Package 'leapp'

October 13, 2022

Version 1.3

Date 2022-06-19

Title Latent Effect Adjustment After Primary Projection

Author Yunting Sun <yunting.sun@gmail.com>, Nancy R.Zhang

<nzhang@stanford.edu>, Art B.Owen <owen@stanford.edu>

Maintainer Yunting Sun <yunting.sun@gmail.com>

Description These functions take a gene expression value matrix, a primary covariate vector, an additional known covariates matrix. A two stage analysis is applied to counter the effects of latent variables on the rankings of hypotheses. The estimation and adjustment of latent effects are proposed by Sun, Zhang and Owen (2011). ``leapp" is developed in the context of microarray experiments, but may be used as a general tool for high throughput data sets where dependence may be involved.

Depends R (>= 3.1.1), sva, MASS, corpcor

License GPL (>= 2)

Repository CRAN

Date/Publication 2022-06-19 21:10:02 UTC

NeedsCompilation no

R topics documented:

leapp-package	2
AlternateSVD	3
FindAUC	4
FindFpr	4
FindPrec	5
FindRec	5
FindTpr	5
IPOD	7
IPODFUN	8

leapp	 	9
Pvalue	 	10
ridge	 	11
1		
simdat	 	13
		15

Index

leapp-package

latent effect adjustment after primary projection

Description

These functions take a gene expression value matrix, a primary covariate vector, an additional known covariates matrix. A two stage analysis is applied to counter the effects of latent variables on the rankings of hypotheses. The estimation and adjustment of latent effects are proposed by Sun, Zhang and Owen (2011). "leapp" is developed in the context of microarray experiments, but may be used as a general tool for high throughput data sets where dependence may be involved.

Details

Package:	leapp
Type:	Package
Version:	1.1
Date:	2013-01-05
License:	What license is it under?
LazyLoad:	yes

Author(s)

Maintainer: Yunting Sun <yunting.sun@gmail.com>

See Also

Sun, Zhang and Owen (2011), "Multiple hypothesis testing, adjusting for latent variables"

Examples

```
## Not run:
library(sva)
library(MASS)
library(leapp)
data(simdat)
model <- cbind(rep(1,60),simdat$g)
model0 <- cbind(rep(1,60))</pre>
```

AlternateSVD

End(Not run)

AlternateSVD Alternating singular value decomposition

Description

The algorithm alternates between 1) computing latent loadings u and latent variable v and 2) estimating noise standard deviation for each of the N genes.

Usage

```
AlternateSVD(x, r, pred = NULL, max.iter = 10, TOL = 1e-04)
```

Arguments

х	an N by n data matrix
r	a numeric, number of latent factors to estimate
pred	an n by s matrix, each column is a vector of known covariates for n samples, s covariates are considered, default to NULL
max.iter	a numeric, maximum number of iteration allowed, default to 10
TOL	a numeric, tolerance level for the algorithm to converge, default to 1e-04

Value

sigma	a vector of length N, noise standard deviations for N genes
coef	an N by s matrix, estimated coefficients for known covariates
uest	an N by r matrix, estimated latent loadings
vest	an n by r matrix, estiamted latent factors

Author(s)

FindAUC

Description

Given a vector of p values for m genes and a set of null genes, compute the area under ROC curve using the Wilcoxin statistics

Usage

FindAUC(pvalue, ind)

Arguments

pvalue	A vector of p values, one for each gene, with length m
ind	A vector of indices that the corresponding gene are true positive

Value

auc A numeric, area under the ROC curve for the given gene list

Author(s)

Yunting Sun <yunting.sun@gmail.com>, Nancy R.Zhang <nzhang@stanford.edu>, Art B.Owen <owen@stanford.edu>

FindFpr

Compute the false positive rate at given sizes of retrieved genes

Description

Given a vector of sizes of retrieved genes, for each size k, select the top k genes with smallest p values and compute the false positive rate from the retrieved genes and the true positive genes.

Usage

FindFpr(pvalue, ind,topk)

Arguments

pvalue	A vector of p values, one for each gene, with length m
ind	A vector of indices that the corresponding gene are true positive
topk	A vector of integers ranging from 1 to m, length of retrieved gene list

FindPrec

Value

fpr

A vector of false positive rates at given sizes of retrieval.

Author(s)

Yunting Sun <yunting.sun@gmail.com>, Nancy R.Zhang <nzhang@stanford.edu>, Art B.Owen <owen@stanford.edu>

FindPrec

compute the precision at given sizes of retrieved genes

Description

Given a vector of sizes of retrieved genes, for each size k, select the top k genes with smallest p values and compute the precision from the retrieved genes and the true positive genes.

Usage

FindPrec(pvalue, ind,topk)

Arguments

pvalue	A vector of p values, one for each gene, with length m
ind	A vector of indices that the corresponding gene are true positive
topk	A vector of integers ranging from 1 to m , length of retrieved gene list

Value

prec	Δ	vector	of	precisions at	given	SIZES	of	retrieva	1
prec	\mathbf{T}	vector	01	precisions a	, given	SILUS	01	reureva	I

Author(s)

FindRec

Description

Given a vector of sizes of retrieved genes, for each size k, select the top k genes with smallest p values and compute the recall from the retrieved genes and the true positive genes.

Usage

FindRec(pvalue, ind, topk)

Arguments

pvalue	A vector of p values, one for each gene, with length m
ind	A vector of indices that the corresponding gene are true positive
topk	A vector of integers ranging from 1 to m , length of retrieved gene list

Value

rec A vector of precisions at given sizes of retrieval.

Author(s)

Yunting Sun <yunting.sun@gmail.com>, Nancy R.Zhang <nzhang@stanford.edu>, Art B.Owen <owen@stanford.edu>

FindTpr

compute the true positive rate at given sizes of retrieved genes

Description

Given a vector of sizes of retrieved genes, for each size k, select the top k genes with smallest p values and compute the true positive rate from the retrieved genes and the true positive genes.

Usage

FindTpr(pvalue, ind,topk)

Arguments

pvalue	A vector of p values, one for each gene, with length m
ind	A vector of indices that the corresponding gene are true positive
topk	A vector of integers ranging from 1 to m, length of retrieved gene list

IPOD

Value

tpr

A vector of True positive rates at given sizes of retrieval.

Author(s)

Yunting Sun <yunting.sun@gmail.com>, Nancy R.Zhang <nzhang@stanford.edu>, Art B.Owen <owen@stanford.edu>

Iterative penalized outlier detection algorithm

Description

Outlier detection and robust regression through an iterative penalized regression with tuning parameter chosen by modified BIC

Usage

IPOD(X, Y, H, method = "hard", TOL = 1e-04, length.out = 50)

Arguments

Х	an N by k design matrix
Y	an N by 1 response
Н	an N by N projection matrix X(X'X)^{-1}X'
method	a string, if method = "hard", hard thresholding is applied; if method = "soft", soft thresholding is applied
TOL	relative iterative converence tolerance, default to 1e-04
length.out	A numeric, number of candidate tuning parameter lambda under consideration for further modified BIC model selection, default to 50.

Details

If there is no predictors, set X = NULL.

Y = X beta + gamma + sigma epsilon

Y is N by 1 reponse vector, X is N by k design matrix, beta is k by 1 coefficients, gamma is N by 1 outlier indicator, sigma is a scalar and the noise standard deviation and epsilon is N by 1 vector with components independently distributed as standard normal N(0,1).

Value

gamma	a vector of length N, estimated outlier indicator gamma
resOpt.scale	a vector of length N, test statistics for each of the N genes
р	a vector of length N, p-values for each of the N genes

Author(s)

Yunting Sun <yunting.sun@gmail.com>, Nancy R.Zhang <nzhang@stanford.edu>, Art B.Owen <owen@stanford.edu>

IPODFUN	compute the iterative penalized outlier detection given the noise stan-
	dard deviation sigma

Description

Y = X beta + gamma + sigma epsilon estimate k by 1 coefficients vector beta and N by 1 outlier indicator vector gamma from (Y,X).

Usage

```
IPODFUN(X, Y, H, sigma, betaInit, method = "hard", TOL = 1e-04)
```

Arguments

Х	an N by k design matrix
Υ	an N by 1 response vector
Н	an N by N projection matrix X(X'X)^-1X'
sigma	a numeric, noise standard deviation
betaInit	a k by 1 initial value for coeffient beta
method	a string, if "hard", conduct hard thresholding, if "soft", conduct soft threshold- ing, default to "hard"
TOL	a numeric, tolerance of convergence, default to 1e-04

Details

The initial estimator for the coefficient beta can be chosen to be the estimator from a robust linear regression

Value

gamma	an N by 1 vector of estimated outlier indicator
ress	an N by 1 vector of residual Y - X beta - gamma

Author(s)

Yunting Sun <yunting.sun@gmail.com>, Nancy R.Zhang <nzhang@stanford.edu>, Art B.Owen <owen@stanford.edu>

References

She, Y. and Owen, A.B. "Outlier detection using nonconvex penalized regression" 2010

leapp

Description

Adjust for latent factors and conduct multiple hypotheses testing from gene expression data using the algorithm of Sun,Zhang and Owen (2011). Number of latent factors can be chosen by Buja and Eyuboglu (1992).

Usage

Arguments

data	An N genes by n arrays matrix of expression data
pred.prim	An n by 1 primary predictor
pred.covar	An n by s known covariate matrix not of primary interest
0	An n by n rotation matrix such that O pred.prim = $(1, 0,, 0)$
num.fac	A numeric or string, number of latent factors chosen. it has default value "buja" which uses Buja and Eyuboglu (1992) to pick the number of factors
method	A string which takes values in ("hard", "soft"). "hard": hard thresholding in the IPOD algorithm; "soft": soft thresholding in the IPOD algorithm
sparse	A logical value, if TRUE, the signal is sparse and the proportion of non-null genes is small, use IPOD algorithm in Owen and She (2010) to enforce sparsity. If FALSE, the signal is not sparse, use ridge type penalty to carry out the inference as in Sun,Zhang, Owen (2011). Default to TRUE
centered	A logical value, indicates whether the data has been centered at zero, default to FALSE
verbose	A logical value, if TRUE, will print much information as algorithm proceeds, default to FALSE
perm.num	A numeric, number of permutation performed using algorithm of Buja and Eyuboglu (1992), default to 50
TOL	A numeric, convergence tolerance level, default to 1e-4
length.out	A numeric, number of candidate tuning parameter lambda under consideration for further modified BIC model selection, default to 50.

Details

The data for test i should be in the ith row of data. If the rotation matrix O is set to NULL, the function will compute one rotation from primary predictor pred.prim.

Value

р	A vector of p-values one for each row of data.
vest	An n by num.fac matrix, estimated latent factors
uest	An N by num.fac matrix, estimated latent loadings
gamma	An N by 1 vector, estimated primary effect
sigma	An N by 1 vector, estimated noise standard deviation one for each row of data

Author(s)

Yunting Sun <yunting.sun@gmail.com>, Nancy R.Zhang <nzhang@stanford.edu>, Art B.Owen <owen@stanford.edu>

Examples

```
## Not run:
## Load data
data(simdat)
```

```
#Calculate the p-values
p <- leapp(simdat$data,pred.prim = simdat$g,method = "hard")$p
auc <- FindAUC(p, which(simdat$gamma!=0))</pre>
```

End(Not run)

Pvalue

Calculate statistics and p-values

Description

Calculate F-statistics, t-statistics and corresponding p-values given multiple regression models under the null and alternative hypotheses.

Usage

```
Pvalue(dat, mod, mod0)
```

Arguments

dat	An N genes by n arrays matrix of expression data
mod	An n by (s+1) design matrix under the full model (alternative), the first column is the primary predictor, s>=0 and the rest of the columns are additional covariates
mod0	An n by s design matrix under the null hypothesis, $s>=0$, should be the same as the 2:($s+1$) columns of mod. If $s=0$, please set mod $0 = NULL$

ridge

Value

р	An N by 1 vector of p-values one for each row of data.
tstat	An N by 1 vector of t-statistics for primary parameters.
fstat	An N by 1 vector of F-statistics for primary parameters.
coef	An N by (s+1) matrix of coefficients with respect to design matrix mod under the full model.

Author(s)

Yunting Sun <yunting.sun@gmail.com>, Nancy R.Zhang <nzhang@stanford.edu>, Art B.Owen <owen@stanford.edu>

Examples

```
## Not run:
    data(simdat)
    n = ncol(simdat$data)
    mod = cbind(simdat$g, rep(1,n))
    mod0 = cbind(rep(1,n))
    result = Pvalue(dimdat$data,mod = mod, mod0 = mod0)
```

End(Not run)

ridge

Outlier detection with a ridge penalty

Description

Outlier detection and robust regression with a ridge type penalty on the outlier indicator gamma. Allow non sparse outliers and require known noise standard deviation.

Usage

ridge(X, Y, H, sigma)

Arguments

Х	an N by k design matrix
Y	an N by 1 response vector
Н	an N by N projection matrix X(X'X)^{-1}X'
sigma	a numeric, noise standard deviation

Value

р	an N by 1 vector of p-values for each of the N genes
gamma	an N by 1 vector of estimated primary variable gamma

Author(s)

Yunting Sun <yunting.sun@gmail.com>, Nancy R.Zhang <nzhang@stanford.edu>, Art B.Owen <owen@stanford.edu>

ROCplot

plot ROC curve

Description

Input an p by d matrix, each column of which contains false positive rates(FPR) computed from each of the d methods and p significance levels and a matrix of corresponding true positive rates(TPR) at the same significance levels. Plot ROC curve for each of the d methods.

Usage

Arguments

fpr	A matrix of false positive rates for increasing sizes of retrieved significant genes
tpr	A vector of corresponding true positive rates at the same significance levels
main	a string, title of the figure
name.method	a string vector of length d containing names of the d methods
xlim	the range of the x axis(FPR), default to $c(0,0.2)$
ylim	the range of the y axis (TPR), default to $c(0.4,1)$
save	a logical value, if TRUE, will save the plot to an png file, default to TRUE
name.file	a string giving the name of the png file to save the plot

Details

The order of the name.method should be the same as that in the fpr and tpr.

Author(s)

simdat

Examples

```
## Not run:
 library(sva)
 library(MASS)
 library(leapp)
 data(simdat)
 model <- cbind(rep(1,60),simdat$g)</pre>
 model0 <- cbind(rep(1,60))</pre>
 p.raw <- f.pvalue(simdat$data,model,model0)</pre>
 p.oracle <-f.pvalue(simdat$data - simdat$u</pre>
 p.leapp <- leapp(simdat$data,pred.prim = simdat$g, method = "hard")$p</pre>
 p = cbind(p.raw,p.oracle, p.leapp)
 topk = seq(0, 0.5, length.out = 50) * 1000
 null.set = which(simdat$gamma !=0)
 fpr= apply(p,2,FindFpr,null.set,topk)
 tpr= apply(p,2,FindTpr,null.set,topk)
 ROCplot(fpr,tpr, main = "ROC Comparison",
         name.method = c("raw","oracle","leapp"), save = FALSE )
```

End(Not run)

simdat

Simulated gene expression data affected by a group variable and an unobserved factor

Description

This data set is a simulated gene expression matrix with N(0,1) background noise and affected by two variables. gene expression values of 1000 genes from 60 samples are simulated. First 30 samples are from case group and last 30 samples are from control group. The primary treatment variable g affects ten percent of the genes and the latent variable affects uniformly on the genes. The correlation between primary treatment variable g and the latent variable is 0.5 and the SNR = 1, SLR = 0.5. The variances of noise across genes are distributed as inverse gamma. Also included in the data are a vector of normalized primary variable g, a vector of primary parameter gamma, vector of latent factor v, a vector of latent loadings u and a vector of noise standard deviation for all genes sigma.

Usage

```
data(simdat)
```

Format

A list of 6 components

simdat

Value

data	A 1000 x 60 gene expression value matrix with genes in rows and arrays in columns
g	A vector of length 60, primary variable
gamma	A vector of length 1000, primary parameter
v	A vector of length 60, latent variable
u	A vector of length 1000, latent loadings
sigma	A vector of length 1000, noise standard deviation for each of the 1000 genes

Author(s)

Index

```
* datasets
    simdat, 13
* ipod
    IPOD, 7
    IPODFUN, 8
* misc
    AlternateSVD, 3
    FindAUC, 4
    FindFpr,4
    FindPrec, 5
    FindRec, 6
    FindTpr, 6
    leapp, 9
    Pvalue, 10
    ridge, 11
    ROCplot, 12
* package
    leapp-package, 2
AlternateSVD, 3
FindAUC, 4
FindFpr, 4
FindPrec, 5
FindRec, 6
FindTpr, 6
IPOD, 7
IPODFUN, 8
leapp, 9
leapp-package, 2
Pvalue, 10
ridge, 11
ROCplot, 12
simdat, 13
```