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adaboost AdaBoost

Description

An implementation of the AdaBoost.MH (Adaptive Boosting) algorithm for classification. This can
be used to train an AdaBoost model on labeled data or use an existing AdaBoost model to predict
the classes of new points.

Usage

adaboost(
input_model = NA,
iterations = NA,
labels = NA,
test = NA,
tolerance = NA,
training = NA,
verbose = getOption("mlpack.verbose”, FALSE),
weak_learner = NA

)

Arguments

input_model Input AdaBoost model (AdaBoostModel).

iterations The maximum number of boosting iterations to be run (0 will run until conver-
gence.. Default value "1000" (integer).

labels Labels for the training set (integer row).

test Test dataset (numeric matrix).

tolerance The tolerance for change in values of the weighted error during training. Default
value "le-10" (numeric).

training Dataset for training AdaBoost (numeric matrix).

verbose Display informational messages and the full list of parameters and timers at the

end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
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weak_learner The type of weak learner to use: ’decision_stump’, or ’perceptron’. Default
value "decision_stump" (character).

Details

This program implements the AdaBoost (or Adaptive Boosting) algorithm. The variant of AdaBoost
implemented here is AdaBoost. MH. It uses a weak learner, either decision stumps or perceptrons,
and over many iterations, creates a strong learner that is a weighted ensemble of weak learners.
It runs these iterations until a tolerance value is crossed for change in the value of the weighted
training error.

For more information about the algorithm, see the paper "Improved Boosting Algorithms Using
Confidence-Rated Predictions"”, by R.E. Schapire and Y. Singer.

This program allows training of an AdaBoost model, and then application of that model to a test
dataset. To train a model, a dataset must be passed with the "training" option. Labels can be given
with the "labels" option; if no labels are specified, the labels will be assumed to be the last column
of the input dataset. Alternately, an AdaBoost model may be loaded with the "input_model" option.

Once a model is trained or loaded, it may be used to provide class predictions for a given test dataset.
A test dataset may be specified with the "test" parameter. The predicted classes for each point in the
test dataset are output to the "predictions" output parameter. The AdaBoost model itself is output
to the "output_model" output parameter.

Value

A list with several components:

output_model Output trained AdaBoost model (AdaBoostModel).
predictions Predicted labels for the test set (integer row).

probabilities Predicted class probabilities for each point in the test set (numeric matrix).

Author(s)

mlpack developers

Examples

# For example, to run AdaBoost on an input dataset "data” with labels
# "labels"and perceptrons as the weak learner type, storing the trained model
# in "model”, one could use the following command:

## Not run:
output <- adaboost(training=data, labels=labels, weak_learner="perceptron")
model <- output$output_model

## End(Not run)
# Similarly, an already-trained model in "model” can be used to provide class

# predictions from test data "test_data” and store the output in
# "predictions” with the following command:
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## Not run:
output <- adaboost(input_model=model, test=test_data)
predictions <- output$predictions

## End(Not run)

approx_kfn Approximate furthest neighbor search

Description

An implementation of two strategies for furthest neighbor search. This can be used to compute the
furthest neighbor of query point(s) from a set of points; furthest neighbor models can be saved and
reused with future query point(s).

Usage

approx_kfn(
algorithm = NA,
calculate_error = FALSE,
exact_distances = NA,
input_model = NA,
k = NA,
num_projections = NA,
num_tables = NA,
query = NA,
reference = NA,
verbose = getOption("mlpack.verbose”, FALSE)

Arguments

algorithm Algorithm to use: ’ds’ or ’qdafn’. Default value "ds" (character).
calculate_error

If set, calculate the average distance error for the first furthest neighbor only.
Default value "FALSE" (logical).

exact_distances

Matrix containing exact distances to furthest neighbors; this can be used to avoid
explicit calculation when —calculate_error is set (numeric matrix).

input_model File containing input model (ApproxKFNModel).

k Number of furthest neighbors to search for. Default value "0" (integer).
num_projections
Number of projections to use in each hash table. Default value "5" (integer).

num_tables Number of hash tables to use. Default value "5" (integer).

query Matrix containing query points (numeric matrix).
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reference Matrix containing the reference dataset (numeric matrix).
verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This program implements two strategies for furthest neighbor search. These strategies are:

- The ’qdafn’ algorithm from "Approximate Furthest Neighbor in High Dimensions" by R. Pagh, F.
Silvestri, J. Sivertsen, and M. Skala, in Similarity Search and Applications 2015 (SISAP). - The
’DrusillaSelect’ algorithm from "Fast approximate furthest neighbors with data-dependent can-
didate selection", by R.R. Curtin and A.B. Gardner, in Similarity Search and Applications 2016
(SISAP).

These two strategies give approximate results for the furthest neighbor search problem and can be
used as fast replacements for other furthest neighbor techniques such as those found in the ml-
pack_kfn program. Note that typically, the ’ds’ algorithm requires far fewer tables and projections
than the *qdafn’ algorithm.

Specify a reference set (set to search in) with "reference”, specify a query set with "query", and
specify algorithm parameters with "num_tables" and "num_projections" (or don’t and defaults will
be used). The algorithm to be used (either ’ds’—the default—or ’qdafn’) may be specified with
"algorithm". Also specify the number of neighbors to search for with "k".

Note that for ’qdafn’ in lower dimensions, "num_projections" may need to be set to a high value in
order to return results for each query point.

If no query set is specified, the reference set will be used as the query set. The "output_model"
output parameter may be used to store the built model, and an input model may be loaded instead
of specifying a reference set with the "input_model" option.

Results for each query point can be stored with the "neighbors" and "distances" output parameters.
Each row of these output matrices holds the k distances or neighbor indices for each query point.

Value
A list with several components:
distances Matrix to save furthest neighbor distances to (numeric matrix).

neighbors Matrix to save neighbor indices to (integer matrix).

output_model  File to save output model to (ApproxKFNModel).

Author(s)

mlpack developers

Examples

# For example, to find the 5 approximate furthest neighbors with

# "reference_set"” as the reference set and "query_set” as the query set using
# DrusillaSelect, storing the furthest neighbor indices to "neighbors” and

# the furthest neighbor distances to "distances”, one could call
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## Not run:

output <- approx_kfn(query=query_set, reference=reference_set, k=5,
algorithm="ds")

neighbors <- output$neighbors

distances <- output$distances

## End(Not run)

# and to perform approximate all-furthest-neighbors search with k=1 on the
# set "data” storing only the furthest neighbor distances to "distances”, one
# could call

## Not run:
output <- approx_kfn(reference=reference_set, k=1)
distances <- output$distances

## End(Not run)

# A trained model can be re-used. If a model has been previously saved to
# "model”, then we may find 3 approximate furthest neighbors on a query set
# "new_query_set” using that model and store the furthest neighbor indices
# into "neighbors” by calling

## Not run:
output <- approx_kfn(input_model=model, query=new_query_set, k=3)

neighbors <- output$neighbors

## End(Not run)

bayesian_linear_regression
BayesianLinearRegression

Description

An implementation of the bayesian linear regression.

Usage

bayesian_linear_regression(
center = FALSE,
input = NA,
input_model = NA,
responses = NA,
scale = FALSE,
test = NA,
verbose = getOption("mlpack.verbose”, FALSE)
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Arguments
center Center the data and fit the intercept if enabled. Default value "FALSE" (logical).
input Matrix of covariates (X) (numeric matrix).
input_model Trained BayesianLinearRegression model to use (BayesianLinearRegression).
responses Matrix of responses/observations (y) (numeric row).
scale Scale each feature by their standard deviations if enabled. Default value "FALSE"
(logical).
test Matrix containing points to regress on (test points) (numeric matrix).
verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

An implementation of the bayesian linear regression. This model is a probabilistic view and im-
plementation of the linear regression. The final solution is obtained by computing a posterior dis-
tribution from gaussian likelihood and a zero mean gaussian isotropic prior distribution on the
solution. Optimization is AUTOMATIC and does not require cross validation. The optimization is
performed by maximization of the evidence function. Parameters are tuned during the maximiza-
tion of the marginal likelihood. This procedure includes the Ockham’s razor that penalizes over
complex solutions.

This program is able to train a Bayesian linear regression model or load a model from file, output
regression predictions for a test set, and save the trained model to a file.

To train a BayesianLinearRegression model, the "input" and "responses"parameters must be given.
The "center"and "scale" parameters control the centering and the normalizing options. A trained
model can be saved with the "output_model". If no training is desired at all, a model can be passed
via the "input_model" parameter.

The program can also provide predictions for test data using either the trained model or the given
input model. Test points can be specified with the "test" parameter. Predicted responses to the test
points can be saved with the "predictions" output parameter. The corresponding standard deviation
can be save by precising the "stds" parameter.

Value

A list with several components:

output_model Output BayesianLinearRegression model (BayesianLinearRegression).

predictions If —test_file is specified, this file is where the predicted responses will be saved
(numeric matrix).

stds If specified, this is where the standard deviations of the predictive distribution
will be saved (numeric matrix).

Author(s)

mlpack developers
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Examples

# For example, the following command trains a model on the data "data” and
# responses "responses”with center set to true and scale set to false (so,

# Bayesian linear regression is being solved, and then the model is saved to
# "blr_model”:

## Not run:

output <- bayesian_linear_regression(input=data, responses=responses,
center=1, scale=0)

blr_model <- output$output_model

## End(Not run)

# The following command uses the "blr_model” to provide predicted responses
# for the data "test” and save those responses to "test_predictions”:

## Not run:
output <- bayesian_linear_regression(input_model=blr_model, test=test)
test_predictions <- output$predictions

## End(Not run)

# Because the estimator computes a predictive distribution instead of a
# simple point estimate, the "stds"” parameter allows one to save the
# prediction uncertainties:

## Not run:

output <- bayesian_linear_regression(input_model=blr_model, test=test)
test_predictions <- output$predictions

stds <- output$stds

## End(Not run)

cf Collaborative Filtering

Description

An implementation of several collaborative filtering (CF) techniques for recommender systems.
This can be used to train a new CF model, or use an existing CF model to compute recommenda-
tions.

Usage

cf(
algorithm = NA,
all_user_recommendations = FALSE,
input_model = NA,
interpolation = NA,
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iteration_only_termination = FALSE,
max_iterations = NA,

min_residue = NA,

neighbor_search = NA,

neighborhood = NA,

normalization = NA,

query = NA,
rank = NA,
recommendations = NA,
seed = NA,
test = NA,

training = NA,
verbose = getOption("mlpack.verbose”, FALSE)

Arguments

algorithm Algorithm used for matrix factorization. Default value "NMF" (character).
all_user_recommendations

Generate recommendations for all users. Default value "FALSE" (logical).
input_model Trained CF model to load (CFModel).

interpolation Algorithm used for weight interpolation. Default value "average" (character).
iteration_only_termination
Terminate only when the maximum number of iterations is reached. Default
value "FALSE" (logical).

max_iterations Maximum number of iterations. If set to zero, there is no limit on the number of
iterations. Default value "1000" (integer).

min_residue Residue required to terminate the factorization (lower values generally mean
better fits). Default value "1e-05" (numeric).

neighbor_search
Algorithm used for neighbor search. Default value "euclidean" (character).

neighborhood Size of the neighborhood of similar users to consider for each query user. De-
fault value "5" (integer).

normalization Normalization performed on the ratings. Default value "none" (character).

query List of query users for which recommendations should be generated (integer
matrix).

rank Rank of decomposed matrices (if 0, a heuristic is used to estimate the rank).
Default value "0" (integer).

recommendations
Number of recommendations to generate for each query user. Default value "5"
(integer).

seed Set the random seed (0 uses std::time(NULL)). Default value "0" (integer).

test Test set to calculate RMSE on (numeric matrix).

training Input dataset to perform CF on (numeric matrix).
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verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This program performs collaborative filtering (CF) on the given dataset. Given a list of user, item
and preferences (the "training" parameter), the program will perform a matrix decomposition and
then can perform a series of actions related to collaborative filtering. Alternately, the program can
load an existing saved CF model with the "input_model" parameter and then use that model to
provide recommendations or predict values.

The input matrix should be a 3-dimensional matrix of ratings, where the first dimension is the user,
the second dimension is the item, and the third dimension is that user’s rating of that item. Both the
users and items should be numeric indices, not names. The indices are assumed to start from 0.

A set of query users for which recommendations can be generated may be specified with the "query"
parameter; alternately, recommendations may be generated for every user in the dataset by speci-
fying the "all_user_recommendations" parameter. In addition, the number of recommendations per
user to generate can be specified with the "recommendations" parameter, and the number of similar
users (the size of the neighborhood) to be considered when generating recommendations can be
specified with the "neighborhood" parameter.

For performing the matrix decomposition, the following optimization algorithms can be specified
via the "algorithm" parameter:

- 'RegSVD’ — Regularized SVD using a SGD optimizer - 'NMF’ — Non-negative matrix factor-
ization with alternating least squares update rules - ’BatchSVD’ — SVD batch learning - *SVD-
Incompletelncremental’ — SVD incomplete incremental learning - ’SVDCompletelncremental” —
SVD complete incremental learning - *BiasSVD’ — Bias SVD using a SGD optimizer - 'SVDPP’ —
SVD++ using a SGD optimizer - 'RandSVD’ — RandomizedSVD learning - ’QSVD’ — QuicSVD
learning - 'BKSVD’ — Block Krylov SVD learning

The following neighbor search algorithms can be specified via the "neighbor_search" parameter:

- ’cosine’ — Cosine Search Algorithm - ’euclidean’ — Euclidean Search Algorithm - ’pearson’ —
Pearson Search Algorithm

The following weight interpolation algorithms can be specified via the "interpolation" parameter:

- ’average’ — Average Interpolation Algorithm - ’regression’ — Regression Interpolation Algorithm
- ’similarity’ — Similarity Interpolation Algorithm

The following ranking normalization algorithms can be specified via the "normalization" parameter:

- ’none’ — No Normalization - ’item_mean’ — Item Mean Normalization - overall_mean’ — Overall
Mean Normalization - ’user_mean’ — User Mean Normalization - ’z_score’ — Z-Score Normaliza-
tion

A trained model may be saved to with the "output_model" output parameter.
Value

A list with several components:

output Matrix that will store output recommendations (integer matrix).
output_model Output for trained CF model (CFModel).
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Author(s)

mlpack developers

Examples

# To train a CF model on a dataset "training_set” using NMF for decomposition
# and saving the trained model to "model”, one could call:

## Not run:
output <- cf(training=training_set, algorithm="NMF")
model <- output$output_model

## End(Not run)

# Then, to use this model to generate recommendations for the list of users
# in the query set "users"”, storing 5 recommendations in "recommendations”,
# one could call

## Not run:
output <- cf(input_model=model, query=users, recommendations=5)

recommendations <- output$output

## End(Not run)

dbscan DBSCAN clustering

Description

An implementation of DBSCAN clustering. Given a dataset, this can compute and return a cluster-
ing of that dataset.

Usage

dbscan(
input,
epsilon = NA,
min_size = NA,
naive = FALSE,
selection_type = NA,
single_mode = FALSE,
tree_type = NA,
verbose = getOption("mlpack.verbose”, FALSE)
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Arguments
input Input dataset to cluster (numeric matrix).
epsilon Radius of each range search. Default value "1" (numeric).
min_size Minimum number of points for a cluster. Default value "5" (integer).
naive If set, brute-force range search (not tree-based) will be used. Default value

"FALSE" (logical).

selection_type If using point selection policy, the type of selection to use ("ordered’, 'random’).
Default value "ordered" (character).

single_mode If set, single-tree range search (not dual-tree) will be used. Default value "FALSE"
(logical).

tree_type If using single-tree or dual-tree search, the type of tree to use (’kd’, ’r’, ’r-star’,
’x’, "hilbert-r’, ‘r-plus’, 'r-plus-plus’, cover’, *ball’). Default value "kd" (char-
acter).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

Details

This program implements the DBSCAN algorithm for clustering using accelerated tree-based range
search. The type of tree that is used may be parameterized, or brute-force range search may also be
used.

The input dataset to be clustered may be specified with the "input" parameter; the radius of each
range search may be specified with the "epsilon" parameters, and the minimum number of points in
a cluster may be specified with the "min_size" parameter.

The "assignments" and "centroids" output parameters may be used to save the output of the clus-
tering. "assignments" contains the cluster assignments of each point, and "centroids" contains the
centroids of each cluster.

The range search may be controlled with the "tree_type", "single_mode", and "naive" parameters.
"tree_type" can control the type of tree used for range search; this can take a variety of values: ’kd’,
r’, ‘r-star’, 'x’, ’hilbert-r’, ’r-plus’, ’r-plus-plus’, ’cover’, ’ball’. The "single_mode" parameter
will force single-tree search (as opposed to the default dual-tree search), and ’"naive" will force
brute-force range search.

Value

A list with several components:

assignments Output matrix for assignments of each point (integer row).
centroids Matrix to save output centroids to (numeric matrix).
Author(s)

mlpack developers
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Examples

# An example usage to run DBSCAN on the dataset in "input” with a radius of
# 0.5 and a minimum cluster size of 5 is given below:

## Not run:
dbscan(input=input, epsilon=0.5, min_size=5)

## End(Not run)

decision_tree Decision tree

Description

An implementation of an ID3-style decision tree for classification, which supports categorical data.
Given labeled data with numeric or categorical features, a decision tree can be trained and saved;
or, an existing decision tree can be used for classification on new points.

Usage

decision_tree(
input_model = NA,
labels = NA,
maximum_depth = NA,
minimum_gain_split = NA,
minimum_leaf_size = NA,
print_training_accuracy = FALSE,
test = NA,
test_labels = NA,
training = NA,
verbose = getOption("mlpack.verbose”, FALSE),

weights = NA
)
Arguments
input_model Pre-trained decision tree, to be used with test points (DecisionTreeModel).
labels Training labels (integer row).

maximum_depth Maximum depth of the tree (0 means no limit). Default value "0" (integer).
minimum_gain_split

Minimum gain for node splitting. Default value "le-07" (numeric).
minimum_leaf_size

Minimum number of points in a leaf. Default value "20" (integer).
print_training_accuracy

Print the training accuracy. Default value "FALSE" (logical).

test Testing dataset (may be categorical) (numeric matrix/data.frame with info).
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test_labels Test point labels, if accuracy calculation is desired (integer row).
training Training dataset (may be categorical) (numeric matrix/data.frame with info).
verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
weights The weight of label (numeric matrix).
Details

Train and evaluate using a decision tree. Given a dataset containing numeric or categorical features,
and associated labels for each point in the dataset, this program can train a decision tree on that
data.

The training set and associated labels are specified with the "training" and "labels" parameters,
respectively. The labels should be in the range ‘[0, num_classes - 1]°. Optionally, if "labels" is not
specified, the labels are assumed to be the last dimension of the training dataset.

When a model is trained, the "output_model" output parameter may be used to save the trained
model. A model may be loaded for predictions with the "input_model" parameter. The "in-
put_model" parameter may not be specified when the "training" parameter is specified. The "min-
imum_leaf_size" parameter specifies the minimum number of training points that must fall into
each leaf for it to be split. The "minimum_gain_split" parameter specifies the minimum gain that is
needed for the node to split. The "maximum_depth" parameter specifies the maximum depth of the
tree. If "print_training_accuracy" is specified, the training accuracy will be printed.

Test data may be specified with the "test" parameter, and if performance numbers are desired for
that test set, labels may be specified with the "test_labels" parameter. Predictions for each test point
may be saved via the "predictions" output parameter. Class probabilities for each prediction may be
saved with the "probabilities" output parameter.

Value

A list with several components:

output_model Output for trained decision tree (DecisionTreeModel).
predictions Class predictions for each test point (integer row).

probabilities Class probabilities for each test point (numeric matrix).

Author(s)

mlpack developers

Examples

# For example, to train a decision tree with a minimum leaf size of 20 on the
# dataset contained in "data"” with labels "labels”, saving the output model
# to "tree" and printing the training error, one could call

## Not run:
output <- decision_tree(training=data, labels=labels, minimum_leaf_size=20,
minimum_gain_split=0.001, print_training_accuracy=TRUE)
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tree <- output$output_model

## End(Not run)

# Then, to use that model to classify points in "test_set” and print the test
# error given the labels "test_labels” using that model, while saving the
# predictions for each point to "predictions”, one could call

## Not run:

output <- decision_tree(input_model=tree, test=test_set,
test_labels=test_labels)
predictions <- output$predictions

## End(Not run)

det

Density Estimation With Density Estimation Trees

Description

An implementation of density estimation trees for the density estimation task. Density estimation
trees can be trained or used to predict the density at locations given by query points.

Usage

det(
folds = NA,

input_model = NA,

max_leaf_size =
min_leaf_size =

path_format = NA,

skip_pruning = FALSE,

test = NA,
training = NA,

verbose = getOption("mlpack.verbose”, FALSE)

)
Arguments
folds The number of folds of cross-validation to perform for the estimation (0 is
LOOCV. Default value "10" (integer).
input_model Trained density estimation tree to load (DTree).

max_leaf_size The maximum size of a leaf in the unpruned, fully grown DET. Default value
"10" (integer).

min_leaf_size The minimum size of a leaf in the unpruned, fully grown DET. Default value
"5" (integer).

path_format The format of path printing: ’Ir’, ’id-Ir’, or *Ir-id’. Default value "Ir" (character).
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skip_pruning  Whether to bypass the pruning process and output the unpruned tree only. De-
fault value "FALSE" (logical).

test A set of test points to estimate the density of (numeric matrix).
training The data set on which to build a density estimation tree (numeric matrix).
verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This program performs a number of functions related to Density Estimation Trees. The optimal
Density Estimation Tree (DET) can be trained on a set of data (specified by "training") using cross-
validation (with number of folds specified with the "folds" parameter). This trained density estima-
tion tree may then be saved with the "output_model" output parameter.

The variable importances (that is, the feature importance values for each dimension) may be saved
with the "vi" output parameter, and the density estimates for each training point may be saved with
the "training_set_estimates" output parameter.

Enabling path printing for each node outputs the path from the root node to a leaf for each entry
in the test set, or training set (if a test set is not provided). Strings like 'LRLRLR’ (indicating that
traversal went to the left child, then the right child, then the left child, and so forth) will be output.
If ’lr-id’ or ’id-1r’ are given as the "path_format" parameter, then the ID (tag) of every node along
the path will be printed after or before the L or R character indicating the direction of traversal,
respectively.

This program also can provide density estimates for a set of test points, specified in the "test"
parameter. The density estimation tree used for this task will be the tree that was trained on the
given training points, or a tree given as the parameter "input_model". The density estimates for the
test points may be saved using the "test_set_estimates" output parameter.

Value

A list with several components:

output_model Output to save trained density estimation tree to (DTree).

tag_counters_file
The file to output the number of points that went to each leaf. Default value
(character).

"nn

tag_file The file to output the tags (and possibly paths) for each sample in the test set.
Default value "" (character).

test_set_estimates
The output estimates on the test set from the final optimally pruned tree (numeric
matrix).

training_set_estimates
The output density estimates on the training set from the final optimally pruned
tree (numeric matrix).

vi The output variable importance values for each feature (numeric matrix).
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mlpack developers
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emst

Fast Euclidean Minimum Spanning Tree

Description

An implementation of the Dual-Tree Boruvka algorithm for computing the Euclidean minimum
spanning tree of a set of input points.

Usage

emst(
input,

leaf_size = NA,

naive = FALSE

’

verbose = getOption("mlpack.verbose”, FALSE)

Arguments
input

leaf_size

naive

verbose

Details

Input data matrix (numeric matrix).

Leaf size in the kd-tree. One-element leaves give the empirically best perfor-
mance, but at the cost of greater memory requirements. Default value "1" (inte-
ger).
Compute the MST using O(n”2) naive algorithm. Default value "FALSE" (log-
ical).
Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

This program can compute the Euclidean minimum spanning tree of a set of input points using the
dual-tree Boruvka algorithm.

The set to calculate the minimum spanning tree of is specified with the "input" parameter, and the
output may be saved with the "output" output parameter.

The "leaf_size" parameter controls the leaf size of the kd-tree that is used to calculate the minimum

spanning tree, and

if the "naive" option is given, then brute-force search is used (this is typically

much slower in low dimensions). The leaf size does not affect the results, but it may have some
effect on the runtime of the algorithm.
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Value

A list with several components:

output Output data. Stored as an edge list (numeric matrix).

Author(s)

mlpack developers

Examples

# For example, the minimum spanning tree of the input dataset "data” can be
# calculated with a leaf size of 20 and stored as "spanning_tree” using the
# following command:

## Not run:
output <- emst(input=data, leaf_size=20)
spanning_tree <- output$output

## End(Not run)

# The output matrix is a three-dimensional matrix, where each row indicates
# an edge. The first dimension corresponds to the lesser index of the edge;
# the second dimension corresponds to the greater index of the edge; and the
# third column corresponds to the distance between the two points.

fastmks FastMKS (Fast Max-Kernel Search)

Description

An implementation of the single-tree and dual-tree fast max-kernel search (FastMKS) algorithm.
Given a set of reference points and a set of query points, this can find the reference point with
maximum kernel value for each query point; trained models can be reused for future queries.

Usage

fastmks(
bandwidth = NA,
base = NA,
degree = NA,
input_model = NA,
k = NA,
kernel = NA,
naive = FALSE,
offset = NA,
query = NA,

reference = NA,
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scale = NA,
single = FALSE,
verbose = getOption("mlpack.verbose”, FALSE)

)
Arguments

bandwidth Bandwidth (for Gaussian, Epanechnikov, and triangular kernels). Default value
"1" (numeric).

base Base to use during cover tree construction. Default value "2" (numeric).

degree Degree of polynomial kernel. Default value "2" (numeric).

input_model Input FastMKS model to use (FastMKSModel).

k Number of maximum kernels to find. Default value "0" (integer).

kernel Kernel type to use: ’linear’, *polynomial’, ’cosine’, ’gaussian’, epanechnikov’,
’triangular’, “hyptan’. Default value "linear" (character).

naive If true, O(n”2) naive mode is used for computation. Default value "FALSE"
(logical).

offset Offset of kernel (for polynomial and hyptan kernels). Default value "0" (nu-
meric).

query The query dataset (numeric matrix).

reference The reference dataset (numeric matrix).

scale Scale of kernel (for hyptan kernel). Default value "1" (numeric).

single If true, single-tree search is used (as opposed to dual-tree search. Default value
"FALSE" (logical).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

Details

This program will find the k maximum kernels of a set of points, using a query set and a reference
set (which can optionally be the same set). More specifically, for each point in the query set, the k
points in the reference set with maximum kernel evaluations are found. The kernel function used is
specified with the "kernel" parameter.

Value

A list with several components:

indices Output matrix of indices (integer matrix).
kernels Output matrix of kernels (numeric matrix).
output_model Output for FastMKS model (FastMKSModel).

Author(s)

mlpack developers
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Examples
# For example, the following command will calculate, for each point in the
# query set "query”, the five points in the reference set "reference” with
# maximum kernel evaluation using the linear kernel. The kernel evaluations
# may be saved with the "kernels” output parameter and the indices may be
# saved with the "indices"” output parameter.

## Not run:

output <- fastmks(k=5, reference=reference, query=query, kernel="linear")
indices <- output$indices

kernels <- output$kernels

## End(Not run)

The output matrices are organized such that row i and column j in the
indices matrix corresponds to the index of the point in the reference set
that has j'th largest kernel evaluation with the point in the query set
with index i. Row i and column j in the kernels matrix corresponds to the
kernel evaluation between those two points.

This program performs FastMKS using a cover tree. The base used to build

#
#
#
#
#
#
#
# the cover tree can be specified with the "base" parameter.

gmm_generate GMM Sample Generator

Description

A sample generator for pre-trained GMMSs. Given a pre-trained GMM, this can sample new points
randomly from that distribution.

Usage

gmm_generate(
input_model,
samples,
seed = NA,
verbose = getOption("mlpack.verbose”, FALSE)

Arguments

input_model Input GMM model to generate samples from (GMM).

samples Number of samples to generate (integer).
seed Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).
verbose Display informational messages and the full list of parameters and timers at the

end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
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Details

This program is able to generate samples from a pre-trained GMM (use gmm_train to train a GMM).
The pre-trained GMM must be specified with the "input_model" parameter. The number of samples
to generate is specified by the "samples" parameter. Output samples may be saved with the "output”
output parameter.

Value

A list with several components:

output Matrix to save output samples in (numeric matrix).

Author(s)

mlpack developers

Examples

# The following command can be used to generate 100 samples from the
# pre-trained GMM "gmm"” and store those generated samples in "samples”:

## Not run:
output <- gmm_generate(input_model=gmm, samples=100)

samples <- output$output

## End(Not run)

gmm_probability GMM Probability Calculator

Description

A probability calculator for GMMs. Given a pre-trained GMM and a set of points, this can compute
the probability that each point is from the given GMM.

Usage

gmm_probability(
input,
input_model,
verbose = getOption("mlpack.verbose"”, FALSE)

)
Arguments
input Input matrix to calculate probabilities of (numeric matrix).
input_model Input GMM to use as model (GMM).
verbose Display informational messages and the full list of parameters and timers at the

end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
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Details

This program calculates the probability that given points came from a given GMM (that is, P(X |

gmm)). The GMM is specified with the "input_model" parameter, and the points are specified with

the "input" parameter. The output probabilities may be saved via the "output" output parameter.
Value

A list with several components:

output Matrix to store calculated probabilities in (numeric matrix).

Author(s)

mlpack developers

Examples

# So, for example, to calculate the probabilities of each point in "points”
# coming from the pre-trained GMM "gmm"”, while storing those probabilities in
# "probs”, the following command could be used:

## Not run:
output <- gmm_probability(input_model=gmm, input=points)
probs <- output$output

## End(Not run)

gmm_train Gaussian Mixture Model (GMM) Training

Description

An implementation of the EM algorithm for training Gaussian mixture models (GMMs). Given a
dataset, this can train a GMM for future use with other tools.

Usage

gmm_train(
gaussians,
input,
diagonal_covariance = FALSE,
input_model = NA,
kmeans_max_iterations = NA,
max_iterations = NA,
no_force_positive = FALSE,
noise = NA,
percentage = NA,
refined_start = FALSE,
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samplings = NA,

seed = NA,
tolerance = NA,
trials = NA,
verbose = getOption("mlpack.verbose”, FALSE)

)

Arguments
gaussians Number of Gaussians in the GMM (integer).
input The training data on which the model will be fit (numeric matrix).

diagonal_covariance
Force the covariance of the Gaussians to be diagonal. This can accelerate train-
ing time significantly. Default value "FALSE" (logical).

input_model Initial input GMM model to start training with (GMM).

kmeans_max_iterations
Maximum number of iterations for the k-means algorithm (used to initialize
EM). Default value "1000" (integer).

max_iterations Maximum number of iterations of EM algorithm (passing O will run until con-
vergence). Default value "250" (integer).

no_force_positive

Do not force the covariance matrices to be positive definite. Default value
"FALSE" (logical).

noise Variance of zero-mean Gaussian noise to add to data. Default value "0" (nu-
meric).
percentage If using —refined_start, specify the percentage of the dataset used for each sam-

pling (should be between 0.0 and 1.0). Default value "0.02" (numeric).

refined_start During the initialization, use refined initial positions for k-means clustering
(Bradley and Fayyad, 1998). Default value "FALSE" (logical).

samplings If using —refined_start, specify the number of samplings used for initial points.
Default value "100" (integer).

seed Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).

tolerance Tolerance for convergence of EM. Default value "le-10" (numeric).

trials Number of trials to perform in training GMM. Default value "1" (integer).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

Details

This program takes a parametric estimate of a Gaussian mixture model (GMM) using the EM al-
gorithm to find the maximum likelihood estimate. The model may be saved and reused by other
mlpack GMM tools.

The input data to train on must be specified with the "input" parameter, and the number of Gaussians
in the model must be specified with the "gaussians" parameter. Optionally, many trials with different
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random initializations may be run, and the result with highest log-likelihood on the training data
will be taken. The number of trials to run is specified with the "trials" parameter. By default, only
one trial is run.

The tolerance for convergence and maximum number of iterations of the EM algorithm are specified
with the "tolerance" and "max_iterations" parameters, respectively. The GMM may be initialized
for training with another model, specified with the "input_model" parameter. Otherwise, the model
is initialized by running k-means on the data. The k-means clustering initialization can be controlled
with the "kmeans_max_iterations", "refined_start", "samplings", and "percentage" parameters. If
"refined_start" is specified, then the Bradley-Fayyad refined start initialization will be used. This
can often lead to better clustering results.

The ’diagonal_covariance’ flag will cause the learned covariances to be diagonal matrices. This
significantly simplifies the model itself and causes training to be faster, but restricts the ability to fit
more complex GMMs.

If GMM training fails with an error indicating that a covariance matrix could not be inverted, make
sure that the "no_force_positive" parameter is not specified. Alternately, adding a small amount
of Gaussian noise (using the "noise" parameter) to the entire dataset may help prevent Gaussians
with zero variance in a particular dimension, which is usually the cause of non-invertible covariance
matrices.

The "no_force_positive" parameter, if set, will avoid the checks after each iteration of the EM
algorithm which ensure that the covariance matrices are positive definite. Specifying the flag can
cause faster runtime, but may also cause non-positive definite covariance matrices, which will cause
the program to crash.

Value

A list with several components:

output_model Output for trained GMM model (GMM).

Author(s)

mlpack developers

Examples

# As an example, to train a 6-Gaussian GMM on the data in "data" with a
# maximum of 100 iterations of EM and 3 trials, saving the trained GMM to
# "gmm"”, the following command can be used:

## Not run:
output <- gmm_train(input=data, gaussians=6, trials=3)
gmm <- output$output_model

## End(Not run)

# To re-train that GMM on another set of data "data2”, the following command
# may be used:

## Not run:



hmm_generate 29

output <- gmm_train(input_model=gmm, input=data2, gaussians=6)
new_gmm <- output$output_model

## End(Not run)

hmm_generate Hidden Markov Model (HMM) Sequence Generator

Description

A utility to generate random sequences from a pre-trained Hidden Markov Model (HMM). The
length of the desired sequence can be specified, and a random sequence of observations is returned.

Usage

hmm_generate(
length,
model,
seed = NA,
start_state = NA,
verbose = getOption("mlpack.verbose”, FALSE)

)
Arguments
length Length of sequence to generate (integer).
model Trained HMM to generate sequences with (HMMModel).
seed Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).
start_state Starting state of sequence. Default value "0" (integer).
verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This utility takes an already-trained HMM, specified as the "model" parameter, and generates a
random observation sequence and hidden state sequence based on its parameters. The observation
sequence may be saved with the "output" output parameter, and the internal state sequence may be
saved with the "state" output parameter.

The state to start the sequence in may be specified with the "start_state" parameter.

Value
A list with several components:

output Matrix to save observation sequence to (numeric matrix).

state Matrix to save hidden state sequence to (integer matrix).
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Author(s)

mlpack developers

Examples

# For example, to generate a sequence of length 150 from the HMM "hmm" and
# save the observation sequence to "observations” and the hidden state
# sequence to "states"”, the following command may be used:

## Not run:

output <- hmm_generate(model=hmm, length=150)
observations <- output$output

states <- output$state

## End(Not run)

hmm_loglik Hidden Markov Model (HMM) Sequence Log-Likelihood

Description

A utility for computing the log-likelihood of a sequence for Hidden Markov Models (HMMs).
Given a pre-trained HMM and an observation sequence, this computes and returns the log-likelihood
of that sequence being observed from that HMM.

Usage

hmm_loglik(input, input_model, verbose = getOption("mlpack.verbose”, FALSE))

Arguments

input File containing observations (numeric matrix).
input_model File containing HMM (HMMModel).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This utility takes an already-trained HMM, specified with the "input_model" parameter, and evalu-
ates the log-likelihood of a sequence of observations, given with the "input” parameter. The com-
puted log-likelihood is given as output.

Value

A list with several components:

log_likelihood Log-likelihood of the sequence. Default value "0" (numeric).
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Author(s)

mlpack developers

Examples

# For example, to compute the log-likelihood of the sequence "seq"” with the
# pre-trained HMM "hmm"”, the following command may be used:

## Not run:
hmm_loglik(input=seq, input_model=hmm)

## End(Not run)

hmm_train Hidden Markov Model (HMM) Training

Description

An implementation of training algorithms for Hidden Markov Models (HMMs). Given labeled or
unlabeled data, an HMM can be trained for further use with other mlpack HMM tools.

Usage

hmm_train(
input_file,
batch = FALSE,
gaussians = NA,
input_model = NA,
labels_file = NA,

seed = NA,
states = NA,
tolerance = NA,
type = NA,
verbose = getOption("mlpack.verbose”, FALSE)

)

Arguments
input_file File containing input observations (character).
batch If true, input_file (and if passed, labels_file) are expected to contain a list of

files to use as input observation sequences (and label sequences). Default value
"FALSE" (logical).

gaussians Number of gaussians in each GMM (necessary when type is gmm’). Default
value "0" (integer).

input_model Pre-existing HMM model to initialize training with (HMMModel).
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labels_file Optional file of hidden states, used for labeled training. Default value "" (char-
acter).

seed Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).

states Number of hidden states in HMM (necessary, unless model_file is specified).
Default value "0" (integer).

tolerance Tolerance of the Baum-Welch algorithm. Default value "1e-05" (numeric).

type Type of HMM: discrete | gaussian | diag_gmm | gmm. Default value "gaussian”
(character).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

Details
This program allows a Hidden Markov Model to be trained on labeled or unlabeled data. It supports
four types of HMMs: Discrete HMMs, Gaussian HMMs, GMM HMMs, or Diagonal GMM HMMs

Either one input sequence can be specified (with "input_file"), or, a file containing files in which
input sequences can be found (when "input_file"and"batch" are used together). In addition, labels
can be provided in the file specified by "labels_file", and if "batch" is used, the file given to "la-
bels_file" should contain a list of files of labels corresponding to the sequences in the file given to
"input_file".

The HMM is trained with the Baum-Welch algorithm if no labels are provided. The tolerance of
the Baum-Welch algorithm can be set with the "tolerance"option. By default, the transition matrix
is randomly initialized and the emission distributions are initialized to fit the extent of the data.

Optionally, a pre-created HMM model can be used as a guess for the transition matrix and emission
probabilities; this is specifiable with "output_model".

Value

A list with several components:

output_model Output for trained HMM (HMMModel).

Author(s)

mlpack developers

hmm_viterbi Hidden Markov Model (HMM) Viterbi State Prediction

Description

A utility for computing the most probable hidden state sequence for Hidden Markov Models (HMMs).
Given a pre-trained HMM and an observed sequence, this uses the Viterbi algorithm to compute and
return the most probable hidden state sequence.
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Usage

hmm_viterbi(input, input_model, verbose = getOption("mlpack.verbose”, FALSE))

Arguments

input Matrix containing observations (numeric matrix).
input_model Trained HMM to use (HMMModel).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This utility takes an already-trained HMM, specified as "input_model", and evaluates the most
probable hidden state sequence of a given sequence of observations (specified as *"input", using the
Viterbi algorithm. The computed state sequence may be saved using the "output" output parameter.

Value

A list with several components:

output File to save predicted state sequence to (integer matrix).

Author(s)

mlpack developers

Examples

# For example, to predict the state sequence of the observations "obs"” using
# the HMM "hmm"”, storing the predicted state sequence to "states”, the
# following command could be used:

## Not run:
output <- hmm_viterbi(input=obs, input_model=hmm)

states <- output$output

## End(Not run)

hoeffding_tree Hoeffding trees

Description

An implementation of Hoeffding trees, a form of streaming decision tree for classification. Given
labeled data, a Hoeffding tree can be trained and saved for later use, or a pre-trained Hoeffding tree
can be used for predicting the classifications of new points.
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Usage

hoeffding_tree(
batch_mode = FALSE,
bins = NA,
confidence = NA,
info_gain = FALSE,
input_model = NA,
labels = NA,
max_samples = NA,
min_samples = NA,
numeric_split_strategy = NA,
observations_before_binning = NA,
passes = NA,
test = NA,
test_labels = NA,
training = NA,
verbose = getOption("mlpack.verbose”, FALSE)

Arguments

batch_mode If true, samples will be considered in batch instead of as a stream. This generally
results in better trees but at the cost of memory usage and runtime. Default value
"FALSE" (logical).

bins If the ’domingos’ split strategy is used, this specifies the number of bins for each
numeric split. Default value "10" (integer).

confidence Confidence before splitting (between 0 and 1). Default value "0.95" (numeric).

info_gain If set, information gain is used instead of Gini impurity for calculating Hoeffding
bounds. Default value "FALSE" (logical).

input_model Input trained Hoeffding tree model (HoeffdingTreeModel).

labels Labels for training dataset (integer row).
max_samples Maximum number of samples before splitting. Default value "5000" (integer).
min_samples Minimum number of samples before splitting. Default value "100" (integer).

numeric_split_strategy
The splitting strategy to use for numeric features: *domingos’ or ’binary’. De-
fault value "binary" (character).

observations_before_binning
If the ’domingos’ split strategy is used, this specifies the number of samples
observed before binning is performed. Default value "100" (integer).

passes Number of passes to take over the dataset. Default value "1" (integer).

test Testing dataset (may be categorical) (numeric matrix/data.frame with info).
test_labels Labels of test data (integer row).

training Training dataset (may be categorical) (numeric matrix/data.frame with info).
verbose Display informational messages and the full list of parameters and timers at the

end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
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Details

This program implements Hoeffding trees, a form of streaming decision tree suited best for large
(or streaming) datasets. This program supports both categorical and numeric data. Given an input
dataset, this program is able to train the tree with numerous training options, and save the model
to a file. The program is also able to use a trained model or a model from file in order to predict
classes for a given test set.

The training file and associated labels are specified with the "training" and "labels" parameters,
respectively. Optionally, if "labels" is not specified, the labels are assumed to be the last dimension
of the training dataset.

The training may be performed in batch mode (like a typical decision tree algorithm) by specifying
the "batch_mode" option, but this may not be the best option for large datasets.

When a model is trained, it may be saved via the "output_model" output parameter. A model may
be loaded from file for further training or testing with the "input_model" parameter.

Test data may be specified with the "test" parameter, and if performance statistics are desired for
that test set, labels may be specified with the "test_labels" parameter. Predictions for each test point
may be saved with the "predictions” output parameter, and class probabilities for each prediction
may be saved with the "probabilities" output parameter.

Value
A list with several components:
output_model Output for trained Hoeffding tree model (HoeffdingTreeModel).

predictions Matrix to output label predictions for test data into (integer row).

probabilities In addition to predicting labels, provide rediction probabilities in this matrix
(numeric matrix).

Author(s)

mlpack developers

Examples

# For example, to train a Hoeffding tree with confidence 0.99 with data
# "dataset"”, saving the trained tree to "tree”, the following command may be
# used:

## Not run:

output <- hoeffding_tree(training=dataset, confidence=0.99)

tree <- output$output_model

## End(Not run)

# Then, this tree may be used to make predictions on the test set "test_set”,
# saving the predictions into "predictions” and the class probabilities into

# "class_probs” with the following command:

## Not run:
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output <- hoeffding_tree(input_model=tree, test=test_set)
predictions <- output$predictions
class_probs <- output$probabilities

## End(Not run)

image_converter Image Converter

Description

A utility to load an image or set of images into a single dataset that can then be used by other mlpack
methods and utilities. This can also unpack an image dataset into individual files, for instance after

mlpack methods have been used.

Usage
image_converter(
input,
channels = NA,
dataset = NA,
height = NA,
quality = NA,
save = FALSE,
verbose = getOption("mlpack.verbose”, FALSE),
width = NA
)
Arguments
input Image filenames which have to be loaded/saved (character vector).
channels Number of channels in the image. Default value "0" (integer).
dataset Input matrix to save as images (numeric matrix).
height Height of the images. Default value "0" (integer).
quality Compression of the image if saved as jpg (0-100). Default value "90" (integer).
save Save a dataset as images. Default value "FALSE" (logical).
verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
width Width of the image. Default value "0" (integer).
Details

This utility takes an image or an array of images and loads them to a matrix. You can optionally
specify the height "height" width "width" and channel "channels" of the images that needs to be
loaded; otherwise, these parameters will be automatically detected from the image. There are other
options too, that can be specified such as "quality".

You can also provide a dataset and save them as images using "dataset" and "save" as an parameter.
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Value

A list with several components:

output Matrix to save images data to, Onlyneeded if you are specifying ’save’ option
(numeric matrix).

Author(s)

mlpack developers

Examples
# An example to load an image :
## Not run:
output <- image_converter(input=X, height=256, width=256, channels=3)
Y <- output$output
## End(Not run)
# An example to save an image is :
## Not run:
image_converter(input=X, height=256, width=256, channels=3, dataset=Y,

save=TRUE)

## End(Not run)

kde Kernel Density Estimation

Description

An implementation of kernel density estimation with dual-tree algorithms. Given a set of reference
points and query points and a kernel function, this can estimate the density function at the location
of each query point using trees; trees that are built can be saved for later use.

Usage
kde(
abs_error = NA,
algorithm = NA,
bandwidth = NA,

initial_sample_size = NA,
input_model = NA,

kernel = NA,
mc_break_coef
mc_entry_coef

NA,
NA,
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mc_probability = NA,
monte_carlo = FALSE,
query = NA,

reference

rel_error =

tree = NA,
verbose =

Arguments

abs_error

algorithm

bandwidth

NA,
NA,

getOption("mlpack.verbose”, FALSE)

Relative error tolerance for the prediction. Default value "0" (numeric).

Algorithm to use for the prediction.(’dual-tree’, ’single-tree’). Default value
"dual-tree" (character).

Bandwidth of the kernel. Default value "1" (numeric).

initial_sample_size

input_model

kernel

Initial sample size for Monte Carlo estimations. Default value "100" (integer).
Contains pre-trained KDE model (KDEModel).

Kernel to use for the prediction.(’gaussian’, ’epanechnikov’, ’laplacian’, ’spher-
ical’, ’triangular’). Default value "gaussian" (character).

mc_break_coef  Controls what fraction of the amount of node’s descendants is the limit for the

sample size before it recurses. Default value "0.4" (numeric).

mc_entry_coef  Controls how much larger does the amount of node descendants has to be com-

pared to the initial sample size in order to be a candidate for Monte Carlo esti-
mations. Default value "3" (numeric).

mc_probability Probability of the estimation being bounded by relative error when using Monte

monte_carlo

query
reference
rel_error

tree

verbose

Details

Carlo estimations. Default value "0.95" (numeric).

Whether to use Monte Carlo estimations when possible. Default value "FALSE"
(logical).

Query dataset to KDE on (numeric matrix).

Input reference dataset use for KDE (numeric matrix).

Relative error tolerance for the prediction. Default value "0.05" (numeric).

b}

Tree to use for the prediction.(’kd-tree’, ’ball-tree’, ’cover-tree’, ’octree’, 'r-
tree’). Default value "kd-tree" (character).

Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

This program performs a Kernel Density Estimation. KDE is a non-parametric way of estimating
probability density function. For each query point the program will estimate its probability den-
sity by applying a kernel function to each reference point. The computational complexity of this is
O(N”2) where there are N query points and N reference points, but this implementation will typi-
cally see better performance as it uses an approximate dual or single tree algorithm for acceleration.
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Dual or single tree optimization avoids many barely relevant calculations (as kernel function values
decrease with distance), so it is an approximate computation. You can specify the maximum rel-
ative error tolerance for each query value with "rel_error" as well as the maximum absolute error
tolerance with the parameter "abs_error". This program runs using an Euclidean metric. Kernel
function can be selected using the "kernel" option. You can also choose what which type of tree
to use for the dual-tree algorithm with "tree". It is also possible to select whether to use dual-tree
algorithm or single-tree algorithm using the "algorithm" option.

Monte Carlo estimations can be used to accelerate the KDE estimate when the Gaussian Kernel
is used. This provides a probabilistic guarantee on the the error of the resulting KDE instead of
an absolute guarantee.To enable Monte Carlo estimations, the "monte_carlo" flag can be used, and
success probability can be set with the "mc_probability" option. It is possible to set the initial
sample size for the Monte Carlo estimation using "initial_sample_size". This implementation will
only consider a node, as a candidate for the Monte Carlo estimation, if its number of descendant
nodes is bigger than the initial sample size. This can be controlled using a coefficient that will
multiply the initial sample size and can be set using "mc_entry_coef". To avoid using the same
amount of computations an exact approach would take, this program recurses the tree whenever a
fraction of the amount of the node’s descendant points have already been computed. This fraction
is set using "mc_break_coef".

Value

A list with several components:

output_model If specified, the KDE model will be saved here (KDEModel).

predictions Vector to store density predictions (numeric column).

Author(s)

mlpack developers

Examples

# For example, the following will run KDE using the data in "ref_data"” for
# training and the data in "qu_data” as query data. It will apply an

# Epanechnikov kernel with a ©.2 bandwidth to each reference point and use a
# KD-Tree for the dual-tree optimization. The returned predictions will be
# within 5% of the real KDE value for each query point.

## Not run:

output <- kde(reference=ref_data, query=qu_data, bandwidth=0.2,
kernel="epanechnikov"”, tree="kd-tree", rel_error=0.05)

out_data <- output$predictions

## End(Not run)

# the predicted density estimations will be stored in "out_data”.

# If no "query” is provided, then KDE will be computed on the "reference”
# dataset.

# It is possible to select either a reference dataset or an input model but
# not both at the same time. If an input model is selected and parameter
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values are not set (e.g. "bandwidth") then default parameter values will be
used.

In addition to the last program call, it is also possible to activate Monte
Carlo estimations if a Gaussian kernel is used. This can provide faster
results, but the KDE will only have a probabilistic guarantee of meeting
the desired error bound (instead of an absolute guarantee). The following
example will run KDE using a Monte Carlo estimation when possible. The
results will be within a 5% of the real KDE value with a 95% probability.
Initial sample size for the Monte Carlo estimation will be 200 points and a
node will be a candidate for the estimation only when it contains 700 (i.e.
3.5%200) points. If a node contains 700 points and 420 (i.e. 0.6x700) have
already been sampled, then the algorithm will recurse instead of keep
sampling.

## Not run:
output <- kde(reference=ref_data, query=qu_data, bandwidth=0.2,

kernel="gaussian"”, tree="kd-tree"”, rel_error=0.05, monte_carlo=,
mc_probability=0.95, initial_sample_size=200, mc_entry_coef=3.5,
mc_break_coef=0.6)

out_data <- output$predictions

## End(Not run)

kernel _pca

kernel_pca Kernel Principal Components Analysis

Description

Usage

An implementation of Kernel Principal Components Analysis (KPCA). This can be used to perform
nonlinear dimensionality reduction or preprocessing on a given dataset.

kernel_pca(

input,

kernel,

bandwidth = NA,

center = FALSE,

degree = NA,
kernel_scale = NA,
new_dimensionality = NA,
nystroem_method = FALSE,
offset = NA,

sampling = NA,

verbose = getOption("mlpack.verbose”, FALSE)
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Arguments

input Input dataset to perform KPCA on (numeric matrix).

kernel The kernel to use; see the above documentation for the list of usable kernels
(character).

bandwidth Bandwidth, for *gaussian’ and ’laplacian’ kernels. Default value "1" (numeric).

center If set, the transformed data will be centered about the origin. Default value
"FALSE" (logical).

degree Degree of polynomial, for *polynomial” kernel. Default value "1" (numeric).

kernel_scale Scale, for *hyptan’ kernel. Default value "1" (numeric).
new_dimensionality
If not 0, reduce the dimensionality of the output dataset by ignoring the dimen-
sions with the smallest eigenvalues. Default value "0" (integer).
nystroem_method
If set, the Nystroem method will be used. Default value "FALSE" (logical).

offset Offset, for "hyptan’ and *polynomial’ kernels. Default value "0" (numeric).
sampling Sampling scheme to use for the Nystroem method: ’kmeans’, 'random’, ’or-
dered. Default value "kmeans" (character).
verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This program performs Kernel Principal Components Analysis (KPCA) on the specified dataset
with the specified kernel. This will transform the data onto the kernel principal components, and
optionally reduce the dimensionality by ignoring the kernel principal components with the smallest
eigenvalues.

For the case where a linear kernel is used, this reduces to regular PCA.

The kernels that are supported are listed below:

* ’linear’: the standard linear dot product (same as normal PCA): ‘K(x, y) = xT y*

*’gaussian’: a Gaussian kernel; requires bandwidth: ‘K(x, y) =exp(-(Il x - y I 2 2) / (2 * (bandwidth
" 2)))°

* ’polynomial’: polynomial kernel; requires offset and degree: ‘K(x, y) = (x T y + offset) » degree*

* “hyptan’: hyperbolic tangent kernel; requires scale and offset: ‘K(x, y) = tanh(scale * (x T y) +
offset)*

* ’laplacian’: Laplacian kernel; requires bandwidth: ‘K(x, y) = exp(-(Il x - y Il) / bandwidth)*

* “epanechnikov’: Epanechnikov kernel; requires bandwidth: ‘K(x, y) = max(0, 1 -l x - y lI"2/
bandwidth"2)*

* ’cosine’: cosine distance: ‘K(x,y)=1-x "Ty)/ I x I * Iyl

The parameters for each of the kernels should be specified with the options "bandwidth", "ker-
nel_scale", "offset", or "degree" (or a combination of those parameters).
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Optionally, the Nystroem method ("Using the Nystroem method to speed up kernel machines",
2001) can be used to calculate the kernel matrix by specifying the "nystroem_method" parameter.
This approach works by using a subset of the data as basis to reconstruct the kernel matrix; to specify
the sampling scheme, the "sampling" parameter is used. The sampling scheme for the Nystroem
method can be chosen from the following list: ’kmeans’, 'random’, *ordered’.

Value

A list with several components:

output Matrix to save modified dataset to (numeric matrix).

Author(s)

mlpack developers

Examples

# For example, the following command will perform KPCA on the dataset "input”
# using the Gaussian kernel, and saving the transformed data to
# "transformed”:

## Not run:
output <- kernel_pca(input=input, kernel="gaussian")

transformed <- output$output

## End(Not run)

kfn k-Furthest-Neighbors Search

Description

An implementation of k-furthest-neighbor search using single-tree and dual-tree algorithms. Given
a set of reference points and query points, this can find the k furthest neighbors in the reference set
of each query point using trees; trees that are built can be saved for future use.

Usage

kfn(
algorithm = NA,
epsilon = NA,
input_model = NA,
k = NA,
leaf_size = NA,
percentage = NA,
query = NA,
random_basis = FALSE,
reference = NA,
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tree_type = NA,

true_distances = NA,

true_neighbors = NA,

verbose = getOption("mlpack.verbose”, FALSE)

Arguments

algorithm

epsilon

input_model
k

leaf_size

percentage

query

random_basis

reference
seed

tree_type

true_distances

true_neighbors

verbose

Details

Type of neighbor search: ’naive’, ’single_tree’, *dual_tree’, ’greedy’. Default
value "dual_tree" (character).

If specified, will do approximate furthest neighbor search with given relative
error. Must be in the range [0,1). Default value "0" (numeric).

Pre-trained kFN model (KFNModel).
Number of furthest neighbors to find. Default value "0" (integer).

Leaf size for tree building (used for kd-trees, vp trees, random projection trees,
UB trees, R trees, R* trees, X trees, Hilbert R trees, R+ trees, R++ trees, and
octrees). Default value "20" (integer).

If specified, will do approximate furthest neighbor search. Must be in the range
(0,1] (decimal form). Resultant neighbors will be at least (p*100) Default value
"1" (numeric).

Matrix containing query points (optional) (numeric matrix).

Before tree-building, project the data onto a random orthogonal basis. Default
value "FALSE" (logical).

Matrix containing the reference dataset (numeric matrix).

Random seed (if 0, std::time(NULL) is used). Default value "0" (integer).

i 9.9 LI

Type of tree to use: ’kd’, ’vp’, ’rp’, 'max-rp’, 'ub’, ’cover’, ’r’, ’r-star’, ’x’,
“ball’, "hilbert-r’, 'r-plus’, 'r-plus-plus’, "oct’. Default value "kd" (character).

Matrix of true distances to compute the effective error (average relative error) (it
is printed when -v is specified) (numeric matrix).

Matrix of true neighbors to compute the recall (it is printed when -v is specified)
(integer matrix).

Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

This program will calculate the k-furthest-neighbors of a set of points. You may specify a separate
set of reference points and query points, or just a reference set which will be used as both the
reference and query set.
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Value
A list with several components:

distances Matrix to output distances into (numeric matrix).
neighbors Matrix to output neighbors into (integer matrix).
output_model  If specified, the kFN model will be output here (KFNModel).

Author(s)

mlpack developers

Examples

# For example, the following will calculate the 5 furthest neighbors of
# eachpoint in "input” and store the distances in "distances” and the
# neighbors in "neighbors”:

## Not run:

output <- kfn(k=5, reference=input)
distances <- output$distances
neighbors <- output$neighbors

## End(Not run)

The output files are organized such that row i and column j in the
neighbors output matrix corresponds to the index of the point in the
reference set which is the j'th furthest neighbor from the point in the
query set with index i. Row i and column j in the distances output file
corresponds to the distance between those two points.

ER T T

kmeans K-Means Clustering

Description

An implementation of several strategies for efficient k-means clustering. Given a dataset and a value
of k, this computes and returns a k-means clustering on that data.

Usage

kmeans (
clusters,
input,
algorithm = NA,
allow_empty_clusters = FALSE,
in_place = FALSE,
initial_centroids = NA,
kill_empty_clusters = FALSE,
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kmeans_plus_plus = FALSE,
labels_only = FALSE,
max_iterations = NA,
percentage = NA,
refined_start = FALSE,

samplings

seed = NA,

verbose =

Arguments
clusters
input

algorithm

allow_empty_

in_place

= NA,

getOption("mlpack.verbose”, FALSE)

Number of clusters to find (0 autodetects from initial centroids) (integer).
Input dataset to perform clustering on (numeric matrix).
Algorithm to use for the Lloyd iteration (’naive’, ’pelleg-moore’, "elkan’, hamerly’,
’dualtree’, or ’dualtree-covertree’). Default value "naive" (character).
clusters

Allow empty clusters to be persist. Default value "FALSE" (logical).

If specified, a column containing the learned cluster assignments will be added
to the input dataset file. In this case, —output_file is overridden. (Do not use in
Python.. Default value "FALSE" (logical).

initial_centroids

Start with the specified initial centroids (numeric matrix).

kill_empty_clusters

kmeans_plus_

labels_only

Remove empty clusters when they occur. Default value "FALSE" (logical).

plus
Use the k-means++ initialization strategy to choose initial points. Default value
"FALSE" (logical).

Only output labels into output file. Default value "FALSE" (logical).

max_iterations Maximum number of iterations before k-means terminates. Default value "1000"

percentage

(integer).

Percentage of dataset to use for each refined start sampling (use when —refined_start
is specified). Default value "0.02" (numeric).

refined_start Use the refined initial point strategy by Bradley and Fayyad to choose initial

samplings

seed

verbose

points. Default value "FALSE" (logical).

Number of samplings to perform for refined start (use when —refined_start is
specified). Default value "100" (integer).

Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).

Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
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Details

This program performs K-Means clustering on the given dataset. It can return the learned cluster
assignments, and the centroids of the clusters. Empty clusters are not allowed by default; when a
cluster becomes empty, the point furthest from the centroid of the cluster with maximum variance
is taken to fill that cluster.

Optionally, the strategy to choose initial centroids can be specified. The k-means++ algorithm can
be used to choose initial centroids with the "kmeans_plus_plus" parameter. The Bradley and Fayyad
approach ("Refining initial points for k-means clustering”, 1998) can be used to select initial points
by specifying the "refined_start" parameter. This approach works by taking random samplings of
the dataset; to specify the number of samplings, the "samplings" parameter is used, and to specify
the percentage of the dataset to be used in each sample, the "percentage” parameter is used (it should
be a value between 0.0 and 1.0).

There are several options available for the algorithm used for each Lloyd iteration, specified with the
"algorithm" option. The standard O(kN) approach can be used ('naive’). Other options include the
Pelleg-Moore tree-based algorithm (’pelleg-moore’), Elkan’s triangle-inequality based algorithm
(’elkan’), Hamerly’s modification to Elkan’s algorithm ("hamerly’), the dual-tree k-means algorithm
(’dualtree’), and the dual-tree k-means algorithm using the cover tree ("dualtree-covertree’).

The behavior for when an empty cluster is encountered can be modified with the "allow_empty_clusters"
option. When this option is specified and there is a cluster owning no points at the end of an iter-
ation, that cluster’s centroid will simply remain in its position from the previous iteration. If the
"kill_empty_clusters" option is specified, then when a cluster owns no points at the end of an it-
eration, the cluster centroid is simply filled with DBL_MAX, killing it and effectively reducing k

for the rest of the computation. Note that the default option when neither empty cluster option is
specified can be time-consuming to calculate; therefore, specifying either of these parameters will
often accelerate runtime.

Initial clustering assignments may be specified using the "initial_centroids" parameter, and the max-
imum number of iterations may be specified with the "max_iterations" parameter.

Value

A list with several components:

centroid If specified, the centroids of each cluster will be written to the given file (numeric
matrix).
output Matrix to store output labels or labeled data to (numeric matrix).
Author(s)

mlpack developers

Examples

# As an example, to use Hamerly's algorithm to perform k-means clustering
# with k=10 on the dataset "data”, saving the centroids to "centroids” and
# the assignments for each point to "assignments”, the following command
# could be used:

## Not run:
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output <- kmeans(input=data, clusters=10)
assignments <- output$output
centroids <- output$centroid

## End(Not run)

# To run k-means on that same dataset with initial centroids specified in
# "initial” with a maximum of 500 iterations, storing the output centroids in
# "final"” the following command may be used:

## Not run:

output <- kmeans(input=data, initial_centroids=initial, clusters=10,
max_iterations=500)

final <- output$centroid

## End(Not run)

knn k-Nearest-Neighbors Search

Description

An implementation of k-nearest-neighbor search using single-tree and dual-tree algorithms. Given
a set of reference points and query points, this can find the k nearest neighbors in the reference set
of each query point using trees; trees that are built can be saved for future use.

Usage

knn(
algorithm = NA,
epsilon = NA,
input_model = NA,
k = NA,
leaf_size = NA,
query = NA,
random_basis = FALSE,
reference = NA,

rho = NA,
seed = NA,
tau = NA,

tree_type = NA,

true_distances = NA,

true_neighbors = NA,

verbose = getOption("mlpack.verbose”, FALSE)
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Arguments

algorithm

epsilon

input_model
k

leaf_size

query

random_basis

reference

rho

seed

tau

tree_type
true_distances

true_neighbors

verbose

Details

knn

Type of neighbor search: ’naive’, ’single_tree’, ’dual_tree’, ’greedy’. Default
value "dual_tree" (character).

If specified, will do approximate nearest neighbor search with given relative
error. Default value "0" (numeric).

Pre-trained kNN model (KNNModel).
Number of nearest neighbors to find. Default value "0" (integer).

Leaf size for tree building (used for kd-trees, vp trees, random projection trees,
UB trees, R trees, R* trees, X trees, Hilbert R trees, R+ trees, R++ trees, spill
trees, and octrees). Default value "20" (integer).

Matrix containing query points (optional) (numeric matrix).

Before tree-building, project the data onto a random orthogonal basis. Default
value "FALSE" (logical).

Matrix containing the reference dataset (numeric matrix).
Balance threshold (only valid for spill trees). Default value "0.7" (numeric).
Random seed (if 0, std::time(NULL) is used). Default value "0" (integer).

Overlapping size (only valid for spill trees). Default value "0" (numeric).

9.9 ’

Type of tree to use: ’kd’, ’vp’, ’rp’, ‘'max-rp’, 'ub’, ’cover’, ’r’, ’r-star’, ’x’,
“ball’, *hilbert-r’, 'r-plus’, ’r-plus-plus’, ’spill’, oct’. Default value "kd" (char-
acter).

Matrix of true distances to compute the effective error (average relative error) (it
is printed when -v is specified) (numeric matrix).

Matrix of true neighbors to compute the recall (it is printed when -v is specified)
(integer matrix).

Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

This program will calculate the k-nearest-neighbors of a set of points using kd-trees or cover trees
(cover tree support is experimental and may be slow). You may specify a separate set of reference
points and query points, or just a reference set which will be used as both the reference and query

set.

Value

A list with several components:

distances
neighbors

output_model

Matrix to output distances into (numeric matrix).
Matrix to output neighbors into (integer matrix).

If specified, the KNN model will be output here (KNNModel).
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Author(s)

mlpack developers

Examples

# For example, the following command will calculate the 5 nearest neighbors
# of each point in "input” and store the distances in "distances” and the
# neighbors in "neighbors”:

## Not run:

output <- knn(k=5, reference=input)
neighbors <- output$neighbors
distances <- output$distances

## End(Not run)

# The output is organized such that row i and column j in the neighbors

# output matrix corresponds to the index of the point in the reference set
# which is the j'th nearest neighbor from the point in the query set with

# index i. Row j and column i in the distances output matrix corresponds to
# the distance between those two points.

krann K-Rank-Approximate-Nearest-Neighbors (kRANN)

Description

An implementation of rank-approximate k-nearest-neighbor search (kRANN) using single-tree and
dual-tree algorithms. Given a set of reference points and query points, this can find the k nearest
neighbors in the reference set of each query point using trees; trees that are built can be saved for
future use.

Usage

krann(
alpha = NA,
first_leaf_exact = FALSE,
input_model = NA,
k = NA,
leaf_size = NA,
naive = FALSE,
query = NA,
random_basis = FALSE,
reference = NA,
sample_at_leaves = FALSE,
seed = NA,
single_mode = FALSE,
single_sample_limit = NA,
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tau = NA,

krann

tree_type = NA,

verbose =

Arguments

alpha

getOption("mlpack.verbose”, FALSE)

The desired success probability. Default value "0.95" (numeric).

first_leaf_exact

input_model
k

leaf_size

naive

query

random_basis

reference

The flag to trigger sampling only after exactly exploring the first leaf. Default
value "FALSE" (logical).

Pre-trained kNN model (RAModel).
Number of nearest neighbors to find. Default value "0" (integer).

Leaf size for tree building (used for kd-trees, UB trees, R trees, R* trees, X trees,
Hilbert R trees, R+ trees, R++ trees, and octrees). Default value "20" (integer).

If true, sampling will be done without using a tree. Default value "FALSE"
(logical).

Matrix containing query points (optional) (numeric matrix).

Before tree-building, project the data onto a random orthogonal basis. Default
value "FALSE" (logical).

Matrix containing the reference dataset (numeric matrix).

sample_at_leaves

seed

single_mode

The flag to trigger sampling at leaves. Default value "FALSE" (logical).
Random seed (if 0, std::time(NULL) is used). Default value "0" (integer).

If true, single-tree search is used (as opposed to dual-tree search. Default value
"FALSE" (logical).

single_sample_limit

tau

tree_type

verbose

Details

The limit on the maximum number of samples (and hence the largest node you
can approximate). Default value "20" (integer).

The allowed rank-error in terms of the percentile of the data. Default value "5"
(numeric).

LI SR N )

Type of tree to use: ’kd’, ub’, ’cover’, r’, ’x’, 'r-star’, ’hilbert-r’, 'r-plus’, ’r-
plus-plus’, "oct’. Default value "kd" (character).
Display informational messages and the full list of parameters and timers at the

end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

This program will calculate the k rank-approximate-nearest-neighbors of a set of points. You may
specify a separate set of reference points and query points, or just a reference set which will be
used as both the reference and query set. You must specify the rank approximation (in success

probability).
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Value

A list with several components:

distances Matrix to output distances into (numeric matrix).
neighbors Matrix to output neighbors into (integer matrix).

output_model If specified, the KNN model will be output here (RAModel).

Author(s)

mlpack developers

Examples

# For example, the following will return 5 neighbors from the top 0.1% of the
# data (with probability ©.95) for each point in "input” and store the
# distances in "distances” and the neighbors in "neighbors.csv":

## Not run:

output <- krann(reference=input, k=5, tau=0.1)
distances <- output$distances

neighbors <- output$neighbors

## End(Not run)

Note that tau must be set such that the number of points in the
corresponding percentile of the data is greater than k. Thus, if we choose
tau = 0.1 with a dataset of 1000 points and k = 5, then we are attempting
to choose 5 nearest neighbors out of the closest 1 point -- this is invalid
and the program will terminate with an error message.

The output matrices are organized such that row i and column j in the
neighbors output file corresponds to the index of the point in the
reference set which is the i'th nearest neighbor from the point in the
query set with index j. Row i and column j in the distances output file
corresponds to the distance between those two points.

BT T I I I

lars LARS

Description

An implementation of Least Angle Regression (Stagewise/laSso), also known as LARS. This can
train a LARS/LASSO/Elastic Net model and use that model or a pre-trained model to output re-
gression predictions for a test set.
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input_model
lambda1
lambda2
no_intercept

no_normalize

responses
test

use_cholesky

verbose

Details

Usage
lars(
input = NA,
input_model = NA,
lambdal = NA,
lambda2 = NA,
no_intercept = FALSE,
no_normalize = FALSE,
responses = NA,
test = NA,
use_cholesky = FALSE,
verbose = getOption("mlpack.verbose”, FALSE)
)
Arguments
input Matrix of covariates (X) (numeric matrix).

Trained LARS model to use (LARS).

Regularization parameter for 11-norm penalty. Default value "0" (numeric).
Regularization parameter for 12-norm penalty. Default value "0" (numeric).
Do not fit an intercept in the model. Default value "FALSE" (logical).

Do not normalize data to unit variance before modeling. Default value "FALSE"
(logical).

Matrix of responses/observations (y) (numeric matrix).
Matrix containing points to regress on (test points) (numeric matrix).

Use Cholesky decomposition during computation rather than explicitly comput-
ing the full Gram matrix. Default value "FALSE" (logical).

Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

An implementation of LARS: Least Angle Regression (Stagewise/laSso). This is a stage-wise
homotopy-based algorithm for L1-regularized linear regression (LASSO) and L1+L2-regularized
linear regression (Elastic Net).

This program is able to train a LARS/LASSO/Elastic Net model or load a model from file, output
regression predictions for a test set, and save the trained model to a file. The LARS algorithm is
described in more detail below:

Let X be a matrix where each row is a point and each column is a dimension, and let y be a vector

of targets.

The Elastic Net problem is to solve
min_beta 0.5 Il X * beta - y II_2"2 + lambda_1 Iibetall_1 + 0.5 lambda_2 llbetall_2/2
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If lambdal > 0 and lambda2 = 0, the problem is the LASSO. If lambdal > 0 and lambda2 > 0, the
problem is the Elastic Net. If lambdal = 0 and lambda2 > 0, the problem is ridge regression. If
lambdal = 0 and lambda2 = 0, the problem is unregularized linear regression.

For efficiency reasons, it is not recommended to use this algorithm with "lambdal" = 0. In that
case, use the ’linear_regression’ program, which implements both unregularized linear regression
and ridge regression.

To train a LARS/LASSO/Elastic Net model, the "input" and "responses" parameters must be given.
The "lambdal", "lambda2", and "use_cholesky" parameters control the training options. A trained
model can be saved with the "output_model". If no training is desired at all, a model can be passed
via the "input_model" parameter.

The program can also provide predictions for test data using either the trained model or the given
input model. Test points can be specified with the "test" parameter. Predicted responses to the test
points can be saved with the "output_predictions" output parameter.

Value

A list with several components:

output_model Output LARS model (LARS).

output_predictions

If —test_file is specified, this file is where the predicted responses will be saved
(numeric matrix).

Author(s)

mlpack developers

Examples

# For example, the following command trains a model on the data "data” and
# responses "responses” with lambdal set to 0.4 and lambda2 set to @ (so,
# LASSO is being solved), and then the model is saved to "lasso_model”:

## Not run:
output <- lars(input=data, responses=responses, lambdal=0.4, lambda2=0)
lasso_model <- output$output_model

## End(Not run)

# The following command uses the "lasso_model” to provide predicted responses
# for the data "test” and save those responses to "test_predictions”:

## Not run:
output <- lars(input_model=lasso_model, test=test)
test_predictions <- output$output_predictions

## End(Not run)



54 linear_regression

linear_regression Simple Linear Regression and Prediction

Description

An implementation of simple linear regression and ridge regression using ordinary least squares.
Given a dataset and responses, a model can be trained and saved for later use, or a pre-trained
model can be used to output regression predictions for a test set.

Usage

linear_regression(
input_model = NA,
lambda = NA,
test = NA,
training = NA,
training_responses = NA,
verbose = getOption("mlpack.verbose”, FALSE)

)
Arguments
input_model Existing LinearRegression model to use (LinearRegression).
lambda Tikhonov regularization for ridge regression. If 0, the method reduces to linear
regression. Default value "0" (numeric).
test Matrix containing X’ (test regressors) (numeric matrix).
training Matrix containing training set X (regressors) (numeric matrix).

training_responses
Optional vector containing y (responses). If not given, the responses are as-
sumed to be the last row of the input file (numeric row).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

An implementation of simple linear regression and simple ridge regression using ordinary least
squares. This solves the problem

y=X*b+e

where X (specified by "training") and y (specified either as the last column of the input matrix
"training" or via the "training_responses" parameter) are known and b is the desired variable. If
the covariance matrix (X’X) is not invertible, or if the solution is overdetermined, then specify a
Tikhonov regularization constant (with "lambda") greater than 0, which will regularize the covari-
ance matrix to make it invertible. The calculated b may be saved with the "output_predictions"
output parameter.
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Optionally, the calculated value of b is used to predict the responses for another matrix X’ (specified
by the "test" parameter):

y=X"*b
and the predicted responses y’ may be saved with the "output_predictions" output parameter. This

type of regression is related to least-angle regression, which mlpack implements as the ’lars’ pro-
gram.

Value

A list with several components:

output_model  Output LinearRegression model (LinearRegression).
output_predictions
If —test_file is specified, this matrix is where the predicted responses will be

saved (numeric row).
Author(s)

mlpack developers

Examples

# For example, to run a linear regression on the dataset "X" with responses
# "y", saving the trained model to "lr_model”, the following command could be
# used:

## Not run:
output <- linear_regression(training=X, training_responses=y)
1r_model <- output$output_model

## End(Not run)

# Then, to use "lr_model” to predict responses for a test set "X_test”,
# saving the predictions to "X_test_responses”, the following command could
# be used:

## Not run:
output <- linear_regression(input_model=1r_model, test=X_test)

X_test_responses <- output$output_predictions

## End(Not run)

linear_svm Linear SVM is an L2-regularized support vector machine.

Description

An implementation of linear SVM for multiclass classification. Given labeled data, a model can be
trained and saved for future use; or, a pre-trained model can be used to classify new points.
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Usage
linear_svm(
delta = NA,
epochs = NA,
input_model = NA,
labels = NA,
lambda = NA,

max_iterations = NA,
no_intercept = FALSE,

num_classes = NA,
optimizer = NA,

seed = NA,

shuffle = FALSE,

step_size
test = NA,

test_labels

tolerance

NA,

NA,

NA,

training = NA,

verbose =

Arguments

delta

epochs

input_model
labels

lambda

max_iterations

no_intercept

num_classes

optimizer

seed
shuffle

step_size
test
test_labels

getOption("mlpack.verbose”, FALSE)

Margin of difference between correct class and other classes. Default value "1"
(numeric).

Maximum number of full epochs over dataset for psg. Default value "50" (inte-
ger).
Existing model (parameters) (LinearSVMModel).

A matrix containing labels (0 or 1) for the points in the training set (y) (integer
TOW).

L2-regularization parameter for training. Default value "0.0001" (numeric).

Maximum iterations for optimizer (0 indicates no limit). Default value "10000"
(integer).

Do not add the intercept term to the model. Default value "FALSE" (logical).

Number of classes for classification; if unspecified (or 0), the number of classes
found in the labels will be used. Default value "0" (integer).

Optimizer to use for training (’lbfgs’ or psgd’). Default value "lbfgs" (charac-
ter).

Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).

Don’t shuffle the order in which data points are visited for parallel SGD. Default
value "FALSE" (logical).

Step size for parallel SGD optimizer. Default value "0.01" (numeric).
Matrix containing test dataset (numeric matrix).

Matrix containing test labels (integer row).
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tolerance Convergence tolerance for optimizer. Default value "1le-10" (numeric).
training A matrix containing the training set (the matrix of predictors, X) (numeric ma-
trix).
verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

An implementation of linear SVMs that uses either L-BFGS or parallel SGD (stochastic gradient
descent) to train the model.

This program allows loading a linear SVM model (via the "input_model" parameter) or training a
linear SVM model given training data (specified with the "training" parameter), or both those things
at once. In addition, this program allows classification on a test dataset (specified with the "test"
parameter) and the classification results may be saved with the "predictions" output parameter. The
trained linear SVM model may be saved using the "output_model" output parameter.

The training data, if specified, may have class labels as its last dimension. Alternately, the "labels"
parameter may be used to specify a separate vector of labels.

When a model is being trained, there are many options. L2 regularization (to prevent overfitting)
can be specified with the "lambda" option, and the number of classes can be manually specified with
the "num_classes"and if an intercept term is not desired in the model, the "no_intercept” parameter
can be specified.Margin of difference between correct class and other classes can be specified with
the "delta" option.The optimizer used to train the model can be specified with the "optimizer" pa-
rameter. Available options are *psgd’ (parallel stochastic gradient descent) and "1bfgs’ (the L-BFGS
optimizer). There are also various parameters for the optimizer; the "max_iterations" parameter
specifies the maximum number of allowed iterations, and the "tolerance" parameter specifies the
tolerance for convergence. For the parallel SGD optimizer, the "step_size" parameter controls the
step size taken at each iteration by the optimizer and the maximum number of epochs (specified
with "epochs"). If the objective function for your data is oscillating between Inf and 0, the step size
is probably too large. There are more parameters for the optimizers, but the C++ interface must be
used to access these.

Optionally, the model can be used to predict the labels for another matrix of data points, if "test"
is specified. The "test" parameter can be specified without the "training" parameter, so long as an
existing linear SVM model is given with the "input_model" parameter. The output predictions from
the linear SVM model may be saved with the "predictions" parameter.

Value

A list with several components:

output_model Output for trained linear svm model (LinearSVMModel).

predictions If test data is specified, this matrix is where the predictions for the test set will
be saved (integer row).

probabilities If test data is specified, this matrix is where the class probabilities for the test set
will be saved (numeric matrix).
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Author(s)

mlpack developers

Examples

# As an example, to train a LinaerSVYM on the data '"data”' with labels
# '"labels"' with L2 regularization of @.1, saving the model to
# '"lsvm_model”', the following command may be used:

## Not run:

output <- linear_svm(training=data, labels=labels, lambda=0.1, delta=1,
num_classes=0)

1svm_model <- output$output_model

## End(Not run)
# Then, to use that model to predict classes for the dataset '"test"',

# storing the output predictions in '"predictions”', the following command
# may be used:

"

## Not run:
output <- linear_svm(input_model=1svm_model, test=test)
predictions <- output$predictions

## End(Not run)

1mnn Large Margin Nearest Neighbors (LMNN)

Description

An implementation of Large Margin Nearest Neighbors (LMNN), a distance learning technique.
Given a labeled dataset, this learns a transformation of the data that improves k-nearest-neighbor
performance; this can be useful as a preprocessing step.

Usage

Imnn(
input,
batch_size = NA,
center = FALSE,
distance = NA,
k = NA,
labels = NA,
linear_scan = FALSE,
max_iterations = NA,
normalize = FALSE,
optimizer = NA,
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passes = NA,
print_accuracy = FALSE,
rank = NA,
regularization = NA,
seed = NA,
step_size = NA,
tolerance = NA,
update_interval = NA,
verbose = getOption("mlpack.verbose”, FALSE)

)

Arguments

input Input dataset to run LMNN on (numeric matrix).

batch_size Batch size for mini-batch SGD. Default value "50" (integer).

center Perform mean-centering on the dataset. It is useful when the centroid of the data

is far from the origin. Default value "FALSE" (logical).
distance Initial distance matrix to be used as starting poin (numeric matrix).
k Number of target neighbors to use for each datapoint. Default value "1" (inte-
ger).
labels Labels for input dataset (integer row).
linear_scan Don’t shuffle the order in which data points are visited for SGD or mini-batch

SGD. Default value "FALSE" (logical).

max_iterations Maximum number of iterations for L-BFGS (0 indicates no limit). Default value

"100000" (integer).

normalize Use a normalized starting point for optimization. Itis useful for when points are
far apart, or when SGD is returning NaN. Default value "FALSE" (logical).

optimizer Optimizer to use; amsgrad’, bbsgd’, ’sgd’, or ’1bfgs’. Default value "amsgrad"
(character).

passes Maximum number of full passes over dataset for AMSGrad, BB_SGD and SGD.

Default value "50" (integer).

print_accuracy Print accuracies on initial and transformed datase. Default value "FALSE" (log-

ical).
rank Rank of distance matrix to be optimized.. Default value "0" (integer).
regularization Regularization for LMNN objective function. Default value "0.5" (numeric).
seed Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).
step_size Step size for AMSGrad, BB_SGD and SGD (alpha). Default value "0.01" (nu-
meric).
tolerance Maximum tolerance for termination of AMSGrad, BB_SGD, SGD or L-BFGS.

Default value "1e-07" (numeric).

update_interval

Number of iterations after which impostors need to be recalculated. Default
value "1" (integer).

verbose Display informational messages and the full list of parameters and timers at the

end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
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Details

This program implements Large Margin Nearest Neighbors, a distance learning technique. The
method seeks to improve k-nearest-neighbor classification on a dataset. The method employes
the strategy of reducing distance between similar labeled data points (a.k.a target neighbors) and
increasing distance between differently labeled points (a.k.a impostors) using standard optimization
techniques over the gradient of the distance between data points.

To work, this algorithm needs labeled data. It can be given as the last row of the input dataset (spec-
ified with "input"), or alternatively as a separate matrix (specified with "labels"). Additionally, a
starting point for optimization (specified with "distance"can be given, having (r x d) dimensionality.
Here r should satisfy 1 <= r <= d, Consequently a Low-Rank matrix will be optimized. Alterna-
tively, Low-Rank distance can be learned by specifying the "rank"parameter (A Low-Rank matrix
with uniformly distributed values will be used as initial learning point).

The program also requires number of targets neighbors to work with ( specified with "k"), A regu-
larization parameter can also be passed, It acts as a trade of between the pulling and pushing terms
(specified with "regularization"), In addition, this implementation of LMNN includes a parameter to
decide the interval after which impostors must be re-calculated (specified with "update_interval").

Output can either be the learned distance matrix (specified with "output"), or the transformed dataset
(specified with "transformed_data"), or both. Additionally mean-centered dataset (specified with
"centered_data") can be accessed given mean-centering (specified with "center") is performed on
the dataset. Accuracy on initial dataset and final transformed dataset can be printed by specifying
the "print_accuracy"parameter.

This implementation of LMNN uses AdaGrad, BigBatch_SGD, stochastic gradient descent, mini-
batch stochastic gradient descent, or the L_BFGS optimizer.

AdaGrad, specified by the value ’adagrad’ for the parameter "optimizer", uses maximum of past
squared gradients. It primarily on six parameters: the step size (specified with "step_size"), the
batch size (specified with "batch_size"), the maximum number of passes (specified with "passes").
Inaddition, a normalized starting point can be used by specifying the "normalize" parameter.

BigBatch_SGD, specified by the value ’bbsgd’ for the parameter "optimizer", depends primar-
ily on four parameters: the step size (specified with "step_size"), the batch size (specified with
"batch_size"), the maximum number of passes (specified with "passes"). In addition, a normalized
starting point can be used by specifying the "normalize" parameter.

Stochastic gradient descent, specified by the value ’sgd’ for the parameter "optimizer", depends
primarily on three parameters: the step size (specified with "step_size"), the batch size (specified
with "batch_size"), and the maximum number of passes (specified with "passes"). In addition,
a normalized starting point can be used by specifying the "normalize" parameter. Furthermore,
mean-centering can be performed on the dataset by specifying the "center"parameter.

The L-BFGS optimizer, specified by the value ’Ibfgs’ for the parameter "optimizer", uses a back-
tracking line search algorithm to minimize a function. The following parameters are used by L-
BFGS: "max_iterations", "tolerance"(the optimization is terminated when the gradient norm is be-
low this value). For more details on the L-BFGS optimizer, consult either the mlpack L-BFGS
documentation (in 1bfgs.hpp) or the vast set of published literature on L-BFGS. In addition, a nor-

malized starting point can be used by specifying the "normalize" parameter.

By default, the AMSGrad optimizer is used.
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Value

A list with several components:

centered_data Output matrix for mean-centered dataset (numeric matrix).

output Output matrix for learned distance matrix (numeric matrix).

transformed_data
Output matrix for transformed dataset (numeric matrix).

Author(s)

mlpack developers

Examples

# Example - Let's say we want to learn distance on iris dataset with number
# of targets as 3 using BigBatch_SGD optimizer. A simple call for the same
# will look like:

## Not run:
output <- Imnn(input=iris, labels=iris_labels, k=3, optimizer="bbsgd")
output <- output$output

## End(Not run)

# Another program call making use of update interval & regularization
# parameter with dataset having labels as last column can be made as:

## Not run:

output <- lmnn(input=letter_recognition, k=5, update_interval=10,
regularization=90.4)

output <- output$output

## End(Not run)

local_coordinate_coding
Local Coordinate Coding

Description

An implementation of Local Coordinate Coding (LCC), a data transformation technique. Given
input data, this transforms each point to be expressed as a linear combination of a few points in the
dataset; once an LCC model is trained, it can be used to transform points later also.
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Usage

local_coordinate_coding

local_coordinate_coding(

atoms = NA,

initial_dictionary = NA,

input_model =

lambda = NA,

NA,

max_iterations = NA,

normalize =
seed = NA,
test = NA,

FALSE,

tolerance = NA,
training = NA,
verbose = getOption("mlpack.verbose”, FALSE)

Arguments

atoms

Number of atoms in the dictionary. Default value "0" (integer).

initial_dictionary

input_model
lambda

max_iterations

normalize

seed

test
tolerance
training

verbose

Details

Optional initial dictionary (numeric matrix).
Input LCC model (LocalCoordinateCoding).
Weighted 11-norm regularization parameter. Default value "0" (numeric).

Maximum number of iterations for LCC (0 indicates no limit). Default value
"0" (integer).

If set, the input data matrix will be normalized before coding. Default value
"FALSE" (logical).

Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).
Test points to encode (numeric matrix).

Tolerance for objective function. Default value "0.01" (numeric).

Matrix of training data (X) (numeric matrix).

Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

An implementation of Local Coordinate Coding (LCC), which codes data that approximately lives
on a manifold using a variation of 11-norm regularized sparse coding. Given a dense data matrix
X with n points and d dimensions, LCC seeks to find a dense dictionary matrix D with k atoms in
d dimensions, and a coding matrix Z with n points in k dimensions. Because of the regularization
method used, the atoms in D should lie close to the manifold on which the data points lie.

The original data matrix X can then be reconstructed as D * Z. Therefore, this program finds a
representation of each point in X as a sparse linear combination of atoms in the dictionary D.

The coding is found with an algorithm which alternates between a dictionary step, which updates
the dictionary D, and a coding step, which updates the coding matrix Z.
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To run this program, the input matrix X must be specified (with -i), along with the number of
atoms in the dictionary (-k). An initial dictionary may also be specified with the "initial_dictionary"
parameter. The 11-norm regularization parameter is specified with the "lambda" parameter.

Value

A list with several components:

codes Output codes matrix (numeric matrix).
dictionary Output dictionary matrix (numeric matrix).

output_model Output for trained LCC model (LocalCoordinateCoding).

Author(s)

mlpack developers

Examples

# For example, to run LCC on the dataset "data” using 200 atoms and an
# l1-regularization parameter of 0.1, saving the dictionary "dictionary” and
# the codes into "codes”, use

## Not run:

output <- local_coordinate_coding(training=data, atoms=200, lambda=0.1)
dict <- output$dictionary

codes <- output$codes

## End(Not run)

The maximum number of iterations may be specified with the "max_iterations”
parameter. Optionally, the input data matrix X can be normalized before
coding with the "normalize"” parameter.

An LCC model may be saved using the "output_model” output parameter. Then,
to encode new points from the dataset "points” with the previously saved
model "lcc_model”, saving the new codes to "new_codes”, the following
command can be used:

T E EEEE

## Not run:
output <- local_coordinate_coding(input_model=1cc_model, test=points)
new_codes <- output$codes

## End(Not run)
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logistic_regression L2-regularized Logistic Regression and Prediction

Description

An implementation of L2-regularized logistic regression for two-class classification. Given labeled
data, a model can be trained and saved for future use; or, a pre-trained model can be used to classify
new points.

Usage

logistic_regression(
batch_size = NA,
decision_boundary = NA,
input_model = NA,
labels = NA,
lambda = NA,
max_iterations = NA,
optimizer = NA,
print_training_accuracy = FALSE,
step_size = NA,
test = NA,
tolerance = NA,
training = NA,
verbose = getOption("mlpack.verbose”, FALSE)

Arguments

batch_size Batch size for SGD. Default value "64" (integer).

decision_boundary
Decision boundary for prediction; if the logistic function for a point is less than
the boundary, the class is taken to be 0; otherwise, the class is 1. Default value
"0.5" (numeric).

input_model Existing model (parameters) (LogisticRegression).

labels A matrix containing labels (0 or 1) for the points in the training set (y) (integer
Tow).

lambda L2-regularization parameter for training. Default value "0" (numeric).

max_iterations Maximum iterations for optimizer (0 indicates no limit). Default value "10000"
(integer).

optimizer Optimizer to use for training (’1bfgs’ or sgd’). Default value "lbfgs" (character).

print_training_accuracy
If set, then the accuracy of the model on the training set will be printed (verbose
must also be specified). Default value "FALSE" (logical).

step_size Step size for SGD optimizer. Default value "0.01" (numeric).
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test Matrix containing test dataset (numeric matrix).

tolerance Convergence tolerance for optimizer. Default value "1e-10" (numeric).

training A matrix containing the training set (the matrix of predictors, X) (numeric ma-
trix).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

Details

An implementation of L2-regularized logistic regression using either the L-BFGS optimizer or SGD
(stochastic gradient descent). This solves the regression problem

y=(1/1+eX*Db)).
In this setting, y corresponds to class labels and X corresponds to data.

This program allows loading a logistic regression model (via the "input_model" parameter) or train-
ing a logistic regression model given training data (specified with the "training" parameter), or both
those things at once. In addition, this program allows classification on a test dataset (specified
with the "test" parameter) and the classification results may be saved with the "predictions" output
parameter. The trained logistic regression model may be saved using the "output_model" output
parameter.

The training data, if specified, may have class labels as its last dimension. Alternately, the "labels"
parameter may be used to specify a separate matrix of labels.

When a model is being trained, there are many options. L2 regularization (to prevent overfitting)
can be specified with the "lambda" option, and the optimizer used to train the model can be specified
with the "optimizer" parameter. Available options are ’sgd’ (stochastic gradient descent) and ’1bfgs’
(the L-BFGS optimizer). There are also various parameters for the optimizer; the "max_iterations"
parameter specifies the maximum number of allowed iterations, and the "tolerance" parameter spec-
ifies the tolerance for convergence. For the SGD optimizer, the "step_size" parameter controls the
step size taken at each iteration by the optimizer. The batch size for SGD is controlled with the
"batch_size" parameter. If the objective function for your data is oscillating between Inf and 0, the
step size is probably too large. There are more parameters for the optimizers, but the C++ interface
must be used to access these.

For SGD, an iteration refers to a single point. So to take a single pass over the dataset with SGD,
"max_iterations" should be set to the number of points in the dataset.

Optionally, the model can be used to predict the responses for another matrix of data points, if
"test" is specified. The "test" parameter can be specified without the "training" parameter, so long
as an existing logistic regression model is given with the "input_model" parameter. The output
predictions from the logistic regression model may be saved with the "predictions" parameter.

This implementation of logistic regression does not support the general multi-class case but instead
only the two-class case. Any labels must be either 0 or 1. For more classes, see the softmax
regression implementation.

Value

A list with several components:
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output_model

predictions

probabilities

Author(s)

Ish

Output for trained logistic regression model (LogisticRegression).

If test data is specified, this matrix is where the predictions for the test set will
be saved (integer row).

If test data is specified, this matrix is where the class probabilities for the test set
will be saved (numeric matrix).

mlpack developers

Examples

# As an example, to train a logistic regression model on the data '"data"'
# with labels '"labels”' with L2 regularization of 0.1, saving the model to
# '"lr_model”', the following command may be used:

## Not run:

output <- logistic_regression(training=data, labels=labels, lambda=0.1,
print_training_accuracy=TRUE)
1r_model <- output$output_model

## End(Not run)

# Then, to use that model to predict classes for the dataset '"test”',

# storing the output predictions in

# may be used:

## Not run:

(N] "

predictions”', the following command

output <- logistic_regression(input_model=1r_model, test=test)
predictions <- output$predictions

## End(Not run)

1sh

K-Approximate-Nearest-Neighbor Search with LSH

Description

An implementation of approximate k-nearest-neighbor search with locality-sensitive hashing (LSH).
Given a set of reference points and a set of query points, this will compute the k approximate nearest
neighbors of each query point in the reference set; models can be saved for future use.

Usage

1sh(
bucket_size

hash_width =

input_model

= NA,
NA,
= NA,
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k = NA,
num_probes = NA,
projections = NA,
query = NA,
reference = NA,
second_hash_size = NA,
seed = NA,
tables = NA,
true_neighbors = NA,
verbose = getOption("mlpack.verbose”, FALSE)
Arguments
bucket_size The size of a bucket in the second level hash. Default value "500" (integer).
hash_width The hash width for the first-level hashing in the LSH preprocessing. By default,

the LSH class automatically estimates a hash width for its use. Default value
"0" (numeric).

input_model Input LSH model (LSHSearch).

Number of nearest neighbors to find. Default value "0" (integer).

num_probes Number of additional probes for multiprobe LSH; if 0, traditional LSH is used.
Default value "0" (integer).

projections The number of hash functions for each tabl. Default value "10" (integer).

query Matrix containing query points (optional) (numeric matrix).

reference Matrix containing the reference dataset (numeric matrix).

second_hash_size

The size of the second level hash table. Default value "99901" (integer).

seed Random seed. If 0, std::time(NULL)’ is used. Default value "0" (integer).
tables The number of hash tables to be used. Default value "30" (integer).

true_neighbors Matrix of true neighbors to compute recall with (the recall is printed when -v is

specified) (integer matrix).

verbose Display informational messages and the full list of parameters and timers at the

end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

Details

Value

This program will calculate the k approximate-nearest-neighbors of a set of points using locality-
sensitive hashing. You may specify a separate set of reference points and query points, or just a
reference set which will be used as both the reference and query set.

A list with several components:

distances Matrix to output distances into (numeric matrix).
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neighbors Matrix to output neighbors into (integer matrix).
output_model Output for trained LSH model (LSHSearch).

Author(s)

mlpack developers

Examples

# For example, the following will return 5 neighbors from the data for each
# point in "input” and store the distances in "distances” and the neighbors
# in "neighbors”:

## Not run:

output <- 1sh(k=5, reference=input)
distances <- output$distances
neighbors <- output$neighbors

## End(Not run)

The output is organized such that row i and column j in the neighbors
output corresponds to the index of the point in the reference set which is
the j'th nearest neighbor from the point in the query set with index i.

Row j and column i in the distances output file corresponds to the distance
between those two points.

Because this is approximate-nearest-neighbors search, results may be
different from run to run. Thus, the "seed” parameter can be specified to
set the random seed.

This program also has many other parameters to control its functionality;
see the parameter-specific documentation for more information.

R E E E E E E

mean_shift Mean Shift Clustering

Description

A fast implementation of mean-shift clustering using dual-tree range search. Given a dataset, this
uses the mean shift algorithm to produce and return a clustering of the data.

Usage

mean_shift(
input,
force_convergence = FALSE,
in_place = FALSE,
labels_only = FALSE,
max_iterations = NA,
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radius = NA,
verbose = getOption("mlpack.verbose”, FALSE)

Arguments

input Input dataset to perform clustering on (numeric matrix).

force_convergence
If specified, the mean shift algorithm will continue running regardless of max_iterations
until the clusters converge. Default value "FALSE" (logical).

in_place If specified, a column containing the learned cluster assignments will be added
to the input dataset file. In this case, —output_file is overridden. (Do not use with
Python.. Default value "FALSE" (logical).

labels_only If specified, only the output labels will be written to the file specified by —
output_file. Default value "FALSE" (logical).

max_iterations Maximum number of iterations before mean shift terminates. Default value
"1000" (integer).

radius If the distance between two centroids is less than the given radius, one will be
removed. A radius of O or less means an estimate will be calculated and used
for the radius. Default value "0" (numeric).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This program performs mean shift clustering on the given dataset, storing the learned cluster as-
signments either as a column of labels in the input dataset or separately.

The input dataset should be specified with the "input" parameter, and the radius used for search
can be specified with the "radius" parameter. The maximum number of iterations before algorithm
termination is controlled with the "max_iterations" parameter.

The output labels may be saved with the "output" output parameter and the centroids of each cluster
may be saved with the "centroid" output parameter.
Value

A list with several components:

centroid If specified, the centroids of each cluster will be written to the given matrix
(numeric matrix).

output Matrix to write output labels or labeled data to (numeric matrix).

Author(s)

mlpack developers
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Examples

# For example, to run mean shift clustering on the dataset "data” and store
# the centroids to "centroids”, the following command may be used:

## Not run:
output <- mean_shift(input=data)
centroids <- output$centroid

## End(Not run)

mlpack

mlpack mlpack

Description

mlpack is a fast, flexible machine learning library, written in C++, that aims to provide fast, exten-
sible implementations of cutting-edge machine learning algorithms. mlpack provides these algo-
rithms as simple command-line programs, C++ classes and bindings for : Python, Julia, Go and R

which can then be integrated into larger-scale machine learning solutions.

Author(s)

Maintainer: Ryan Curtin <ryan@ratml.org> [contributor, copyright holder]
Authors:

* Yashwant Singh Parihar <yashwantsingh.sngh@gmail.com> [contributor, copyright holder]

* Dirk Eddelbuettel <edd@debian.org> [contributor, copyright holder]

* James Balamuta <james.balamuta@gmail.com> [contributor, copyright holder]
Other contributors:

* Bill March <march@gatech.edu> [contributor, copyright holder]

* Dongryeol Lee <dongryel@cc.gatech.edu> [contributor, copyright holder]
* Nishant Mehta <niche@cc.gatech.edu> [contributor, copyright holder]

* Parikshit Ram <p.ram@gatech.edu> [contributor, copyright holder]

* James Cline <james.cline@gatech.edu> [contributor, copyright holder]

* Sterling Peet <sterling.peet@gatech.edu> [contributor, copyright holder]
* Matthew Amidon <mamidon@gatech.edu> [contributor, copyright holder]

* Neil Slagle <npslagle@gmail.com> [contributor, copyright holder]

* Ajinkya Kale <kaleajinkya@gmail.com> [contributor, copyright holder]

* Vlad Grantcharov <vlad321@gatech.edu> [contributor, copyright holder]

* Noah Kauffman <notoriousnoah@gmail.com> [contributor, copyright holder]

* Rajendran Mohan <rmohan88@gatech.edu> [contributor, copyright holder]
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Trironk Kiatkungwanglai <trironk@gmail.com> [contributor, copyright holder]
Patrick Mason <patrick.s.mason@gmail.com> [contributor, copyright holder]
Marcus Edel <marcus.edel@fu-berlin.de> [contributor, copyright holder]

Mudit Raj Gupta <mudit.raaj.gupta@gmail.com> [contributor, copyright holder]
Sumedh Ghaisas <sumedhghaisas@gmail.com> [contributor, copyright holder]
Michael Fox <michaelfox99@gmail.com> [contributor, copyright holder]
Siddharth Agrawal <siddharth.950@gmail. com> [contributor, copyright holder]
Saheb Motiani <saheb210692@gmail. com> [contributor, copyright holder]

Yash Vadalia <yashdv@gmail.com> [contributor, copyright holder]

Abhishek Laddha <laddhaabhishek11@gmail.com> [contributor, copyright holder]
Vahab Akbarzadeh <v.akbarzadeh@gmail.com> [contributor, copyright holder]
Andrew Wells <andrewmw94@gmail . com> [contributor, copyright holder]

Zhihao Lou <1zh1984@gmail. com> [contributor, copyright holder]

Udit Saxena <saxenda.udit@gmail.com> [contributor, copyright holder]

Stephen Tu <tu.stephenl@gmail.com> [contributor, copyright holder]
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QiaoAn Chen <kazenoyumechen@gmail.com> [contributor, copyright holder]
Janzen Brewer <jahabrewer@gmail.com> [contributor, copyright holder]

Trung Dinh <dinhanhtrung@gmail.com> [contributor, copyright holder]

Tham Ngap Wei <thamngapwei@gmail.com> [contributor, copyright holder]
Grzegorz Krajewski <krajekg@gmail.com> [contributor, copyright holder]

Joseph Mariadassou <joe.mariadassou@gmail.com> [contributor, copyright holder]
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Dhawal Arora <d.p.aroral@gmail.com> [contributor, copyright holder]
Alexander Leinoff <alexander-leinoff@uiowa.edu> [contributor, copyright holder]
Palash Ahuja <abhor902@gmail. com> [contributor, copyright holder]

Yannis Mentekidis <mentekid@gmail.com> [contributor, copyright holder]

Ranjan Mondal <ranjan.rev@gmail.com> [contributor, copyright holder]

Mikhail Lozhnikov <lozhnikovma@gmail.com> [contributor, copyright holder]
Marcos Pividori <marcos.pividori@gmail.com> [contributor, copyright holder]
Keon Kim <kwk236@gmail . com> [contributor, copyright holder]
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nbc Parametric Naive Bayes Classifier

Description

An implementation of the Naive Bayes Classifier, used for classification. Given labeled data, an
NBC model can be trained and saved, or, a pre-trained model can be used for classification.

Usage

nbc(
incremental_variance = FALSE,
input_model = NA,
labels = NA,
test = NA,
training = NA,
verbose = getOption("mlpack.verbose”, FALSE)

Arguments

incremental_variance

The variance of each class will be calculated incrementally. Default value "FALSE"

(logical).

input_model Input Naive Bayes model (NBCModel).

labels A file containing labels for the training set (integer row).

test A matrix containing the test set (numeric matrix).

training A matrix containing the training set (numeric matrix).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

Details

This program trains the Naive Bayes classifier on the given labeled training set, or loads a model
from the given model file, and then may use that trained model to classify the points in a given test
set.

The training set is specified with the "training" parameter. Labels may be either the last row of
the training set, or alternately the "labels" parameter may be specified to pass a separate matrix of
labels.

If training is not desired, a pre-existing model may be loaded with the "input_model" parameter.

The "incremental_variance" parameter can be used to force the training to use an incremental algo-
rithm for calculating variance. This is slower, but can help avoid loss of precision in some cases.

If classifying a test set is desired, the test set may be specified with the "test" parameter, and the clas-
sifications may be saved with the "predictions"predictions parameter. If saving the trained model is
desired, this may be done with the "output_model" output parameter.
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Value

A list with several components:

output_model File to save trained Naive Bayes model to (NBCModel).

predictions The matrix in which the predicted labels for the test set will be written (integer
TowW).

probabilities The matrix in which the predicted probability of labels for the test set will be
written (numeric matrix).

Author(s)

mlpack developers

Examples

# For example, to train a Naive Bayes classifier on the dataset "data” with
# labels "labels” and save the model to "nbc_model”, the following command
# may be used:

## Not run:
output <- nbc(training=data, labels=labels)
nbc_model <- output$output_model

## End(Not run)

# Then, to use "nbc_model” to predict the classes of the dataset "test_set”
# and save the predicted classes to "predictions”, the following command may
# be used:

## Not run:
output <- nbc(input_model=nbc_model, test=test_set)

predictions <- output$predictions

## End(Not run)

nca Neighborhood Components Analysis (NCA)

Description

An implementation of neighborhood components analysis, a distance learning technique that can
be used for preprocessing. Given a labeled dataset, this uses NCA, which seeks to improve the
k-nearest-neighbor classification, and returns the learned distance metric.
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Usage
nca(
input,
armijo_constant = NA,
batch_size = NA,
labels = NA,
linear_scan = FALSE,
max_iterations = NA,
max_line_search_trials = NA,
max_step = NA,
min_step = NA,
normalize = FALSE,
num_basis = NA,
optimizer = NA,
seed = NA,
step_size = NA,
tolerance = NA,
verbose = getOption("mlpack.verbose”, FALSE),
wolfe = NA
)
Arguments
input Input dataset to run NCA on (numeric matrix).

armijo_constant

batch_size
labels

linear_scan

max_iterations

Armijo constant for L-BFGS. Default value "0.0001" (numeric).
Batch size for mini-batch SGD. Default value "50" (integer).
Labels for input dataset (integer row).

Don’t shuffle the order in which data points are visited for SGD or mini-batch
SGD. Default value "FALSE" (logical).

Maximum number of iterations for SGD or L-BFGS (0 indicates no limit). De-
fault value "500000" (integer).

max_line_search_trials

max_step
min_step

normalize

num_basis
optimizer
seed

step_size

tolerance

Maximum number of line search trials for L-BFGS. Default value "50" (integer).
Maximum step of line search for L-BFGS. Default value "1e+20" (numeric).
Minimum step of line search for L-BFGS. Default value "1e-20" (numeric).

Use a normalized starting point for optimization. This is useful for when points
are far apart, or when SGD is returning NaN. Default value "FALSE" (logical).

Number of memory points to be stored for L-BFGS. Default value "5" (integer).
Optimizer to use; ’sgd’ or ’Ibfgs’. Default value "sgd" (character).

Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).
Step size for stochastic gradient descent (alpha). Default value "0.01" (numeric).

Maximum tolerance for termination of SGD or L-BFGS. Default value "1e-07"
(numeric).
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verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

wolfe Wolfe condition parameter for L-BFGS. Default value "0.9" (numeric).

Details

This program implements Neighborhood Components Analysis, both a linear dimensionality reduc-
tion technique and a distance learning technique. The method seeks to improve k-nearest-neighbor
classification on a dataset by scaling the dimensions. The method is nonparametric, and does not
require a value of k. It works by using stochastic ("soft") neighbor assignments and using optimiza-
tion techniques over the gradient of the accuracy of the neighbor assignments.

To work, this algorithm needs labeled data. It can be given as the last row of the input dataset
(specified with "input"), or alternatively as a separate matrix (specified with "labels").

This implementation of NCA uses stochastic gradient descent, mini-batch stochastic gradient de-
scent, or the L._BFGS optimizer. These optimizers do not guarantee global convergence for a non-
convex objective function (NCA’s objective function is nonconvex), so the final results could depend
on the random seed or other optimizer parameters.

Stochastic gradient descent, specified by the value ’sgd’ for the parameter "optimizer", depends
primarily on three parameters: the step size (specified with "step_size"), the batch size (specified
with "batch_size"), and the maximum number of iterations (specified with "max_iterations"). In
addition, a normalized starting point can be used by specifying the "normalize" parameter, which is
necessary if many warnings of the form *Denominator of p_i is 0!’ are given. Tuning the step size
can be a tedious affair. In general, the step size is too large if the objective is not mostly uniformly
decreasing, or if zero-valued denominator warnings are being issued. The step size is too small if the
objective is changing very slowly. Setting the termination condition can be done easily once a good
step size parameter is found; either increase the maximum iterations to a large number and allow
SGD to find a minimum, or set the maximum iterations to 0 (allowing infinite iterations) and set the
tolerance (specified by "tolerance") to define the maximum allowed difference between objectives
for SGD to terminate. Be careful—setting the tolerance instead of the maximum iterations can take
a very long time and may actually never converge due to the properties of the SGD optimizer. Note
that a single iteration of SGD refers to a single point, so to take a single pass over the dataset, set
the value of the "max_iterations" parameter equal to the number of points in the dataset.

The L-BFGS optimizer, specified by the value ’Ibfgs’ for the parameter "optimizer", uses a back-
tracking line search algorithm to minimize a function. The following parameters are used by L-
BFGS: "num_basis" (specifies the number of memory points used by L-BFGS), "max_iterations",

non non

"armijo_constant", "wolfe", "tolerance" (the optimization is terminated when the gradient norm is
below this value), "max_line_search_trials", "min_step"”, and "max_step" (which both refer to the
line search routine). For more details on the L-BFGS optimizer, consult either the mlpack L-BFGS

documentation (in Ibfgs.hpp) or the vast set of published literature on L-BFGS.
By default, the SGD optimizer is used.

Value

A list with several components:

output Output matrix for learned distance matrix (numeric matrix).
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Author(s)

mlpack developers

nmf Non-negative Matrix Factorization

Description

An implementation of non-negative matrix factorization. This can be used to decompose an input
dataset into two low-rank non-negative components.

Usage

nmf (
input,
rank,
initial_h = NA,
initial_w = NA,
max_iterations = NA,
min_residue = NA,
seed = NA,
update_rules = NA,
verbose = getOption("mlpack.verbose”, FALSE)

)
Arguments
input Input dataset to perform NMF on (numeric matrix).
rank Rank of the factorization (integer).
initial_h Initial H matrix (numeric matrix).
initial_w Initial W matrix (numeric matrix).

max_iterations Number of iterations before NMF terminates (0 runs until convergence. Default
value "10000" (integer).

min_residue The minimum root mean square residue allowed for each iteration, below which
the program terminates. Default value "1e-05" (numeric).

seed Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).

update_rules Update rules for each iteration; ( multdist | multdiv | als ). Default value "mult-
dist" (character).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
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Details

This program performs non-negative matrix factorization on the given dataset, storing the resulting
decomposed matrices in the specified files. For an input dataset V, NMF decomposes V into two
matrices W and H such that

V=W*H
where all elements in W and H are non-negative. If V is of size (n x m), then W will be of size (n

x 1) and H will be of size (r x m), where r is the rank of the factorization (specified by the "rank"
parameter).

Optionally, the desired update rules for each NMF iteration can be chosen from the following list:

- multdist: multiplicative distance-based update rules (Lee and Seung 1999) - multdiv: multiplica-
tive divergence-based update rules (Lee and Seung 1999) - als: alternating least squares update rules
(Paatero and Tapper 1994)

The maximum number of iterations is specified with "max_iterations", and the minimum residue
required for algorithm termination is specified with the "min_residue" parameter.

Value

A list with several components:

h Matrix to save the calculated H to (numeric matrix).
w Matrix to save the calculated W to (numeric matrix).
Author(s)

mlpack developers

Examples

# For example, to run NMF on the input matrix "V" using the 'multdist' update
# rules with a rank-10 decomposition and storing the decomposed matrices into
# "W" and "H", the following command could be used:

## Not run:

output <- nmf(input=V, rank=10, update_rules="multdist")
W <- output$w

H <- output$h

## End(Not run)

pca Principal Components Analysis

Description

An implementation of several strategies for principal components analysis (PCA), a common pre-
processing step. Given a dataset and a desired new dimensionality, this can reduce the dimension-
ality of the data using the linear transformation determined by PCA.
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Usage

pca(
input,
decomposition_method = NA,
new_dimensionality = NA,
scale = FALSE,
var_to_retain = NA,
verbose = getOption("mlpack.verbose”, FALSE)

Arguments

input Input dataset to perform PCA on (numeric matrix).

decomposition_method
Method used for the principal components analysis: ’exact’, ‘randomized’, 'randomized-
block-krylov’, *quic’. Default value "exact" (character).

new_dimensionality
Desired dimensionality of output dataset. If 0, no dimensionality reduction is
performed. Default value "0" (integer).

scale If set, the data will be scaled before running PCA, such that the variance of each
feature is 1. Default value "FALSE" (logical).

var_to_retain Amount of variance to retain; should be between 0 and 1. If 1, all variance is
retained. Overrides -d. Default value "0" (numeric).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This program performs principal components analysis on the given dataset using the exact, random-
ized, randomized block Krylov, or QUIC SVD method. It will transform the data onto its principal
components, optionally performing dimensionality reduction by ignoring the principal components
with the smallest eigenvalues.

Use the "input" parameter to specify the dataset to perform PCA on. A desired new dimensionality
can be specified with the "new_dimensionality" parameter, or the desired variance to retain can be
specified with the "var_to_retain" parameter. If desired, the dataset can be scaled before running
PCA with the "scale" parameter.

Multiple different decomposition techniques can be used. The method to use can be specified with
the "decomposition_method" parameter, and it may take the values *exact’, 'randomized’, or *quic’.

Value

A list with several components:

output Matrix to save modified dataset to (numeric matrix).
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Author(s)

mlpack developers

Examples

# For example, to reduce the dimensionality of the matrix "data” to 5
# dimensions using randomized SVD for the decomposition, storing the output
# matrix to "data_mod"”, the following command can be used:

## Not run:

output <- pca(input=data, new_dimensionality=5,
decomposition_method="randomized")

data_mod <- output$output

## End(Not run)

perceptron

perceptron Perceptron

Description

An implementation of a perceptron—a single level neural network—=for classification. Given la-
beled data, a perceptron can be trained and saved for future use; or, a pre-trained perceptron can be

used for classification on new points.

Usage

perceptron(
input_model = NA,
labels = NA,
max_iterations = NA,
test = NA,
training = NA,
verbose = getOption("mlpack.verbose”, FALSE)

)
Arguments
input_model Input perceptron model (PerceptronModel).
labels A matrix containing labels for the training set (integer row).

max_iterations The maximum number of iterations the perceptron is to be ru. Default value

"1000" (integer).

test A matrix containing the test set (numeric matrix).
training A matrix containing the training set (numeric matrix).
verbose Display informational messages and the full list of parameters and timers at the

end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-

cal).
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Details

This program implements a perceptron, which is a single level neural network. The perceptron
makes its predictions based on a linear predictor function combining a set of weights with the
feature vector. The perceptron learning rule is able to converge, given enough iterations (specified
using the "max_iterations" parameter), if the data supplied is linearly separable. The perceptron
is parameterized by a matrix of weight vectors that denote the numerical weights of the neural
network.

This program allows loading a perceptron from a model (via the "input_model" parameter) or train-
ing a perceptron given training data (via the "training" parameter), or both those things at once. In
addition, this program allows classification on a test dataset (via the "test" parameter) and the classi-
fication results on the test set may be saved with the "predictions" output parameter. The perceptron
model may be saved with the "output_model" output parameter.

Value

A list with several components:

output_model  Output for trained perceptron model (PerceptronModel).

predictions The matrix in which the predicted labels for the test set will be written (integer
TowW).

Author(s)

mlpack developers

Examples
# The training data given with the "training” option may have class labels as
# its last dimension (so, if the training data is in CSV format, labels
# should be the last column). Alternately, the "labels” parameter may be
# used to specify a separate matrix of labels.
#
# All these options make it easy to train a perceptron, and then re-use that
# perceptron for later classification. The invocation below trains a
# perceptron on "training_data” with labels "training_labels”, and saves the
# model to "perceptron_model”.

## Not run:
output <- perceptron(training=training_data, labels=training_labels)
perceptron_model <- output$output_model

## End(Not run)

# Then, this model can be re-used for classification on the test data
# "test_data”. The example below does precisely that, saving the predicted
# classes to "predictions”.

## Not run:
output <- perceptron(input_model=perceptron_model, test=test_data)
predictions <- output$predictions
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## End(Not run)

Note that all of the options may be specified at once: predictions may be
calculated right after training a model, and model training can occur even
if an existing perceptron model is passed with the "input_model” parameter.
However, note that the number of classes and the dimensionality of all
data must match. So you cannot pass a perceptron model trained on 2
classes and then re-train with a 4-class dataset. Similarly, attempting
classification on a 3-dimensional dataset with a perceptron that has been
trained on 8 dimensions will cause an error.

e R

preprocess_binarize Binarize Data

Description

A utility to binarize a dataset. Given a dataset, this utility converts each value in the desired dimen-
sion(s) to O or 1; this can be a useful preprocessing step.

Usage

preprocess_binarize(
input,
dimension = NA,
threshold = NA,
verbose = getOption("mlpack.verbose”, FALSE)

)
Arguments
input Input data matrix (numeric matrix).
dimension Dimension to apply the binarization. If not set, the program will binarize every
dimension by default. Default value "0" (integer).
threshold Threshold to be applied for binarization. If not set, the threshold defaults to 0.0.
Default value "0" (numeric).
verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This utility takes a dataset and binarizes the variables into either O or 1 given threshold. User
can apply binarization on a dimension or the whole dataset. The dimension to apply binarization
to can be specified using the "dimension" parameter; if left unspecified, every dimension will be
binarized. The threshold for binarization can also be specified with the "threshold" parameter; the
default threshold is 0.0.

The binarized matrix may be saved with the "output" output parameter.
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Value
A list with several components:

output Matrix in which to save the output (numeric matrix).

Author(s)

mlpack developers

Examples

# For example, if we want to set all variables greater than 5 in the dataset
# "X" to 1 and variables less than or equal to 5.0 to @, and save the result
# to "Y", we could run

## Not run:
output <- preprocess_binarize(input=X, threshold=5)
Y <- output$output

## End(Not run)

# But if we want to apply this to only the first (@th) dimension of "X", we
# could instead run

## Not run:
output <- preprocess_binarize(input=X, threshold=5, dimension=0)

Y <- output$output

## End(Not run)

preprocess_describe Descriptive Statistics

Description

A utility for printing descriptive statistics about a dataset. This prints a number of details about a
dataset in a tabular format.

Usage

preprocess_describe(
input,
dimension = NA,
population = FALSE,
precision = NA,
row_major = FALSE,
verbose = getOption("mlpack.verbose”, FALSE),
width = NA
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Arguments

input

dimension

population

precision

row_major

verbose

width

Details

This utility takes a

preprocess_describe

Matrix containing data (numeric matrix).

Dimension of the data. Use this to specify a dimensio. Default value "0" (inte-
ger).

If specified, the program will calculate statistics assuming the dataset is the pop-
ulation. By default, the program will assume the dataset as a sample. Default
value "FALSE" (logical).

Precision of the output statistics. Default value "4" (integer).

If specified, the program will calculate statistics across rows, not across columns.

(Remember that in mlpack, a column represents a point, so this option is gener-
ally not necessary.. Default value "FALSE" (logical).

Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

Width of the output table. Default value "8" (integer).

dataset and prints out the descriptive statistics of the data. Descriptive statistics

is the discipline of quantitatively describing the main features of a collection of information, or the
quantitative description itself. The program does not modify the original file, but instead prints out
the statistics to the console. The printed result will look like a table.

Optionally, width and precision of the output can be adjusted by a user using the "width" and
"precision” parameters. A user can also select a specific dimension to analyze if there are too many
dimensions. The "population" parameter can be specified when the dataset should be considered as
a population. Otherwise, the dataset will be considered as a sample.

Author(s)

mlpack developers

Examples

# So, a simple example where we want to print out statistical facts about the
# dataset "X" using the default settings, we could run

## Not run:

preprocess_describe(input=X, verbose=TRUE)

## End(Not run)

# If we want to customize the width to 10 and precision to 5 and consider the
# dataset as a population, we could run

## Not run:

preprocess_describe(input=X, width=10, precision=5, verbose=TRUE)

## End(Not run)
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preprocess_one_hot_encoding
One Hot Encoding

Description

A utility to do one-hot encoding on features of dataset.

Usage

preprocess_one_hot_encoding(
input,
dimensions = NA,
verbose = getOption("mlpack.verbose”, FALSE)

)
Arguments
input Matrix containing data (numeric matrix/data.frame with info).
dimensions Index of dimensions that need to be one-hot encoded (if unspecified, all categor-
ical dimensions are one-hot encoded) (integer vector).
verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This utility takes a dataset and a vector of indices and does one-hot encoding of the respective
features at those indices. Indices represent the IDs of the dimensions to be one-hot encoded.

If no dimensions are specified with "dimensions", then all categorical-type dimensions will be one-
hot encoded. Otherwise, only the dimensions given in "dimensions" will be one-hot encoded.

The output matrix with encoded features may be saved with the "output" parameters.

Value

A list with several components:

output Matrix to save one-hot encoded features data to (numeric matrix).

Author(s)

mlpack developers
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Examples

# So, a simple example where we want to encode 1st and 3rd feature from
# dataset "X" into "X_output” would be

## Not run:
output <- preprocess_one_hot_encoding(input=X, dimensions=1, dimensions=3)
X_ouput <- output$output

## End(Not run)

preprocess_scale Scale Data

Description

A utility to perform feature scaling on datasets using one of sixtechniques. Both scaling and inverse
scaling are supported, andscalers can be saved and then applied to other datasets.

Usage
preprocess_scale(
input,
epsilon = NA,

input_model = NA,
inverse_scaling = FALSE,
max_value = NA,
min_value = NA,
scaler_method = NA,

seed = NA,
verbose = getOption("mlpack.verbose”, FALSE)
)
Arguments
input Matrix containing data (numeric matrix).
epsilon regularization Parameter for pcawhitening, or zcawhitening, should be between

-1 to 1. Default value "1e-06" (numeric).

input_model Input Scaling model (ScalingModel).

inverse_scaling
Inverse Scaling to get original datase. Default value "FALSE" (logical).

max_value Ending value of range for min_max_scaler. Default value "1" (integer).
min_value Starting value of range for min_max_scaler. Default value "0" (integer).

scaler_method method to use for scaling, the default is standard_scaler. Default value "stan-
dard_scaler" (character).

seed Random seed (0 for std::time(NULL)). Default value "0" (integer).
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verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This utility takes a dataset and performs feature scaling using one of the six scaler methods namely:
’max_abs_scaler’, 'mean_normalization’, *'min_max_scaler’ ,’standard_scaler’, ’pca_whitening’ and
’zca_whitening’. The function takes a matrix as "input" and a scaling method type which you can
specify using "scaler_method" parameter; the default is standard scaler, and outputs a matrix with
scaled feature.

The output scaled feature matrix may be saved with the "output" output parameters.

The model to scale features can be saved using "output_model" and later can be loaded back us-
ing"input_model".

Value
A list with several components:

output Matrix to save scaled data to (numeric matrix).

output_model  Output scaling model (ScalingModel).

Author(s)

mlpack developers

Examples

# So, a simple example where we want to scale the dataset "X" into "X_scaled”
# with standard_scaler as scaler_method, we could run

## Not run:
output <- preprocess_scale(input=X, scaler_method="standard_scaler")
X_scaled <- output$output

## End(Not run)

# A simple example where we want to whiten the dataset "X" into "X_whitened”
# with PCA as whitening_method and use .01 as regularization parameter, we
# could run

## Not run:

output <- preprocess_scale(input=X, scaler_method="pca_whitening",
epsilon=0.01)

X_scaled <- output$output

## End(Not run)
# You can also retransform the scaled dataset back using”inverse_scaling”. An

# example to rescale : "X_scaled” into "X"using the saved model "input_model”
# is:
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## Not run:

output <- preprocess_scale(input=X_scaled, inverse_scaling=TRUE,
input_model=saved)

X <- output$output

## End(Not run)

# Another simple example where we want to scale the dataset "X" into
# "X_scaled” with min_max_scaler as scaler method, where scaling range is 1
# to 3 instead of default @ to 1. We could run

## Not run:

output <- preprocess_scale(input=X, scaler_method="min_max_scaler"”,
min_value=1, max_value=3)

X_scaled <- output$output

## End(Not run)

preprocess_split Split Data

Description

A utility to split data into a training and testing dataset. This can also split labels according to the
same split.

Usage

preprocess_split(
input,
input_labels = NA,
no_shuffle = FALSE,
seed = NA,
stratify_data = FALSE,
test_ratio = NA,
verbose = getOption("mlpack.verbose”, FALSE)

Arguments

input Matrix containing data (numeric matrix).

input_labels Matrix containing labels (integer matrix).

no_shuffle Avoid shuffling the data before splitting. Default value "FALSE" (logical).
seed Random seed (0 for std::time(NULL)). Default value "0" (integer).
stratify_data Stratify the data according to label. Default value "FALSE" (logical).

test_ratio Ratio of test set; if not set,the ratio defaults to 0.. Default value "0.2" (numeric).
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verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
Details

This utility takes a dataset and optionally labels and splits them into a training set and a test set.
Before the split, the points in the dataset are randomly reordered. The percentage of the dataset to
be used as the test set can be specified with the "test_ratio" parameter; the default is 0.2 (20

The output training and test matrices may be saved with the "training" and "test" output parameters.
Optionally, labels can also be split along with the data by specifying the "input_labels" parameter.
Splitting labels works the same way as splitting the data. The output training and test labels may be
saved with the "training_labels" and "test_labels" output parameters, respectively.

Value

A list with several components:

test Matrix to save test data to (numeric matrix).
test_labels Matrix to save test labels to (integer matrix).
training Matrix to save training data to (numeric matrix).

training_labels
Matrix to save train labels to (integer matrix).

Author(s)

mlpack developers

Examples

# So, a simple example where we want to split the dataset "X" into "X_train”
# and "X_test” with 60% of the data in the training set and 40% of the
# dataset in the test set, we could run

## Not run:

output <- preprocess_split(input=X, test_ratio=0.4)
X_train <- output$training

X_test <- output$test

## End(Not run)

# Also by default the dataset is shuffled and split; you can provide the
# "no_shuffle” option to avoid shuffling the data; an example to avoid
# shuffling of data is:

## Not run:

output <- preprocess_split(input=X, test_ratio=0.4, no_shuffle=TRUE)
X_train <- output$training

X_test <- output$test
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## End(Not run)

# If we had a dataset "X" and associated labels "y"”, and we wanted to split
# these into "X_train”, "y_train”, "X_test”, and "y_test"”, with 30% of the
# data in the test set, we could run

## Not run:

output <- preprocess_split(input=X, input_labels=y, test_ratio=0.3)
X_train <- output$training

y_train <- output$training_labels

X_test <- output$test

y_test <- output$test_labels

## End(Not run)
# To maintain the ratio of each class in the train and test sets,
# the"stratify_data” option can be used.

## Not run:

output <- preprocess_split(input=X, test_ratio=0.4, stratify_data=TRUE)
X_train <- output$training

X_test <- output$test

## End(Not run)

radical RADICAL

Description

An implementation of RADICAL, a method for independent component analysis (ICA). Given a
dataset, this can decompose the dataset into an unmixing matrix and an independent component
matrix; this can be useful for preprocessing.

Usage

radical(
input,
angles = NA,
noise_std_dev = NA,
objective = FALSE,
replicates = NA,
seed = NA,
sweeps = NA,
verbose = getOption("mlpack.verbose”, FALSE)

Arguments

input Input dataset for ICA (numeric matrix).
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angles Number of angles to consider in brute-force search during Radical2D. Default
value "150" (integer).

noise_std_dev Standard deviation of Gaussian noise. Default value "0.175" (numeric).

objective If set, an estimate of the final objective function is printed. Default value "FALSE"
(logical).

replicates Number of Gaussian-perturbed replicates to use (per point) in Radical2D. De-
fault value "30" (integer).

seed Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).

sweeps Number of sweeps; each sweep calls Radical2D once for each pair of dimen-
sions. Default value "0" (integer).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

Details

An implementation of RADICAL, a method for independent component analysis (ICA). Assuming
that we have an input matrix X, the goal is to find a square unmixing matrix W such that Y = W
* X and the dimensions of Y are independent components. If the algorithm is running particularly
slowly, try reducing the number of replicates.

The input matrix to perform ICA on should be specified with the "input" parameter. The output
matrix Y may be saved with the "output_ic" output parameter, and the output unmixing matrix W
may be saved with the "output_unmixing" output parameter.

Value

A list with several components:

output_ic Matrix to save independent components to (numeric matrix).
output_unmixing
Matrix to save unmixing matrix to (numeric matrix).

Author(s)

mlpack developers

Examples

# For example, to perform ICA on the matrix "X" with 40 replicates, saving
# the independent components to "ic"”, the following command may be used:

n

## Not run:
output <- radical(input=X, replicates=40)
ic <- output$output_ic

## End(Not run)
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random_forest Random forests

Description

An implementation of the standard random forest algorithm by Leo Breiman for classification.
Given labeled data, a random forest can be trained and saved for future use; or, a pre-trained random
forest can be used for classification.

Usage

random_forest(
input_model = NA,
labels = NA,
maximum_depth = NA,
minimum_gain_split = NA,
minimum_leaf_size = NA,
num_trees = NA,
print_training_accuracy = FALSE,

seed = NA,
subspace_dim = NA,
test = NA,

test_labels = NA,

training = NA,

verbose = getOption("mlpack.verbose”, FALSE),
warm_start = FALSE

)

Arguments
input_model Pre-trained random forest to use for classification (RandomForestModel).
labels Labels for training dataset (integer row).

maximum_depth Maximum depth of the tree (0 means no limit). Default value "0" (integer).
minimum_gain_split
Minimum gain needed to make a split when building a tree. Default value "0"
(numeric).
minimum_leaf_size
Minimum number of points in each leaf node. Default value "1" (integer).
num_trees Number of trees in the random forest. Default value "10" (integer).
print_training_accuracy

If set, then the accuracy of the model on the training set will be predicted (ver-
bose must also be specified). Default value "FALSE" (logical).

seed Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).

subspace_dim  Dimensionality of random subspace to use for each split. 0’ will autoselect the
square root of data dimensionality. Default value "0" (integer).
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test Test dataset to produce predictions for (numeric matrix).

test_labels Test dataset labels, if accuracy calculation is desired (integer row).

training Training dataset (numeric matrix).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

warm_start If true and passed along with ‘training‘ and ‘input_model‘ then trains more trees

on top of existing model. Default value "FALSE" (logical).

Details

This program is an implementation of the standard random forest classification algorithm by Leo
Breiman. A random forest can be trained and saved for later use, or a random forest may be loaded
and predictions or class probabilities for points may be generated.

The training set and associated labels are specified with the "training" and "labels" parameters,
respectively. The labels should be in the range ‘[0, num_classes - 1]°. Optionally, if "labels" is not
specified, the labels are assumed to be the last dimension of the training dataset.

When a model is trained, the "output_model" output parameter may be used to save the trained

model. A model may be loaded for predictions with the "input_model"parameter. The "input_model"
parameter may not be specified when the "training" parameter is specified. The "minimum_leaf_size"
parameter specifies the minimum number of training points that must fall into each leaf for it

to be split. The "num_trees" controls the number of trees in the random forest. The "mini-

mum_gain_split" parameter controls the minimum required gain for a decision tree node to split.

Larger values will force higher-confidence splits. The "maximum_depth" parameter specifies the

maximum depth of the tree. The "subspace_dim" parameter is used to control the number of ran-

dom dimensions chosen for an individual node’s split. If "print_training_accuracy" is specified, the

calculated accuracy on the training set will be printed.

Test data may be specified with the "test" parameter, and if performance measures are desired for
that test set, labels for the test points may be specified with the "test_labels" parameter. Predictions
for each test point may be saved via the "predictions"output parameter. Class probabilities for each
prediction may be saved with the "probabilities" output parameter.

Value

A list with several components:

output_model Model to save trained random forest to (RandomForestModel).
predictions Predicted classes for each point in the test set (integer row).

probabilities Predicted class probabilities for each point in the test set (numeric matrix).

Author(s)

mlpack developers
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Examples

# For example, to train a random forest with a minimum leaf size of 20 using
# 10 trees on the dataset contained in "data"with labels "labels”, saving the
# output random forest to "rf_model” and printing the training error, one

# could call

## Not run:

output <- random_forest(training=data, labels=labels, minimum_leaf_size=20,
num_trees=10, print_training_accuracy=TRUE)

rf_model <- output$output_model

## End(Not run)

# Then, to use that model to classify points in "test_set” and print the test
# error given the labels "test_labels” using that model, while saving the
# predictions for each point to "predictions”, one could call

## Not run:

output <- random_forest(input_model=rf_model, test=test_set,
test_labels=test_labels)

predictions <- output$predictions

## End(Not run)

Serialize Serialize/Unserialize an mlpack model.

Description

Serialize/Unserialize an mlpack model.

Usage

Serialize(model, filename)

Unserialize(filename)

Arguments
model Input model pointer.
filename Input filename.
Value

For Unserialize, Output model_ptr.
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softmax_regression Softmax Regression

Description

An implementation of softmax regression for classification, which is a multiclass generalization of
logistic regression. Given labeled data, a softmax regression model can be trained and saved for
future use, or, a pre-trained softmax regression model can be used for classification of new points.

Usage

softmax_regression(

input_model =
labels = NA,
lambda = NA,

NA,

max_iterations = NA,

no_intercept

= FALSE,

number_of_classes = NA,

test = NA,
test_labels

NA,

training = NA,
verbose = getOption("mlpack.verbose"”, FALSE)

Arguments

input_model
labels

lambda

max_iterations

no_intercept

File containing existing model (parameters) (SoftmaxRegression).

A matrix containing labels (0 or 1) for the points in the training set (y). The
labels must order as a row (integer row).

L2-regularization constan. Default value "0.0001" (numeric).

Maximum number of iterations before termination. Default value "400" (inte-
ger).
Do not add the intercept term to the model. Default value "FALSE" (logical).

number_of_classes

test
test_labels

training

verbose

Number of classes for classification; if unspecified (or 0), the number of classes
found in the labels will be used. Default value "0" (integer).

Matrix containing test dataset (numeric matrix).
Matrix containing test labels (integer row).

A matrix containing the training set (the matrix of predictors, X) (numeric ma-
trix).

Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).
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Details

This program performs softmax regression, a generalization of logistic regression to the multiclass
case, and has support for L2 regularization. The program is able to train a model, load an existing
model, and give predictions (and optionally their accuracy) for test data.

Training a softmax regression model is done by giving a file of training points with the "training"
parameter and their corresponding labels with the "labels" parameter. The number of classes can
be manually specified with the "number_of_classes" parameter, and the maximum number of it-
erations of the L-BFGS optimizer can be specified with the "max_iterations" parameter. The L2
regularization constant can be specified with the "lambda" parameter and if an intercept term is not
desired in the model, the "no_intercept" parameter can be specified.

The trained model can be saved with the "output_model" output parameter. If training is not desired,
but only testing is, a model can be loaded with the "input_model" parameter. At the current time,
a loaded model cannot be trained further, so specifying both "input_model" and "training" is not
allowed.

The program is also able to evaluate a model on test data. A test dataset can be specified with
the "test" parameter. Class predictions can be saved with the "predictions" output parameter. If
labels are specified for the test data with the "test_labels" parameter, then the program will print the
accuracy of the predictions on the given test set and its corresponding labels.

Value

A list with several components:

output_model File to save trained softmax regression model to (SoftmaxRegression).
predictions Matrix to save predictions for test dataset into (integer row).

probabilities Matrix to save class probabilities for test dataset into (numeric matrix).

Author(s)

mlpack developers

Examples

# For example, to train a softmax regression model on the data "dataset” with
# labels "labels"” with a maximum of 1000 iterations for training, saving the
# trained model to "sr_model”, the following command can be used:

## Not run:
output <- softmax_regression(training=dataset, labels=labels)
sr_model <- output$output_model

## End(Not run)
# Then, to use "sr_model” to classify the test points in "test_points”,
# saving the output predictions to "predictions”, the following command can

# be used:

## Not run:
output <- softmax_regression(input_model=sr_model, test=test_points)
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predictions <- output$predictions

## End(Not run)

sparse_coding Sparse Coding

Description

An implementation of Sparse Coding with Dictionary Learning. Given a dataset, this will decom-
pose the dataset into a sparse combination of a few dictionary elements, where the dictionary is
learned during computation; a dictionary can be reused for future sparse coding of new points.

Usage

sparse_coding(
atoms = NA,
initial_dictionary = NA,
input_model = NA,
lambdal = NA,
lambda2 = NA,
max_iterations = NA,
newton_tolerance = NA,
normalize = FALSE,
objective_tolerance = NA,
seed = NA,
test = NA,
training = NA,
verbose = getOption("mlpack.verbose”, FALSE)

Arguments

atoms Number of atoms in the dictionary. Default value "15" (integer).
initial_dictionary
Optional initial dictionary matrix (numeric matrix).

input_model File containing input sparse coding model (SparseCoding).
lambda1l Sparse coding 11-norm regularization parameter. Default value "0" (numeric).
lambda2 Sparse coding 12-norm regularization parameter. Default value "0" (numeric).

max_iterations Maximum number of iterations for sparse coding (0 indicates no limit). Default
value "0" (integer).

newton_tolerance
Tolerance for convergence of Newton method. Default value "1e-06" (numeric).

normalize If set, the input data matrix will be normalized before coding. Default value
"FALSE" (logical).
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objective_tolerance
Tolerance for convergence of the objective function. Default value "0.01" (nu-

meric).

seed Random seed. If 0, ’std::time(NULL)’ is used. Default value "0" (integer).

test Optional matrix to be encoded by trained model (numeric matrix).

training Matrix of training data (X) (numeric matrix).

verbose Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-
cal).

Details

An implementation of Sparse Coding with Dictionary Learning, which achieves sparsity via an 11-
norm regularizer on the codes (LASSO) or an (11+12)-norm regularizer on the codes (the Elastic
Net). Given a dense data matrix X with d dimensions and n points, sparse coding seeks to find a
dense dictionary matrix D with k atoms in d dimensions, and a sparse coding matrix Z with n points
in k dimensions.

The original data matrix X can then be reconstructed as Z * D. Therefore, this program finds a
representation of each point in X as a sparse linear combination of atoms in the dictionary D.

The sparse coding is found with an algorithm which alternates between a dictionary step, which
updates the dictionary D, and a sparse coding step, which updates the sparse coding matrix.

Once a dictionary D is found, the sparse coding model may be used to encode other matrices, and
saved for future usage.

To run this program, either an input matrix or an already-saved sparse coding model must be speci-
fied. An input matrix may be specified with the "training" option, along with the number of atoms
in the dictionary (specified with the "atoms" parameter). It is also possible to specify an initial
dictionary for the optimization, with the "initial_dictionary" parameter. An input model may be
specified with the "input_model" parameter.

Value

A list with several components:

codes Matrix to save the output sparse codes of the test matrix (—test_file) to (numeric
matrix).
dictionary Matrix to save the output dictionary to (numeric matrix).

output_model  File to save trained sparse coding model to (SparseCoding).

Author(s)

mlpack developers

Examples

# As an example, to build a sparse coding model on the dataset "data” using
# 200 atoms and an l1-regularization parameter of 0.1, saving the model into
# "model”, use
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## Not run:

output <- sparse_coding(training=data, atoms=200, lambdal=0.1)

model <- output$output_model

## End(Not run)

# Then, this model could be used to encode a new matrix, "otherdata”, and

# save the output codes to "codes”:

## Not run:

output <- sparse_coding(input_model=model, test=otherdata)

codes <- output$codes

## End(Not run)
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R binding test

Description

A simple program to test R binding functionality.

Usage

test_r_binding(
double_in,
int_in,
string_in,

build_model = FALSE,

col_in = NA,
flagl = FALSE,
flag2 = FALSE,

matrix_and_info_in

matrix_in = NA,
model_in = NA,

= NA,

row_in =

NA,

str_vector_in = NA,

tmatrix_

ucol_in

umatrix_

urow_in

in = NA,
= NA,
in = NA,
= NA,

vector_in = NA,

verbose

= getOption("mlpack.verbose”, FALSE)
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Arguments

double_in
int_in
string_in
build_model
col_in
flagl

flag2

test_r_binding

Input double, must be 4.0 (numeric).

Input int, must be 12 (integer).

Input string, must be "hello’ (character).

If true, a model will be returned. Default value "FALSE" (logical).
Input column (numeric column).

Input flag, must be specified. Default value "FALSE" (logical).
Input flag, must not be specified. Default value "FALSE" (logical).

matrix_and_info_in

matrix_in
model_in
row_in
str_vector_in
tmatrix_in
ucol_in
umatrix_in
urow_in
vector_in

verbose

Details

A simple program to test R binding functionality. You can build mlpack with the BUILD_TESTS

Input matrix and info (numeric matrix/data.frame with info).
Input matrix (numeric matrix).

Input model (GaussianKernel).

Input row (numeric row).

Input vector of strings (character vector).

Input (transposed) matrix (numeric matrix).

Input unsigned column (integer column).

Input unsigned matrix (integer matrix).

Input unsigned row (integer row).

Input vector of numbers (integer vector).

Display informational messages and the full list of parameters and timers at the
end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logi-

cal).

option set to off, and this binding will no longer be built.

Value

A list with several components:

col_out
double_out

int_out

Output column. 2x input colum (numeric column).
Output double, will be 5.0. Default value "0" (numeric).
Output int, will be 13. Default value "0" (integer).

matrix_and_info_out

matrix_out
model_bw_out
model_out

row_out

Output matrix and info; all numeric elements multiplied by 3 (numeric matrix).

Output matrix (numeric matrix).
The bandwidth of the model. Default value "0" (numeric).
Output model, with twice the bandwidth (GaussianKernel).

Output row. 2x input row (numeric row).
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str_vector_out
string_out
ucol_out
umatrix_out
urow_out

vector_out

Author(s)

mlpack developers
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Output string vector (character vector).

nn

Output string, will be "hello2’. Default value "" (character).
Output unsigned column. 2x input column (integer column).
Output unsigned matrix (integer matrix).

Output unsigned row. 2x input row (integer row).

Output vector (integer vector).
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