Package ‘mdgc’

May 5, 2023
Type Package

Title Missing Data Imputation Using Gaussian Copulas
Version 0.1.7

Description Provides functions to impute missing values using Gaussian
copulas for mixed data types as described by Christoffersen et al.
(2021) <arXiv:2102.02642>. The method is related to Hoff (2007)
<doi:10.1214/07-AOAS 107> and Zhao and Udell (2019) <arXiv:1910.12845>
but differs by making a direct approximation of the log marginal likelihood
using an extended version of the Fortran code created by Genz and Bretz
(2002) <doi:10.1198/106186002394> in addition to also support multinomial
variables.

License GPL-2
BugReports https://github.com/boennecd/mdgc/issues

URL https://github.com/boennecd/mdgc
Encoding UTF-8

RoxygenNote 7.1.1

Depends R (>=3.5.0)

LinkingTo Rcpp, ReppArmadillo, testthat, BH, psqn
Imports Rcpp

Suggests testthat, catdata

NeedsCompilation yes

Author Benjamin Christoffersen [cre, aut]
(<https://orcid.org/0000-0002-7182-1346>),
Alan Genz [cph],
Frank Bretz [cph],
Torsten Hothorn [cph],
R-core [cph],
Ross Thaka [cph]

Maintainer Benjamin Christoffersen <boennecd@gmail.com>
Repository CRAN
Date/Publication 2023-05-04 22:30:02 UTC

https://arxiv.org/abs/2102.02642
https://doi.org/10.1214/07-AOAS107
https://arxiv.org/abs/1910.12845
https://doi.org/10.1198/106186002394
https://github.com/boennecd/mdgc/issues
https://github.com/boennecd/mdgc
https://orcid.org/0000-0002-7182-1346

2 mdgc-package

R topics documented:

mdge-package L. e e e e e 2
get.mdgeC e 3
get_mdgc_log ml L 4
mdge ... e 6
mdge_fit 9
mdge_impute e e e e e e e e e e 11
mdgc_log ml e 13
mdge_start_value 15

Index 17

mdgc-package mdgc: Missing Data imputation using Gaussian Copulas
Description

The mdgc package is used to estimate Gaussian Copula models for mixed data types (continuous,
binary, ordinal, and multinomial) that can be used for imputations. The main function is the mdgc
function. The rest of the functions in the package give the user access to lower level functions.

Examples are provided at https://github.com/boennecd/mdgc. The package is still in a devel-
opment stage and the API may change.

Author(s)

Maintainer: Benjamin Christoffersen <boennecd@gmail.com> (ORCID)
Other contributors:

* Alan Genz [copyright holder]

* Frank Bretz [copyright holder]

* Torsten Hothorn [copyright holder]

* R-core <R-core@R-project.org> [copyright holder]

* Ross Thaka [copyright holder]

References
Christoffersen, B., Clements, M., Humphreys, K., & Kjellstrom, H. (2021). Asymptotically Exact
and Fast Gaussian Copula Models for Imputation of Mixed Data Types. https://arxiv.org/
abs/2102.02642.

See Also
Useful links:

* https://github.com/boennecd/mdgc
* Report bugs at https://github.com/boennecd/mdgc/issues

https://github.com/boennecd/mdgc
https://orcid.org/0000-0002-7182-1346
https://arxiv.org/abs/2102.02642
https://arxiv.org/abs/2102.02642
https://github.com/boennecd/mdgc
https://github.com/boennecd/mdgc/issues

get_mdgc 3

get_mdgc Get mdgc Object

Description

Creates a mdgc object which is needed for estimation of the covariance matrix and the mean vector
and to perform imputation.

Usage

get_mdgc(dat)

Arguments

dat data.frame with continuous, multinomial, ordinal, and binary variables.

Details

It is important to use appropriate classes for the data. frame columns:

¢ Continuous variables: should be numerics.
* Binary variables: should be logicals.
e Multinomial variables: should be factors.

¢ Ordinal variables: should be ordered.

Value
An object of class mdgc. It has the following elements:

lower,upper,code,multinomial, idx_non_zero_mean
arguments to pass to get_mdgc_log_ml.
margs functions to get lower and upper bounds for each column of dat.

reals,bins,ords
indices of continuous, binary, and ordinal variables, respectively.

truth the numeric version of dat.
means starting values for the non-zero mean terms (see e.g. mdgc_fit).
See Also

get_mdgc_log_ml, mdgc_start_value

4 get_mdgc_log_ml

Examples

there is a bug on CRAN's check on Solaris which I have failed to reproduce.
See https://github.com/r-hub/solarischeck/issues/8#issuecomment-796735501.
Thus, this example is not run on Solaris

is_solaris <- tolower(Sys.info()[["sysname”]]) == "sunos”

if(lis_solaris){
randomly mask data
set.seed(11)
masked_data <- iris
masked_datalmatrix(runif(prod(dim(iris))) < .10, NROW(iris))] <- NA

use the functions in the package

library(mdgc)
obj <- get_mdgc(masked_data)
print(class(obj))
3
get_mdgc_log_ml Get Pointer to C++ Object to Approximate the Log Marginal Likeli-
hood
Description

Creates a C++ object which is needed to approximate the log marginal likelihood. The object cannot
be saved.

Usage
get_mdgc_log_ml(object, ...)

S3 method for class 'mdgc'
get_mdgc_log_ml(object, ...)

S3 method for class 'data.frame'
get_mdgc_log_ml(object, ...)

Default S3 method:
get_mdgc_log_ml(
object,
lower,
upper,
code,
multinomial,
idx_non_zero_mean,

get_mdgc_log_ml 5

Arguments

object mdgc object from get_mdgc or a data. frame to pass to get_mdgc. Ignored by
the default method.
used to pass arguments to S3 methods.

lower [# variables]x[# observations] matrix with lower bounds for each variable on the
normal scale.

upper [# variables]x[# observations] matrix with upper bounds for each variable on the
normal scale.

code [# variables]x[# observations] matrix integer code for the each variable on the
normal scale. Zero implies an observed value (the value in upper), one implies
a missing value, and two implies an interval.

multinomial list where each element is 3x[# multinomial variables] matrix with multino-

mial outcomes. The first index is the outcome as an integer code, the second
index is the number of categories, and the third index is the index of each multi-
nomial variable (this is zero-based).

idx_non_zero_mean
indices for non-zero mean variables. Indices should be sorted.

Details

Indices are zero-based except the outcome index for multinomial variables.

idx_non_zero_mean indices with terms with code equal to zero (observed values) are ignored.

Value

A Rcpp: : XPtr to pass to e.g. mdgc_log_ml.

See Also

mdgc_fit, mdgc_log_ml

Examples

there is a bug on CRAN's check on Solaris which I have failed to reproduce.
See https://github.com/r-hub/solarischeck/issues/8#issuecomment-796735501.
Thus, this example is not run on Solaris

is_solaris <- tolower(Sys.info()[["sysname”]]) == "sunos"

if(lis_solaris){
randomly mask data
set.seed(11)
masked_data <- iris
masked_datalmatrix(runif(prod(dim(iris))) < .10, NROW(iris))] <- NA

use the functions in the package
library(mdgc)

obj <- get_mdgc(masked_data)

ptr <- get_mdgc_log_ml(obj)

6 mdgc
}
mdgc Perform Model Estimation and Imputation
Description
A convenience function to perform model estimation and imputation in one call. The learning rate
is likely model specific and should be altered. See mdgc_fit.
See the README at https://github.com/boennecd/mdgc for examples.
Usage
mdgc (
dat,
1r = 0.001,
maxit = 25L,
batch_size = NULL,
rel_eps = 0.001,
method = c("svrg"”, "adam", "aug_Lagran"),
seed = 1L,
epsilon = 1e-08,
beta_1 = 0.9,
beta_2 = 0.999,
n_threads = 1L,
do_reorder = TRUE,
abs_eps = -1,
maxpts = 10000L,
minvls = 100L,
verbose = FALSE,
irel_eps = rel_eps,
imaxit = maxpts,
iabs_eps = abs_eps,
iminvls = 1000L,
start_val = NULL,
decay = 0.98,
conv_crit = 1e-05,
use_aprx = FALSE
)
Arguments
dat data. frame with continuous, multinomial, ordinal, and binary variables.
1r learning rate.

ma

xit maximum number of iteration.

https://github.com/boennecd/mdgc

mdgc

batch_size
rel_eps
method
seed
epsilon
beta_1
beta_2
n_threads

do_reorder

abs_eps
maxpts
minvls
verbose
irel_eps
imaxit
iabs_eps
iminvls
start_val
decay
conv_crit

use_aprx

Details

number of observations in each batch.

relative error for each marginal likelihood factor.

estimation method to use. Can be "svrg”, "adam”, or "aug_Lagran".
fixed seed to use. Use NULL if the seed should not be fixed.

ADAM parameters.

ADAM parameters.

ADAM parameters.

number of threads to use.

logical for whether to use a heuristic variable reordering. TRUE is likely the best
option.

absolute convergence threshold for each marginal likelihood factor.
maximum number of samples to draw for each marginal likelihood term.
minimum number of samples

logical for whether to print output during the estimation.

relative error for each term in the imputation.

maximum number of samples to draw in the imputation.

absolute convergence threshold for each term in the imputation.

minimum number of samples in the imputation.

starting value for the covariance matrix. Use NULL if unspecified.

the learning rate used by SVRG is given by 1r * decay*iteration_number.
relative convergence threshold.

logical for whether to use an approximation of pnorm and qnorm. This may yield
a noticeable reduction in the computation time.

It is important that the input for data has the appropriate types and classes. See get_mdgc.

Value

A list with the following entries:

ximp
imputed
vcov

mea

data. frame with the observed and imputed values.
output from mdgc_impute.
the estimated covariance matrix.

the estimated non-zero mean terms.

Additional elements may be present depending on the chosen method. See mdgc_f1it.

References

Kingma, D.P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. abs/1412.6980.

Johnson, R., & Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems.

8 mdgc

See Also

get_mdgc, mdgc_start_value, get_mdgc_log_ml, mdgc_fit, mdgc_impute

Examples

there is a bug on CRAN's check on Solaris which I have failed to reproduce.
See https://github.com/r-hub/solarischeck/issues/8#issuecomment-796735501.
Thus, this example is not run on Solaris

is_solaris <- tolower(Sys.info()[["sysname”]]) == "sunos"

if(lis_solaris && require(catdata)){
data(retinopathy)

prepare data and save true data set
retinopathy$RET <- as.ordered(retinopathy$RET)
retinopathy$SM <- as.logical(retinopathy$SM)

randomly mask data
set.seed(28325145)
truth <- retinopathy
for(i in seq_along(retinopathy))
retinopathy[[i]][runif (NROW(retinopathy)) < .3] <- NA

cat("\nMasked data:\n")
print(head(retinopathy, 10))
Cat(”\n”)

impute data

impu <- mdgc(retinopathy, 1lr = 1e-3, maxit = 25L, batch_size = 25L,
rel_eps = 1e-3, maxpts = 5000L, verbose = TRUE,
n_threads = 1L, method = "svrg")

show correlation matrix
cat(”"\nEstimated correlation matrix\n")
print(impu$vcov)

compare imputed and true values
cat("\nObserved;\n")
print(head(retinopathy, 10))
cat("\nImputed values:\n")
print(head(impu$ximp, 10))
cat("\nTruth:\n")
print(head(truth, 10))

using augmented Lagrangian method

cat("\n")

impu_aug <- mdgc(retinopathy, maxit = 25L, rel_eps = le-3,
maxpts = 5000L, verbose = TRUE,
n_threads = 1L, method = "aug_Lagran")

compare the log-likelihood estimate

mdgc_fit 9

obj <- get_mdgc_log_ml(retinopathy)

cat(sprintf(
"Maximum log likelihood with SVRG vs. augmented Lagrangian:\n %.2f vs. %.2f\n",
mdgc_log_ml(obj, vcov = impu $vcov, mea = impu $mea, rel_eps = l1e-3),

mdgc_log_ml(obj, vcov = impu_aug$vcov, mea = impu_aug$mea, rel_eps = 1e-3)))

show correlation matrix
cat(”"\nEstimated correlation matrix (augmented Lagrangian)\n")
print(impu_aug$vcov)

cat("\nImputed values (augmented Lagrangian):\n")
print(head(impu_aug$ximp, 10))

mdgc_fit Estimate the Model Parameters

Description

Estimates the covariance matrix and the non-zero mean terms. The 1r parameter and the batch_size
parameter are likely data dependent. Convergence should be monitored e.g. by using verbose =
TRUE with method = "svrg".

See the README at https://github.com/boennecd/mdgc for examples.

Usage

mdgc_fit(
ptr,
vcov,
mea,
1r = 0.001,
rel_eps = 0.001,
maxit = 25L,
batch_size = NULL,
method = c("svrg”, "adam", "aug_Lagran"),
seed = 1L,
epsilon = 1e-08,
beta_1 = 0.9,
beta_2 = 0.999,
n_threads = 1L,
do_reorder = TRUE,
abs_eps = -1,
maxpts = 10000L,
minvls = 100L,
verbose = FALSE,
decay = 0.98,

https://github.com/boennecd/mdgc

10

mdgc_fit

conv_crit = 1e-06,
use_aprx = FALSE,

mu =1,
lambda =

Arguments
ptr
vcov, mea
1r
rel_eps
maxit
batch_size
method

seed

returned object from get_mdgc_log_ml.

starting value for the covariance matrix and the non-zero mean entries.
learning rate.

relative error for each marginal likelihood factor.

maximum number of iteration.

number of observations in each batch.

estimation method to use. Can be "svrg”, "adam”, or "aug_Lagran".
fixed seed to use. Use NULL if the seed should not be fixed.

epsilon, beta_1, beta_2

n_threads

do_reorder

abs_eps
maxpts
minvls
verbose
decay
conv_crit

use_aprx

mu
lambda

Value

ADAM parameters.
number of threads to use.

logical for whether to use a heuristic variable reordering. TRUE is likely the best
option.

absolute convergence threshold for each marginal likelihood factor.
maximum number of samples to draw for each marginal likelihood term.
minimum number of samples.

logical for whether to print output during the estimation.

the learning rate used by SVRG is given by 1r * decay*iteration_number.
relative convergence threshold.

logical for whether to use an approximation of pnorm and qnorm. This may yield
a noticeable reduction in the computation time.

starting value for the penalty in the augmented Lagrangian method.

starting values for the Lagrange multiplier estimates. NULL yields a default.

An list with the following elements:

result

estimates
fun_vals

mu, lambda

list with two elements: vcov is the estimated covariance matrix and mea is the
estimated non-zero mean terms.

If present, the estimated parameters after each iteration.
If present, the output of mdgc_log_ml after each iteration.

If present, the mu and lambda values at the end.

The elements that may be present depending on the chosen method.

mdgc_impute 11

References

Kingma, D.P.,, & Ba, J. (2015). Adam: A Method for Stochastic Optimization. abs/1412.6980.

Johnson, R., & Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems.

See Also

mdgc_log_ml, mdgc_start_value, mdgc_impute.

Examples

there is a bug on CRAN's check on Solaris which I have failed to reproduce.
See https://github.com/r-hub/solarischeck/issues/8#issuecomment-796735501.
Thus, this example is not run on Solaris

is_solaris <- tolower(Sys.info()[["sysname”]]) == "sunos"

if(lis_solaris){
randomly mask data
set.seed(11)
masked_data <- iris
masked_data[matrix(runif(prod(dim(iris))) < .10, NROW(iris))] <- NA

use the functions in the package
library(mdgc)

obj <- get_mdgc(masked_data)

ptr <- get_mdgc_log_ml(obj)
start_vals <- mdgc_start_value(obj)

fit <- mdgc_fit(ptr, start_vals, obj$means, rel_eps = le-2, maxpts = 10000L,
minvls = 1000L, use_aprx = TRUE, batch_size = 100L, 1r = .001,
maxit = 100L, n_threads = 2L)

print(fit$result$vcov)

print(fit$result$mea)

mdgc_impute Impute Missing Values

Description

Imputes missing values given a covariance matrix and mean vector using a similar quasi-random
numbers method as mdgc_log_ml.

12

Usage

mdgc_impute(
object,
vcov,
mea,
rel_eps =

abs_eps = -1,

mdgc_impute

0.001,
maxit = 10000L,

n_threads = 1L,

do_reorder

TRUE,

minvls = 1000L,
use_aprx = FALSE

Arguments

object
vcov

mea
rel_eps
maxit
abs_eps
n_threads

do_reorder

minvls

use_aprx

Value

returned object from get_mdgc.

covariance matrix to condition on in the imputation.

vector with non-zero mean entries to condition on.

relative convergence threshold for each term in the approximation.
maximum number of samples

absolute convergence threshold for each term in the approximation.
number of threads to use.

logical for whether to use a heuristic variable reordering. TRUE is likely the best
option.

minimum number of samples.

logical for whether to use an approximation of pnorm and qnorm. This may yield
a noticeable reduction in the computation time.

A list of lists with imputed values for the continuous variables and a vector with probabilities for
each level for the ordinal, binary, and multinomial variables.

Examples

there is a bug on CRAN's check on Solaris which I have failed to reproduce.
See https://github.com/r-hub/solarischeck/issues/8#issuecomment-796735501.
Thus, this example is not run on Solaris

is_solaris <- tolower(Sys.info()[["sysname”]]) == "sunos"

if(lis_solaris){

randomly mask data
set.seed(11)
masked_data <- iris

masked_datal[matrix(runif(prod(dim(iris))) < .10, NROW(iris))] <- NA

mdgc_log_ml 13

use the functions in the package
library(mdgc)

obj <- get_mdgc(masked_data)

ptr <- get_mdgc_log_ml(obj)
start_vals <- mdgc_start_value(obj)

fit <- mdgc_fit(ptr, start_vals, obj$means, rel_eps = le-2, maxpts = 10000L,
minvls = 1000L, use_aprx = TRUE, batch_size = 100L, 1r = .001,
maxit = 100L, n_threads = 2L)

impute using the estimated values

imputed <- mdgc_impute(obj, fit$result$vcov, fit$result$mea, minvls = 1000L,
maxit = 10000L, n_threads = 2L, use_aprx = TRUE)

print(imputed[1:5]) # first 5 observations

print(head(masked_data, 5)) # observed

print(head(iris , 5)) # truth
}
mdgc_log_ml Evaluate the Log Marginal Likelihood and Its Derivatives
Description

Approximates the log marginal likelihood and the derivatives using randomized quasi-Monte Carlo.
The method uses a generalization of the Fortran code by Genz and Bretz (2002).

Mean terms for observed continuous variables are always assumed to be zero.

The returned log marginal likelihood is not a proper log marginal likelihood if the ptr object is
constructed from a mdgc object from get_mdgc as it does not include the log of the determinants of
the Jacobians for the transformation of the continuous variables.

Usage

mdgc_log_ml(
ptr,
vcov,
mea,
rel_eps = 0.01,
n_threads = 1L,
comp_derivs = FALSE,
indices = NULL,
do_reorder = TRUE,
maxpts = 100000L,
abs_eps = -1,
minvls = 100L,
use_aprx = FALSE

14 mdgc_log_ml

Arguments
ptr object returned by get_mdgc_log_ml.
vcov covariance matrix.
mea vector with non-zero mean entries.
rel_eps relative error for each marginal likelihood factor.
n_threads number of threads to use.
comp_derivs logical for whether to approximate the gradient.
indices integer vector with which terms (observations) to include. Must be zero-based.
NULL yields all observations.
do_reorder logical for whether to use a heuristic variable reordering. TRUE is likely the best
option.
maxpts maximum number of samples to draw for each marginal likelihood term.
abs_eps absolute convergence threshold for each marginal likelihood factor.
minvls minimum number of samples.
use_aprx logical for whether to use an approximation of pnorm and qnorm. This may yield
a noticeable reduction in the computation time.
Value

A numeric vector with a single element with the log marginal likelihood approximation. Two at-
tributes are added if comp_derivs is TRUE: "grad_vcov" for the derivative approximation with
respect to vcov and "grad_mea" for the derivative approximation with respect to mea.

References

Genz, A., & Bretz, F. (2002). Comparison of Methods for the Computation of Multivariate t Prob-
abilities. Journal of Computational and Graphical Statistics.

Genz, A., & Bretz, F. (2008). Computation of Multivariate Normal and t Probabilities. Springer-
Verlag, Heidelberg.

See Also
mdgc_fit

Examples

there is a bug on CRAN's check on Solaris which I have failed to reproduce.
See https://github.com/r-hub/solarischeck/issues/8#issuecomment-796735501.
Thus, this example is not run on Solaris

is_solaris <- tolower(Sys.info()[["sysname”]]) == "sunos"

if(lis_solaris){
randomly mask data
set.seed(11)
masked_data <- iris
masked_datal[matrix(runif(prod(dim(iris))) < .10, NROW(iris))] <- NA

mdgc_start_value 15

use the functions in the package

library(mdgc)

obj <- get_mdgc(masked_data)

ptr <- get_mdgc_log_ml(obj)

start_vals <- mdgc_start_value(obj)

print(mdgc_log_ml(ptr, start_vals, obj$means))

print(mdgc_log_ml(ptr, start_vals, obj$means, use_aprx = TRUE))

print(mdgc_log_ml(ptr, start_vals, obj$means, use_aprx = TRUE,
comp_derivs = TRUE))

mdgc_start_value Get Starting Value for the Covariance Matrix Using a Heuristic

Description

Uses a heuristic to get starting values for the covariance matrix. These can be passed e.g. to
mdgc_fit.

Usage

mdgc_start_value(object, ...)

S3 method for class 'mdgc'
mdgc_start_value(object, ...)

Default S3 method:
mdgc_start_value(
object,
lower,
upper,
code,
multinomial,
idx_non_zero_mean,
mea,
n_threads = 1L,

)
Arguments
object mdgc object from get_mdgc. Ignored by the default method.
used to pass arguments to S3 methods.
lower [# variables]x[# observations] matrix with lower bounds for each variable on the

normal scale.

16 mdgc_start_value

upper [# variables]x[# observations] matrix with upper bounds for each variable on the
normal scale.

code [# variables]x[# observations] matrix integer code for the each variable on the
normal scale. Zero implies an observed value (the value in upper), one implies
a missing value, and two implies an interval.

multinomial list where each element is 3x[# multinomial variables] matrix with multino-
mial outcomes. The first index is the outcome as an integer code, the second
index is the number of categories, and the third index is the index of each multi-
nomial variable (this is zero-based).

idx_non_zero_mean
indices for non-zero mean variables. Indices should be sorted.

mea vector with non-zero mean entries.
n_threads number of threads to use.
Value

The starting value for the covariance matrix.

Examples

there is a bug on CRAN's check on Solaris which I have failed to reproduce.
See https://github.com/r-hub/solarischeck/issues/8#issuecomment-796735501.
Thus, this example is not run on Solaris

is_solaris <- tolower(Sys.info()[["sysname”]]) == "sunos"

if(lis_solaris){
randomly mask data
set.seed(11)
masked_data <- iris
masked_datal[matrix(runif(prod(dim(iris))) < .10, NROW(iris))] <- NA

use the functions in the package

library(mdgc)

obj <- get_mdgc(masked_data)

ptr <- get_mdgc_log_ml(obj)

start_vals <- mdgc_start_value(obj)

print(start_vals) # starting value for the covariance matrix

Index

_PACKAGE (mdgc-package), 2
data.frame, 3, 5-7
factor, 3

get_mdgc, 3,5,7, 8,12, 13,15
get_mdgc_log_ml, 3,4, 8, 10, 14

list, 5, 10, 16
logical, 3

matrix, 5, 16

mdgc, 2, 6

mdgc-package, 2

mdgc_fit, 3,5-8,9, 14, 15
mdgc_impute, 7, 8, 11, 11
mdgc_log_ml, 5, 10, 11, 13
mdgc_start_value, 3,8, 11, 15

numeric, 3
ordered, 3
pnorm, 7, 10, 12, 14

gnorm, 7, 10, 12, 14

17

	mdgc-package
	get_mdgc
	get_mdgc_log_ml
	mdgc
	mdgc_fit
	mdgc_impute
	mdgc_log_ml
	mdgc_start_value
	Index

