
Package ‘insurancerating’
October 9, 2024

Type Package

Title Analytic Insurance Rating Techniques

Version 0.7.5

Maintainer Martin Haringa <mtharinga@gmail.com>

BugReports https://github.com/MHaringa/insurancerating/issues

Description Functions to build, evaluate, and visualize insurance rating
models. It simplifies the process of modeling premiums, and allows to
analyze insurance risk factors effectively. The package employs a
data-driven strategy for constructing insurance tariff classes, drawing on
the work of Antonio and Valdez (2012) <doi:10.1007/s10182-011-0152-7>.

License GPL (>= 2)

URL https://mharinga.github.io/insurancerating/,

https://github.com/MHaringa/insurancerating

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Imports ciTools, classInt, colorspace, data.table, DHARMa, dplyr,
evtree, fitdistrplus, ggplot2, insight, lubridate, mgcv,
patchwork, scales, scam, stringr

Depends R (>= 3.3)

Suggests spelling, knitr, rmarkdown, testthat

Language en-US

NeedsCompilation no

Author Martin Haringa [aut, cre]

Repository CRAN

Date/Publication 2024-10-09 17:20:02 UTC

1

https://github.com/MHaringa/insurancerating/issues
https://doi.org/10.1007/s10182-011-0152-7
https://mharinga.github.io/insurancerating/
https://github.com/MHaringa/insurancerating

2 Contents

Contents

add_prediction . 3
autoplot.bootstrap_rmse . 3
autoplot.check_residuals . 4
autoplot.constructtariffclasses . 5
autoplot.fitgam . 6
autoplot.restricted . 8
autoplot.riskfactor . 8
autoplot.smooth . 10
autoplot.truncated_dist . 10
autoplot.univariate . 11
biggest_reference . 13
bootstrap_rmse . 14
check_overdispersion . 16
check_residuals . 17
construct_model_points . 18
construct_tariff_classes . 19
fisher . 21
fit_gam . 22
fit_truncated_dist . 24
histbin . 26
model_data . 27
model_performance . 27
MTPL . 28
MTPL2 . 29
period_to_months . 30
rating_factors . 31
reduce . 32
refit_glm . 34
restrict_coef . 34
rgammat . 36
rlnormt . 36
rmse . 37
rows_per_date . 38
smooth_coef . 39
summary.reduce . 42
univariate . 42
update_glm . 44

Index 45

add_prediction 3

add_prediction Add predictions to a data frame

Description

Add model predictions and confidence bounds to a data frame.

Usage

add_prediction(data, ..., var = NULL, conf_int = FALSE, alpha = 0.1)

Arguments

data a data frame of new data.

... one or more objects of class glm.

var the name of the output column(s), defaults to NULL

conf_int determines whether confidence intervals will be shown. Defaults to conf_int =
FALSE.

alpha a real number between 0 and 1. Controls the confidence level of the interval
estimates (defaults to 0.10, representing 90 percent confidence interval).

Value

data.frame

Examples

mod1 <- glm(nclaims ~ age_policyholder, data = MTPL,
offset = log(exposure), family = poisson())

mtpl_pred <- add_prediction(MTPL, mod1)

Include confidence bounds
mtpl_pred_ci <- add_prediction(MTPL, mod1, conf_int = TRUE)

autoplot.bootstrap_rmse

Automatically create a ggplot for objects obtained from boot-
strap_rmse()

Description

Takes an object produced by bootstrap_rmse(), and plots the simulated RMSE

4 autoplot.check_residuals

Usage

S3 method for class 'bootstrap_rmse'
autoplot(object, fill = NULL, color = NULL, ...)

Arguments

object bootstrap_rmse object produced by bootstrap_rmse()

fill color to fill histogram (default is "steelblue")

color color to plot line colors of histogram

... other plotting parameters to affect the plot

Value

a ggplot object

Author(s)

Martin Haringa

autoplot.check_residuals

Automatically create a ggplot for objects obtained from
check_residuals()

Description

Takes an object produced by check_residuals(), and produces a uniform quantile-quantile plot.#’

Usage

S3 method for class 'check_residuals'
autoplot(object, show_message = TRUE, ...)

Arguments

object check_residuals object produced by check_residuals()

show_message show output from test (defaults to TRUE)

... other plotting parameters to affect the plot

Value

a ggplot object

Author(s)

Martin Haringa

autoplot.constructtariffclasses 5

autoplot.constructtariffclasses

Automatically create a ggplot for objects obtained from con-
struct_tariff_classes()

Description

Takes an object produced by construct_tariff_classes(), and plots the fitted GAM. In addition
the constructed tariff classes are shown.

Usage

S3 method for class 'constructtariffclasses'
autoplot(
object,
conf_int = FALSE,
color_gam = "steelblue",
show_observations = FALSE,
color_splits = "grey50",
size_points = 1,
color_points = "black",
rotate_labels = FALSE,
remove_outliers = NULL,
...

)

Arguments

object constructtariffclasses object produced by construct_tariff_classes

conf_int determines whether 95\ The default is conf_int = FALSE

color_gam a color can be specified either by name (e.g.: "red") or by hexadecimal code
(e.g. : "#FF1234") (default is "steelblue")

show_observations

add observed frequency/severity points for each level of the variable for which
tariff classes are constructed

color_splits change the color of the splits in the graph ("grey50" is default)

size_points size for points (1 is default)

color_points change the color of the points in the graph ("black" is default)

rotate_labels rotate x-labels 45 degrees (this might be helpful for overlapping x-labels)
remove_outliers

do not show observations above this number in the plot. This might be helpful
for outliers.

... other plotting parameters to affect the plot

6 autoplot.fitgam

Value

a ggplot object

Author(s)

Martin Haringa

Examples

Not run:
library(ggplot2)
library(dplyr)
x <- fit_gam(MTPL,
nclaims = nclaims, x = age_policyholder, exposure = exposure) |>

construct_tariff_classes()
autoplot(x, show_observations = TRUE)

End(Not run)

autoplot.fitgam Automatically create a ggplot for objects obtained from fit_gam()

Description

Takes an object produced by fit_gam(), and plots the fitted GAM.

Usage

S3 method for class 'fitgam'
autoplot(
object,
conf_int = FALSE,
color_gam = "steelblue",
show_observations = FALSE,
x_stepsize = NULL,
size_points = 1,
color_points = "black",
rotate_labels = FALSE,
remove_outliers = NULL,
...

)

autoplot.fitgam 7

Arguments

object fitgam object produced by fit_gam()

conf_int determines whether 95 percent confidence intervals will be plotted. The default
is conf_int = FALSE.

color_gam a color can be specified either by name (e.g.: "red") or by hexadecimal code
(e.g. : "#FF1234") (default is "steelblue")

show_observations

add observed frequency/severity points for each level of the variable for which
tariff classes are constructed

x_stepsize set step size for labels horizontal axis

size_points size for points (1 is default)

color_points change the color of the points in the graph ("black" is default)

rotate_labels rotate x-labels 45 degrees (this might be helpful for overlapping x-labels)

remove_outliers

do not show observations above this number in the plot. This might be helpful
for outliers.

... other plotting parameters to affect the plot

Value

a ggplot object

Author(s)

Martin Haringa

Examples

Not run:
library(ggplot2)
library(dplyr)
fit_gam(MTPL, nclaims = nclaims, x = age_policyholder,

exposure = exposure) |>
autoplot(show_observations = TRUE)

End(Not run)

8 autoplot.riskfactor

autoplot.restricted Automatically create a ggplot for objects obtained from restrict_coef()

Description

[Experimental] Takes an object produced by restrict_coef(), and produces a line plot with a
comparison between the restricted coefficients and estimated coefficients obtained from the model.

Usage

S3 method for class 'restricted'
autoplot(object, ...)

Arguments

object object produced by restrict_coef()

... other plotting parameters to affect the plot

Value

Object of class ggplot2

Author(s)

Martin Haringa

Examples

freq <- glm(nclaims ~ bm + zip, weights = power, family = poisson(),
data = MTPL)
zip_df <- data.frame(zip = c(0,1,2,3), zip_rst = c(0.8, 0.9, 1, 1.2))
freq |>

restrict_coef(restrictions = zip_df) |>
autoplot()

autoplot.riskfactor Automatically create a ggplot for objects obtained from rat-
ing_factors()

Description

Takes an object produced by rating_factors(), and plots the available input.

autoplot.riskfactor 9

Usage

S3 method for class 'riskfactor'
autoplot(
object,
risk_factors = NULL,
ncol = 1,
labels = TRUE,
dec.mark = ",",
ylab = "rate",
fill = NULL,
color = NULL,
linetype = FALSE,
...

)

Arguments

object riskfactor object produced by rating_factors()

risk_factors character vector to define which factors are included. Defaults to all risk factors.

ncol number of columns in output (default is 1)

labels show labels with the exposure (default is TRUE)

dec.mark control the format of the decimal point, as well as the mark between intervals
before the decimal point, choose either "," (default) or "."

ylab modify label for the y-axis

fill color to fill histogram

color color to plot line colors of histogram (default is "skyblue")

linetype use different linetypes (default is FALSE)

... other plotting parameters to affect the plot

Value

a ggplot2 object

Author(s)

Martin Haringa

Examples

library(dplyr)
df <- MTPL2 |>

mutate(across(c(area), as.factor)) |>
mutate(across(c(area), ~biggest_reference(., exposure)))

mod1 <- glm(nclaims ~ area + premium, offset = log(exposure),
family = poisson(), data = df)

mod2 <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),

10 autoplot.truncated_dist

data = df)

x <- rating_factors(mod1, mod2, model_data = df, exposure = exposure)
autoplot(x)

autoplot.smooth Automatically create a ggplot for objects obtained from smooth_coef()

Description

[Experimental] Takes an object produced by smooth_coef(), and produces a plot with a compar-
ison between the smoothed coefficients and estimated coefficients obtained from the model.

Usage

S3 method for class 'smooth'
autoplot(object, ...)

Arguments

object object produced by smooth_coef()

... other plotting parameters to affect the plot

Value

Object of class ggplot2

Author(s)

Martin Haringa

autoplot.truncated_dist

Automatically create a ggplot for objects obtained from
fit_truncated_dist()

Description

Takes an object produced by fit_truncated_dist(), and plots the available input.

autoplot.univariate 11

Usage

S3 method for class 'truncated_dist'
autoplot(
object,
geom_ecdf = c("point", "step"),
xlab = NULL,
ylab = NULL,
ylim = c(0, 1),
xlim = NULL,
print_title = TRUE,
print_dig = 2,
print_trunc = 2,
...

)

Arguments

object object univariate object produced by fit_truncated_dist()

geom_ecdf the geometric object to use display the data (point or step)

xlab the title of the x axis

ylab the title of the y axis

ylim two numeric values, specifying the lower limit and the upper limit of the scale

xlim two numeric values, specifying the left limit and the right limit of the scale

print_title show title (default to TRUE)

print_dig number of digits for parameters in title (default 2)

print_trunc number of digits for truncation values to print

... other plotting parameters to affect the plot

Value

a ggplot2 object

Author(s)

Martin Haringa

autoplot.univariate Automatically create a ggplot for objects obtained from univariate()

Description

Takes an object produced by univariate(), and plots the available input.

12 autoplot.univariate

Usage

S3 method for class 'univariate'
autoplot(
object,
show_plots = 1:9,
ncol = 1,
background = TRUE,
labels = TRUE,
sort = FALSE,
sort_manual = NULL,
dec.mark = ",",
color = "dodgerblue",
color_bg = "lightskyblue",
label_width = 10,
coord_flip = FALSE,
show_total = FALSE,
total_color = NULL,
total_name = NULL,
rotate_angle = NULL,
custom_theme = NULL,
remove_underscores = FALSE,
...

)

Arguments

object univariate object produced by univariate()

show_plots numeric vector of plots to be shown (default is c(1,2,3,4,5,6,7,8,9)), there are
nine available plots:

• 1. frequency (i.e. number of claims / exposure)
• 2. average severity (i.e. severity / number of claims)
• 3. risk premium (i.e. severity / exposure)
• 4. loss ratio (i.e. severity / premium)
• 5. average premium (i.e. premium / exposure)
• 6. exposure
• 7. severity
• 8. nclaims
• 9. premium

ncol number of columns in output (default is 1)

background show exposure as a background histogram (default is TRUE)

labels show labels with the exposure (default is TRUE)

sort sort (or order) risk factor into descending order by exposure (default is FALSE)

sort_manual sort (or order) risk factor into own ordering; should be a character vector (default
is NULL)

dec.mark decimal mark; defaults to ","

biggest_reference 13

color change the color of the points and line ("dodgerblue" is default)

color_bg change the color of the histogram ("#f8e6b1" is default)

label_width width of labels on the x-axis (10 is default)

coord_flip flip cartesian coordinates so that horizontal becomes vertical, and vertical, hori-
zontal (default is FALSE)

show_total show line for total if by is used in univariate (default is FALSE)

total_color change the color for the total line ("black" is default)

total_name add legend name for the total line (e.g. "total")

rotate_angle numeric value for angle of labels on the x-axis (degrees)

custom_theme list with customized theme options
remove_underscores

logical. Defaults to FALSE. Remove underscores from labels

... other plotting parameters to affect the plot

Value

a ggplot2 object

Author(s)

Marc Haine, Martin Haringa

Examples

library(ggplot2)
x <- univariate(MTPL2, x = area, severity = amount, nclaims = nclaims,
exposure = exposure)
autoplot(x)
autoplot(x, show_plots = c(6,1), background = FALSE, sort = TRUE)

Group by `zip`
xzip <- univariate(MTPL, x = bm, severity = amount, nclaims = nclaims,
exposure = exposure, by = zip)
autoplot(xzip, show_plots = 1:2)

biggest_reference Set reference group to the group with largest exposure

Description

This function specifies the first level of a factor to the level with the largest exposure. Levels of
factors are sorted using an alphabetic ordering. If the factor is used in a regression context, then the
first level will be the reference. For insurance applications it is common to specify the reference
level to the level with the largest exposure.

14 bootstrap_rmse

Usage

biggest_reference(x, weight)

Arguments

x an unordered factor
weight a vector containing weights (e.g. exposure). Should be numeric.

Value

a factor of the same length as x

Author(s)

Martin Haringa

References

Kaas, Rob & Goovaerts, Marc & Dhaene, Jan & Denuit, Michel. (2008). Modern Actuarial Risk
Theory: Using R. doi:10.1007/978-3-540-70998-5.

Examples

Not run:
library(dplyr)
df <- chickwts |>
mutate(across(where(is.character), as.factor)) |>
mutate(across(where(is.factor), ~biggest_reference(., weight)))

End(Not run)

bootstrap_rmse Bootstrapped RMSE

Description

Generate n bootstrap replicates to compute n root mean squared errors.

Usage

bootstrap_rmse(
model,
data,
n = 50,
frac = 1,
show_progress = TRUE,
rmse_model = NULL

)

bootstrap_rmse 15

Arguments

model a model object

data data used to fit model object

n number of bootstrap replicates (defaults to 50)

frac fraction used in training set if cross-validation is applied (defaults to 1)

show_progress show progress bar (defaults to TRUE)

rmse_model numeric RMSE to show as vertical dashed line in autoplot() (defaults to NULL)

Details

To test the predictive ability of the fitted model it might be helpful to determine the variation in
the computed RMSE. The variation is calculated by computing the root mean squared errors from
n generated bootstrap replicates. More precisely, for each iteration a sample with replacement is
taken from the data set and the model is refitted using this sample. Then, the root mean squared
error is calculated.

Value

A list with components

rmse_bs numerical vector with n root mean squared errors

rmse_mod root mean squared error for fitted (i.e. original) model

Author(s)

Martin Haringa

Examples

Not run:
mod1 <- glm(nclaims ~ age_policyholder, data = MTPL,

offset = log(exposure), family = poisson())

Use all records in MTPL
x <- bootstrap_rmse(mod1, MTPL, n = 80, show_progress = FALSE)
print(x)
autoplot(x)

Use 80% of records to test whether predictive ability depends on which 80%
is used. This might for example be useful in case portfolio contains large
claim sizes
x_frac <- bootstrap_rmse(mod1, MTPL, n = 50, frac = .8,
show_progress = FALSE)
autoplot(x_frac) # Variation is quite small for Poisson GLM

End(Not run)

16 check_overdispersion

check_overdispersion Check overdispersion of Poisson GLM

Description

Check Poisson GLM for overdispersion.

Usage

check_overdispersion(object)

Arguments

object fitted model of class glm and family Poisson

Details

A dispersion ratio larger than one indicates overdispersion, this occurs when the observed variance
is higher than the variance of the theoretical model. If the dispersion ratio is close to one, a Poisson
model fits well to the data. A p-value < .05 indicates overdispersion. Overdispersion > 2 probably
means there is a larger problem with the data: check (again) for outliers, obvious lack of fit. Adopted
from performance::check_overdispersion().

Value

A list with dispersion ratio, chi-squared statistic, and p-value.

Author(s)

Martin Haringa

References

• Bolker B et al. (2017): GLMM FAQ.

Examples

x <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
data = MTPL2)

check_overdispersion(x)

http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

check_residuals 17

check_residuals Check model residuals

Description

Detect overall deviations from the expected distribution.

Usage

check_residuals(object, n_simulations = 30)

Arguments

object a model object

n_simulations number of simulations (defaults to 30)

Details

Misspecifications in GLMs cannot reliably be diagnosed with standard residual plots, and GLMs
are thus often not as thoroughly checked as LMs. One reason why GLMs residuals are harder to
interpret is that the expected distribution of the data changes with the fitted values. As a result,
standard residual plots, when interpreted in the same way as for linear models, seem to show all
kind of problems, such as non-normality, heteroscedasticity, even if the model is correctly specified.
check_residuals() aims at solving these problems by creating readily interpretable residuals for
GLMs that are standardized to values between 0 and 1, and that can be interpreted as intuitively
as residuals for the linear model. This is achieved by a simulation-based approach, similar to the
Bayesian p-value or the parametric bootstrap, that transforms the residuals to a standardized scale.
This explanation is adopted from DHARMa::simulateResiduals().

It might happen that in the fitted model for a data point all simulations have the same value (e.g.
zero), this returns the error message Error in approxfun: need at least two non-NA values to inter-
polate*. If that is the case, it could help to increase the number of simulations.

Value

Invisibly returns the p-value of the test statistics. A p-value < 0.05 indicates a significant deviation
from expected distribution.

Author(s)

Martin Haringa

References

Dunn, K. P., and Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational
and Graphical Statistics 5, 1-10.

Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models Cambridge
University Press, 2006

18 construct_model_points

Hartig, F. (2020). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regres-
sion Models. R package version 0.3.0. https://CRAN.R-project.org/package=DHARMa

Examples

Not run:
m1 <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
data = MTPL2)
check_residuals(m1, n_simulations = 50) |> autoplot()

End(Not run)

construct_model_points

Construct model points from Generalized Linear Model

Description

[Experimental] construct_model_points() is used to construct model points from generalized
linear models, and must be preceded by model_data(). construct_model_points() can also be
used in combination with a data.frame.

Usage

construct_model_points(
x,
exposure = NULL,
exposure_by = NULL,
agg_cols = NULL,
drop_na = FALSE

)

Arguments

x Object of class model_data or of class data.frame

exposure column with exposure

exposure_by split column exposure by (e.g. year)

agg_cols list of columns to aggregate (sum) by, e.g. number of claims

drop_na drop na values (default to FALSE)

Value

data.frame

Author(s)

Martin Haringa

https://CRAN.R-project.org/package=DHARMa

construct_tariff_classes 19

Examples

Not run:
With data.frame
library(dplyr)
mtcars |>
select(cyl, vs) |>
construct_model_points()

mtcars |>
select(cyl, vs, disp) |>
construct_model_points(exposure = disp)

mtcars |>
select(cyl, vs, disp, gear) |>
construct_model_points(exposure = disp, exposure_by = gear)

mtcars |>
select(cyl, vs, disp, gear, mpg) |>
construct_model_points(exposure = disp, exposure_by = gear,
agg_cols = list(mpg))

With glm
library(datasets)
data1 <- warpbreaks |>
mutate(jaar = c(rep(2000, 10), rep(2010, 44))) |>
mutate(exposure = 1) |>
mutate(nclaims = 2)

pmodel <- glm(breaks ~ wool + tension, data1, offset = log(exposure),
family = poisson(link = "log"))

model_data(pmodel) |>
construct_model_points()

model_data(pmodel) |>
construct_model_points(agg_cols = list(nclaims))

model_data(pmodel) |>
construct_model_points(exposure = exposure, exposure_by = jaar) |>
add_prediction(pmodel)

End(Not run)

construct_tariff_classes

Construct insurance tariff classes

20 construct_tariff_classes

Description

Constructs insurance tariff classes to fitgam objects produced by fit_gam. The goal is to bin
the continuous risk factors such that categorical risk factors result which capture the effect of the
covariate on the response in an accurate way, while being easy to use in a generalized linear model
(GLM).

Usage

construct_tariff_classes(
object,
alpha = 0,
niterations = 10000,
ntrees = 200,
seed = 1

)

Arguments

object fitgam object produced by fit_gam

alpha complexity parameter. The complexity parameter (alpha) is used to control the
number of tariff classes. Higher values for alpha render less tariff classes.
(alpha = 0 is default).

niterations in case the run does not converge, it terminates after a specified number of iter-
ations defined by niterations.

ntrees the number of trees in the population.

seed an numeric seed to initialize the random number generator (for reproducibility).

Details

Evolutionary trees are used as a technique to bin the fitgam object produced by fit_gam into risk
homogeneous categories. This method is based on the work by Henckaerts et al. (2018). See
Grubinger et al. (2014) for more details on the various parameters that control aspects of the evtree
fit.

Value

A list of class constructtariffclasses with components

prediction data frame with predicted values

x name of continuous risk factor for which tariff classes are constructed

model either ’frequency’, ’severity’ or ’burning’

data data frame with predicted values and observed values

x_obs observations for continuous risk factor

splits vector with boundaries of the constructed tariff classes

tariff_classes values in vector x coded according to which constructed tariff class they fall

fisher 21

Author(s)

Martin Haringa

References

Antonio, K. and Valdez, E. A. (2012). Statistical concepts of a priori and a posteriori risk classifica-
tion in insurance. Advances in Statistical Analysis, 96(2):187–224. doi:10.1007/s10182-011-0152-
7.

Grubinger, T., Zeileis, A., and Pfeiffer, K.-P. (2014). evtree: Evolutionary learning of globally opti-
mal classification and regression trees in R. Journal of Statistical Software, 61(1):1–29. doi:10.18637/jss.v061.i01.

Henckaerts, R., Antonio, K., Clijsters, M. and Verbelen, R. (2018). A data driven binning strategy
for the construction of insurance tariff classes. Scandinavian Actuarial Journal, 2018:8, 681-705.
doi:10.1080/03461238.2018.1429300.

Wood, S.N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation
of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-
36. doi:10.1111/j.1467-9868.2010.00749.x.

Examples

Not run:
library(dplyr)
fit_gam(MTPL, nclaims = nclaims,
x = age_policyholder, exposure = exposure) |>

construct_tariff_classes()

End(Not run)

fisher Fisher’s natural breaks classification

Description

The function provides an interface to finding class intervals for continuous numerical variables, for
example for choosing colours for plotting maps.

Usage

fisher(vec, n = 7, diglab = 2)

Arguments

vec a continuous numerical variable

n number of classes required (n = 7 is default)

diglab number of digits (n = 2 is default)

22 fit_gam

Details

The "fisher" style uses the algorithm proposed by W. D. Fisher (1958) and discussed by Slocum et
al. (2005) as the Fisher-Jenks algorithm. This function is adopted from the classInt package.

Value

Vector with clustering

Author(s)

Martin Haringa

References

Bivand, R. (2018). classInt: Choose Univariate Class Intervals. R package version 0.2-3. https:
//CRAN.R-project.org/package=classInt

Fisher, W. D. 1958 "On grouping for maximum homogeneity", Journal of the American Statistical
Association, 53, pp. 789–798. doi: 10.1080/01621459.1958.10501479.

fit_gam Generalized additive model

Description

Fits a generalized additive model (GAM) to continuous risk factors in one of the following three
types of models: the number of reported claims (claim frequency), the severity of reported claims
(claim severity) or the burning cost (i.e. risk premium or pure premium).

Usage

fit_gam(
data,
nclaims,
x,
exposure,
amount = NULL,
pure_premium = NULL,
model = "frequency",
round_x = NULL

)

https://CRAN.R-project.org/package=classInt
https://CRAN.R-project.org/package=classInt

fit_gam 23

Arguments

data data.frame of an insurance portfolio

nclaims column in data with number of claims

x column in data with continuous risk factor

exposure column in data with exposure

amount column in data with claim amount

pure_premium column in data with pure premium

model choose either ’frequency’, ’severity’ or ’burning’ (model = ’frequency’ is de-
fault). See details section.

round_x round elements in column x to multiple of round_x. This gives a speed enhance-
ment for data containing many levels for x.

Details

The ’frequency’ specification uses a Poisson GAM for fitting the number of claims. The logarithm
of the exposure is included as an offset, such that the expected number of claims is proportional to
the exposure.

The ’severity’ specification uses a lognormal GAM for fitting the average cost of a claim. The
average cost of a claim is defined as the ratio of the claim amount and the number of claims. The
number of claims is included as a weight.

The ’burning’ specification uses a lognormal GAM for fitting the pure premium of a claim. The
pure premium is obtained by multiplying the estimated frequency and the estimated severity of
claims. The word burning cost is used here as equivalent of risk premium and pure premium. Note
that the functionality for fitting a GAM for pure premium is still experimental (in the early stages
of development).

Value

A list with components

prediction data frame with predicted values

x name of continuous risk factor

model either ’frequency’, ’severity’ or ’burning’

data data frame with predicted values and observed values

x_obs observations for continuous risk factor

Author(s)

Martin Haringa

24 fit_truncated_dist

References

Antonio, K. and Valdez, E. A. (2012). Statistical concepts of a priori and a posteriori risk classifica-
tion in insurance. Advances in Statistical Analysis, 96(2):187–224. doi:10.1007/s10182-011-0152-
7.

Grubinger, T., Zeileis, A., and Pfeiffer, K.-P. (2014). evtree: Evolutionary learning of globally opti-
mal classification and regression trees in R. Journal of Statistical Software, 61(1):1–29. doi:10.18637/jss.v061.i01.

Henckaerts, R., Antonio, K., Clijsters, M. and Verbelen, R. (2018). A data driven binning strategy
for the construction of insurance tariff classes. Scandinavian Actuarial Journal, 2018:8, 681-705.
doi:10.1080/03461238.2018.1429300.

Wood, S.N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation
of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-
36. doi:10.1111/j.1467-9868.2010.00749.x.

Examples

fit_gam(MTPL, nclaims = nclaims, x = age_policyholder,
exposure = exposure)

fit_truncated_dist Fit a distribution to truncated severity (loss) data

Description

[Experimental] Estimate the original distribution from truncated data. Truncated data arise fre-
quently in insurance studies. It is common that only claims above a certain threshold are known.

Usage

fit_truncated_dist(
y,
dist = c("gamma", "lognormal"),
left = NULL,
right = NULL,
start = NULL,
print_initial = TRUE

)

Arguments

y vector with observations of losses
dist distribution for severity ("gamma" or "lognormal"). Defaults to "gamma".
left numeric. Observations below this threshold are not present in the sample.
right numeric. Observations above this threshold are not present in the sample. De-

faults to Inf.
start list of starting parameters for the algorithm.
print_initial print attempts for initial parameters.

fit_truncated_dist 25

Value

fitdist returns an object of class "fitdist"

Author(s)

Martin Haringa

Examples

Not run:
Original observations for severity
set.seed(1)
e <- rgamma(1000, scale = 148099.5, shape = 0.4887023)

Truncated data (only claims above 30.000 euros)
threshold <- 30000
f <- e[e > threshold]

library(dplyr)
library(ggplot2)
data.frame(value = c(e, f),
variable = rep(c("Original data", "Only claims above 30.000 euros"),

c(length(e), length(f)))) %>%
filter(value < 5e5) %>%
mutate(value = value / 1000) %>%
ggplot(aes(x = value)) +
geom_histogram(colour = "white") +
facet_wrap(~variable, ncol = 1) +
labs(y = "Number of observations",

x = "Severity (x 1000 EUR)")

scale = 156259.7 and shape = 0.4588. Close to parameters of original
distribution!
x <- fit_truncated_dist(f, left = threshold, dist = "gamma")

Print cdf
autoplot(x)

CDF with modifications
autoplot(x, print_dig = 5, xlab = "loss", ylab = "cdf", ylim = c(.9, 1))

est_scale <- x$estimate[1]
est_shape <- x$estimate[2]

Generate data from truncated distribution (between 30k en 20 mln)
rg <- rgammat(10, scale = est_scale, shape = est_shape, lower = 3e4,
upper = 20e6)

Calculate quantiles
quantile(rg, probs = c(.5, .9, .99, .995))

End(Not run)

26 histbin

histbin Create a histogram with outlier bins

Description

Visualize the distribution of a single continuous variable by dividing the x axis into bins and count-
ing the number of observations in each bin. Data points that are considered outliers can be binned
together. This might be helpful to display numerical data over a very wide range of values in a
compact way.

Usage

histbin(
data,
x,
left = NULL,
right = NULL,
line = FALSE,
bins = 30,
fill = NULL,
color = NULL,
fill_outliers = "#a7d1a7"

)

Arguments

data data.frame

x variable name in data.frame data that should be mapped

left numeric indicating the floor of the range

right numeric indicating the ceiling of the range

line show density line (default is FALSE)

bins numeric to indicate number of bins

fill color used to fill bars

color color for bar lines

fill_outliers color used to fill outlier bars

Details

Wrapper function around ggplot2::geom_histogram(). The method is based on suggestions from
https://edwinth.github.io/blog/outlier-bin/.

Value

a ggplot2 object

https://edwinth.github.io/blog/outlier-bin/

model_data 27

Author(s)

Martin Haringa

Examples

histbin(MTPL2, premium)
histbin(MTPL2, premium, left = 30, right = 120, bins = 30)

model_data Get model data

Description

[Experimental] model_data() is used to get data from glm, and must be preceded by update_glm()
or glm().

Usage

model_data(x)

Arguments

x Object of class refitsmooth, refitrestricted or glm

Value

data.frame

Author(s)

Martin Haringa

model_performance Performance of fitted GLMs

Description

Compute indices of model performance for (one or more) GLMs.

Usage

model_performance(...)

Arguments

... One or more objects of class glm.

28 MTPL

Details

The following indices are computed:

AIC Akaike’s Information Criterion

BIC Bayesian Information Criterion

RMSE Root mean squared error

Adopted from performance::model_performance().

Value

data frame

Author(s)

Martin Haringa

Examples

m1 <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
data = MTPL2)

m2 <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
data = MTPL2)

model_performance(m1, m2)

MTPL Characteristics of 30,000 policyholders in a Motor Third Party Liabil-
ity (MTPL) portfolio.

Description

A dataset containing the age, number of claims, exposure, claim amount, power, bm, and region of
30,000 policyholders.

Usage

MTPL

Format

A data frame with 30,000 rows and 7 variables:

age_policyholder age of policyholder, in years.

nclaims number of claims.

exposure exposure, for example, if a vehicle is insured as of July 1 for a certain year, then during
that year, this would represent an exposure of 0.5 to the insurance company.

MTPL2 29

amount claim amount in Euros.

power engine power of vehicle (in kilowatts).

bm level occupied in the 23-level (0-22) bonus-malus scale (the higher the level occupied, the
worse the claim history).

zip region indicator (0-3).

Author(s)

Martin Haringa

Source

The data is derived from the portfolio of a large Dutch motor insurance company.

MTPL2 Characteristics of 3,000 policyholders in a Motor Third Party Liability
(MTPL) portfolio.

Description

A dataset containing the area, number of claims, exposure, claim amount, exposure, and premium
of 3,000 policyholders

Usage

MTPL2

Format

A data frame with 3,000 rows and 6 variables:

customer_id customer id

area region where customer lives (0-3)

nclaims number of claims

amount claim amount (severity)

exposure exposure

premium earned premium

Author(s)

Martin Haringa

Source

The data is derived from the portfolio of a large Dutch motor insurance company.

30 period_to_months

period_to_months Split period to months

Description

The function splits rows with a time period longer than one month to multiple rows with a time
period of exactly one month each. Values in numeric columns (e.g. exposure or premium) are
divided over the months proportionately.

Usage

period_to_months(df, begin, end, ...)

Arguments

df data.frame

begin column in df with begin dates

end column in df with end dates

... numeric columns in df to split

Details

In insurance portfolios it is common that rows relate to periods longer than one month. This is for
example problematic in case exposures per month are desired.

Since insurance premiums are constant over the months, and do not depend on the number of days
per month, the function assumes that each month has the same number of days (i.e. 30).

Value

data.frame with same columns as in df, and one extra column called id

Author(s)

Martin Haringa

Examples

library(lubridate)
portfolio <- data.frame(
begin1 = ymd(c("2014-01-01", "2014-01-01")),
end = ymd(c("2014-03-14", "2014-05-10")),
termination = ymd(c("2014-03-14", "2014-05-10")),
exposure = c(0.2025, 0.3583),
premium = c(125, 150))
period_to_months(portfolio, begin1, end, premium, exposure)

rating_factors 31

rating_factors Include reference group in regression output

Description

Extract coefficients in terms of the original levels of the coefficients rather than the coded variables.

Usage

rating_factors(
...,
model_data = NULL,
exposure = NULL,
exponentiate = TRUE,
signif_stars = FALSE,
round_exposure = 0

)

Arguments

... glm object(s) produced by glm()

model_data data.frame used to create glm object(s), this should only be specified in case the
exposure is desired in the output, default value is NULL

exposure column in model_data with exposure, default value is NULL

exponentiate logical indicating whether or not to exponentiate the coefficient estimates. De-
faults to TRUE.

signif_stars show significance stars for p-values (defaults to TRUE)

round_exposure number of digits for exposure (defaults to 0)

Details

A fitted linear model has coefficients for the contrasts of the factor terms, usually one less in num-
ber than the number of levels. This function re-expresses the coefficients in the original coding.
This function is adopted from dummy.coef(). Our adoption prints a data.frame as output. Use
rating_factors_() for standard evaluation.

Value

data.frame

Author(s)

Martin Haringa

32 reduce

Examples

df <- MTPL2 |>
dplyr::mutate(dplyr::across(c(area), as.factor)) |>
dplyr::mutate(dplyr::across(c(area), ~biggest_reference(., exposure)))

mod1 <- glm(nclaims ~ area + premium, offset = log(exposure),
family = poisson(), data = df)
mod2 <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
data = df)

rating_factors(mod1, mod2, model_data = df, exposure = exposure)

reduce Reduce portfolio by merging redundant date ranges

Description

Transform all the date ranges together as a set to produce a new set of date ranges. Ranges separated
by a gap of at least min.gapwidth days are not merged.

Usage

reduce(df, begin, end, ..., agg_cols = NULL, agg = "sum", min.gapwidth = 5)

Arguments

df data.frame

begin name of column df with begin dates

end name of column in df with end dates

... names of columns in df used to group date ranges by

agg_cols list with columns in df to aggregate by (defaults to NULL)

agg aggregation type (defaults to "sum")

min.gapwidth ranges separated by a gap of at least min.gapwidth days are not merged. De-
faults to 5.

Details

This function is adopted from IRanges::reduce().

reduce 33

Value

An object of class "reduce". The function summary is used to obtain and print a summary of the
results. An object of class "reduce" is a list usually containing at least the following elements:

df data frame with reduced time periods

begin name of column in df with begin dates

end name of column in df with end dates

cols names of columns in df used to group date ranges by

Author(s)

Martin Haringa

Examples

portfolio <- structure(list(policy_nr = c("12345", "12345", "12345", "12345",
"12345", "12345", "12345", "12345", "12345", "12345", "12345"),
productgroup = c("fire", "fire", "fire", "fire", "fire", "fire",
"fire", "fire", "fire", "fire", "fire"), product = c("contents",
"contents", "contents", "contents", "contents", "contents", "contents",
"contents", "contents", "contents", "contents"),
begin_dat = structure(c(16709,16740, 16801, 17410, 17440, 17805, 17897,
17956, 17987, 18017, 18262), class = "Date"),
end_dat = structure(c(16739, 16800, 16831, 17439, 17531, 17896, 17955,
17986, 18016, 18261, 18292), class = "Date"),
premium = c(89L, 58L, 83L, 73L, 69L, 94L, 91L, 97L, 57L, 65L, 55L)),
row.names = c(NA, -11L), class = "data.frame")

Merge periods
pt1 <- reduce(portfolio, begin = begin_dat, end = end_dat, policy_nr,

productgroup, product, min.gapwidth = 5)

Aggregate per period
summary(pt1, period = "days", policy_nr, productgroup, product)

Merge periods and sum premium per period
pt2 <- reduce(portfolio, begin = begin_dat, end = end_dat, policy_nr,

productgroup, product, agg_cols = list(premium), min.gapwidth = 5)

Create summary with aggregation per week
summary(pt2, period = "weeks", policy_nr, productgroup, product)

34 restrict_coef

refit_glm Refitting Generalized Linear Models

Description

[Experimental] refit_glm() is used to refit generalized linear models, and must be preceded by
restrict_coef().

Usage

refit_glm(x)

Arguments

x Object of class restricted or of class smooth

Value

Object of class GLM

Author(s)

Martin Haringa

restrict_coef Restrict coefficients in the model

Description

[Experimental] Add restrictions, like a bonus-malus structure, on the risk factors used in the model.
restrict_coef() must always be followed by update_glm().

Usage

restrict_coef(model, restrictions)

Arguments

model object of class glm/restricted

restrictions data.frame with two columns containing restricted data. The first column, with
the name of the risk factor as column name, must contain the levels of the risk
factor. The second column must contain the restricted coefficients.

restrict_coef 35

Details

Although restrictions could be applied either to the frequency or the severity model, it is more
appropriate to impose the restrictions on the premium model. This can be achieved by calculating
the pure premium for each record (i.e. expected number of claims times the expected claim amount),
then fitting an "unrestricted" Gamma GLM to the pure premium,and then imposing the restrictions
in a final "restricted" Gamma GLM.

Value

Object of class restricted.

Author(s)

Martin Haringa

See Also

update_glm() for refitting the restricted model, and autoplot.restricted().

Other update_glm: smooth_coef()

Examples

Not run:
Add restrictions to risk factors for region (zip) -------------------------

Fit frequency and severity model
library(dplyr)
freq <- glm(nclaims ~ bm + zip, offset = log(exposure), family = poisson(),

data = MTPL)
sev <- glm(amount ~ bm + zip, weights = nclaims,

family = Gamma(link = "log"),
data = MTPL |> filter(amount > 0))

Add predictions for freq and sev to data, and calculate premium
premium_df <- MTPL |>

add_prediction(freq, sev) |>
mutate(premium = pred_nclaims_freq * pred_amount_sev)

Restrictions on risk factors for region (zip)
zip_df <- data.frame(zip = c(0,1,2,3), zip_rst = c(0.8, 0.9, 1, 1.2))

Fit unrestricted model
burn <- glm(premium ~ bm + zip, weights = exposure,

family = Gamma(link = "log"), data = premium_df)

Fit restricted model
burn_rst <- burn |>

restrict_coef(restrictions = zip_df) |>
update_glm()

Show rating factors

36 rlnormt

rating_factors(burn_rst)

End(Not run)

rgammat Generate data from truncated gamma distribution

Description

Random generation for the truncated Gamma distribution with parameters shape and scale.

Usage

rgammat(n, scale = scale, shape = shape, lower, upper)

Arguments

n number of observations

scale scale parameter

shape shape parameter

lower numeric. Observations below this threshold are not present in the sample.

upper numeric. Observations above this threshold are not present in the sample.

Value

The length of the result is determined by n.

Author(s)

Martin Haringa

rlnormt Generate data from truncated lognormal distribution

Description

Random generation for the truncated log normal distribution whose logarithm has mean equal to
meanlog and standard deviation equal to sdlog.

Usage

rlnormt(n, meanlog, sdlog, lower, upper)

rmse 37

Arguments

n number of observations

meanlog mean of the distribution on the log scale

sdlog standard deviation of the distribution on the log scale

lower numeric. Observations below this threshold are not present in the sample.

upper numeric. Observations above this threshold are not present in the sample.

Value

The length of the result is determined by n.

Author(s)

Martin Haringa

rmse Root Mean Squared Error

Description

Compute root mean squared error.

Usage

rmse(object, data)

Arguments

object fitted model

data data.frame (defaults to NULL)

Details

The RMSE is the square root of the average of squared differences between prediction and actual
observation and indicates the absolute fit of the model to the data. It can be interpreted as the
standard deviation of the unexplained variance, and is in the same units as the response variable.
Lower values indicate better model fit.

Value

numeric value

Author(s)

Martin Haringa

38 rows_per_date

Examples

x <- glm(nclaims ~ area, offset = log(exposure), family = poisson(),
data = MTPL2)

rmse(x, MTPL2)

rows_per_date Find active rows per date

Description

Fast overlap joins. Usually, df is a very large data.table (e.g. insurance portfolio) with small interval
ranges, and dates is much smaller with (e.g.) claim dates.

Usage

rows_per_date(
df,
dates,
df_begin,
df_end,
dates_date,
...,
nomatch = NULL,
mult = "all"

)

Arguments

df data.frame with portfolio (df should include time period)

dates data.frame with dates to join

df_begin column name with begin dates of time period in df

df_end column name with end dates of time period in df

dates_date column name with dates in dates

... additional column names in dates to join by

nomatch When a row (with interval say, [a,b]) in x has no match in y, nomatch=NA
means NA is returned for y’s non-by.y columns for that row of x. nomatch=NULL
(default) means no rows will be returned for that row of x.

mult When multiple rows in y match to the row in x, mult controls which values are
returned - "all" (default), "first" or "last".

Value

returned class is equal to class of df

smooth_coef 39

Author(s)

Martin Haringa

Examples

library(lubridate)
portfolio <- data.frame(
begin1 = ymd(c("2014-01-01", "2014-01-01")),
end = ymd(c("2014-03-14", "2014-05-10")),
termination = ymd(c("2014-03-14", "2014-05-10")),
exposure = c(0.2025, 0.3583),
premium = c(125, 150),
car_type = c("BMW", "TESLA"))

Find active rows on different dates
dates0 <- data.frame(active_date = seq(ymd("2014-01-01"), ymd("2014-05-01"),
by = "months"))
rows_per_date(portfolio, dates0, df_begin = begin1, df_end = end,
dates_date = active_date)

With extra identifiers (merge claim date with time interval in portfolio)
claim_dates <- data.frame(claim_date = ymd("2014-01-01"),
car_type = c("BMW", "VOLVO"))

Only rows are returned that can be matched
rows_per_date(portfolio, claim_dates, df_begin = begin1,

df_end = end, dates_date = claim_date, car_type)

When row cannot be matched, NA is returned for that row
rows_per_date(portfolio, claim_dates, df_begin = begin1,

df_end = end, dates_date = claim_date, car_type, nomatch = NA)

smooth_coef Smooth coefficients in the model

Description

[Experimental] Apply smoothing on the risk factors used in the model. smooth_coef() must
always be followed by update_glm().

Usage

smooth_coef(
model,
x_cut,
x_org,
degree = NULL,
breaks = NULL,

40 smooth_coef

smoothing = "spline",
k = NULL,
weights = NULL

)

Arguments

model object of class glm/smooth

x_cut column name with breaks/cut

x_org column name where x_cut is based on

degree order of polynomial

breaks numerical vector with new clusters for x

smoothing choose smoothing specification (all the shape constrained smooth terms (SCOP-
splines) are constructed using the B-splines basis proposed by Eilers and Marx
(1996) with a discrete penalty on the basis coefficients:

• ’spline’ (default)
• ’mpi’: monotone increasing SCOP-splines
• ’mpd’: monotone decreasing SCOP-splines
• ’cx’: convex SCOP-splines
• ’cv’: concave SCOP-splines
• ’micx’: increasing and convex SCOP-splines
• ’micv’: increasing and concave SCOP-splines
• ’mdcx’: decreasing and convex SCOP-splines
• ’mdcv’: decreasing and concave SCOP-splines
• ’gam’: spline based smooth (thin plate regression spline)

k number of basis functions be computed

weights weights used for smoothing, must be equal to the exposure (defaults to NULL)

Details

Although smoothing could be applied either to the frequency or the severity model, it is more
appropriate to impose the smoothing on the premium model. This can be achieved by calculating
the pure premium for each record (i.e. expected number of claims times the expected claim amount),
then fitting an "unrestricted" Gamma GLM to the pure premium, and then imposing the restrictions
in a final "restricted" Gamma GLM.

Value

Object of class smooth

Author(s)

Martin Haringa

smooth_coef 41

See Also

update_glm() for refitting the smoothed model, and autoplot.smooth().

Other update_glm: restrict_coef()

Examples

Not run:
library(insurancerating)
library(dplyr)

Fit GAM for claim frequency
age_policyholder_frequency <- fit_gam(data = MTPL,

nclaims = nclaims,
x = age_policyholder,
exposure = exposure)

Determine clusters
clusters_freq <- construct_tariff_classes(age_policyholder_frequency)

Add clusters to MTPL portfolio
dat <- MTPL |>

mutate(age_policyholder_freq_cat = clusters_freq$tariff_classes) |>
mutate(across(where(is.character), as.factor)) |>
mutate(across(where(is.factor), ~biggest_reference(., exposure)))

Fit frequency and severity model
freq <- glm(nclaims ~ bm + age_policyholder_freq_cat, offset = log(exposure),
family = poisson(), data = dat)

sev <- glm(amount ~ bm + zip, weights = nclaims,
family = Gamma(link = "log"), data = dat |> filter(amount > 0))

Add predictions for freq and sev to data, and calculate premium
premium_df <- dat |>

add_prediction(freq, sev) |>
mutate(premium = pred_nclaims_freq * pred_amount_sev)

Fit unrestricted model
burn_unrestricted <- glm(premium ~ zip + bm + age_policyholder_freq_cat,

weights = exposure,
family = Gamma(link = "log"),
data = premium_df)

Impose smoothing and create figure
burn_unrestricted |>

smooth_coef(x_cut = "age_policyholder_freq_cat",
x_org = "age_policyholder",
breaks = seq(18, 95, 5)) |>

autoplot()

Impose smoothing and refit model
burn_restricted <- burn_unrestricted |>

smooth_coef(x_cut = "age_policyholder_freq_cat",

42 univariate

x_org = "age_policyholder",
breaks = seq(18, 95, 5)) |>

update_glm()

Show new rating factors
rating_factors(burn_restricted)

End(Not run)

summary.reduce Automatically create a summary for objects obtained from reduce()

Description

Takes an object produced by reduce(), and counts new and lost customers.

Usage

S3 method for class 'reduce'
summary(object, ..., period = "days", name = "count")

Arguments

object reduce object produced by reduce()

... names of columns to aggregate counts by
period a character string indicating the period to aggregate on. Four options are avail-

able: "quarters", "months", "weeks", and "days" (the default option)
name The name of the new column in the output. If omitted, it will default to count.

Value

data.frame

univariate Univariate analysis for discrete risk factors

Description

Univariate analysis for discrete risk factors in an insurance portfolio. The following summary statis-
tics are calculated:

• frequency (i.e. number of claims / exposure)
• average severity (i.e. severity / number of claims)
• risk premium (i.e. severity / exposure)
• loss ratio (i.e. severity / premium)
• average premium (i.e. premium / exposure)

If input arguments are not specified, the summary statistics related to these arguments are ignored.

univariate 43

Usage

univariate(
df,
x,
severity = NULL,
nclaims = NULL,
exposure = NULL,
premium = NULL,
by = NULL

)

Arguments

df data.frame with insurance portfolio
x column in df with risk factor, or use vec_ext() for use with an external vector

(see examples)
severity column in df with severity (default is NULL)
nclaims column in df with number of claims (default is NULL)
exposure column in df with exposure (default is NULL)
premium column in df with premium (default is NULL)
by list of column(s) in df to group by

Value

A data.frame

Author(s)

Martin Haringa

Examples

Summarize by `area`
univariate(MTPL2, x = area, severity = amount, nclaims = nclaims,

exposure = exposure, premium = premium)

Summarize by `area`, with column name in external vector
xt <- "area"
univariate(MTPL2, x = vec_ext(xt), severity = amount, nclaims = nclaims,

exposure = exposure, premium = premium)

Summarize by `zip` and `bm`
univariate(MTPL, x = zip, severity = amount, nclaims = nclaims,

exposure = exposure, by = bm)

Summarize by `zip`, `bm` and `power`
univariate(MTPL, x = zip, severity = amount, nclaims = nclaims,

exposure = exposure, by = list(bm, power))

44 update_glm

update_glm Refitting Generalized Linear Models

Description

[Experimental] update_glm() is used to refit generalized linear models, and must be preceded by
restrict_coef().

Usage

update_glm(x, intercept_only = FALSE)

Arguments

x Object of class restricted or of class smooth

intercept_only Logical. Default is FALSE. If TRUE, only the intercept is updated, ensuring that
the changes have no impact on the other variables.

Value

Object of class GLM

Author(s)

Martin Haringa

Index

∗ autoplot.restricted
restrict_coef, 34

∗ autoplot.smooth
smooth_coef, 39

∗ datasets
MTPL, 28
MTPL2, 29

∗ update_glm
restrict_coef, 34
smooth_coef, 39

add_prediction, 3
autoplot.bootstrap_rmse, 3
autoplot.check_residuals, 4
autoplot.constructtariffclasses, 5
autoplot.fitgam, 6
autoplot.restricted, 8
autoplot.restricted(), 35
autoplot.riskfactor, 8
autoplot.smooth, 10
autoplot.smooth(), 41
autoplot.truncated_dist, 10
autoplot.univariate, 11

biggest_reference, 13
bootstrap_rmse, 14

check_overdispersion, 16
check_residuals, 17
construct_model_points, 18
construct_tariff_classes, 19

DHARMa::simulateResiduals(), 17

fisher, 21
fit_gam, 22
fit_truncated_dist, 24

histbin, 26

model_data, 27

model_performance, 27
MTPL, 28
MTPL2, 29

period_to_months, 30

rating_factors, 31
reduce, 32
refit_glm, 34
restrict_coef, 34, 41
rgammat, 36
rlnormt, 36
rmse, 37
rows_per_date, 38

smooth_coef, 35, 39
summary.reduce, 42

univariate, 42
update_glm, 44
update_glm(), 35, 41

45

	add_prediction
	autoplot.bootstrap_rmse
	autoplot.check_residuals
	autoplot.constructtariffclasses
	autoplot.fitgam
	autoplot.restricted
	autoplot.riskfactor
	autoplot.smooth
	autoplot.truncated_dist
	autoplot.univariate
	biggest_reference
	bootstrap_rmse
	check_overdispersion
	check_residuals
	construct_model_points
	construct_tariff_classes
	fisher
	fit_gam
	fit_truncated_dist
	histbin
	model_data
	model_performance
	MTPL
	MTPL2
	period_to_months
	rating_factors
	reduce
	refit_glm
	restrict_coef
	rgammat
	rlnormt
	rmse
	rows_per_date
	smooth_coef
	summary.reduce
	univariate
	update_glm
	Index

