test L e 63
modeltime_table e 65
NAIVE_TEZ .« .« o v v v v e e e e e e e e e e e e e e 67
new_modeltime_bridgeo 70

NNELAT_PATAMS . .« . . ¢ o v v e v v e e e e e e e e e e e e e e e e e e e 71

adam_params 3
MNELAT_TEZ © . v v v v v v e 72
panel_tail e 75
parallel_start L e e e 76
parse_index e e e e e e 77
plot_modeltime_forecast Lo 78
plot_modeltime_residuals 80
pluck_modeltime_model 82
prep_nested e e 83
prophet_boost e e e e e e 85
prophet_params e e e e e 91
prophet_reg L e e e e e 93
pull_modeltime _residuals oL 97
pull_parsnip_preprocessor ia e e e 98
recipe_helpers 98
TECUTSIVE . . . o o v i e e e e e e 99
seasonal_reg 103
SUMMArize_accuraCy_MEetriCs v v v v v v vt e e e e e 107
table_modeltime_accuracy e 108
temporal_hierarchy 110
temporal_hierarchy_params 113
tiME_SETIeS_PATaIMS« v v o v v e e e e e e e e e e e e e e e e 113
update_modeltime_model oL 114
update_model_description 115
WINdOW_I€Z o 116

Index 121

adam_params Tuning Parameters for ADAM Models

Description

Tuning Parameters for ADAM Models
Usage
ets_model(values = c("ZzzZ", "XXX", "Yyy", "Ccc", "PPP", "FFF"))
loss(
values = c¢("likelihood”, "MSE", "MAE", "HAM" k6 "LASSO", "RIDGE", "TMSE", "GTMSE",

nMSEhu , “MSCE“)
)

use_constant(values = c(FALSE, TRUE))

regressors_treatment(values = c("use”, "select”, "adapt"))

n

outliers_treatment(values = c("ignore"”, "use"”, "select"))

4 adam_params

probability_model(

values = c("none”, "auto", "fixed", "general”, "odds-ratio”, "inverse-odds-ratio”,
"direct")
distribution(
values = c("default”, "dnorm”, "dlaplace”, "ds"”, "dgnorm”, "dlnorm”, "dinvgauss"”,
"dgamma")

information_criteria(values = c("AICc"”, "AIC", "BICc", "BIC"))

select_order(values = c(FALSE, TRUE))

Arguments

values A character string of possible values.

Details
The main parameters for ADAM models are:

e ets_model:

— model="7ZZZ" means that the model will be selected based on the chosen information
criteria type. The Branch and Bound is used in the process.

model="XXX" means that only additive components are tested, using Branch and Bound.

model="YYY" implies selecting between multiplicative components.

model="CCC" triggers the combination of forecasts of models using information criteria
weights (Kolassa, 2011).

combinations between these four and the classical components are also accepted. For
example, model="CAY" will combine models with additive trend and either none or mul-
tiplicative seasonality.

model="PPP" will produce the selection between pure additive and pure multiplicative
models. "P" stands for "Pure". This cannot be mixed with other types of components.
model="FFF" will select between all the 30 types of models. "F" stands for "Full". This
cannot be mixed with other types of components.

The parameter model can also be a vector of names of models for a finer tuning (pool
of models). For example, model=c("ANN","AAA") will estimate only two models and
select the best of them.

* loss:
— likelihood - the model is estimated via the maximization of the likelihood of the function
specified in distribution;
MSE (Mean Squared Error),
MAE (Mean Absolute Error),
HAM (Half Absolute Moment),
LASSO - use LASSO to shrink the parameters of the model;

adam_params 5

— RIDGE - use RIDGE to shrink the parameters of the model;
— TMSE - Trace Mean Squared Error,
— GTMSE - Geometric Trace Mean Squared Error,
— MSEh - optimisation using only h-steps ahead error,
— MSCE - Mean Squared Cumulative Error.
* non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.
* non_seasonal_differences: The order of integration for non-seasonal differencing.
* non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.
* seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.
* seasonal_differences: The order of integration for seasonal differencing.
* seasonal_ma: The order of the seasonal moving average (SMA) terms.
* use_constant: Logical, determining, whether the constant is needed in the model or not.

* regressors_treatment: The variable defines what to do with the provided explanatory vari-
ables.

* outliers_treatment: Defines what to do with outliers.
* probability_model: The type of model used in probability estimation.
* distribution: What density function to assume for the error term.

e information_criteria: The information criterion to use in the model selection / combina-
tion procedure.

* select_order: If TRUE, then the function will select the most appropriate order.

Value

A dials parameter
A parameter
A parameter
A parameter
A parameter
A parameter
A parameter
A parameter
A parameter

A parameter

Examples
use_constant ()
regressors_treatment()

distribution()

adam_reg

adam_reg

General Interface for ADAM Regression Models

Description

adam_reg() is a way to generate a specification of an ADAM model before fitting and allows the

model to be created using different packages. Currently the only package is smooth.

Usage

adam_reg(

mode = "regression”,
ets_model = NULL,
non_seasonal_ar = NULL,

non_seasonal_differences = NULL,

non_seasonal_ma = NULL,
seasonal_ar = NULL,
seasonal_differences
seasonal_ma = NULL,
use_constant = NULL,
regressors_treatment = NULL,
outliers_treatment = NULL,
outliers_ci = NULL,
probability_model = NULL,
distribution = NULL,

loss = NULL,
information_criteria = NULL,
seasonal_period = NULL,
select_order = NULL

NULL,

Arguments

mode

ets_model

A single character string for the type of model. The only possible value for this
model is "regression".

The type of ETS model. The first letter stands for the type of the error term ("A"

or "M"), the second (and sometimes the third as well) is for the trend ("N", "A",
"Ad", "M" or "Md"), and the last one is for the type of seasonality ("N", "A" or

"M”).

non_seasonal_ar

The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in

pdg-notation.

non_seasonal_differences
The order of integration for non-seasonal differencing. Often denoted "d" in

pdg-notation.

adam_reg 7

non_seasonal_ma
The order of the non-seasonal moving average (MA) terms. Often denoted "q"
in pdg-notation.

seasonal_ar The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in
PDQ-notation.

seasonal_differences
The order of integration for seasonal differencing. Often denoted "D" in PDQ-
notation.

seasonal_ma The order of the seasonal moving average (SMA) terms. Often denoted "Q" in
PDQ-notation.

use_constant Logical, determining, whether the constant is needed in the model or not. This
is mainly needed for ARIMA part of the model, but can be used for ETS as well.

regressors_treatment
The variable defines what to do with the provided explanatory variables: "use"
means that all of the data should be used, while "select" means that a selection
using ic should be done, "adapt" will trigger the mechanism of time varying
parameters for the explanatory variables.

outliers_treatment
Defines what to do with outliers: "ignore", so just returning the model, "detect"
outliers based on specified level and include dummies for them in the model, or
detect and "select" those of them that reduce ic value.

outliers_ci What confidence level to use for detection of outliers. Default is 99%.

probability_model
The type of model used in probability estimation. Can be "none" - none, "fixed"
- constant probability, "general" - the general Beta model with two parameters,
"odds-ratio" - the Odds-ratio model with b=1 in Beta distribution, "inverse-odds-
ratio" - the model with a=1 in Beta distribution, "direct" - the TSB-like (Teunter
et al., 2011) probability update mechanism a+b=1, "auto" - the automatically
selected type of occurrence model.

distribution what density function to assume for the error term. The full name of the distri-
bution should be provided, starting with the letter "d" - "density".
loss The type of Loss Function used in optimization.
information_criteria
The information criterion to use in the model selection / combination procedure.
seasonal_period

A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided. See Fit Details below.

select_order If TRUE, then the function will select the most appropriate order. The values
list(ar=...,i=...,ma=...) specify the maximum orders to check in this case.

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For adam_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

adam_reg

e "auto_adam" (default) - Connects to smooth: :auto.adam()

¢ "adam" - Connects to smooth: :adam()

Main Arguments

The main arguments (tuning parameters) for the model are:

* seasonal_period: The periodic nature of the seasonality. Uses "auto" by default.

* non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.

* non_seasonal_differences: The order of integration for non-seasonal differencing.

* non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.

* seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.

* seasonal_differences: The order of integration for seasonal differencing.

* seasonal_ma: The order of the seasonal moving average (SMA) terms.

* ets_model: The type of ETS model.

* use_constant: Logical, determining, whether the constant is needed in the model or not.

* regressors_treatment: The variable defines what to do with the provided explanatory vari-
ables.

e outliers_treatment: Defines what to do with outliers.
* probability_model: The type of model used in probability estimation.
* distribution: what density function to assume for the error term.
* loss: The type of Loss Function used in optimization.
e information_criteria: The information criterion to use in the model selection / combina-
tion procedure.
These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

auto_adam (default engine)
The engine uses smooth: :auto.adam().

Function Parameters:

#> function (data, model = "ZXZ", lags = c(frequency(data)), orders = list(ar = c(3,
#> 3), i=c(2, 1), ma=c(3, 3), select = TRUE), formula = NULL, regressors = c("use”,

#> "select”, "adapt"”), occurrence = c("none"”, "auto”, "fixed", "general”,

#> "odds-ratio”, "inverse-odds-ratio”, "direct"), distribution = c("dnorm”,

#> "dlaplace”, "ds", "dgnorm”, "dlnorm”, "dinvgauss”, "dgamma"), outliers = c("ignore”,
#> "use"”, "select"), level = 0.99, h = @, holdout = FALSE, persistence = NULL,

#> phi = NULL, initial = c("optimal”, "backcasting”, "complete”), arma = NULL,

#> ic = c("AICc", "AIC", "BIC", "BICc"), bounds = c("usual”, "admissible",

#> "none"), silent = TRUE, parallel = FALSE, ...)

adam_reg 9

The MAXIMUM nonseasonal ARIMA terms (max.p, max.d, max.q) and seasonal ARIMA terms
(max.P, max.D, max.Q) are provided to forecast::auto.arima() via arima_reg() parameters.
Other options and argument can be set using set_engine().

Parameter Notes:
* All values of nonseasonal pdq and seasonal PDQ are maximums. The smooth: :auto.adam()
model will select a value using these as an upper limit.
* xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this
manually). See Fit Details (below).
adam
The engine uses smooth: :adam().

Function Parameters:

#> function (data, model = "ZXZ", lags = c(frequency(data)), orders = list(ar = c(0),

#> i = c(@), ma = c(@), select = FALSE), constant = FALSE, formula = NULL,
#> regressors = c("use”, "select”, "adapt"”), occurrence = c("none”, "auto”,
#> "fixed", "general”, "odds-ratio”, "inverse-odds-ratio”, "direct"”),
#> distribution = c("default”, "dnorm”, "dlaplace”, "ds", "dgnorm”, "dlnorm",
#> "dinvgauss”, "dgamma"), loss = c("likelihood"”, "MSE", "MAE", "HAM",
#> "LASSO", "RIDGE", "MSEh", "TMSE", "GTMSE", "MSCE"), outliers = c("ignore"”,
#> "use"”, "select"), level =0.99, h =0, holdout = FALSE, persistence = NULL,
#> phi = NULL, initial = c("optimal”, "backcasting”, "complete”), arma = NULL,
#> ic = c("AICc", "AIC", "BIC", "BICc"), bounds = c("usual”, "admissible”,
#> "none"), silent = TRUE, ...)

The nonseasonal ARIMA terms (orders) and seasonal ARIMA terms (orders) are provided to
smooth: :adam() viaadam_reg() parameters. Other options and argument can be set using set_engine().

Parameter Notes:

» xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this
manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

e fit(y ~date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For
monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period
= "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto"”: A seasonal period is selected based on the periodicity of the
data (e.g. 12 if monthly)

10 adam_reg

2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period ="1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate (No xregs, Exogenous Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:
* Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)

The xreg parameter is populated using the fit() function:

* Only factor, ordered factor, and numeric data will be used as xregs.
* Date and Date-time variables are not used as xregs

* character data should be converted to factor.
Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.1bl (labeled month as a ordered factor).

The month. 1bl is an exogenous regressor that can be passed to the arima_reg() using fit():
e fit(y ~date + month.1bl) will pass month.1bl on as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(smooth)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- initial_time_split(m75@, prop = 0.8)

---- AUTO ADAM ----

add_modeltime_model

Model Spec
model_spec <- adam_reg() %>%
set_engine("auto_adam")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

---— STANDARD ADAM ----

Model Spec
model_spec <- adam_reg(
seasonal_period =
non_seasonal_ar =
non_seasonal_differences =
non_seasonal_ma =
seasonal_ar =
seasonal_differences =
seasonal_ma =
) %>%
set_engine("adam")

_,e m W = W =

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model _fit

add_modeltime_model Add a Model into a Modeltime Table

Description

Add a Model into a Modeltime Table

Usage
add_modeltime_model (object, model, location = "bottom")
Arguments
object Multiple Modeltime Tables (class md1_time_tbl)
model A model of class model_fit or a fitted workflow object

location Where to add the model. Either "top" or "bottom". Default: "bottom".

12 arima_boost

See Also

* combine_modeltime_tables(): Combine 2 or more Modeltime Tables together
¢ add_modeltime_model(): Adds a new row with a new model to a Modeltime Table
e drop_modeltime_model(): Drop one or more models from a Modeltime Table

* update_modeltime_description(): Updates a description for a model inside a Modeltime
Table

* update_modeltime_model(): Updates a model inside a Modeltime Table

¢ pull_modeltime_model(): Extracts a model from a Modeltime Table

Examples
library(tidymodels)
model_fit_ets <- exp_smoothing() %>%

set_engine("ets") %>%
fit(value ~ date, training(m750_splits))

m750_models %>%
add_modeltime_model (model_fit_ets)

arima_boost General Interface for "Boosted” ARIMA Regression Models

Description

arima_boost() is a way to generate a specification of a time series model that uses boosting to
improve modeling errors (residuals) on Exogenous Regressors. It works with both "automated"
ARIMA (auto.arima) and standard ARIMA (arima). The main algorithms are:

* Auto ARIMA + XGBoost Errors (engine = auto_arima_xgboost, default)
* ARIMA + XGBoost Errors (engine = arima_xgboost)

Usage

arima_boost(
mode = "regression”,
seasonal_period = NULL,
non_seasonal_ar = NULL,
non_seasonal_differences = NULL,
non_seasonal_ma = NULL,
seasonal_ar = NULL,
seasonal_differences = NULL,
seasonal_ma = NULL,
mtry = NULL,

arima_boost 13

trees = NULL,

min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
stop_iter = NULL

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

seasonal_period
A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided. See Fit Details below.

non_seasonal_ar
The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in
pdg-notation.

non_seasonal_differences
The order of integration for non-seasonal differencing. Often denoted "d" in
pdg-notation.

non_seasonal_ma
The order of the non-seasonal moving average (MA) terms. Often denoted "q"
in pdg-notation.

seasonal_ar The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in
PDQ-notation.

seasonal_differences
The order of integration for seasonal differencing. Often denoted "D" in PDQ-

notation.

seasonal_ma The order of the seasonal moving average (SMA) terms. Often denoted "Q" in
PDQ-notation.

mtry A number for the number (or proportion) of predictors that will be randomly
sampled at each split when creating the tree models (specific engines only).

trees An integer for the number of trees contained in the ensemble.

min_n An integer for the minimum number of data points in a node that is required for
the node to be split further.

tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (specific
engines only).

learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-
iteration (specific engines only). This is sometimes referred to as the shrinkage
parameter.

loss_reduction A number for the reduction in the loss function required to split further (specific
engines only).

14 arima_boost

sample_size number for the number (or proportion) of data that is exposed to the fitting rou-
tine.
stop_iter The number of iterations without improvement before stopping (xgboost only).
Details

The data given to the function are not saved and are only used to determine the mode of the model.
For arima_boost (), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

* "auto_arima_xgboost" (default) - Connects to forecast: :auto.arima() and xgboost::xgb.train

* "arima_xgboost" - Connects to forecast: :Arima() and xgboost::xgb.train

Main Arguments

The main arguments (tuning parameters) for the ARIMA model are:

* seasonal_period: The periodic nature of the seasonality. Uses "auto" by default.
* non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.
* non_seasonal_differences: The order of integration for non-seasonal differencing.
* non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.
* seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.
* seasonal_differences: The order of integration for seasonal differencing.
* seasonal_ma: The order of the seasonal moving average (SMA) terms.
The main arguments (tuning parameters) for the model XGBoost model are:
* mtry: The number of predictors that will be randomly sampled at each split when creating the
tree models.
* trees: The number of trees contained in the ensemble.

* min_n: The minimum number of data points in a node that are required for the node to be split
further.

* tree_depth: The maximum depth of the tree (i.e. number of splits).

* learn_rate: The rate at which the boosting algorithm adapts from iteration-to-iteration.
* loss_reduction: The reduction in the loss function required to split further.

* sample_size: The amount of data exposed to the fitting routine.

* stop_iter: The number of iterations without improvement before stopping.

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

arima_boost 15

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each
engine:

Model 1: ARIMA:

modeltime forecast::auto.arima forecast:: Arima
seasonal_period ts(frequency) ts(frequency)
non_seasonal_ar, non_seasonal_differences, non_seasonal_ma max.p(5), max.d(2), max.q(5) order = ¢(p(0), d(0), q(0))
seasonal_ar, seasonal_differences, seasonal_ma max.P(2), max.D(1), max.Q(2) seasonal = c(P(0), D(0), Q

Model 2: XGBoost:

modeltime xgboost::xgb.train
tree_depth max_depth (6)

trees nrounds (15)
learn_rate eta (0.3)

mtry colsample_bynode (1)
min_n min_child_weight (1)
loss_reduction gamma (0)
sample_size subsample (1)
stop_iter early_stop

Other options can be set using set_engine().
auto_arima_xgboost (default engine)

Model 1: Auto ARIMA (forecast: :auto.arima):

#> function (y, d = NA, D = NA, max.p = 5, max.q = 5, max.P = 2, max.Q = 2,
#> max.order = 5, max.d = 2, max.D = 1, start.p = 2, start.q = 2, start.P =1,

#> start.Q = 1, stationary = FALSE, seasonal = TRUE, ic = c("aicc”, "aic",

#> "bic"), stepwise = TRUE, nmodels = 94, trace = FALSE, approximation = (length(x) >
#> 150 | frequency(x) > 12), method = NULL, truncate = NULL, xreg = NULL,

#> test = c("kpss”, "adf"”, "pp"), test.args = list(), seasonal.test = c("seas”,

#> "ocsb"”, "hegy"”, "ch"), seasonal.test.args = list(), allowdrift = TRUE,

#> allowmean = TRUE, lambda = NULL, biasadj = FALSE, parallel = FALSE,

#> num.cores = 2, X =Yy, ...)

Parameter Notes:

* All values of nonseasonal pdq and seasonal PDQ are maximums. The auto.arima will select
a value using these as an upper limit.

* xreg - This should not be used since XGBoost will be doing the regression

Model 2: XGBoost (xgboost: :xgb.train):

16 arima_boost

#> function (params = list(), data, nrounds, watchlist = list(), obj = NULL,

#> feval = NULL, verbose = 1, print_every_n = 1L, early_stopping_rounds = NULL,

#> maximize = NULL, save_period = NULL, save_name = "xgboost.model”, xgb_model = NULL,
#> callbacks = 1list(), ...)

Parameter Notes:

* XGBoost uses a params = 1ist() to capture. Parsnip / Modeltime automatically sends any
args provided as . . . inside of set_engine() to the params = list(...).

Fit Details
Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

e fit(y ~date)

Seasonal Period Specification
The period can be non-seasonal (seasonal_period = 1) or seasonal (e.g. seasonal_period =12
or seasonal_period = "12 months"). There are 3 ways to specify:
1. seasonal_period = "auto": A period is selected based on the periodicity of the data (e.g. 12
if monthly)
2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data
3. seasonal_period ="1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.
Univariate (No xregs, Exogenous Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:

* Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

* XY Interface: fit_xy(x = datal, "date"], y = data$y) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)

The xreg parameter is populated using the fit() or fit_xy() function:

* Only factor, ordered factor, and numeric data will be used as xregs.
* Date and Date-time variables are not used as xregs

* character data should be converted to factor.
Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.1bl (labeled month as a ordered factor).

The month.1bl is an exogenous regressor that can be passed to the arima_boost () using fit():

arima_boost 17

e fit(y ~date + month.1bl) will pass month.1bl on as an exogenous regressor.

e fit_xy(datal,c("date"”, "month.1bl")], y = data$y) will pass x, where x is a data frame
containing month.1bl and the date feature. Only month.1bl will be used as an exogenous
regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(lubridate)
library(parsnip)
library(rsample)
library(timetk)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m75@, prop = 0.9)

MODEL SPEC ----

Set engine and boosting parameters
model_spec <- arima_boost(

ARIMA args

seasonal_period = 12,
non_seasonal_ar = 0,
non_seasonal_differences = 1,
non_seasonal_ma = 1,

seasonal_ar =0,
seasonal_differences = 1,
seasonal_ma =1,

XGBoost Args
tree_depth = 6,
learn_rate = 0.1
) %%
set_engine(engine = "arima_xgboost")

FIT ----

Boosting - Happens by adding numeric date and month features

model_fit_boosted <- model_spec %>%

fit(value ~ date + as.numeric(date) + month(date, label = TRUE),
data = training(splits))

18 arima_params

model_fit_boosted

arima_params Tuning Parameters for ARIMA Models

Description

Tuning Parameters for ARIMA Models

Usage
non_seasonal_ar(range = c(@OL, 5L), trans = NULL)
non_seasonal_differences(range = c(0L, 2L), trans = NULL)
non_seasonal_ma(range = c(@OL, 5L), trans = NULL)
seasonal_ar(range = c(@OL, 2L), trans = NULL)
seasonal_differences(range = c(@L, 1L), trans = NULL)

seasonal_ma(range = c(@OL, 2L), trans = NULL)

Arguments
range A two-element vector holding the defaults for the smallest and largest possible
values, respectively. If a transformation is specified, these values should be in
the transformed units.
trans A trans object from the scales package, such as scales: : transform_log1@()
or scales::transform_reciprocal(). If not provided, the default is used
which matches the units used in range. If no transformation, NULL.
Details

The main parameters for ARIMA models are:

* non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.

* non_seasonal_differences: The order of integration for non-seasonal differencing.
* non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.

* seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.

* seasonal_differences: The order of integration for seasonal differencing.

* seasonal_ma: The order of the seasonal moving average (SMA) terms.

arima_reg 19
Examples

ets_model ()

non_seasonal_ar ()

non_seasonal_differences()

non_seasonal_ma()

arima_reg General Interface for ARIMA Regression Models

Description

arima_reg() is a way to generate a specification of an ARIMA model before fitting and allows the
model to be created using different packages. Currently the only package is forecast.

Usage

arima_reg(
mode = "regression”,
seasonal_period = NULL,
non_seasonal_ar = NULL,
non_seasonal_differences = NULL,
non_seasonal_ma = NULL,
seasonal_ar = NULL,
seasonal_differences = NULL,
seasonal_ma = NULL

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

seasonal_period
A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided. See Fit Details below.

non_seasonal_ar
The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in
pdg-notation.

non_seasonal_differences
The order of integration for non-seasonal differencing. Often denoted "d" in
pdg-notation.

20 arima_reg

non_seasonal_ma
The order of the non-seasonal moving average (MA) terms. Often denoted "q"
in pdg-notation.

seasonal_ar The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in
PDQ-notation.

seasonal_differences

The order of integration for seasonal differencing. Often denoted "D" in PDQ-
notation.

seasonal_ma The order of the seasonal moving average (SMA) terms. Often denoted "Q" in
PDQ-notation.

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For arima_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

e "auto_arima" (default) - Connects to forecast: :auto.arima()

e "arima" - Connects to forecast: :Arima()

Main Arguments

The main arguments (tuning parameters) for the model are:

* seasonal_period: The periodic nature of the seasonality. Uses "auto" by default.

* non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.

* non_seasonal_differences: The order of integration for non-seasonal differencing.
* non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.

* seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.

* seasonal_differences: The order of integration for seasonal differencing.

* seasonal_ma: The order of the seasonal moving average (SMA) terms.

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from

scratch.
Engine Details
The standardized parameter names in modeltime can be mapped to their original names in each
engine:
modeltime forecast::auto.arima forecast::Arima
seasonal_period ts(frequency) ts(frequency)

non_seasonal_ar, non_seasonal_differences, non_seasonal_ma max.p(5), max.d(2), max.q(5) order = c(p(0), d(0), q(0))
seasonal_ar, seasonal_differences, seasonal_ma max.P(2), max.D(1), max.Q(2) seasonal = c(P(0), D(0), Q

arima_reg 21

Other options can be set using set_engine().
auto_arima (default engine)
The engine uses forecast: :auto.arima().

Function Parameters:

#> function (y, d = NA, D = NA, max.p = 5, max.q = 5, max.P = 2, max.Q = 2,
#> max.order = 5, max.d = 2, max.D = 1, start.p = 2, start.q = 2, start.P =1,

#> start.Q = 1, stationary = FALSE, seasonal = TRUE, ic = c("aicc", "aic",

#> "bic"), stepwise = TRUE, nmodels = 94, trace = FALSE, approximation = (length(x) >
#> 150 | frequency(x) > 12), method = NULL, truncate = NULL, xreg = NULL,

#> test = c("kpss”, "adf"”, "pp"), test.args = list(), seasonal.test = c("seas”,

#> "ocsb", "hegy", "ch"), seasonal.test.args = list(), allowdrift = TRUE,

#> allowmean = TRUE, lambda = NULL, biasadj = FALSE, parallel = FALSE,

#> num.cores = 2, X =y, ...)

The MAXIMUM nonseasonal ARIMA terms (max.p, max.d, max.q) and seasonal ARIMA terms
(max.P, max.D, max.Q) are provided to forecast::auto.arima() via arima_reg() parameters.
Other options and argument can be set using set_engine().

Parameter Notes:
 All values of nonseasonal pdq and seasonal PDQ are maximums. The forecast: :auto.arima()
model will select a value using these as an upper limit.
* xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this
manually). See Fit Details (below).
arima
The engine uses forecast: :Arima().

Function Parameters:

#> function (y, order = c(0, @, @), seasonal = c(@, 0, @), xreg = NULL, include.mean = TRUE,
#> include.drift = FALSE, include.constant, lambda = model$lambda, biasadj = FALSE,
#> method = c(”CSS-ML”, "ML", "CSS"), model = NULL, x = vy, ...)

The nonseasonal ARIMA terms (order) and seasonal ARIMA terms (seasonal) are provided to
forecast::Arima() via arima_reg() parameters. Other options and argument can be set using
set_engine().

Parameter Notes:

* xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this
manually). See Fit Details (below).

e method - The default is set to "ML" (Maximum Likelihood). This method is more robust at
the expense of speed and possible selections may fail unit root inversion testing. Alternatively,
you can add method = "CSS-ML" to evaluate Conditional Sum of Squares for starting values,
then Maximium Likelihood.

22 arima_reg

Fit Details
Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

e fit(y ~date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For
monthly time stamps, seasonal_period = 12, seasonal_period = "12 months”, or seasonal_period
= "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto”: A seasonal period is selected based on the periodicity of the
data (e.g. 12 if monthly)
2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period ="1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate (No xregs, Exogenous Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:

* Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

* XY Interface: fit_xy(x = datal, "date"], y = data$y) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)

The xreg parameter is populated using the fit() or fit_xy() function:

* Only factor, ordered factor, and numeric data will be used as xregs.
* Date and Date-time variables are not used as xregs

e character data should be converted to factor.
Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.1bl (labeled month as a ordered factor).

The month.1bl is an exogenous regressor that can be passed to the arima_reg() using fit():

e fit(y ~date + month.1bl) will pass month.1bl on as an exogenous regressor.

e fit_xy(datal,c("date"”, "month.1bl")], y = data$y) will pass x, where x is a data frame
containing month.1bl and the date feature. Only month.1bl will be used as an exogenous
regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

combine_modeltime_tables

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)

Data

m750 <- m4_monthly %>% filter(id == "M750")

m750

Split Data 80/20

splits <- initial_time_split(m75@, prop = 0.8)

---- AUTO ARIMA ----

Model Spec

model_spec <- arima_reg() %>%
set_engine("auto_arima")

Fit Spec
model_fit <- model_spec

%>%

fit(log(value) ~ date, data = training(splits))

model_fit

---- STANDARD ARIMA ----

Model Spec

model_spec <- arima_reg(

seasonal_period
non_seasonal_ar

non_seasonal_differences =

non_seasonal_ma
seasonal_ar

seasonal_differences =

seasonal_ma
) %%
set_engine("arima")

Fit Spec
model_fit <- model_spec

1
L, W . W =

%>%

fit(log(value) ~ date, data = training(splits))

model_fit

23

combine_modeltime_tables

Combine multiple Modeltime Tables into a single Modeltime Table

24

combine_modeltime_tables

Description

Combine multiple Modeltime Tables into a single Modeltime Table

Usage

combine_modeltime_tables(...)

Arguments

Details

Multiple Modeltime Tables (class md1_time_tbl)

This function combines multiple Modeltime Tables.

* The .model_id will automatically be renumbered to ensure each model has a unique ID.

Only the .model_id, .model, and .model_desc columns will be returned.

Re-Training Models on the Same Datasets

One issue can arise if your models are trained on different datasets. If your models have been trained
on different datasets, you can run modeltime_refit() to train all models on the same data.

Re-Calibrating Models

If your data has been calibrated using modeltime_calibrate(), the . test and .calibration_data
columns will be removed. To re-calibrate, simply run modeltime_calibrate() on the newly com-
bined Modeltime Table.

See Also

combine_modeltime_tables(): Combine 2 or more Modeltime Tables together
add_modeltime_model(): Adds a new row with a new model to a Modeltime Table
drop_modeltime_model(): Drop one or more models from a Modeltime Table

update_modeltime_description(): Updates a description for a model inside a Modeltime
Table

update_modeltime_model(): Updates a model inside a Modeltime Table

pull_modeltime_model(): Extracts a model from a Modeltime Table

Examples

library(tidymodels)
library(timetk)
library(dplyr)
library(lubridate)

Setup
m750 <- m4_monthly %>% filter(id == "M750")

splits <- time_series_split(m750, assess = "3 years”, cumulative = TRUE)

control_modeltime

model_fit_arima <- arima_reg() %>%
set_engine("auto_arima") %>%
fit(value ~ date, training(splits))

model_fit_prophet <- prophet_reg() %>%
set_engine("prophet”) %>%
fit(value ~ date, training(splits))

Multiple Modeltime Tables
model_tbl_1 <- modeltime_table(model_fit_arima)
model_tbl_2 <- modeltime_table(model_fit_prophet)

Combine
combine_modeltime_tables(model_tbl_1, model_tbl_2)

control_modeltime Control aspects of the training process

Description
These functions are matched to the associated training functions:

e control_refit(): Used with modeltime_refit()

e control_fit_workflowset(): Used with modeltime_fit_workflowset()
e control_nested_fit(): Used with modeltime_nested_fit()

e control_nested_refit(): Used with modeltime_nested_refit()

e control_nested_forecast(): Used with modeltime_nested_forecast()

Usage
control_refit(verbose = FALSE, allow_par = FALSE, cores = 1, packages = NULL)

control_fit_workflowset(
verbose = FALSE,
allow_par = FALSE,
cores = 1,
packages = NULL

control_nested_fit(
verbose = FALSE,
allow_par = FALSE,
cores = 1,
packages = NULL

26 control_modeltime

control_nested_refit(
verbose = FALSE,
allow_par = FALSE,
cores =1,
packages = NULL

)

control_nested_forecast(
verbose = FALSE,
allow_par = FALSE,

cores = 1,
packages = NULL
)
Arguments
verbose Logical to control printing.
allow_par Logical to allow parallel computation. Default: FALSE (single threaded).
cores Number of cores for computation. If -1, uses all available physical cores. De-
fault: 1.
packages An optional character string of additional R package names that should be loaded
during parallel processing.
» Packages in your namespace are loaded by default
* Key Packages are loaded by default: tidymodels, parsnip, modeltime,
dplyr, stats, lubridate and timetk.
Value

A List with the control settings.

See Also

 Setting Up Parallel Processing: parallel_start(), [parallel_stop())]

* Training Functions: [modeltime_refit()], [modeltime_fit_workflowset()], [modeltime_nested_fit()],
[modeltime_nested_refit()]

[parallel_stop())]: R:parallel_stop()) [modeltime_refit()]: R:modeltime_refit() [modeltime_fit_workflowset()]:
R:modeltime_fit_workflowset() [modeltime_nested_fit()]: R:modeltime_nested_fit() [modeltime_nested_refit()]:
R:modeltime_nested_refit()

Examples

No parallel processing by default
control_refit()

Allow parallel processing and use all cores
control_refit(allow_par = TRUE, cores = -1)

Set verbosity to show additional training information

create_model_grid 27

control_refit(verbose = TRUE)

Add additional packages used during modeling in parallel processing

- This is useful if your namespace does not load all needed packages

to run models.

- An example is if I use ~“temporal_hierarchy()", which depends on the ~thief" package
control_refit(allow_par = TRUE, packages = "thief")

create_model_grid Helper to make parsnip model specs from a dials parameter grid

Description

Helper to make parsnip model specs from a dials parameter grid

Usage

create_model_grid(grid, f_model_spec, engine_name, ..., engine_params = list())
Arguments

grid A tibble that forms a grid of parameters to adjust

f_model_spec A function name (quoted or unquoted) that specifies a parsnip model specifi-
cation function

engine_name A name of an engine to use. Gets passed to parsnip: :set_engine().

Static parameters that get passed to the f_model_spec

engine_params A list of additional parameters that can be passed to the engine via parsnip: :set_engine(. ..

Details

This is a helper function that combines dials grids with parsnip model specifications. The intent is
to make it easier to generate workflowset objects for forecast evaluations with modeltime_fit_workflowset().

The process follows:

1. Generate a grid (hyperparemeter combination)

2. Use create_model_grid() to apply the parameter combinations to a parsnip model spec and
engine.

The output contains ".model" column that can be used as a list of models inside the workflow_set()

function.

Value

Tibble with a new colum named .models

28 create_xreg_recipe

See Also

e dials::grid_regular(): For making parameter grids.

* workflowsets: :workflow_set(): For creating a workflowset from the .models list stored
in the ".models" column.

* modeltime_fit_workflowset(): For fitting a workflowset to forecast data.

Examples

library(tidymodels)

Parameters that get optimized
grid_tbl <- grid_regular(
learn_rate(),
levels = 3

)

Generate model specs
grid_tbl %>%
create_model_grid(
f_model_spec = boost_tree,
engine_name = "xgboost”,
Static boost_tree() args
mode = "regression”,
Static set_engine() args
engine_params = list(
max_depth = 5

)

create_xreg_recipe Developer Tools for preparing XREGS (Regressors)

Description

These functions are designed to assist developers in extending the modeltime package. create_xregs_recipe()
makes it simple to automate conversion of raw un-encoded features to machine-learning ready fea-
tures.

Usage

create_xreg_recipe(
data,
prepare = TRUE,
clean_names = TRUE,
dummy_encode = TRUE,
one_hot = FALSE

create_xreg_recipe

Arguments

data

prepare
clean_names
dummy_encode

one_hot

Details

29

A data frame

Whether or not to run recipes: :prep() on the final recipe. Default is to pre-
pare. User can set this to FALSE to return an un prepared recipe.

Uses janitor::clean_names() to process the names and improve robustness
to failure during dummy (one-hot) encoding step.

Should factors (categorical data) be

If dummy_encode = TRUE, should the encoding return one column for each fea-
ture or one less column than each feature. Default is FALSE.

The default recipe contains steps to:

b A W N =

Value

. Remove date features

. Clean the column names removing spaces and bad characters
. Convert ordered factors to regular factors

. Convert factors to dummy variables

. Remove any variables that have zero variance

A recipe in either prepared or un-prepared format.

Examples

library(dplyr)
library(timetk)
library(recipes)

library(lubridate)

predictors <- m4_monthly %>%
filter(id == "M750") %>%
select(-value) %>%
mutate(month = month(date, label = TRUE))

predictors

Create default recipe
xreg_recipe_spec <- create_xreg_recipe(predictors, prepare = TRUE)

Extracts the preprocessed training data from the recipe (used in your fit function)
juice_xreg_recipe(xreg_recipe_spec)

Applies the prepared recipe to new data (used in your predict function)
bake_xreg_recipe(xreg_recipe_spec, new_data = predictors)

30 drop_modeltime_model

drop_modeltime_model Drop a Model from a Modeltime Table

Description

Drop a Model from a Modeltime Table

Usage

drop_modeltime_model(object, .model_id)

Arguments

object A Modeltime Table (class md1_time_tbl)

.model_id A numeric value matching the .model_id that you want to drop
See Also

* combine_modeltime_tables(): Combine 2 or more Modeltime Tables together
e add_modeltime_model(): Adds a new row with a new model to a Modeltime Table
* drop_modeltime_model(): Drop one or more models from a Modeltime Table

* update_modeltime_description(): Updates a description for a model inside a Modeltime
Table

* update_modeltime_model(): Updates a model inside a Modeltime Table

e pull_modeltime_model(): Extracts a model from a Modeltime Table

Examples

library(tidymodels)

m750_models %>%
drop_modeltime_model(.model_id = c(2,3))

exp_smoothing

31

exp_smoothing

General Interface for Exponential Smoothing State Space Models

Description

exp_smoothing() is a way to generate a specification of an Exponential Smoothing model before
fitting and allows the model to be created using different packages. Currently the only package is
forecast. Several algorithms are implemented:

* ETS - Automated Exponential Smoothing

* CROSTON -

demand

Croston’s forecast is a special case of Exponential Smoothing for intermittent

» Theta - A special case of Exponential Smoothing with Drift that performed well in the M3

Competition

Usage

exp_smoothing(

mode = "regression”,
seasonal_period = NULL,

error = NULL,
trend = NULL,

season = NULL,
damping = NULL,

smooth_level
smooth_trend

= NULL,
= NULL,

smooth_seasonal = NULL

Arguments

mode

seasonal_period

error

trend
season
damping

smooth_level

A single character string for the type of model. The only possible value for this
model is "regression".

A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided. See Fit Details below.

non

The form of the error term: "auto", "additive", or "multiplicative". If the error is
multiplicative, the data must be non-negative.

non

The form of the trend term: "auto", "additive", "multiplicative" or "none".
The form of the seasonal term: "auto", "additive", "multiplicative" or "none".
Apply damping to a trend: "auto", "damped", or "none".

This is often called the "alpha" parameter used as the base level smoothing factor
for exponential smoothing models.

32 exp_smoothing

smooth_trend This is often called the "beta" parameter used as the trend smoothing factor for
exponential smoothing models.
smooth_seasonal

This is often called the "gamma" parameter used as the seasonal smoothing fac-
tor for exponential smoothing models.

Details

Models can be created using the following engines:

e "ets" (default) - Connects to forecast: :ets()
e "croston" - Connects to forecast::croston()
e "theta" - Connects to forecast: : thetaf ()

* "smooth_es" - Connects to smooth: :es()

Engine Details
The standardized parameter names in modeltime can be mapped to their original names in each
engine:
modeltime forecast::ets forecast::croston() forecast::thetaf() smooth::es()
seasonal_period() ts(frequency) ts(frequency) ts(frequency) ts(frequency)
error(), trend(), season() model (ZZZ’) NA NA model(’ZZZ’)
damping() damped (NULL) NA NA phi
smooth_level() alpha (NULL) alpha (0.1) NA persistence(alpha)
smooth_trend() beta (NULL) NA NA persistence(beta)
smooth_seasonal() gamma (NULL) NA NA persistence(gamma)

Other options can be set using set_engine().
ets (default engine)
The engine uses forecast: :ets().

Function Parameters:

#> function (y, model = "ZZZ", damped = NULL, alpha = NULL, beta = NULL, gamma = NULL,

#> phi = NULL, additive.only = FALSE, lambda = NULL, biasadj = FALSE,

#> lower = c(rep(1e-04, 3), 0.8), upper = c(rep(@.9999, 3), 0.98), opt.crit = c("1ik",

#> "amse"”, "mse", "sigma”, "mae"), nmse = 3, bounds = c("both", "usual”,

#> "admissible”), ic = c("aicc”, "aic", "bic"), restrict = TRUE, allow.multiplicative.trend = FALS
#> use.initial.values = FALSE, na.action = c("na.contiguous”, "na.interp”,

#> "na.fail”), ...)

The main arguments are model and damped are defined using:

non

* error() ="auto", "additive", and "multiplicative" are converted to "Z", "A", and "M"

non

* trend() = "auto", "additive", "multiplicative", and "none" are converted to "Z","A","M" and
HNII

exp_smoothing 33

* season() = "auto", "additive", "multiplicative", and "none" are converted to "Z","A","M" and
llNll
e damping() - "auto", "damped", "none" are converted to NULL, TRUE, FALSE
e smooth_level(), smooth_trend(), and smooth_seasonal() are automatically determined
if not provided. They are mapped to "alpha", "beta" and "gamma", respectively.
By default, all arguments are set to "auto" to perform automated Exponential Smoothing using
in-sample data following the underlying forecast: :ets() automation routine.
Other options and argument can be set using set_engine().

Parameter Notes:

* xreg - This model is not set up to use exogenous regressors. Only univariate models will be
fit.

croston
The engine uses forecast: :croston().

Function Parameters:
#> function (y, h = 10, alpha = 0.1, x = y)

The main arguments are defined using:
* smooth_level(): The "alpha" parameter
Parameter Notes:

» xreg - This model is not set up to use exogenous regressors. Only univariate models will be
fit.
theta
The engine uses forecast: : thetaf ()

Parameter Notes:

* xreg - This model is not set up to use exogenous regressors. Only univariate models will be
fit.
smooth_es
The engine uses smooth: :es().

Function Parameters:

#> function (y, model = "ZZZ", lags = c(frequency(y)), persistence = NULL,
#> phi = NULL, initial = c("optimal”, "backcasting”, "complete”), initialSeason = NULL,

#> ic = c("AICc", "AIC", "BIC", "BICc"), loss = c("likelihood”, "MSE",

#> "MAE", "HAM", "MSEh", "TMSE", "GTMSE"”, "MSCE"), h = 10, holdout = FALSE,
#> bounds = c("usual”, "admissible”, "none"), silent = TRUE, xreg = NULL,
#> regressors = c("use"”, "select”), initialX = NULL, ...)

The main arguments model and phi are defined using:

34 exp_smoothing

non

e error() ="auto", "additive" and "multiplicative" are converted to "Z", "A" and "M"

non non non

e trend() = "auto", "additive", "multiplicative”, "additive_damped", "multiplicative_damped"
and "none" are converted to "Z", "A", "M", "Ad", "Md" and "N".

* season() = "auto", "additive", "multiplicative”, and "none" are converted "Z", "A","M" and
llNll

* damping() - Value of damping parameter. If NULL, then it is estimated.
* smooth_level(), smooth_trend(), and smooth_seasonal() are automatically determined
if not provided. They are mapped to "persistence"("alpha", "beta" and "gamma", respectively).
By default, all arguments are set to "auto" to perform automated Exponential Smoothing using
in-sample data following the underlying smooth: : es() automation routine.
Other options and argument can be set using set_engine().
Parameter Notes:

» xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this
manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

e fit(y ~date)

Seasonal Period Specification
The period can be non-seasonal (seasonal_period = 1 or "none") or seasonal (e.g. seasonal_period
=12 or seasonal_period = "12 months"). There are 3 ways to specify:
1. seasonal_period = "auto": A period is selected based on the periodicity of the data (e.g. 12
if monthly)
2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data
3. seasonal_period ="1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.
Univariate:

For univariate analysis, you must include a date or date-time feature. Simply use:

* Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

* XY Interface: fit_xy(x =datal,"date"], y = datas$y) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
Just for smooth engine.

The xreg parameter is populated using the fit() or fit_xy() function:

* Only factor, ordered factor, and numeric data will be used as xregs.

* Date and Date-time variables are not used as xregs

exp_smoothing 35

e character data should be converted to factor.
Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.1bl (labeled month as a ordered factor).

The month. 1bl is an exogenous regressor that can be passed to the arima_reg() using fit():

e fit(y ~date + month.1bl) will pass month.1bl on as an exogenous regressor.

o fit_xy(datal,c("date”, "month.1bl")], y = data$y) will pass x, where x is a data frame
containing month.1bl and the date feature. Only month.1bl will be used as an exogenous
regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(smooth)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

---- AUTO ETS ----

Model Spec - The default parameters are all set

to "auto” if none are provided

model_spec <- exp_smoothing() %>%
set_engine("ets")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model _fit

---- STANDARD ETS ----

Model Spec

36

model_spec <- exp_smoothing(

seasonal_period = 12,

error = "multiplicative”,

trend = "additive”,

season = "multiplicative”
) %%

set_engine("ets")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

---- CROSTON ----

Model Spec
model_spec <- exp_smoothing(
smooth_level = 0.2
) %%
set_engine("croston”)

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

---- THETA ----

#' # Model Spec
model_spec <- exp_smoothing() %>%
set_engine("theta")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model _fit

#' # ---- SMOOTH ----

#' # Model Spec
model_spec <- exp_smoothing(

seasonal_period = 12,
error = "multiplicative”,
trend = "additive_damped”,

season = "additive"”

exp_smoothing

exp_smoothing_params 37

) %%
set_engine("”smooth_es")

Fit Spec
model_fit <- model_spec %>%

fit(value ~ date, data = training(splits))
model _fit

exp_smoothing_params Tuning Parameters for Exponential Smoothing Models

Description

Tuning Parameters for Exponential Smoothing Models

Usage
error(values = c("additive”, "multiplicative”))
trend(values = c("additive”, "multiplicative”, "none"))

trend_smooth(
values = c("additive”, "multiplicative”, "none", "additive_damped”,
"multiplicative_damped”)

)
season(values = c("additive”, "multiplicative”, "none"))
damping(values = c("none"”, "damped"))

damping_smooth(range = c(@, 2), trans = NULL)

smooth_level(range = c(@0, 1), trans

NULL)

smooth_trend(range = c(@, 1), trans = NULL)

smooth_seasonal(range = c(@, 1), trans = NULL)

Arguments
values A character string of possible values.
range A two-element vector holding the defaults for the smallest and largest possible
values, respectively. If a transformation is specified, these values should be in
the transformed units.
trans A trans object from the scales package, such as scales: : transform_log1@()

or scales::transform_reciprocal(). If not provided, the default is used
which matches the units used in range. If no transformation, NULL.

38 get_arima_description

Details

The main parameters for Exponential Smoothing models are:
e error: The form of the error term: additive", or "multiplicative". If the error is multiplicative,
the data must be non-negative.
* trend: The form of the trend term: "additive", "multiplicative" or "none".
* season: The form of the seasonal term: "additive", "multiplicative" or "none"..
e damping: Apply damping to a trend: "damped", or "none".

» smooth_level: This is often called the "alpha" parameter used as the base level smoothing
factor for exponential smoothing models.

* smooth_trend: This is often called the "beta" parameter used as the trend smoothing factor
for exponential smoothing models.

* smooth_seasonal: This is often called the "gamma" parameter used as the seasonal smooth-
ing factor for exponential smoothing models.

Examples

error()
trend()

season()

get_arima_description Get model descriptions for Arima objects

Description

Get model descriptions for Arima objects

Usage

get_arima_description(object, padding = FALSE)

Arguments

object Objects of class Arima

padding Whether or not to include padding
Source

* Forecast R Package, forecast:::arima.string()

get_model_description
Examples
library(forecast)
arima_fit <- forecast::Arima(1:10)

get_arima_description(arima_fit)

39

get_model_description Get model descriptions for parsnip, workflows & modeltime objects

Description

Get model descriptions for parsnip, workflows & modeltime objects

Usage

get_model_description(object, indicate_training = FALSE, upper_case = TRUE)

Arguments

object Parsnip or workflow objects
indicate_training
Whether or not to indicate if the model has been trained

upper_case Whether to return upper or lower case model descriptions

Examples

library(dplyr)
library(timetk)
library(parsnip)

Model Specification ----

arima_spec <- arima_reg() %>%
set_engine("auto_arima")

get_model_description(arima_spec, indicate_training = TRUE)
Fitted Model ----
m750 <- m4_monthly %>% filter(id == "M750")

arima_fit <- arima_spec %>%
fit(value ~ date, data = m750)

get_model_description(arima_fit, indicate_training = TRUE)

40 log_extractors

get_tbats_description Get model descriptions for TBATS objects

Description

Get model descriptions for TBATS objects

Usage

get_tbats_description(object)

Arguments

object Objects of class tbats

Source

 Forecast R Package, forecast:::as.character.tbats()

log_extractors Log Extractor Functions for Modeltime Nested Tables

Description

Extract logged information calculated during the modeltime_nested_fit(), modeltime_nested_select_best(),
and modeltime_nested_refit() processes.

Usage
extract_nested_test_accuracy(object)
extract_nested_test_forecast(object, .include_actual = TRUE, .id_subset = NULL)
extract_nested_error_report(object)
extract_nested_best_model_report(object)
extract_nested_future_forecast(
object,

.include_actual = TRUE,
.id_subset = NULL

)

extract_nested_modeltime_table(object, .row_id = 1)
extract_nested_train_split(object, .row_id = 1)

extract_nested_test_split(object, .row_id = 1)

m750 41

Arguments

object A nested modeltime table

.include_actual

Whether or not to include the actual data in the extracted forecast. Default:
TRUE.

.id_subset Can supply a vector of id’s to extract forcasts for one or more id’s, rather than
extracting all forecasts. If NULL, extracts forecasts for all id’s.

.row_id The row number to extract from the nested data.
m750 The 750th Monthly Time Series used in the M4 Competition
Description

The 750th Monthly Time Series used in the M4 Competition

Usage

m750

Format
A tibble with 306 rows and 3 variables:
* id Factor. Unique series identifier

* date Date. Timestamp information. Monthly format.

* value Numeric. Value at the corresponding timestamp.

Source

* M4 Competition Website: https://www.unic.ac.cy/iff/research/forecasting/m-competitions/m4/

Examples

m750

42 m750_splits

m750_models Three (3) Models trained on the M750 Data (Training Set)

Description

Three (3) Models trained on the M750 Data (Training Set)

Usage
m750_models

Format
An time_series_cv object with 6 slices of Time Series Cross Validation resamples made on the
training(m750_splits)

Details

m750_models <- modeltime_table(
wflw_fit_arima,
wflw_fit_prophet,
wflw_fit_glmnet

Examples

m750_models

m750_splits The results of train/test splitting the M750 Data

Description

The results of train/test splitting the M750 Data

Usage
m750_splits

Format

An rsplit object split into approximately 23.5-years of training data and 2-years of testing data

Details

library(timetk)
m750_splits <- time_series_split(m750, assess = "2 years”, cumulative = TRUE)

m750_training_resamples 43

Examples

library(rsample)
m750_splits

training(m750_splits)

m750_training_resamples
The Time Series Cross Validation Resamples the M750 Data (Training
Set)

Description

The Time Series Cross Validation Resamples the M750 Data (Training Set)

Usage

m750_training_resamples

Format

An time_series_cv object with 6 slices of Time Series Cross Validation resamples made on the
training(m750_splits)

Details
library(timetk)
m750_training_resamples <- time_series_cv(
data = training(m750_splits),
assess = "2 years",
skip = "2 years",
cumulative = TRUE,
slice_limit = 6
)
Examples
library(rsample)

m750_training_resamples

44 maape_vec

maape Mean Arctangent Absolute Percentage Error

Description

Useful when MAPE returns Inf typically due to intermittent data containing zeros. This is a wrapper
to the function of TSrepr: :maape().

Usage
maape(data, ...)
Arguments
data A data. frame containing the truth and estimate columns.
Not currently in use.
maape_vec Mean Arctangent Absolute Percentage Error
Description

This is basically a wrapper to the function of TSrepr: :maape().

Usage
maape_vec(truth, estimate, na_rm = TRUE, ...)

Arguments
truth The column identifier for the true results (that is numeric).
estimate The column identifier for the predicted results (that is also numeric).
na_rm Not in use... NA values managed by TSrepr: :maape ()

Not currently in use

metric_sets 45

metric_sets Forecast Accuracy Metrics Sets

Description

This is a wrapper for metric_set() with several common forecast / regression accuracy metrics
included. These are the default time series accuracy metrics used with modeltime_accuracy().

Usage

default_forecast_accuracy_metric_set(...)

extended_forecast_accuracy_metric_set(...)

Arguments

Add additional yardstick metrics

Default Forecast Accuracy Metric Set

The primary purpose is to use the default accuracy metrics to calculate the following forecast accu-
racy metrics using modeltime_accuracy():

¢ MAE - Mean absolute error, mae ()

* MAPE - Mean absolute percentage error, mape ()

¢ MASE - Mean absolute scaled error, mase ()

SMAPE - Symmetric mean absolute percentage error, smape ()
* RMSE - Root mean squared error, rmse ()

e RSQ - R-squared, rsq()

Adding additional metrics is possible via

Extended Forecast Accuracy Metric Set

Extends the default metric set by adding:

* MAAPE - Mean Arctangent Absolute Percentage Error, maape(). MAAPE is designed for
intermittent data where MAPE returns Inf.

See Also

* yardstick::metric_tweak() - For modifying yardstick metrics

46

Examples

library(tibble)
library(dplyr)
library(timetk)
library(yardstick)

fake_data <- tibble(

y = c(1:12, 2%1:12),

yhat = c(1 + 1:12, 2x1:12 - 1)
)
---- HOW IT WORKS ----

Default Forecast Accuracy Metric Specification
default_forecast_accuracy_metric_set()

Create a metric summarizer function from the metric set
calc_default_metrics <- default_forecast_accuracy_metric_set()

Apply the metric summarizer to new data
calc_default_metrics(fake_data, y, yhat)

---- ADD MORE PARAMETERS ----

Can create a version of mase() with seasonality = 12 (monthly)
masel2 <- metric_tweak(.name = "masel2”, .fn = mase, m = 12)

Add it to the default metric set
my_metric_set <- default_forecast_accuracy_metric_set(masel2)
my_metric_set

Apply the newly created metric set
my_metric_set(fake_data, y, yhat)

modeltime_accuracy

modeltime_accuracy Calculate Accuracy Metrics

Description

This is a wrapper for yardstick that simplifies time series regression accuracy metric calculations
from a fitted workflow (trained workflow) or model_fit (trained parsnip model).

Usage

modeltime_accuracy(
object,
new_data = NULL,

modeltime_accuracy 47

metric_set = default_forecast_accuracy_metric_set(),
acc_by_id = FALSE,

quiet = TRUE,
)
Arguments
object A Modeltime Table
new_data A tibble to predict and calculate residuals on. If provided, overrides any cali-
bration data.
metric_set A yardstick: :metric_set() that is used to summarize one or more forecast
accuracy (regression) metrics.
acc_by_id Should a global or local model accuracy be produced? (Default: FALSE)
* When FALSE, a global model accuracy is provided.
* If TRUE, a local accuracy is provided group-wise for each time series ID. To
enable local accuracy, an id must be provided during modeltime_calibrate().
quiet Hide errors (TRUE, the default), or display them as they occur?
If new_data is provided, these parameters are passed to modeltime_calibrate()
Details

The following accuracy metrics are included by default via default_forecast_accuracy_metric_set():

* MAE - Mean absolute error, mae ()
* MAPE - Mean absolute percentage error, mape ()
* MASE - Mean absolute scaled error, mase ()

* SMAPE - Symmetric mean absolute percentage error, smape ()

RMSE - Root mean squared error, rmse ()
* RSQ - R-squared, rsq()

Value

A tibble with accuracy estimates.

Examples

library(tidymodels)
library(dplyr)
library(lubridate)
library(timetk)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20

48 modeltime_calibrate

splits <- initial_time_split(m750, prop = 0.8)
--- MODELS ---

Model 1: prophet ----

model_fit_prophet <- prophet_reg() %>%
set_engine(engine = "prophet") %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_prophet
)

---- ACCURACY ----

models_tbl %>%
modeltime_calibrate(new_data = testing(splits)) %>%
modeltime_accuracy(
metric_set = metric_set(mae, rmse, rsq)

)

modeltime_calibrate Preparation for forecasting

Description

Calibration sets the stage for accuracy and forecast confidence by computing predictions and resid-
uals from out of sample data.

Usage
modeltime_calibrate(object, new_data, id = NULL, quiet = TRUE, ...)
Arguments
object A fitted model object that is either:
1. A modeltime table that has been created using modeltime_table()
2. A workflow that has been fit by fit.workflow() or
3. A parsnip model that has been fit using fit.model_spec()
new_data A test data set tibble containing future information (timestamps and actual
values).
id A quoted column name containing an identifier column identifying time series

that are grouped.

modeltime_calibrate 49

quiet Hide errors (TRUE, the default), or display them as they occur?

Additional arguments passed to modeltime_forecast().

Details
The results of calibration are used for:
* Forecast Confidence Interval Estimation: The out of sample residual data is used to calcu-
late the confidence interval. Refer to modeltime_forecast().
* Accuracy Calculations: The out of sample actual and prediction values are used to calculate
performance metrics. Refer to modeltime_accuracy()

The calibration steps include:

1. If not a Modeltime Table, objects are converted to Modeltime Tables internally

2. Two Columns are added:

 .type: Indicates the sample type. This is:

— "Test" if predicted, or

— "Fitted" if residuals were stored during modeling.
e .calibration_data:

— Contains a tibble with Timestamps, Actual Values, Predictions and Residuals calculated
from new_data (Test Data)
— If id is provided, will contain a 5th column that is the identifier variable.

Value

A Modeltime Table (md1_time_tbl) with nested .calibration_data added

Examples

library(dplyr)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m75@, prop = 0.8)

--- MODELS ---

Model 1: prophet ----

model_fit_prophet <- prophet_reg() %>%
set_engine(engine = "prophet") %>%
fit(value ~ date, data = training(splits))

50 modeltime_fit_workflowset

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_prophet
)

---- CALIBRATE ----

calibration_tbl <- models_tbl %>%
modeltime_calibrate(
new_data = testing(splits)
)

---- ACCURACY ----

calibration_tbl %>%
modeltime_accuracy()

---- FORECAST ----

calibration_tbl %>%
modeltime_forecast(
new_data = testing(splits),
actual_data = m750

modeltime_fit_workflowset
Fit a workflowset object to one or multiple time series

Description

This is a wrapper for fit () that takes a workflowset object and fits each model on one or multiple
time series either sequentially or in parallel.

Usage

modeltime_fit_workflowset(
object,
data,
control = control_fit_workflowset()

)

modeltime_fit_workflowset 51

Arguments
object A workflow_set object, generated with the workflowsets::workflow_set func-
tion.
data A tibble that contains data to fit the models.
Not currently used.
control An object used to modify the fitting process. See control_fit_workflowset().
Value

A Modeltime Table containing one or more fitted models.

See Also

control_fit_workflowset()

Examples

library(tidymodels)
library(workflowsets)
library(dplyr)
library(lubridate)
library(timetk)

data_set <- m4_monthly

SETUP WORKFLOWSETS

recl <- recipe(value ~ date + id, data_set) %>%
step_mutate(date_num = as.numeric(date)) %>%
step_mutate(month_lbl = lubridate::month(date, label = TRUE)) %>%
step_dummy(all_nominal(), one_hot = TRUE)

mod1 <- linear_reg() %>% set_engine("1lm")

mod2 <- prophet_reg() %>% set_engine("prophet"”)

wfsets <- workflowsets: :workflow_set(

preproc = list(recl = recl),
models = list(

mod1 = mod1,
mod2 = mod2
),
cross = TRUE

)

FIT WORKFLOWSETS
- Returns a Modeltime Table with fitted workflowsets

wfsets %>% modeltime_fit_workflowset(data_set)

52

modeltime_forecast

modeltime_forecast

Forecast future data

Description

Usage

modeltime_forecast(

object,

new_data = NULL,

h = NULL,

actual_data = NULL,

conf_interval = 0.95,

conf_by_id = FALSE,

conf_method = "conformal_default”,
keep_data = FALSE,

arrange_index = FALSE,

Arguments

new_data

actual_data

conf_interval

conf_by_id

conf_method

object A Modeltime Table

bration data.

The goal of modeltime_forecast() is to simplify the process of forecasting future data.

A tibble containing future information to forecast. If NULL, forecasts the cali-

The forecast horizon (can be used instead of new_data for time series with no
exogenous regressors). Extends the calibration data h periods into the future.

Reference data that is combined with the output tibble and given a . key = "actual”

An estimated confidence interval based on the calibration data. This is designed

to estimate future confidence from out-of-sample prediction error.

Whether or not to produce confidence interval estimates by an ID feature.

* When FALSE, a global model confidence interval is provided.

* If TRUE, a local confidence interval is provided group-wise for each time se-
ries ID. To enable local confidence interval, an id must be provided during

modeltime_calibrate().

tions. Choose one of:

Algorithm used to produce confidence intervals. All CI's are Conformal Predic-

* conformal_default: Uses gnorm() to compute quantiles from out-of-

sample (test set) residuals.

* conformal_split: Uses the split method split conformal inference method

described by Lei et al (2018)

modeltime_forecast 53

keep_data Whether or not to keep the new_data and actual_data as extra columns in the
results. This can be useful if there is an important feature in the new_data and
actual_data needed when forecasting. Default: FALSE.

arrange_index Whether or not to sort the index in rowwise chronological order (oldest to newest)
or to keep the original order of the data. Default: FALSE.

Not currently used

Details

The modeltime_forecast() function prepares a forecast for visualization with with plot_modeltime_forecast().
The forecast is controlled by new_data or h, which can be combined with existing data (controlled

by actual_data). Confidence intervals are included if the incoming Modeltime Table has been

calibrated using modeltime_calibrate(). Otherwise confidence intervals are not estimated.

New Data
When forecasting you can specify future data using new_data. This is a future tibble with date

column and columns for xregs extending the trained dates and exogonous regressors (xregs) if used.

* Forecasting Evaluation Data: By default, the new_data will use the .calibration_data if
new_data is not provided. This is the equivalent of using rsample: :testing() for getting
test data sets.

* Forecasting Future Data: See timetk: : future_frame() for creating future tibbles.

* Xregs: Can be used with this method

H (Horizon)

When forecasting, you can specify h. This is a phrase like "1 year", which extends the .calibration_data
(1st priority) or the actual_data (2nd priority) into the future.

* Forecasting Future Data: All forecasts using h are extended after the calibration data or
actual_data.

» Extending .calibration_data - Calibration data is given st priority, which is desirable after
refitting with modeltime_refit(). Internally, a call is made to timetk: : future_frame() to
expedite creating new data using the date feature.

* Extending actual_data - If h is provided, and the modeltime table has not been calibrated,
the "actual_data" will be extended into the future. This is useful in situations where you want
to go directly from modeltime_table() to modeltime_forecast() without calibrating or
refitting.

* Xregs: Cannot be used because future data must include new xregs. If xregs are desired, build
a future data frame and use new_data.
Actual Data

This is reference data that contains the true values of the time-stamp data. It helps in visualizing the
performance of the forecast vs the actual data.

When h is used and the Modeltime Table has not been calibrated, then the actual data is extended
into the future periods that are defined by h.

Confidence Interval Estimation

54 modeltime_forecast

Confidence intervals (.conf_lo, .conf_hi) are estimated based on the normal estimation of the
testing errors (out of sample) from modeltime_calibrate(). The out-of-sample error estimates
are then carried through and applied to applied to any future forecasts.

The confidence interval can be adjusted with the conf_interval parameter. The algorithm used to
produce confidence intervals can be changed with the conf_method parameter.

Conformal Default Method:

When conf_method = "conformal_default” (default), this method uses qnorm() to produce a
95% confidence interval by default. It estimates a normal (Gaussian distribution) based on the
out-of-sample errors (residuals).

The confidence interval is mean-adjusted, meaning that if the mean of the residuals is non-zero, the
confidence interval is adjusted to widen the interval to capture the difference in means.

Conformal Split Method:

When conf_method = "conformal_split, this method uses the split conformal inference method
described by Lei ef al (2018). This is also implemented in the probably R package’s int_conformal_split()
function.

What happens to the confidence interval after refitting models?

Refitting has no affect on the confidence interval since this is calculated independently of the refitted
model. New observations typically improve future accuracy, which in most cases makes the out-of-
sample confidence intervals conservative.

Keep Data

Include the new data (and actual data) as extra columns with the results of the model forecasts. This
can be helpful when the new data includes information useful to the forecasts. An example is when
forecasting Panel Data and the new data contains ID features related to the time series group that
the forecast belongs to.

Arrange Index

By default, modeltime_forecast() keeps the original order of the data. If desired, the user can
sort the output by .key, .model_id and . index.
Value

A tibble with predictions and time-stamp data. For ease of plotting and calculations, the column
names are transformed to:

* .key: Values labeled either "prediction" or "actual"
* .index: The timestamp index.

e .value: The value being forecasted.

Additionally, if the Modeltime Table has been previously calibrated using modeltime_calibrate(),
you will gain confidence intervals.

e .conf_lo: The lower limit of the confidence interval.

e .conf_hi: The upper limit of the confidence interval.
Additional descriptive columns are included:

e .model_id: Model ID from the Modeltime Table

modeltime_forecast 55

e .model_desc: Model Description from the Modeltime Table
Unnecessary columns are dropped to save space:

e .model

e .calibration_data

References
Lei, Jing, et al. "Distribution-free predictive inference for regression." Journal of the American
Statistical Association 113.523 (2018): 1094-1111.

Examples

library(dplyr)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: prophet ----

model_fit_prophet <- prophet_reg() %>%
set_engine(engine = "prophet”) %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_prophet
)

---- CALIBRATE ----

calibration_tbl <- models_tbl %>%
modeltime_calibrate(new_data = testing(splits))

---- ACCURACY ----

calibration_tbl %>%
modeltime_accuracy()

---- FUTURE FORECAST ----

calibration_tbl %>%
modeltime_forecast(

56 modeltime_nested_fit

new_data = testing(splits),
actual_data = m750
)
---- ALTERNATIVE: FORECAST WITHOUT CONFIDENCE INTERVALS ----

Skips Calibration Step, No Confidence Intervals

models_tbl %>%
modeltime_forecast(
new_data = testing(splits),
actual_data = m750
)

---- KEEP NEW DATA WITH FORECAST ----
Keeps the new data. Useful if new data has information
like ID features that should be kept with the forecast data

calibration_tbl %>%
modeltime_forecast(
new_data = testing(splits),
keep_data = TRUE

modeltime_nested_fit Fit Tidymodels Workflows to Nested Time Series

Description

Fits one or more tidymodels workflow objects to nested time series data using the following pro-
cess:
1. Models are iteratively fit to training splits.

2. Accuracy is calculated on testing splits and is logged. Accuracy results can be retrieved with
extract_nested_test_accuracy()

3. Any model that returns an error is logged. Error logs can be retrieved with extract_nested_error_report()
4. Forecast is predicted on testing splits and is logged. Forecast results can be retrieved with

extract_nested_test_forecast()
Usage

modeltime_nested_fit(
nested_data,

model_list = NULL,

metric_set = default_forecast_accuracy_metric_set(),
conf_interval = 0.95,

conf_method = "conformal_default”,

control = control_nested_fit()

modeltime_nested_forecast 57

Arguments
nested_data Nested time series data
Tidymodels workflow objects that will be fit to the nested time series data.
model_list Optionally, a 1ist () of Tidymodels workflow objects can be provided
metric_set A yardstick::metric_set() that is used to summarize one or more forecast

accuracy (regression) metrics.

conf_interval An estimated confidence interval based on the calibration data. This is designed
to estimate future confidence from out-of-sample prediction error.

conf_method Algorithm used to produce confidence intervals. All CI’s are Conformal Predic-
tions. Choose one of:

* conformal_default: Uses gnorm() to compute quantiles from out-of-
sample (test set) residuals.

* conformal_split: Uses the split method split conformal inference method
described by Lei er al (2018)

control Used to control verbosity and parallel processing. See control_nested_fit().

Details

Preparing Data for Nested Forecasting:

Use extend_timeseries(),nest_timeseries(), and split_nested_timeseries() for prepar-
ing data for Nested Forecasting. The structure must be a nested data frame, which is suppplied in
modeltime_nested_fit(nested_data).

Fitting Models:
Models must be in the form of tidymodels workflow objects. The models can be provided in
two ways:

1. Using ... (dots): The workflow objects can be provided as dots.

2. Usingmodel_list parameter: You can supply one or more workflow objects that are wrapped
inalist().

Controlling the fitting process:

A control object can be provided during fitting to adjust the verbosity and parallel processing.
See control_nested_fit().

modeltime_nested_forecast
Modeltime Nested Forecast

Description

Make a new forecast from a Nested Modeltime Table.

58 modeltime_nested_forecast

Usage

modeltime_nested_forecast(
object,
h = NULL,
include_actual = TRUE,
conf_interval = 0.95,
conf_method = "conformal_default”,
id_subset = NULL,
control = control_nested_forecast()

)
Arguments
object A Nested Modeltime Table
h The forecast horizon. Extends the "trained on" data "h" periods into the future.

include_actual Whether or not to include the ".actual_data" as part of the forecast. If FALSE,
just returns the forecast predictions.
conf_interval An estimated confidence interval based on the calibration data. This is designed
to estimate future confidence from out-of-sample prediction error.
conf_method Algorithm used to produce confidence intervals. All CI's are Conformal Predic-
tions. Choose one of:
e conformal_default: Uses gnorm() to compute quantiles from out-of-
sample (test set) residuals.
* conformal_split: Uses the split method split conformal inference method
described by Lei et al (2018)
id_subset A sequence of ID’s from the modeltime table to subset the forecasting process.
This can speed forecasts up.

control Used to control verbosity and parallel processing. See control_nested_forecast().

Details

This function is designed to help users that want to make new forecasts other than those that are
created during the logging process as part of the Nested Modeltime Workflow.

Logged Forecasts:
The logged forecasts can be extracted using:
* extract_nested_future_forecast(): Extracts the future forecast created after refitting
with modeltime_nested_refit().
e extract_nested_test_forecast(): Extracts the test forecast created after initial fitting
with modeltime_nested_fit().

The problem is that these forecasts are static. The user would need to redo the fitting, model selec-
tion, and refitting process to obtain new forecasts. This is why modeltime_nested_forecast()
exists. So you can create a new forecast without retraining any models.

Nested Forecasts:

The main arguments is h, which is a horizon that specifies how far into the future to make the new
forecast.

modeltime_nested_refit 59

e If h =NULL, a logged forecast will be returned
» If h =12, a new forecast will be generated that extends each series 12-periods into the future.
e If h="2years", a new forecast will be generated that extends each series 2-years into the
future.
Use the id_subset to filter the Nested Modeltime Table object to just the time series of interest.

Use the conf_interval to override the logged confidence interval. Note that this will have no
effect if h = NULL as logged forecasts are returned. So be sure to provide h if you want to update
the confidence interval.

Use the control argument to apply verbosity during the forecasting process and to run forecasts
in parallel. Generally, parallel is better if many forecasts are being generated.

modeltime_nested_refit
Refits a Nested Modeltime Table

Description
Refits a Nested Modeltime Table to actual data using the following process:

1. Models are iteratively refit to .actual_data.
2. Any model that returns an error is logged. Errors can be retrieved with extract_nested_error_report()

3. Forecast is predicted on future_data and is logged. Forecast can be retrieved with extract_nested_future_forecast(

Usage

modeltime_nested_refit(object, control = control_nested_refit())

Arguments
object A Nested Modeltime Table
control Used to control verbosity and parallel processing. See control_nested_refit().

modeltime_nested_select_best
Select the Best Models from Nested Modeltime Table

Description

Finds the best models for each time series group in a Nested Modeltime Table using a metric that
the user specifies.
* Logs the best results, which can be accessed with extract_nested_best_model_report()

o If filter_test_forecasts = TRUE, updates the test forecast log, which can be accessed
extract_nested_test_forecast()

60 modeltime_refit

Usage
modeltime_nested_select_best(
object,
metric = "rmse”,

minimize = TRUE,
filter_test_forecasts = TRUE

)
Arguments

object A Nested Modeltime Table

metric A metric to minimize or maximize. By default available metrics are:
e "rmse" (default)
* "mae"
* "mape"
* "mase"
* "smape"
* "rsq"

minimize Whether to minimize or maximize. Default: TRUE (minimize).

filter_test_forecasts

Whether or not to update the test forecast log to filter only the best forecasts.
Default: TRUE.

modeltime_refit Refit one or more trained models to new data

Description

This is a wrapper for fit() that takes a Modeltime Table and retrains each model on new data
re-using the parameters and preprocessing steps used during the training process.

Usage

modeltime_refit(object, data, ..., control = control_refit())
Arguments

object A Modeltime Table

data A tibble that contains data to retrain the model(s) using.

Additional arguments to control refitting.

Ensemble Model Spec (modeltime.ensemble):

When making a meta-learner with modeltime.ensemble: :ensemble_model_spec(),

used to pass resamples argument containing results from modeltime.resample: :modeltime_fit_resa

control Used to control verbosity and parallel processing. See control_refit().

modeltime_refit 61

Details

Refitting is an important step prior to forecasting time series models. The modeltime_refit()
function makes it easy to recycle models, retraining on new data.

Recycling Parameters

Parameters are recycled during retraining using the following criteria:

* Automated models (e.g. "auto arima") will have parameters recalculated.
* Non-automated models (e.g. "arima") will have parameters preserved.

* All preprocessing steps will be reused on the data

Refit

The modeltime_refit() function is used to retrain models trained with fit().
Refit XY

The XY format is not supported at this time.

Value

A Modeltime Table containing one or more re-trained models.

See Also

control_refit()

Examples

library(dplyr)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

model_fit_prophet <- prophet_reg() %>%
set_engine(engine = "prophet") %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_prophet
)

62 modeltime_residuals

---- CALIBRATE ----
- Calibrate on training data set

calibration_tbl <- models_tbl %>%
modeltime_calibrate(new_data = testing(splits))
---- REFIT ----

- Refit on full data set

refit_tbl <- calibration_tbl %>%
modeltime_refit(m750)

modeltime_residuals Extract Residuals Information

Description

This is a convenience function to unnest model residuals

Usage
modeltime_residuals(object, new_data = NULL, quiet = TRUE, ...)
Arguments
object A Modeltime Table
new_data A tibble to predict and calculate residuals on. If provided, overrides any cali-
bration data.
quiet Hide errors (TRUE, the default), or display them as they occur?
Not currently used.
Value
A tibble with residuals.
Examples
library(dplyr)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data

modeltime_residuals_test 63

m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: prophet ----

model_fit_prophet <- prophet_reg() %>%
set_engine(engine = "prophet") %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_prophet

)
---- RESIDUALS ----
In-Sample

models_tbl %>%
modeltime_calibrate(new_data = training(splits)) %>%
modeltime_residuals() %>%
plot_modeltime_residuals(.interactive = FALSE)

Out-of-Sample

models_tbl %>%
modeltime_calibrate(new_data = testing(splits)) %>%
modeltime_residuals() %>%
plot_modeltime_residuals(.interactive = FALSE)

modeltime_residuals_test
Apply Statistical Tests to Residuals

Description

This is a convenience function to calculate some statistical tests on the residuals models. Currently,
the following statistics are calculated: the shapiro.test to check the normality of the residuals, the
box-pierce and ljung-box tests and the durbin watson test to check the autocorrelation of the resid-
uals. In all cases the p-values are returned.

Usage

modeltime_residuals_test(object, new_data = NULL, lag = 1, fitdf =0, ...)

64 modeltime_residuals_test

Arguments
object A tibble extracted from modeltime::modeltime_residuals().
new_data A tibble to predict and calculate residuals on. If provided, overrides any cali-
bration data.
lag The statistic will be based on lag autocorrelation coefficients. Default: 1 (Ap-
plies to Box-Pierce, Ljung-Box, and Durbin-Watson Tests)
fitdf Number of degrees of freedom to be subtracted. Default: 0 (Applies Box-Pierce
and Ljung-Box Tests)
Not currently used
Details

Shapiro-Wilk Test

The Shapiro-Wilk tests the Normality of the residuals. The Null Hypothesis is that the residuals are
normally distributed. A low P-Value below a given significance level indicates the values are NOT
Normally Distributed.

If the p-value > 0.05 (good), this implies that the distribution of the data are not significantly
different from normal distribution. In other words, we can assume the normality.

Box-Pierce and Ljung-Box Tests Tests

The Ljung-Box and Box-Pierce tests are methods that test for the absense of autocorrelation in
residuals. A low p-value below a given significance level indicates the values are autocorrelated.

If the p-value > 0.05 (good), this implies that the residuals of the data are are independent. In other
words, we can assume the residuals are not autocorrelated.

For more information about the parameters associated with the Box Pierce and Ljung Box tests
check ?Box.Test

Durbin-Watson Test

The Durbin-Watson test is a method that tests for the absense of autocorrelation in residuals. The
Durbin Watson test reports a test statistic, with a value from O to 4, where:

* 2 is no autocorrelation (good)
* From 0 to <2 is positive autocorrelation (common in time series data)

* From >2 to 4 is negative autocorrelation (less common in time series data)

Value

A tibble with with the p-values of the calculated statistical tests.

See Also

stats::shapiro.test(), stats: :Box.test()

modeltime_table 65

Examples

library(dplyr)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m75@, prop = 0.9)

--- MODELS ---

Model 1: prophet ----

model_fit_prophet <- prophet_reg() %>%
set_engine(engine = "prophet"”) %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_prophet

)
---- RESIDUALS ----
In-Sample

models_tbl %>%
modeltime_calibrate(new_data = training(splits)) %>%
modeltime_residuals() %>%
modeltime_residuals_test()

Out-of-Sample

models_tbl %>%
modeltime_calibrate(new_data = testing(splits)) %>%
modeltime_residuals() %>%
modeltime_residuals_test()

modeltime_table Scale forecast analysis with a Modeltime Table

Description

Designed to perform forecasts at scale using models created with modeltime, parsnip, workflows,
and regression modeling extensions in the tidymodels ecosystem.

66 modeltime_table

Usage

modeltime_table(...)

as_modeltime_table(.1)

Arguments
Fitted parsnip model or workflow objects
.1 A list containing fitted parsnip model or workflow objects
Details

modeltime_table():

1. Creates a table of models

2. Validates that all objects are models (parsnip or workflows objects) and all models have been
fitted (trained)

3. Provides an ID and Description of the models

as_modeltime_table():

Converts a 1ist of models to a modeltime table. Useful if programatically creating Modeltime
Tables from models stored in a 1list.

Examples

library(dplyr)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m75@, prop = 0.9)

--- MODELS ---

Model 1: prophet ----

model_fit_prophet <- prophet_reg() %>%
set_engine(engine = "prophet"”) %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

Make a Modeltime Table

models_tbl <- modeltime_table(
model_fit_prophet

)

naive_reg 67

Can also convert a list of models
list(model_fit_prophet) %>%
as_modeltime_table()

---- CALIBRATE ----

calibration_tbl <- models_tbl %>%
modeltime_calibrate(new_data = testing(splits))

---- ACCURACY ----

calibration_tbl %>%
modeltime_accuracy()

---- FORECAST ----

calibration_tbl %>%
modeltime_forecast(
new_data = testing(splits),
actual_data = m750

naive_reg General Interface for NAIVE Forecast Models

Description

naive_reg() is a way to generate a specification of an NAIVE or SNAIVE model before fitting
and allows the model to be created using different packages.

Usage
naive_reg(mode = "regression”, id = NULL, seasonal_period = NULL)
Arguments
mode A single character string for the type of model. The only possible value for this
model is "regression".
id An optional quoted column name (e.g. "id") for identifying multiple time series

(i.e. panel data).
seasonal_period

SNAIVE only. A seasonal frequency. Uses "auto" by default. A character phrase
of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time
variable is provided. See Fit Details below.

68 naive_reg

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For naive_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

* "naive" (default) - Performs a NAIVE forecast

¢ "snaive" - Performs a Seasonal NAIVE forecast

Engine Details
naive (default engine)

* The engine uses naive_fit_impl()

* The NAIVE implementation uses the last observation and forecasts this value forward.

* The id can be used to distinguish multiple time series contained in the data

* The seasonal_period is not used but provided for consistency with the SNAIVE implemen-
tation

snaive (default engine)

* The engine uses snaive_fit_impl()

* The SNAIVE implementation uses the last seasonal series in the data and forecasts this se-
quence of observations forward

* The id can be used to distinguish multiple time series contained in the data

* The seasonal_period is used to determine how far back to define the repeated series. This
can be a numeric value (e.g. 28) or a period (e.g. "1 month")

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

e fit(y ~date)

ID features (Multiple Time Series, Panel Data)
The id parameter is populated using the fit() or fit_xy() function:
ID Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),

3. series_id (a unique identifer that identifies each time series in your data).
The series_id can be passed to the naive_reg() using fit():

* naive_reg(id = "series_id") specifes that the series_id column should be used to iden-
tify each time series.

naive_reg 69

e fit(y ~date + series_id) will pass series_id on to the underlying naive or snaive func-
tions.
Seasonal Period Specification (snaive)

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For
monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period
= "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto”: A seasonal period is selected based on the periodicity of the
data (e.g. 12 if monthly)
2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data
3. seasonal_period ="1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.
External Regressors (Xregs)

These models are univariate. No xregs are used in the modeling process.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

---- NAIVE ----

Model Spec
model_spec <- naive_reg() %>%
set_engine("naive")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

---- SEASONAL NAIVE ----

Model Spec
model_spec <- naive_reg(

70 new_modeltime_bridge

id = "id",
seasonal_period = 12
) %%

set_engine("snaive")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date + id, data = training(splits))
model_fit

new_modeltime_bridge Constructor for creating modeltime models

Description
These functions are used to construct new modeltime bridge functions that connect the tidymodels
infrastructure to time-series models containing date or date-time features.

Usage

new_modeltime_bridge(class, models, data, extras = NULL, desc = NULL)

Arguments
class A class name that is used for creating custom printing messages
models A list containing one or more models
data A data frame (or tibble) containing 4 columns: (date column with name that
matches input data), .actual, fitted, and .residuals.
extras An optional list that is typically used for transferring preprocessing recipes to
the predict method.
desc An optional model description to appear when printing your modeltime objects
Examples
library(dplyr)
library(lubridate)
library(timetk)

Im_model <- Im(value ~ as.numeric(date) + hour(date) + wday(date, label = TRUE),
data = taylor_30_min)

data = tibble(

date = taylor_30_min$date, # Important - The column name must match the modeled data
These are standardized names: .actual, .fitted, .residuals
.actual = taylor_30_min$value,
.fitted = Im_model$fitted.values %>% as.numeric(),

.residuals = lm_model$residuals %>% as.numeric()

nnetar_params 71

)

new_modeltime_bridge(
class = "lm_time_series_impl”,
models = list(model_1 = 1m_model),
data = data,
extras = NULL

)

nnetar_params Tuning Parameters for NNETAR Models
Description

Tuning Parameters for NNETAR Models

Usage
num_networks(range = c(1L, 100L), trans = NULL)

Arguments
range A two-element vector holding the defaults for the smallest and largest possible
values, respectively. If a transformation is specified, these values should be in
the transformed units.
trans A trans object from the scales package, such as scales: : transform_log1@()
or scales::transform_reciprocal(). If not provided, the default is used
which matches the units used in range. If no transformation, NULL.
Details

The main parameters for NNETAR models are:

nn

* non_seasonal_ar: Number of non-seasonal auto-regressive (AR) lags. Often denoted "p" in
pdg-notation.

* seasonal_ar: Number of seasonal auto-regressive (SAR) lags. Often denoted "P" in PDQ-
notation.

* hidden_units: An integer for the number of units in the hidden model.

* num_networks: Number of networks to fit with different random starting weights. These are
then averaged when producing forecasts.

* penalty: A non-negative numeric value for the amount of weight decay.

* epochs: An integer for the number of training iterations.

See Also

non_seasonal_ar(), seasonal_ar(),dials: :hidden_units(),dials: :penalty(),dials: :epochs()

72

Examples

num_networks()

nnetar_reg

nnetar_reg

General Interface for NNETAR Regression Models

Description

Usage

nnetar_reg(

mode = "regression”,
seasonal_period = NULL,
non_seasonal_ar = NULL,
seasonal_ar = NULL,
hidden_units = NULL,
num_networks = NULL,
penalty = NULL,

epochs = NULL

Arguments

mode

seasonal_ar

hidden_units

num_networks

penalty

epochs

seasonal_period

nnetar_reg() is a way to generate a specification of an NNETAR model before fitting and allows
the model to be created using different packages. Currently the only package is forecast.

A single character string for the type of model. The only possible value for this
model is "regression".

A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is

provided. See Fit Details below.
non_seasonal_ar

The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in

pdg-notation.

An integer for the number of units in the hidden model.

A non-negative numeric value for the amount of weight decay.

An integer for the number of training iterations.

The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in
PDQ-notation.

Number of networks to fit with different random starting weights. These are
then averaged when producing forecasts.

nnetar_reg 73

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For nnetar_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:
e "nnetar" (default) - Connects to forecast: :nnetar()

Main Arguments

The main arguments (tuning parameters) for the model are the parameters in nnetar_reg() func-
tion. These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each
engine:

modeltime forecast::nnetar
seasonal_period ts(frequency)
non_seasonal_ar p (1)

seasonal_ar P (1)
hidden_units size (10)
num_networks repeats (20)
epochs maxit (100)
penalty decay (0)

Other options can be set using set_engine().
nnetar
The engine uses forecast: :nnetar().

Function Parameters:

#> function (y, p, P = 1, size, repeats = 20, xreg = NULL, lambda = NULL,
#> model = NULL, subset = NULL, scale.inputs = TRUE, x =y, ...)

Parameter Notes:
* xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this
manually). See Fit Details (below).
* size - Is set to 10 by default. This differs from the forecast implementation
* pandP - Are set to 1 by default.

* maxit and decay are nnet: :nnet parameters that are exposed in the nnetar_reg() interface.
These are key tuning parameters.

74 nnetar_reg

Fit Details
Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

e fit(y ~date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For
monthly time stamps, seasonal_period = 12, seasonal_period = "12 months”, or seasonal_period
= "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto”: A seasonal period is selected based on the periodicity of the
data (e.g. 12 if monthly)
2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period ="1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate (No xregs, Exogenous Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:

* Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

* XY Interface: fit_xy(x = datal, "date"], y = data$y) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)

The xreg parameter is populated using the fit() or fit_xy() function:

* Only factor, ordered factor, and numeric data will be used as xregs.
* Date and Date-time variables are not used as xregs

e character data should be converted to factor.
Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.1bl (labeled month as a ordered factor).

The month. 1bl is an exogenous regressor that can be passed to the nnetar_reg() using fit():

e fit(y ~date + month.1bl) will pass month.1bl on as an exogenous regressor.

e fit_xy(datal,c("date"”, "month.1bl")], y = data$y) will pass x, where x is a data frame
containing month.1bl and the date feature. Only month.1bl will be used as an exogenous
regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

panel_tail

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

---- NNETAR ----

Model Spec
model_spec <- nnetar_reg() %>%
set_engine("nnetar”)

Fit Spec
set.seed(123)
model_fit <- model_spec %>%
fit(log(value) ~ date, data = training(splits))
model _fit

panel_tail Filter the last N rows (Tail) for multiple time series

Description

Filter the last N rows (Tail) for multiple time series

Usage

panel_tail(data, id, n)

Arguments
data A data frame
id An "id" feature indicating which column differentiates the time series panels
n The number of rows to filter

Value

A data frame

76

See Also

* recursive() - used to generate recursive autoregressive models

Examples
library(timetk)
Get the last 6 observations from each group

m4_monthly %>%
panel_tail(id = id, n = 6)

parallel_start

parallel_start Start parallel clusters using parallel package

Description

Start parallel clusters using parallel package

Usage

parallel_start(

.method = c("parallel”, "spark"),
.export_vars = NULL,
.packages = NULL

)

parallel_stop()

Arguments

Parameters passed to underlying functions (See Details Section)
.method The method to create the parallel backend. Supports:

¢ "parallel" - Uses the parallel and doParallel packages
» "spark" - Uses the sparklyr package

.export_vars Environment variables that can be sent to the workers

.packages Packages that can be sent to the workers

Parallel (.method = "parallel”)
Performs 3 Steps:

1. Makes clusters using parallel: :makeCluster(...). The parallel_start(
to parallel: :makeCluster(...).
2. Registers clusters using doParallel: :registerDoParallel().

3. Adds .libPaths() using parallel::clusterCall().

...) are passed

parse_index 77

Spark (.method = "spark”)

* Important, make sure to create a spark connection using sparklyr: :spark_connect().

* Pass the connection object as the first argument. For example, parallel_start(sc, .method
= "spark”").

* The parallel_start(...) are passed to sparklyr: :registerDoSpark(...).

Examples

Starts 2 clusters
parallel_start(2)

Returns to sequential processing
parallel_stop()

parse_index Developer Tools for parsing date and date-time information

Description

These functions are designed to assist developers in extending the modeltime package.

Usage

parse_index_from_data(data)

parse_period_from_index(data, period)

Arguments
data A data frame
period A period to calculate from the time index. Numeric values are returned as-is.
"auto" guesses a numeric value from the index. A time-based phrase (e.g. "7
days") calculates the number of timestamps that typically occur within the time-
based phrase.
Value

* parse_index_from_data(): Returns a tibble containing the date or date-time column.

* parse_period_from_index(): Returns the numeric period from a tibble containing the index.

78 plot_modeltime_forecast

Examples

library(dplyr)
library(timetk)

predictors <- m4_monthly %>%
filter(id == "M750") %>%
select(-value)

index_tbl <- parse_index_from_data(predictors)
index_tbl

period <- parse_period_from_index(index_tbl, period = "1 year")
period

plot_modeltime_forecast
Interactive Forecast Visualization

Description

This is a wrapper for timetk::plot_time_series() that generates an interactive (plotly) or
static (ggplot2) plot with the forecasted data.

Usage

plot_modeltime_forecast(
.data,
.conf_interval_show = TRUE,
.conf_interval_fill = "grey20",
.conf_interval_alpha = 0.2,
.smooth = FALSE,
.legend_show = TRUE,
.legend_max_width = 40,
.facet_ncol =1,
.facet_nrow = 1,
.facet_scales = "free_y",
.title = "Forecast Plot”,
.x_lab = "",
.y_lab = "",
.color_lab = "Legend",
.interactive = TRUE,
.plotly_slider = FALSE,
.trelliscope = FALSE,
.trelliscope_params = list(),

plot_modeltime_forecast 79

Arguments

.data

A tibble that is the output of modeltime_forecast()

.conf_interval_show

Logical. Whether or not to include the confidence interval as a ribbon.

.conf_interval _fill

Fill color for the confidence interval

.conf_interval_alpha

.smooth

.legend_show

Fill opacity for the confidence interval. Range (0, 1).

Logical - Whether or not to include a trendline smoother. Uses See smooth_vec()
to apply a LOESS smoother.

Logical. Whether or not to show the legend. Can save space with long model
descriptions.

.legend_max_width

.facet_ncol
.facet_nrow

.facet_scales

.title
.x_lab
.y_lab
.color_lab

.interactive

.plotly_slider

.trelliscope

Numeric. The width of truncation to apply to the legend text.
Number of facet columns.
Number of facet rows (only used for . trelliscope = TRUE)

Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
"free_x"

Title for the plot

X-axis label for the plot

Y-axis label for the plot

Legend label if a color_var is used.

Returns either a static (ggplot2) visualization or an interactive (plotly) visu-
alization

If TRUE, returns a plotly date range slider.

Returns either a normal plot or a trelliscopejs plot (great for many time series)
Must have trelliscopejs installed.

.trelliscope_params

Value

Pass parameters to the trelliscopejs::facet_trelliscope() function as a
list (). The only parameters that cannot be passed are:

* ncol: use .facet_ncol

e nrow: use .facet_nrow

* scales: use facet_scales

e as_plotly: use .interactive

Additional arguments passed to timetk: :plot_time_series().

A static ggplot2 plot or an interactive plotly plot containing a forecast

80

Examples

library(dplyr)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: prophet ----

model_fit_prophet <- prophet_reg() %>%
set_engine(engine = "prophet"”) %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_prophet
)

---- FORECAST ----

models_tbl %>%
modeltime_calibrate(new_data = testing(splits)) %>%
modeltime_forecast(

new_data = testing(splits),
actual_data = m750
) %%

plot_modeltime_forecast(.interactive = FALSE)

plot_modeltime_residuals

plot_modeltime_residuals
Interactive Residuals Visualization

Description

This is a wrapper for examining residuals using:

e Time Plot: timetk: :plot_time_series()
¢ ACF Plot: timetk: :plot_acf_diagnostics()

* Seasonality Plot: timetk: :plot_seasonal_diagnostics()

plot_modeltime_residuals 81

Usage

plot_modeltime_residuals(
.data,
.type = c("timeplot”, "acf"”, "seasonality"),
.smooth = FALSE,
.legend_show = TRUE,
.legend_max_width = 40,
.title = "Residuals Plot”,
.x_lab = "",
.y_lab = "",
.color_lab = "Legend",
.interactive = TRUE,

Arguments
.data A tibble that is the output of modeltime_residuals()
.type One of "timeplot", "acf", or "seasonality". The default is "timeplot".
.smooth Logical - Whether or not to include a trendline smoother. Uses See smooth_vec()

to apply a LOESS smoother.

.legend_show Logical. Whether or not to show the legend. Can save space with long model
descriptions.

.legend_max_width
Numeric. The width of truncation to apply to the legend text.

.title Title for the plot

.x_lab X-axis label for the plot

.y_lab Y-axis label for the plot

.color_lab Legend label if a color_var is used.

.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visu-
alization

Additional arguments passed to:

e Time Plot: timetk: :plot_time_series()
e ACF Plot: timetk: :plot_acf_diagnostics()
» Seasonality Plot: timetk: :plot_seasonal_diagnostics()

Value

A static ggplot2 plot or an interactive plotly plot containing residuals vs time

Examples

library(dplyr)
library(timetk)
library(parsnip)

82 pluck_modeltime_model

library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: prophet ----

model_fit_prophet <- prophet_reg() %>%
set_engine(engine = "prophet"”) %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----

models_tbl <- modeltime_table(
model_fit_prophet
)

---- RESIDUALS ----

residuals_tbl <- models_tbl %>%
modeltime_calibrate(new_data = testing(splits)) %>%
modeltime_residuals()

residuals_tbl %>%
plot_modeltime_residuals(
.type = "timeplot”,
.interactive = FALSE

pluck_modeltime_model Extract model by model id in a Modeltime Table

Description

The pull_modeltime_model() and pluck_modeltime_model() functions are synonymns.

Usage

pluck_modeltime_model (object, .model_id)

S3 method for class 'mdl_time_tbl'
pluck_modeltime_model(object, .model_id)

pull_modeltime_model(object, .model_id)

prep_nested 83

Arguments

object A Modeltime Table

.model_id A numeric value matching the .model_id that you want to update
See Also

* combine_modeltime_tables(): Combine 2 or more Modeltime Tables together
e add_modeltime_model(): Adds a new row with a new model to a Modeltime Table
* drop_modeltime_model(): Drop one or more models from a Modeltime Table

* update_modeltime_description(): Updates a description for a model inside a Modeltime
Table

* update_modeltime_model(): Updates a model inside a Modeltime Table

¢ pull_modeltime_model(): Extracts a model from a Modeltime Table

Examples

m750_models %>%
pluck_modeltime_model(2)

prep_nested Prepared Nested Modeltime Data

Description

A set of functions to simplify preparation of nested data for iterative (nested) forecasting with
Nested Modeltime Tables.

Usage

extend_timeseries(.data, .id_var, .date_var, .length_future, ...)

nest_timeseries(.data, .id_var, .length_future, .length_actual = NULL)

split_nested_timeseries(.data, .length_test, .length_train = NULL, ...)
Arguments
.data A data frame or tibble containing time series data. The data should have:

* identifier (.id_var): Identifying one or more time series groups

¢ date variable (.date_var): A date or date time column

* target variable (.value): A column containing numeric values that is to be
forecasted

.id_var An id column

84 prep_nested

.date_var A date or datetime column
.length_future Varies based on the function:
e extend_timeseries(): Defines how far into the future to extend the time
series by each time series group.
* nest_timeseries(): Defines which observations should be split into the
.future_data.
Additional arguments passed to the helper function. See details.
.length_actual Can be used to slice the .actual_data to a most recent number of observations.
.length_test Defines the length of the test split for evaluation.

.length_train Defines the length of the training split for evaluation.

Details
Preparation of nested time series follows a 3-Step Process:

Step 1: Extend the Time Series:
extend_timeseries(): A wrapper for timetk::future_frame() that extends a time series
group-wise into the future.

* The group column is specified by .id_var.

* The date column is specified by .date_var.

* The length into the future is specified with . length_future.

e The ... are additional parameters that can be passed to timetk: : future_frame()

Step 2: Nest the Time Series:
nest_timeseries(): A helper for nesting your data into .actual_data and . future_data.

* The group column is specified by .id_var

e The .length_future defines the length of the . future_data.

* The remaining data is converted to the .actual_data.

e The .length_actual can be used to slice the .actual_data to a most recent number of
observations.

The result is a "nested data frame".

Step 3: Split the Actual Data into Train/Test Splits:
split_nested_timeseries(): A wrapper for timetk::time_series_split() that generates
training/testing splits from the .actual_data column.
* The .length_test is the primary argument that identifies the size of the testing sample. This
is typically the same size as the . future_data.
* The .length_train is an optional size of the training data.
e The ... (dots) are additional arguments that can be passed to timetk: :time_series_split().

Helpers:

extract_nested_train_split() and extract_nested_test_split() are used to simplify ex-
tracting the training and testing data from the actual data. This can be helpful when making
preprocessing recipes using the recipes package.

prophet_boost 85

Examples

library(dplyr)
library(timetk)

nested_data_tbl <- walmart_sales_weekly %>%
select(id, date = Date, value = Weekly_Sales) %>%

Step 1: Extends the time series by id
extend_timeseries(

.id_var = id,

.date_var = date,

.length_future = 52
) %%

Step 2: Nests the time series into .actual_data and .future_data
nest_timeseries(

.id_var = id,

.length_future = 52
) %%

Step 3: Adds a column .splits that contains training/testing indices
split_nested_timeseries(

.length_test = 52
)

nested_data_tbl

Helpers: Getting the Train/Test Sets
extract_nested_train_split(nested_data_tbl, .row_id = 1)

prophet_boost General Interface for Boosted PROPHET Time Series Models

Description

prophet_boost () is a way to generate a specification of a Boosted PROPHET model before fitting
and allows the model to be created using different packages. Currently the only package is prophet.

Usage

prophet_boost(
mode = "regression”,
growth = NULL,
changepoint_num = NULL,
changepoint_range = NULL,
seasonality_yearly = NULL,
seasonality_weekly = NULL,

86

prophet_boost

seasonality_daily = NULL,

season =

NULL,

prior_scale_changepoints = NULL,
prior_scale_seasonality = NULL,
prior_scale_holidays = NULL,
logistic_cap = NULL,
logistic_floor = NULL,

mtry = NULL,
trees = NULL,
min_n = NULL,

tree_depth = NULL,

learn_rate

= NULL,

loss_reduction = NULL,
sample_size = NULL,

stop_iter

Arguments

mode

growth

changepoint_

changepoint_

seasonality_

seasonality_

seasonality_

season

prior_scale_

prior_scale_

= NULL
A single character string for the type of model. The only possible value for this
model is "regression".
String ’linear’ or ’logistic’ to specify a linear or logistic trend.

num
Number of potential changepoints to include for modeling trend.

range
Adjusts the flexibility of the trend component by limiting to a percentage of data
before the end of the time series. 0.80 means that a changepoint cannot exist
after the first 80% of the data.

yearly

One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that mod-
els year-over-year seasonality.

weekly
One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that mod-
els week-over-week seasonality.

daily
One of "auto", TRUE or FALSE. Toggles on/off a seasonal componet that mod-
els day-over-day seasonality.

"additive’ (default) or *multiplicative’.

changepoints
Parameter modulating the flexibility of the automatic changepoint selection.
Large values will allow many changepoints, small values will allow few change-
points.

seasonality
Parameter modulating the strength of the seasonality model. Larger values allow
the model to fit larger seasonal fluctuations, smaller values dampen the season-
ality.

prophet_boost 87

prior_scale_holidays

Parameter modulating the strength of the holiday components model, unless
overridden in the holidays input.

logistic_cap When growth is logistic, the upper-bound for "saturation".

logistic_floor When growth is logistic, the lower-bound for "saturation".

mtry A number for the number (or proportion) of predictors that will be randomly
sampled at each split when creating the tree models (specific engines only).

trees An integer for the number of trees contained in the ensemble.

min_n An integer for the minimum number of data points in a node that is required for
the node to be split further.

tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (specific
engines only).

learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-

iteration (specific engines only). This is sometimes referred to as the shrinkage
parameter.

loss_reduction A number for the reduction in the loss function required to split further (specific

engines only).

sample_size number for the number (or proportion) of data that is exposed to the fitting rou-
tine.
stop_iter The number of iterations without improvement before stopping (xgboost only).
Details

The data given to the function are not saved and are only used to determine the mode of the model.
For prophet_boost (), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

"prophet_xgboost" (default) - Connects to prophet: : prophet () and xgboost: :xgb.train()

Main Arguments

The main arguments (tuning parameters) for the PROPHET model are:

growth: String ’linear’ or ’logistic’ to specify a linear or logistic trend.
changepoint_num: Number of potential changepoints to include for modeling trend.

changepoint_range: Range changepoints that adjusts how close to the end the last change-
point can be located.

season: ’additive’ (default) or *multiplicative’.

prior_scale_changepoints: Parameter modulating the flexibility of the automatic change-
point selection. Large values will allow many changepoints, small values will allow few
changepoints.

prior_scale_seasonality: Parameter modulating the strength of the seasonality model.
Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the
seasonality.

prior_scale_holidays: Parameter modulating the strength of the holiday components model,
unless overridden in the holidays input.

88

prophet_boost

* logistic_cap: When growth is logistic, the upper-bound for "saturation".

* logistic_floor: When growth is logistic, the lower-bound for "saturation".

The main arguments (tuning parameters) for the model XGBoost model are:

e mtry: The number of predictors that will be randomly sampled at each split when creating the

tree models.

e trees: The number of trees contained in the ensemble.

* min_n: The minimum number of data points in a node that are required for the node to be split

further.

* tree_depth: The maximum depth of the tree (i.e. number of splits).

* learn_rate: The rate at which the boosting algorithm adapts from iteration-to-iteration.

* loss_reduction: The reduction in the loss function required to split further.

* sample_size: The amount of data exposed to the fitting routine.

* stop_iter: The number of iterations without improvement before stopping.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from

scratch.

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each

engine:
Model 1: PROPHET:

modeltime

growth
changepoint_num
changepoint_range
seasonality_yearly
seasonality_weekly
seasonality_daily
season
prior_scale_changepoints
prior_scale_seasonality
prior_scale_holidays
logistic_cap
logistic_floor

Model 2: XGBoost:

modeltime
tree_depth

prophet

growth (’linear”)
n.changepoints (25)
changepoints.range (0.8)
yearly.seasonality ("auto’)
weekly.seasonality (’auto’)
daily.seasonality ("auto’)
seasonality.mode (’additive’)
changepoint.prior.scale (0.05)
seasonality.prior.scale (10)
holidays.prior.scale (10)
df$cap (NULL)

df$floor (NULL)

xgboost::xgb.train
max_depth (6)

prophet_boost 89

trees nrounds (15)
learn_rate eta (0.3)

mtry colsample_bynode (1)
min_n min_child_weight (1)
loss_reduction gamma (0)
sample_size subsample (1)
stop_iter early_stop

Other options can be set using set_engine().
prophet_xgboost
Model 1: PROPHET (prophet: :prophet):

#> function (df = NULL, growth = "linear"”, changepoints = NULL, n.changepoints = 25,
#> changepoint.range = 0.8, yearly.seasonality = "auto”, weekly.seasonality = "auto”,

#> daily.seasonality = "auto"”, holidays = NULL, seasonality.mode = "additive”,

#> seasonality.prior.scale = 10, holidays.prior.scale = 10, changepoint.prior.scale = 0.05,
#> mcmc.samples = @, interval.width = 0.8, uncertainty.samples = 1000,

#> fit = TRUE, ...)

Parameter Notes:
 df: This is supplied via the parsnip / modeltime fit () interface (so don’t provide this manu-
ally). See Fit Details (below).
* holidays: A data.frame of holidays can be supplied via set_engine()

* uncertainty.samples: The default is set to 0 because the prophet uncertainty intervals are
not used as part of the Modeltime Workflow. You can override this setting if you plan to use
prophet’s uncertainty tools.

Logistic Growth and Saturation Levels:

» For growth = "logistic", simply add numeric values for logistic_capand/or logistic_floor.
There is no need to add additional columns for "cap" and "floor" to your data frame.
Limitations:

* prophet::add_seasonality() is not currently implemented. It’s used to specify non-standard
seasonalities using fourier series. An alternative is to use step_fourier() and supply custom
seasonalities as Extra Regressors.

Model 2: XGBoost (xghoost: :xgb.train):

#> function (params = list(), data, nrounds, watchlist = list(), obj = NULL,

#> feval = NULL, verbose = 1, print_every_n = 1L, early_stopping_rounds = NULL,

#> maximize = NULL, save_period = NULL, save_name = "xgboost.model”, xgb_model = NULL,
#> callbacks = 1list(), ...)

Parameter Notes:

* XGBoost uses a params = 1list() to capture. Parsnip / Modeltime automatically sends any
args provided as . . . inside of set_engine() to the params = list(...).

90 prophet_boost

Fit Details
Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

e fit(y ~date)

Univariate (No Extra Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:

* Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

e XY Interface: fit_xy(x =datal,"date"], y = datas$y) will ignore xreg’s.

Multivariate (Extra Regressors)

Extra Regressors parameter is populated using the fit() or fit_xy() function:

* Only factor, ordered factor, and numeric data will be used as xregs.
* Date and Date-time variables are not used as xregs

e character data should be converted to factor.
Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.1bl (labeled month as a ordered factor).

The month.1bl is an exogenous regressor that can be passed to the arima_reg() using fit():

e fit(y ~date + month.1bl) will pass month.1bl on as an exogenous regressor.

e fit_xy(datal,c("date"”, "month.1bl")], y = data$y) will pass x, where x is a data frame
containing month.1bl and the date feature. Only month.1bl will be used as an exogenous
regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(lubridate)
library(parsnip)
library(rsample)
library(timetk)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

prophet_params

Split Data 80/20
splits <- initial_time_split(m75@, prop = 0.8)

---- PROPHET ----

Model Spec

model_spec <- prophet_boost(
learn_rate = 0.1

) %%
set_engine("prophet_xgboost")

Fit Spec

model_fit <- model_spec %>%

91

fit(log(value) ~ date + as.numeric(date) + month(date, label = TRUE),

data =
model_fit

training(splits))

prophet_params

Tuning Parameters for Prophet Models

Description

Tuning Parameters for Prophet Models

Usage

growth(values = c("linear”, "logistic"))
changepoint_num(range =

changepoint_range(range =

seasonality_yearly(values = c(TRUE, FALSE))

seasonality_weekly(values = c(TRUE, FALSE))
seasonality_daily(values = c(TRUE, FALSE))
prior_scale_changepoints(range = c(-3, 2), trans
prior_scale_seasonality(range = c(-3, 2), trans

prior_scale_holidays(range = c(-3, 2), trans =

c(oL, 50L), trans = NULL)

c(0.6, 0.9), trans = NULL)

= loglo_trans())

logl0@_trans())

loglo_trans())

92 prophet_params
Arguments
values A character string of possible values.
range A two-element vector holding the defaults for the smallest and largest possible
values, respectively. If a transformation is specified, these values should be in
the transformed units.
trans A trans object from the scales package, such as scales: : transform_log1@()
or scales::transform_reciprocal(). If not provided, the default is used
which matches the units used in range. If no transformation, NULL.
Details

The main parameters for Prophet models are:

growth: The form of the trend: "linear", or "logistic".

changepoint_num: The maximum number of trend changepoints allowed when modeling the
trend

changepoint_range: The range affects how close the changepoints can go to the end of the
time series. The larger the value, the more flexible the trend.

Yearly, Weekly, and Daily Seasonality:

— Yearly: seasonality_yearly - Useful when seasonal patterns appear year-over-year
— Weekly: seasonality_weekly - Useful when seasonal patterns appear week-over-week
(e.g. daily data)
— Daily: seasonality_daily - Useful when seasonal patterns appear day-over-day (e.g.
hourly data)
season:
— The form of the seasonal term: "additive" or "multiplicative".
— See season().
"Prior Scale": Controls flexibility of
— Changepoints: prior_scale_changepoints
— Seasonality: prior_scale_seasonality
— Holidays: prior_scale_holidays

— The logl@_trans() converts priors to a scale from 0.001 to 100, which effectively
weights lower values more heavily than larger values.

Examples

growth()

changepoint_num()

season()

prior_scale_changepoints()

prophet_reg 93

prophet_reg General Interface for PROPHET Time Series Models

Description

prophet_reg() is a way to generate a specification of a PROPHET model before fitting and allows
the model to be created using different packages. Currently the only package is prophet.

Usage

prophet_reg(
mode = "regression”,
growth = NULL,
changepoint_num = NULL,
changepoint_range = NULL,
seasonality_yearly = NULL,
seasonality_weekly = NULL,
seasonality_daily = NULL,
season = NULL,
prior_scale_changepoints = NULL,
prior_scale_seasonality = NULL,
prior_scale_holidays = NULL,
logistic_cap = NULL,
logistic_floor = NULL

)
Arguments
mode A single character string for the type of model. The only possible value for this
model is "regression".
growth String ’linear’ or ’logistic’ to specify a linear or logistic trend.

changepoint_num
Number of potential changepoints to include for modeling trend.
changepoint_range
Adjusts the flexibility of the trend component by limiting to a percentage of data
before the end of the time series. 0.80 means that a changepoint cannot exist

after the first 80% of the data.
seasonality_yearly

One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that mod-
els year-over-year seasonality.

seasonality_weekly
One of "auto", TRUE or FALSE. Toggles on/off a seasonal component that mod-
els week-over-week seasonality.

seasonality_daily
One of "auto", TRUE or FALSE. Toggles on/off a seasonal componet that mod-
els day-over-day seasonality.

94 prophet_reg
season *additive’ (default) or *multiplicative’.
prior_scale_changepoints
Parameter modulating the flexibility of the automatic changepoint selection.
Large values will allow many changepoints, small values will allow few change-
points.
prior_scale_seasonality
Parameter modulating the strength of the seasonality model. Larger values allow
the model to fit larger seasonal fluctuations, smaller values dampen the season-
ality.
prior_scale_holidays
Parameter modulating the strength of the holiday components model, unless
overridden in the holidays input.
logistic_cap = When growth is logistic, the upper-bound for "saturation".
logistic_floor When growth is logistic, the lower-bound for "saturation".
Details

The data given to the function are not saved and are only used to determine the mode of the model.
For prophet_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:
* "prophet" (default) - Connects to prophet: :prophet()

Main Arguments

The main arguments (tuning parameters) for the model are:

* growth: String ’linear’ or ’logistic’ to specify a linear or logistic trend.
* changepoint_num: Number of potential changepoints to include for modeling trend.

* changepoint_range: Range changepoints that adjusts how close to the end the last change-
point can be located.

* season: ’additive’ (default) or 'multiplicative’.

* prior_scale_changepoints: Parameter modulating the flexibility of the automatic change-
point selection. Large values will allow many changepoints, small values will allow few
changepoints.

* prior_scale_seasonality: Parameter modulating the strength of the seasonality model.
Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the
seasonality.

* prior_scale_holidays: Parameter modulating the strength of the holiday components model,
unless overridden in the holidays input.

* logistic_cap: When growth is logistic, the upper-bound for "saturation".

* logistic_floor: When growth is logistic, the lower-bound for "saturation".

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

prophet_reg 95

Engine Details

The standardized parameter names in modeltime can be mapped to their original names in each

engine:
modeltime prophet
growth growth (’linear”)
changepoint_num n.changepoints (25)
changepoint_range changepoints.range (0.8)
seasonality_yearly yearly.seasonality ("auto’)
seasonality_weekly weekly.seasonality ("auto’)
seasonality_daily daily.seasonality ("auto’)
season seasonality.mode (’additive’)
prior_scale_changepoints changepoint.prior.scale (0.05)
prior_scale_seasonality seasonality.prior.scale (10)
prior_scale_holidays holidays.prior.scale (10)
logistic_cap df$cap (NULL)
logistic_floor df$floor (NULL)

Other options can be set using set_engine().
prophet
The engine uses prophet: :prophet().

Function Parameters:

#> function (df = NULL, growth = "linear"”, changepoints = NULL, n.changepoints = 25,

#> changepoint.range = 0.8, yearly.seasonality = "auto”, weekly.seasonality = "auto”,

#> daily.seasonality = "auto”, holidays = NULL, seasonality.mode = "additive”,

#> seasonality.prior.scale = 10, holidays.prior.scale = 10, changepoint.prior.scale = 0.05,
#> mcmc.samples = @, interval.width = 0.8, uncertainty.samples = 1000,

fit = TRUE, ...)

Parameter Notes:
 df: This is supplied via the parsnip / modeltime fit () interface (so don’t provide this manu-
ally). See Fit Details (below).
* holidays: A data.frame of holidays can be supplied via set_engine()

* uncertainty.samples: The default is set to 0 because the prophet uncertainty intervals are
not used as part of the Modeltime Workflow. You can override this setting if you plan to use
prophet’s uncertainty tools.

Regressors:

* Regressors are provided via the fit () or recipes interface, which passes regressors to prophet: :add_regressor ()

¢ Parameters can be controlled in set_engine() via: regressors.prior.scale, regressors.standardize,
and regressors.mode

» The regressor prior scale implementation default is regressors.prior.scale = 1e4, which
deviates from the prophet implementation (defaults to holidays.prior.scale)

96 prophet_reg

Logistic Growth and Saturation Levels:

» For growth = "logistic", simply add numeric values for logistic_cap and/or logistic_floor.
There is no need to add additional columns for "cap" and "floor" to your data frame.

Limitations:

* prophet::add_seasonality() is not currently implemented. It’s used to specify non-standard
seasonalities using fourier series. An alternative is to use step_fourier() and supply custom
seasonalities as Extra Regressors.

Fit Details
Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

e fit(y ~date)

Univariate (No Extra Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:

* Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

e XY Interface: fit_xy(x =datal,"date"], y = datas$y) will ignore xreg’s.

Multivariate (Extra Regressors)

Extra Regressors parameter is populated using the fit() or fit_xy() function:

* Only factor, ordered factor, and numeric data will be used as xregs.
* Date and Date-time variables are not used as xregs

* character data should be converted to factor.
Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.1bl (labeled month as a ordered factor).

The month. 1bl is an exogenous regressor that can be passed to the arima_reg() using fit():

e fit(y ~date + month.1bl) will pass month.1bl on as an exogenous regressor.

o fit_xy(datal,c("date”, "month.1bl")], y = data$y) will pass x, where x is a data frame
containing month.1bl and the date feature. Only month.1bl will be used as an exogenous
regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

pull_modeltime_residuals 97

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- initial_time_split(m75@, prop = 0.8)

---- PROPHET ----

Model Spec
model_spec <- prophet_reg() %>%
set_engine("prophet”)

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model _fit

pull_modeltime_residuals
Extracts modeltime residuals data from a Modeltime Model

Description

If a modeltime model contains data with residuals information, this function will extract the data
frame.

Usage

pull_modeltime_residuals(object)

Arguments

object A fitted parsnip / modeltime model or workflow

Value

A tibble containing the model timestamp, actual, fitted, and residuals data

98

recipe_helpers

pull_parsnip_preprocessor
Pulls the Formula from a Fitted Parsnip Model Object

Description

Pulls the Formula from a Fitted Parsnip Model Object

Usage

pull_parsnip_preprocessor(object)

Arguments

object A fitted parsnip model model_fit object

Value

A formula using stats: : formula()

recipe_helpers Developer Tools for processing XREGS (Regressors)

Description

Wrappers for using recipes: :bake and recipes: : juice to process data returning data in either
data frame or matrix format (Common formats needed for machine learning algorithms).

Usage
juice_xreg_recipe(recipe, format = c("tbl”, "matrix"))
bake_xreg_recipe(recipe, new_data, format = c("tbl”, "matrix"))
Arguments
recipe A prepared recipe
format One of:
e tbl: Returns a tibble (data.frame)
e matrix: Returns a matrix
new_data Data to be processed by a recipe
Value

Data in either the tbl (data.frame) or matrix formats

recursive 99

Examples

library(dplyr)
library(timetk)
library(recipes)
library(lubridate)

predictors <- m4_monthly %>%

filter(id == "M750") %>%

select(-value) %>%

mutate(month = month(date, label = TRUE))
predictors

Create default recipe
xreg_recipe_spec <- create_xreg_recipe(predictors, prepare = TRUE)

Extracts the preprocessed training data from the recipe (used in your fit function)
juice_xreg_recipe(xreg_recipe_spec)

Applies the prepared recipe to new data (used in your predict function)
bake_xreg_recipe(xreg_recipe_spec, new_data = predictors)

recursive Create a Recursive Time Series Model from a Parsnip or Workflow
Regression Model

Description

Create a Recursive Time Series Model from a Parsnip or Workflow Regression Model

Usage
recursive(object, transform, train_tail, id = NULL, chunk_size =1, ...)
Arguments
object An object of model_fit or a fitted workflow class
transform A transformation performed on new_data after each step of recursive algorithm.
* Transformation Function: Must have one argument data (see examples)
train_tail A tibble with tail of training data set. In most cases it’ll be required to create
some variables based on dependent variable.
id (Optional) An identifier that can be provided to perform a panel forecast. A
single quoted column name (e.g. id = "id").
chunk_size The size of the smallest lag used in transform. If the smallest lag necessary

is n, the forecasts can be computed in chunks of n, which can dramatically im-
prove performance. Defaults to 1. Non-integers are coerced to integer, e.g.
chunk_size = 3.5 will be coerced to integer via as. integer().

Not currently used.

100 recursive

Details

What is a Recursive Model?

A recursive model uses predictions to generate new values for independent features. These features
are typically lags used in autoregressive models. It’s important to understand that a recursive model
is only needed when the Lag Size < Forecast Horizon.

Why is Recursive needed for Autoregressive Models with Lag Size < Forecast Horizon?

When the lag length is less than the forecast horizon, a problem exists were missing values (NA)
are generated in the future data. A solution that recursive() implements is to iteratively fill these
missing values in with values generated from predictions.

Recursive Process
When producing forecast, the following steps are performed:
1. Computing forecast for first row of new data. The first row cannot contain NA in any required
column.
2. Filling i-th place of the dependent variable column with already computed forecast.

3. Computing missing features for next step, based on already calculated prediction. These fea-
tures are computed with on a tibble object made from binded train_tail (i.e. tail of training
data set) and new_data (which is an argument of predict function).

4. Jumping into point 2., and repeating rest of steps till the for-loop is ended.

Recursion for Panel Data

Panel data is time series data with multiple groups identified by an ID column. The recursive()
function can be used for Panel Data with the following modifications:

1. Supply an id column as a quoted column name

2. Replace tail() with panel_tail() to use tails for each time series group.

Value

An object with added recursive class

See Also

* panel_tail() - Used to generate tails for multiple time series groups.

Examples

Libraries & Setup ----
library(tidymodels)
library(dplyr)
library(tidyr)
library(timetk)
library(slider)

---- SINGLE TIME SERIES (NON-PANEL) -----

recursive 101

m750
FORECAST_HORIZON <- 24
m750_extended <- m750 %>%

group_by(id) %>%
future_frame(

.length_out = FORECAST_HORIZON,
.bind_data = TRUE

) %>%

ungroup()

TRANSFORM FUNCTION ----
- Function runs recursively that updates the forecasted dataset
lag_roll_transformer <- function(data){
data %>%
Lags
tk_augment_lags(value, .lags = 1:12) %>%
Rolling Features
mutate(rolling_mean_12 = lag(slide_dbl(
value, .f = mean, .before = 12, .complete = FALSE

), 1)

Data Preparation

m750_rolling <- m750_extended %>%
lag_roll_transformer() %>%
select(-id)

train_data <- m750_rolling %>%
drop_na()

future_data <- m750_rolling %>%
filter(is.na(value))

Modeling

Straight-Line Forecast

model_fit_lm <- linear_reg() %>%
set_engine("1m") %>%
Use only date feature as regressor
fit(value ~ date, data = train_data)

Autoregressive Forecast
model_fit_lm_recursive <- linear_reg() %>%
set_engine("1m") %>%
Use date plus all lagged features

fit(value ~ ., data = train_data) %>%
Add recursive() w/ transformer and train_tail
recursive(

transform = lag_roll_transformer,

train_tail = tail(train_data, FORECAST_HORIZON)

102 recursive

model_fit_lm_recursive

Forecasting
modeltime_table(
model_fit_1m,
model_fit_lm_recursive
) %%
update_model_description(2, "LM - Lag Roll") %>%
modeltime_forecast(

new_data = future_data,
actual_data = m750

) %>%

plot_modeltime_forecast(
.interactive = FALSE,

.conf_interval_show = FALSE

MULTIPLE TIME SERIES (PANEL DATA) -----
m4_monthly
FORECAST_HORIZON <- 24

m4_extended <- m4_monthly %>%
group_by(id) %>%
future_frame(
.length_out = FORECAST_HORIZON,
.bind_data TRUE
) %>%
ungroup ()

TRANSFORM FUNCTION ----
- NOTE - We create lags by group
lag_transformer_grouped <- function(data){
data %>%
group_by(id) %>%
tk_augment_lags(value, .lags = 1:FORECAST_HORIZON) %>%
ungroup()

m4_lags <- m4_extended %>%
lag_transformer_grouped()

train_data <- m4_lags %>%
drop_na()

future_data <- m4_lags %>%
filter(is.na(value))

Modeling Autoregressive Panel Data
model_fit_lm_recursive <- linear_reg() %>%
set_engine("1m") %>%

seasonal_reg 103

fit(value ~ ., data = train_data) %>%

recursive(
id = "id", # We add an id = "id" to specify the groups
transform = lag_transformer_grouped,

We use panel_tail() to grab tail by groups
train_tail = panel_tail(train_data, id, FORECAST_HORIZON)

)

modeltime_table(
model_fit_lm_recursive

) %%
modeltime_forecast(
new_data = future_data,
actual_data = m4_monthly,
keep_data = TRUE
) %>%

group_by(id) %>%

plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_show = FALSE

)
seasonal_reg General Interface for Multiple Seasonality Regression Models
(TBATS, STLM)
Description

seasonal_reg() is a way to generate a specification of an Seasonal Decomposition model before
fitting and allows the model to be created using different packages. Currently the only package is
forecast.

Usage

seasonal_reg(
mode = "regression”,
seasonal_period_1 = NULL,

seasonal_period_2 = NULL,
seasonal_period_3 = NULL
)
Arguments
mode A single character string for the type of model. The only possible value for this

model is "regression".

104 seasonal_reg

seasonal_period_1
(required) The primary seasonal frequency. Uses "auto” by default. A character
phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-
time variable is provided. See Fit Details below.

seasonal_period_2
(optional) A second seasonal frequency. Is NULL by default. A character phrase
of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time
variable is provided. See Fit Details below.

seasonal_period_3
(optional) A third seasonal frequency. Is NULL by default. A character phrase
of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time
variable is provided. See Fit Details below.

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For seasonal_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

¢ "tbats" - Connects to forecast: :tbats()
¢ "stlm_ets" - Connects to forecast: :stlm(), method = "ets”

e "stlm_arima" - Connects to forecast: :stlm(), method = "arima”

Engine Details
The standardized parameter names in modeltime can be mapped to their original names in each
engine:
modeltime forecast::stlm forecast::tbats

seasonal_period_1, seasonal_period_2, seasonal_period_3 msts(seasonal.periods) msts(seasonal.periods)

Other options can be set using set_engine().
The engines use forecast: :stlm().

Function Parameters:

#> function (y, s.window = 7 + 4 * seq(6), robust = FALSE, method = c("ets”,
#> "arima"), modelfunction = NULL, model = NULL, etsmodel = "ZZN", lambda = NULL,

#> biasadj = FALSE, xreg = NULL, allow.multiplicative.trend = FALSE, x =y,
#> cel)
tbats

* Method: Uses method = "tbats", which by default is auto-TBATS.

* Xregs: Univariate. Cannot accept Exogenous Regressors (xregs). Xregs are ignored.

stlm_ets

seasonal_reg 105

¢ Method: Uses method = "stlm_ets”, which by default is auto-ETS.
* Xregs: Univariate. Cannot accept Exogenous Regressors (xregs). Xregs are ignored.

stlm_arima

* Method: Uses method = "stlm_arima”, which by default is auto-ARIMA.

* Xregs: Multivariate. Can accept Exogenous Regressors (xregs).

Fit Details
Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

e fit(y ~date)
Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For

monthly time stamps, seasonal_period = 12, seasonal_period = "12 months”, or seasonal_period
= "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto”: A seasonal period is selected based on the periodicity of the
data (e.g. 12 if monthly)

2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

* Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

* XY Interface: fit_xy(x = datal,"date"], y = data$y) will ignore xreg’s.
Multivariate (xregs, Exogenous Regressors)

* The tbats engine cannot accept Xregs.
* The stlm_ets engine cannot accept Xregs.

» The stlm_arima engine can accept Xregs
The xreg parameter is populated using the fit() or fit_xy() function:

* Only factor, ordered factor, and numeric data will be used as xregs.
* Date and Date-time variables are not used as xregs

* character data should be converted to factor.
Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),

106 seasonal_reg

3. month.1bl (labeled month as a ordered factor).
The month. 1bl is an exogenous regressor that can be passed to the seasonal_reg() using fit():

e fit(y ~date + month.1bl) will pass month.1bl on as an exogenous regressor.

o fit_xy(datal,c("date”, "month.1bl")], y = data$y) will pass x, where x is a data frame
containing month.1bl and the date feature. Only month.1bl will be used as an exogenous
regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)

Data
taylor_30_min

Split Data 80/20
splits <- initial_time_split(taylor_30_min, prop = 0.8)

---- STLM ETS ----

Model Spec
model_spec <- seasonal_reg() %>%
set_engine("stlm_ets")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

---- STLM ARIMA ----

Model Spec
model_spec <- seasonal_reg() %>%
set_engine("stlm_arima")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

summarize_accuracy_metrics 107

summarize_accuracy_metrics
Summarize Accuracy Metrics

Description

This is an internal function used by modeltime_accuracy().

Usage

summarize_accuracy_metrics(data, truth, estimate, metric_set)

Arguments
data A data. frame containing the truth and estimate columns.
truth The column identifier for the true results (that is numeric).
estimate The column identifier for the predicted results (that is also numeric).
metric_set A yardstick: :metric_set() that is used to summarize one or more forecast
accuracy (regression) metrics.
Examples
library(dplyr)

predictions_tbl <- tibble(
group = c("model 1", "model 1", "model 1",
"model 2", "model 2", "model 2"),
truth = c(1, 2, 3,

1’ 2’ 3)}
estimate = c(1.2, 2.0, 2.5,
0.9, 1.9, 3.3)

predictions_tbl %>%
group_by(group) %>%
summarize_accuracy_metrics(
truth, estimate,
metric_set = default_forecast_accuracy_metric_set()

108

table_modeltime_accuracy

table_modeltime_accuracy

Interactive Accuracy Tables

Description

Converts results from modeltime_accuracy() into either interactive (reactable) or static (gt)

tables.

Usage

table_modeltime_accuracy(

.data,

.round_digits = 2,

.sortable =

T

RUE,

.show_sortable = TRUE,
.searchable = TRUE,

.filterable

FALSE,

.expand_groups = TRUE,
.title = "Accuracy Table",

.interactive

Arguments

.data

.round_digits

.sortable

.show_sortable
.searchable

.filterable

.expand_groups

.title

.interactive

= TRUE,

A tibble that is the output of modeltime_accuracy()

Rounds accuracy metrics to a specified number of digits. If NULL, rounding is
not performed.

Allows sorting by columns. Only applied to reactable tables. Passed to
reactable(sortable).

Shows sorting. Only applied to reactable tables. Passed to reactable(showSortable).
Adds search input. Only applied to reactable tables. Passed to reactable(searchable).

Adds filters to table columns. Only applied to reactable tables. Passed to
reactable(filterable).

Expands groups dropdowns. Only applied to reactable tables. Passed to
reactable(defaul tExpanded).

A title for static (gt) tables.

Return interactive or static tables. If TRUE, returns reactable table. If FALSE,
returns static gt table.

Additional arguments passed to reactable: :reactable() or gt::gt() (de-
pending on .interactive selection).

table_modeltime_accuracy 109

Details

Groups
The function respects dplyr: :group_by () groups and thus scales with multiple groups.
Reactable Output

A reactable() table is an interactive format that enables live searching and sorting. When . interactive
= TRUE, a call is made to reactable: :reactable().

table_modeltime_accuracy() includes several common options like toggles for sorting and search-
ing. Additional arguments can be passed to reactable: :reactable() via

GT Output

A gt table is an HTML-based table that is "static" (e.g. non-searchable, non-sortable). It’s com-
monly used in PDF and Word documents that does not support interactive content.

When .interactive = FALSE, a call is made to gt: : gt (). Arguments can be passed via

Table customization is implemented using a piping workflow (%>%). For more information, refer to
the GT Documentation.

Value

A static gt table or an interactive reactable table containing the accuracy information.

Examples

library(dplyr)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)

Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)

--- MODELS ---

Model 1: prophet ----

model_fit_prophet <- prophet_reg() %>%
set_engine(engine = "prophet") %>%
fit(value ~ date, data = training(splits))

---- MODELTIME TABLE ----
models_tbl <- modeltime_table(

model_fit_prophet
)

---- ACCURACY ----

https://gt.rstudio.com/index.html

110 temporal_hierarchy

models_tbl %>%
modeltime_calibrate(new_data = testing(splits)) %>%
modeltime_accuracy() %>%
table_modeltime_accuracy()

temporal_hierarchy General Interface for Temporal Hierarchical Forecasting (THIEF)
Models

Description

temporal_hierarchy() is a way to generate a specification of an Temporal Hierarchical Forecast-
ing model before fitting and allows the model to be created using different packages. Currently the
only package is thief. Note this function requires the thief package to be installed.

Usage

temporal_hierarchy(
mode = "regression”,
seasonal_period = NULL,
combination_method = NULL,
use_model = NULL

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".
seasonal_period
A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided. See Fit Details below.
combination_method
Combination method of temporal hierarchies, taking one of the following val-
ues:
 "struc" - Structural scaling: weights from temporal hierarchy
* "mse" - Variance scaling: weights from in-sample MSE
* "ols" - Unscaled OLS combination weights
* "bu" - Bottom-up combination —i.e., all aggregate forecasts are ignored.
* "shr" - GLS using a shrinkage (to block diagonal) estimate of residuals
e "sam" - GLS using sample covariance matrix of residuals

use_model Model used for forecasting each aggregation level:

* "ets" - exponential smoothing

temporal_hierarchy 111

e "arima" - arima

e "theta" - theta

¢ "naive" - random walk forecasts

* "snaive" - seasonal naive forecasts, based on the last year of observed data

Details
Models can be created using the following engines:

e "thief" (default) - Connects to thief: :thief ()

Engine Details
The standardized parameter names in modeltime can be mapped to their original names in each
engine:
modeltime thief::thief()
combination_method comb
use_model usemodel

Other options can be set using set_engine().
thief (default engine)
The engine uses thief: :thief ().

Function Parameters:

#> function (y, m = frequency(y), h =m * 2, comb = c("struc”, "mse", "ols",
#> "bu", "shr”, "sam"), usemodel = c("ets", "arima", "theta”, "naive",
#> "snaive"), forecastfunction = NULL, aggregatelist = NULL, ...)

Other options and argument can be set using set_engine().

Parameter Notes:
» xreg - This model is not set up to use exogenous regressors. Only univariate models will be
fit.
Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

e fit(y ~date)

Univariate:

For univariate analysis, you must include a date or date-time feature. Simply use:

* Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

112 temporal_hierarchy

* XY Interface: fit_xy(x = datal, "date"], y = datas$y) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)

This model is not set up for use with exogenous regressors.

References

* For forecasting with temporal hierarchies see: Athanasopoulos G., Hyndman R.J., Kourentzes
N., Petropoulos F. (2017) Forecasting with Temporal Hierarchies. European Journal of Oper-
ational research, 262(1), 60-74.

* For combination operators see: Kourentzes N., Barrow B.K., Crone S.F. (2014) Neural net-
work ensemble operators for time series forecasting. Expert Systems with Applications, 41(9),
4235-4244.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(thief)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

---- HIERARCHICAL ----

Model Spec - The default parameters are all set

to "auto” if none are provided

model_spec <- temporal_hierarchy() %>%
set_engine("thief")

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

temporal_hierarchy_params 113

temporal_hierarchy_params
Tuning Parameters for TEMPORAL HIERARCHICAL Models

Description

Tuning Parameters for TEMPORAL HIERARCHICAL Models

Usage

n n n

combination_method(values = c("struc”, "mse", "ols”, "bu", "shr"”, "sam"))

use_model ()

Arguments

values A character string of possible values.

Details
The main parameters for Temporal Hierarchical models are:

* combination_method: Combination method of temporal hierarchies.

* use_model: Model used for forecasting each aggregation level.

Examples

combination_method()

use_model ()

time_series_params Tuning Parameters for Time Series (ts-class) Models

Description

Tuning Parameters for Time Series (ts-class) Models

Usage

seasonal_period(values = c("none”, "daily"”, "weekly"”, "yearly"))

Arguments

values A time-based phrase

114 update_modeltime_model

Details

Time series models (e.g. Arima() and ets()) use stats::ts() or forecast: :msts() to apply
seasonality. We can do the same process using the following general time series parameter:

* period: The periodic nature of the seasonality.

It’s usually best practice to not tune this parameter, but rather set to obvious values based on the
seasonality of the data:

* Daily Seasonality: Often used with hourly data (e.g. 24 hourly timestamps per day)
* Weekly Seasonality: Often used with daily data (e.g. 7 daily timestamps per week)

* Yearly Seasonalty: Often used with weekly, monthly, and quarterly data (e.g. 12 monthly
observations per year).

However, in the event that users want to experiment with period tuning, you can do so with seasonal_period().

Examples

seasonal_period()

update_modeltime_model
Update the model by model id in a Modeltime Table

Description

Update the model by model id in a Modeltime Table

Usage

update_modeltime_model(object, .model_id, .new_model)

Arguments
object A Modeltime Table
.model_id A numeric value matching the .model_id that you want to update

.new_model A fitted workflow, model_fit, or mdl_time_ensmble object

update_model_description 115

See Also

e combine_modeltime_tables(): Combine 2 or more Modeltime Tables together
¢ add_modeltime_model(): Adds a new row with a new model to a Modeltime Table
* drop_modeltime_model(): Drop one or more models from a Modeltime Table

* update_modeltime_description(): Updates a description for a model inside a Modeltime
Table

* update_modeltime_model(): Updates a model inside a Modeltime Table

e pull_modeltime_model(): Extracts a model from a Modeltime Table

Examples

library(tidymodels)

model_fit_ets <- exp_smoothing() %>%
set_engine("ets") %>%
fit(value ~ date, training(m750_splits))

m750_models %>%
update_modeltime_model (1, model_fit_ets)

update_model_description
Update the model description by model id in a Modeltime Table

Description

The update_model_description() and update_modeltime_description() functions are syn-
onyms.

Usage

update_model_description(object, .model_id, .new_model_desc)

update_modeltime_description(object, .model_id, .new_model_desc)

Arguments
object A Modeltime Table
.model_id A numeric value matching the .model_id that you want to update

.new_model_desc
Text describing the new model description

116 window_reg

See Also

* combine_modeltime_tables(): Combine 2 or more Modeltime Tables together
¢ add_modeltime_model(): Adds a new row with a new model to a Modeltime Table
* drop_modeltime_model(): Drop one or more models from a Modeltime Table

* update_modeltime_description(): Updates a description for a model inside a Modeltime
Table

* update_modeltime_model(): Updates a model inside a Modeltime Table

e pull_modeltime_model(): Extracts a model from a Modeltime Table

Examples

m750_models %>%
update_modeltime_description(2, "PROPHET - No Regressors")

window_reg General Interface for Window Forecast Models

Description

window_reg() is a way to generate a specification of a window model before fitting and allows the
model to be created using different backends.

Usage
window_reg(mode = "regression”, id = NULL, window_size = NULL)
Arguments
mode A single character string for the type of model. The only possible value for this
model is "regression".
id An optional quoted column name (e.g. "id") for identifying multiple time series
(i.e. panel data).
window_size A window to apply the window function. By default, the window uses the full
data set, which is rarely the best choice.
Details

A time series window regression is derived using window_reg(). The model can be created using
the fit() function using the following engines:

* "window_function" (default) - Performs a Window Forecast applying a window_function
(engine parameter) to a window of size defined by window_size

window_reg 117

Engine Details

function (default engine)
The engine uses window_function_fit_impl(). A time series window function applies awindow_function
to a window of the data (last N observations).
* The function can return a scalar (single value) or multiple values that are repeated for each
window

e Common use cases:

Moving Average Forecasts: Forecast forward a 20-day average

Weighted Average Forecasts: Exponentially weighting the most recent observations

Median Forecasts: Forecasting forward a 20-day median

Repeating Forecasts: Simulating a Seasonal Naive Forecast by broadcasting the last 12
observations of a monthly dataset into the future

The key engine parameter is the window_function. A function / formula:

* Ifafunction, e.g. mean, the function is used with any additional arguments, . . . in set_engine().

* If a formula, e.g. ~mean(., na.rm=TRUE), it is converted to a function.

This syntax allows you to create very compact anonymous functions.

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

e fit(y ~date)

ID features (Multiple Time Series, Panel Data)
The id parameter is populated using the fit () or fit_xy() function:
ID Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),

3. series_id (a unique identifer that identifies each time series in your data).
The series_id can be passed to the window_reg() using fit():

* window_reg(id = "series_id") specifes that the series_id column should be used to iden-
tify each time series.

e fit(y ~date + series_id) will pass series_id on to the underlying functions.

Window Function Specification (window_function)

You can specify a function / formula using purrr syntax.

* Ifafunction, e.g. mean, the function is used with any additional arguments, . . . in set_engine().

* If a formula, e.g. ~mean(., na.rm=TRUE), it is converted to a function.

118 window_reg

This syntax allows you to create very compact anonymous functions.
Window Size Specification (window_size)

The period can be non-seasonal (window_size = 1 or "none") or yearly seasonal (e.g. For
monthly time stamps, window_size = 12, window_size = "12 months", orwindow_size = "yearly").
There are 3 ways to specify:

1. window_size = "all": A seasonal period is selected based on the periodicity of the data (e.g.
12 if monthly)
2. window_size = 12: A numeric frequency. For example, 12 is common for monthly data
3. window_size = "1 year": A time-based phrase. For example, "1 year" would convert to 12
for monthly data.
External Regressors (Xregs)

These models are univariate. No xregs are used in the modeling process.

See Also

fit.model_spec(), set_engine()

Examples

library(dplyr)
library(parsnip)
library(rsample)
library(timetk)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)

---— WINDOW FUNCTION -----

Used to make:
- Mean/Median forecasts
- Simple repeating forecasts

Median Forecast ----

Model Spec
model_spec <- window_reg(
window_size =12
) %%
Extra parameters passed as: set_engine(...)
set_engine(

engine = "window_function”,
window_function = median,
na.rm = TRUE

window_reg 119

Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

Predict
- The 12-month median repeats going forward
predict(model_fit, testing(splits))

---- PANEL FORECAST - WINDOW FUNCTION ----
Weighted Average Forecast

model_spec <- window_reg(
Specify the ID column for Panel Data

id = "id",
window_size = 12
) %>%
set_engine(
engine = "window_function”,
Create a Weighted Average
window_function = ~ sum(tail(.x, 3) * c(0.1, 0.3, 0.6)),
)
Fit Spec

model_fit <- model_spec %>%
fit(log(value) ~ date + id, data = training(splits))
model_fit

Predict: The weighted average (scalar) repeats going forward
predict(model_fit, testing(splits))

---- BROADCASTING PANELS (REPEATING) ----

Simulating a Seasonal Naive Forecast by
broadcasted model the last 12 observations into the future
model_spec <- window_reg(

id = "id",
window_size = Inf

) %%

set_engine(
engine = "window_function”,
window_function = ~ tail(.x, 12),

)

Fit Spec

model_fit <- model_spec %>%
fit(log(value) ~ date + id, data = training(splits))
model_fit

Predict: The sequence is broadcasted (repeated) during prediction
predict(model_fit, testing(splits))

120 window_reg

Index

+ datasets
m750, 41
m750_models, 42
m750_splits, 42
m750_training_resamples, 43

adam_params, 3

adam_reg, 6

add_modeltime_model, 11

add_modeltime_model(), 12, 24, 30, 83, 115,
116

arima_boost, 12

arima_params, 18

arima_reg, 19

as_modeltime_table (modeltime_table), 65

bake_xreg_recipe (recipe_helpers), 98

changepoint_num (prophet_params), 91
changepoint_range (prophet_params), 91
combination_method
(temporal_hierarchy_params),
113
combine_modeltime_tables, 23
combine_modeltime_tables(), 12, 24, 30,
83,115,116
control_fit_workflowset
(control_modeltime), 25
control_fit_workflowset(), 51
control_modeltime, 25
control_nested_fit (control_modeltime),
25
control_nested_fit(), 57
control_nested_forecast
(control_modeltime), 25
control_nested_forecast(), 58
control_nested_refit
(control_modeltime), 25
control_nested_refit(), 59
control_refit (control_modeltime), 25

121

control_refit(), 60, 61
create_model_grid, 27
create_xreg_recipe, 28

damping (exp_smoothing_params), 37
damping_smooth (exp_smoothing_params),
37
default_forecast_accuracy_metric_set
(metric_sets), 45
default_forecast_accuracy_metric_set(),
47
dials::epochs(), 71
dials::grid_regular(), 28
dials::hidden_units(), 71
dials::penalty(), 71
distribution (adam_params), 3
drop_modeltime_model, 30
drop_modeltime_model(), 12, 24, 30, 83,
115,116

error (exp_smoothing_params), 37
ets_model (adam_params), 3
exp_smoothing, 31
exp_smoothing_params, 37
extend_timeseries (prep_nested), 83
extend_timeseries(), 57
extended_forecast_accuracy_metric_set
(metric_sets), 45
extract_nested_best_model_report
(log_extractors), 40
extract_nested_best_model_report(), 59
extract_nested_error_report
(log_extractors), 40
extract_nested_error_report(), 56, 59
extract_nested_future_forecast
(log_extractors), 40
extract_nested_future_forecast(), 56,
59
extract_nested_modeltime_table
(log_extractors), 40

122

extract_nested_test_accuracy
(log_extractors), 40
extract_nested_test_accuracy(), 56
extract_nested_test_forecast
(log_extractors), 40
extract_nested_test_forecast(), 56, 58,
59
extract_nested_test_split
(log_extractors), 40
extract_nested_test_split(), 84
extract_nested_train_split
(log_extractors), 40
extract_nested_train_split(), 84

forecast::Arima(), 14, 20, 21
forecast::auto.arima(), 9, 14, 20, 21
forecast::croston(), 32, 33
forecast::ets(), 32
forecast::msts(), /14

forecast: :nnetar(), 73

forecast: :thetaf(), 32, 33

get_arima_description, 38
get_model_description, 39
get_tbats_description, 40
growth (prophet_params), 91
gt::gt(), 108, 109

information_criteria (adam_params), 3
juice_xreg_recipe (recipe_helpers), 98

log_extractors, 40
loss (adam_params), 3

m750, 41

m750_models, 42

m750_splits, 42
m750_training_resamples, 43
maape, 44

maape(), 45

maape_vec, 44

metric_sets, 45
modeltime_accuracy, 46
modeltime_accuracy(), 45, 49, 108
modeltime_calibrate, 48
modeltime_calibrate(), 24, 53, 54
modeltime_fit_workflowset, 50
modeltime_fit_workflowset(), 25, 28
modeltime_forecast, 52

INDEX

modeltime_forecast(), 49, 79
modeltime_nested_fit, 56
modeltime_nested_fit(), 25
modeltime_nested_forecast, 57
modeltime_nested_forecast(), 25
modeltime_nested_refit, 59
modeltime_nested_refit(), 25
modeltime_nested_select_best, 59
modeltime_refit, 60
modeltime_refit(), 24, 25,53
modeltime_residuals, 62
modeltime_residuals(), 8/
modeltime_residuals_test, 63
modeltime_table, 65
modeltime_table(), 48

naive_fit_impl(), 68

naive_reg, 67

nest_timeseries (prep_nested), 83

nest_timeseries(), 57

new_modeltime_bridge, 70

nnetar_params, 71

nnetar_reg, 72

non_seasonal_ar (arima_params), 18

non_seasonal_ar(), 71

non_seasonal_differences
(arima_params), 18

non_seasonal_ma (arima_params), 18

num_networks (nnetar_params), 71

outliers_treatment (adam_params), 3

panel_tail, 75

panel_tail(), 100

parallel_start, 76

parallel_start(), 26

parallel_stop (parallel_start), 76

parse_index, 77

parse_index_from_data (parse_index), 77

parse_period_from_index (parse_index),
77

plot_modeltime_forecast, 78

plot_modeltime_forecast(), 53

plot_modeltime_residuals, 80

pluck_modeltime_model, 82

prep_nested, 83

prior_scale_changepoints
(prophet_params), 91

INDEX

prior_scale_holidays (prophet_params),
91

prior_scale_seasonality
(prophet_params), 91

probability_model (adam_params), 3

prophet: :prophet(), 87, 94, 95

prophet_boost, 85

prophet_params, 91

prophet_reg, 93

pull_modeltime_model
(pluck_modeltime_model), 82

pull_modeltime_model(), 12, 24, 30, 83,
115,116

pull_modeltime_residuals, 97

pull_parsnip_preprocessor, 98

reactable: :reactable(), 108, 109
recipe_helpers, 98

recursive, 99

recursive(), 76
regressors_treatment (adam_params), 3

season (exp_smoothing_params), 37

season(), 92

seasonal_ar (arima_params), 18

seasonal_ar(), 71

seasonal_differences (arima_params), 18

seasonal_ma (arima_params), 18

seasonal_period (time_series_params),
113

seasonal_reg, 103

seasonality_daily (prophet_params), 91

seasonality_weekly (prophet_params), 91

seasonality_yearly (prophet_params), 91

select_order (adam_params), 3

smooth: :adam(), 8, 9

smooth: :auto.adam(), 8

smooth::es(), 32, 33

smooth_level (exp_smoothing_params), 37

smooth_seasonal (exp_smoothing_params),
37

smooth_trend (exp_smoothing_params), 37

smooth_vec(), 79, 81

snaive_fit_impl(), 68

split_nested_timeseries (prep_nested),
83

split_nested_timeseries(), 57

stats: :Box.test(), 64

stats::shapiro.test(), 64

123

stats::ts(), 114
summarize_accuracy_metrics, 107

table_modeltime_accuracy, 108

tail(), 100

temporal_hierarchy, 110
temporal_hierarchy_params, 113
time_series_params, 113

timetk: :future_frame(), 84

timetk: :plot_time_series(), 79

timetk: :time_series_split(), 84

trend (exp_smoothing_params), 37
trend_smooth (exp_smoothing_params), 37

update_model_description, 115

update_modeltime_description
(update_model_description), 115

update_modeltime_description(), 12, 24,
30,83,115, 116

update_modeltime_model, 114

update_modeltime_model (), 12, 24, 30, 83,
115,116

use_constant (adam_params), 3

use_model (temporal_hierarchy_params),
113

window_function_fit_impl(), 117
window_reg, 116

workflowsets: :workflow_set(), 28

xgboost: :xgb.train, /4
xgboost: :xgb.train(), 87

yardstick: :metric_tweak(), 45

	adam_params
	adam_reg
	add_modeltime_model
	arima_boost
	arima_params
	arima_reg
	combine_modeltime_tables
	control_modeltime
	create_model_grid
	create_xreg_recipe
	drop_modeltime_model
	exp_smoothing
	exp_smoothing_params
	get_arima_description
	get_model_description
	get_tbats_description
	log_extractors
	m750
	m750_models
	m750_splits
	m750_training_resamples
	maape
	maape_vec
	metric_sets
	modeltime_accuracy
	modeltime_calibrate
	modeltime_fit_workflowset
	modeltime_forecast
	modeltime_nested_fit
	modeltime_nested_forecast
	modeltime_nested_refit
	modeltime_nested_select_best
	modeltime_refit
	modeltime_residuals
	modeltime_residuals_test
	modeltime_table
	naive_reg
	new_modeltime_bridge
	nnetar_params
	nnetar_reg
	panel_tail
	parallel_start
	parse_index
	plot_modeltime_forecast
	plot_modeltime_residuals
	pluck_modeltime_model
	prep_nested
	prophet_boost
	prophet_params
	prophet_reg
	pull_modeltime_residuals
	pull_parsnip_preprocessor
	recipe_helpers
	recursive
	seasonal_reg
	summarize_accuracy_metrics
	table_modeltime_accuracy
	temporal_hierarchy
	temporal_hierarchy_params
	time_series_params
	update_modeltime_model
	update_model_description
	window_reg
	Index

