Package 'hytest'

September 9, 2024

Type Package

Title Hypothesis Testing Based on Neyman-Pearson Lemma and Likelihood Ratio Test

Version 0.1.1

Maintainer Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>

Description Error type I and Optimal critical values to test statistical hypothesis based on Neyman-Pearson Lemma and Likelihood ratio test based on random samples from several distributions. The families of distributions are Bernoulli, Exponential, Geometric, Inverse Normal, Normal, Gamma, Gumbel, Lognormal, Poisson, and Weibull. This package is an ideal resource to help with the teaching of Statistics. The main references for this package are Casella G. and Berger R. (2003, ISBN:0-534-24312-6, ``Statistical Inference. Second Edition", Duxbury Press) and Hogg, R., McKean, J., and Craig, A. (2019, ISBN:013468699, ``Introduction to Mathematical Statistic. Eighth edition", Pearson). License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Imports gamlss, gamlss.dist

NeedsCompilation no

Author Carlos Alberto Cardozo Delgado [aut, cre, cph]

Repository CRAN

Date/Publication 2024-09-09 06:00:02 UTC

Contents

ber_c_opt					•		•						•	•	•			•	•	•		•							2
ber_errorI		•	•		•				•			•	•	•	•			•	•	•	•	•	•					•	3
exp_c_opt		•	•		•				•			•	•	•	•			•	•	•	•	•	•					•	4
exp_errorI		•	•	•	•	•						•							•	•	•	•	•					•	5
gamma_c_	opt	•	•	•	•	•						•							•	•	•	•	•					•	6
gamma_err	rorI				•		•						•	•	•			•	•	•		•							8

geom_c_opt	9
geom_errorI	10
gumbel_c_opt	11
gumbel_errorI	12
invnormal_c_opt	13
invnormal_errorI	15
lognorm_c_opt	16
lognorm_errorI	17
norm_c_opt	18
norm_errorI	19
pois_c_opt	20
pois_errorI	22
weibull_c_opt	23
weibull_errorI	24
	26

Index

```
ber_c_opt
```

Critical Value Given a Nominal Error Type I Associated with a Bernoulli Distribution

Description

ber_c_opt is used to obtain a critical value to achieve a nominal error type I when we use a random sample from a Bernoulli distribution.

Usage

```
ber_c_opt(
    alpha = 0.1,
    n = 150,
    theta0 = 1,
    c1 = 0.001,
    c2 = 0.99,
    R = 15000,
    delta = 0.005,
    tolerance = 0.01,
    max_iter = 100
)
```

Arguments

alpha	numeric, represents a nominal error type I. Default value is 0.1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the location parameter under the null hypothesis of a sample from a Bernoulli distribution. Default value is 0.5.
c1	numeric, represents a lower bound to the critical value. Default value is 1e-03.

c2	numeric, represents an upper bound to the critical value. Default value is 0.99.
R	numeric, represents the number of replicates. Default value is 15000.
delta	numeric, represents a precision parameter. Default value is 0.005.
tolerance	numeric, represents a relative precision with respect a given alpha. Default value is 0.01.
<pre>max_iter</pre>	integer, represents the maximum number of iterations. Default value is 100.

Value

A list with number of replicates, sample size, nominal error type I, and empirical critical value obtained associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press. Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Critical value when we use a random sample of size 100 from a Bernoulli distribution
# given a nominal error type I equals to 0.1 and R = 12000
# to test H_0: theta = 0.7 vs H_1: theta != 0.7
ber_c_opt(alpha=0.1,n=100,theta0=0.7,R=12000)
```

ber_errorI

Empirical Error Type I Associated with a Bernoulli Distribution

Description

ber_errorI is used to obtain an empirical error type I when we use a random sample from a Bernoulli distribution.

Usage

 $ber_errorI(c = 1, n = 150, theta0 = 0.5, R = 12000)$

Arguments

с	numeric, represents a positive value that defines a critical region. Default value is 1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the location parameter under the null hypothesis of a sample from a Bernoulli distribution. Default value is 0.5.
R	numeric, represents the number of replicates. Default value is 15000.

Value

A list with number of replicates, sample size, and critical value that were used in the calculation of error type I associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Error type I when we use a random sample of size 200 from a Bernoulli distribution,
# a critical value c = 0.45 and R = 20000 to test H_0: theta = 0.7 vs H_1: theta != 0.7 ber_errorI(0.45,n=100,theta0=0.7,R=20000)
```

exp_c_opt	Critical Value Given a Nominal Error Type I Associated with a Expo-
	nential Distribution

Description

exp_c_opt is used to obtain a critical value to achieve a nominal error type I when we use a random sample from a Exponential distribution.

Usage

```
exp_c_opt(
    alpha = 0.1,
    n = 100,
    theta0 = 1,
    c1 = 0.001,
    c2 = 0.99,
    R = 15000,
    delta = 0.005,
    tolerance = 0.01,
    max_iter = 100
)
```

exp_errorI

Arguments

alpha	numeric, represents a nominal error type I. Default value is 0.1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the location parameter under the null hypothesis of a sample from a Exponential distribution. Default value is 0.5.
c1	numeric, represents a lower bound to the critical value. Default value is 1e-03.
c2	numeric, represents an upper bound to the critical value. Default value is 0.99.
R	numeric, represents the number of replicates. Default value is 15000.
delta	numeric, represents a precision parameter. Default value is 0.005.
tolerance	numeric, represents a relative precision with respect a given alpha. Default value is 0.01.
<pre>max_iter</pre>	integer, represents the maximum number of iterations. Default value is 100.

Value

A list with number of replicates, sample size, nominal error type I, and empirical critical value obtained associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Critical value when we use a random sample of size 200 from a Exponential distribution
# given a nominal error type I equals to 0.1 and R = 15000
# to test H_0: theta = 2 vs H_1: theta != 2
exp_c_opt(alpha=0.1,n=200,theta0=2,R=15000)
```

exp_errorI

Empirical Error Type I Associated with an Exponential Distribution

Description

exp_errorI is used to obtain an empirical error type I when we use a random sample from an Exponential distribution.

Usage

 $exp_errorI(c = 1, n = 100, theta0 = 1, R = 15000)$

Arguments

с	numeric, represents a positive value that defines a critical region. Default value is 1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the location parameter under the null hypothesis of a sample from an Exponential distribution. Default value is 1.
R	numeric, represents the number of replicates. Default value is 15000.

Value

A list with number of replicates, sample size, and critical value that were used in the calculation of error type I associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

Error type I when we use a random sample of size 200 from an Exponential distribution, # a critical value c = 0.24 and R = 20000 to test H_0: theta = 2 vs H_1: theta != 2 $exp_errorI(c=0.24,n=200,theta0=2,R=20000)$

gamma_c_opt

Critical Value Given a Nominal Error Type I Associated with a Gamma Distribution

Description

gamma_c_opt is used to obtain a critical value to achieve a nominal error type I when we use a random sample from a Gamma distribution.

Usage

```
gamma_c_opt(
    alpha = 0.1,
    n = 100,
    theta0 = 1,
    beta = 1,
    c1 = 0.001,
```

```
c2 = 0.999,
R = 1000,
delta = 0.005,
tolerance = 0.01,
max_iter = 100
)
```

Arguments

alpha	numeric, represents a nominal error type I. Default value is 0.1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents a location under the null hypothesis of a sample from a Gamma distribution. Default value is 1.
beta	numeric, represents the scale parameter of a Gamma distribution. It is assumed known and its default value is 1.
c1	numeric, represents a lower bound to the critical value. Default value is 1e-03.
c2	numeric, represents an upper bound to the critical value. Default value is 0.99.
R	numeric, represents the number of replicates. Default value is 1000.
delta	numeric, represents a precision parameter. Default value is 0.005.
tolerance	numeric, represents a relative precision with respect a given alpha. Default value is 0.01.
<pre>max_iter</pre>	integer, represents the maximum number of iterations. Default value is 100.

Value

A list with number of replicates, sample size, nominal error type I, and empirical critical value obtained associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Critical value when we use a random sample of size 50 from a Gamma distribution
# given a nominal error type I equals to 0.1 and R = 100
# to test H_0: theta = 3 vs H_1: theta != 3
gamma_c_opt(alpha=0.1,n=50,theta0=3,beta=1,R=100)
```

gamma_errorI

Description

gamma_errorI is used to obtain an empirical error type I when we use a random sample from a Gamma distribution.

Usage

```
gamma_errorI(c = 1, n = 150, theta0 = 1, beta = 1, R = 15000)
```

Arguments

с	numeric, represents a positive value that defines a critical region. Default value is 1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the shape parameter under the null hypothesis of a sample from a Gamma distribution. Default value is 1.
beta	numeric, represents the scale parameter of a Gamma distribution. It is assumed known and its default value is 1.
R	numeric, represents the number of replicates. Default value is 15000.

Value

A list with number of replicates, sample size, and critical value that were used in the calculation of error type I associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Error type I when we use a random sample of size 120 from a Gamma distribution,
# a critical value c = 0.5 and R = 200 to test H_0: theta = 1.5 vs H_1: theta != 1.5
gamma_errorI(0.5,n=120,theta0=1.5,R=200)
```

 ${\tt geom_c_opt}$

Description

geom_c_opt is used to obtain a critical value to achieve a nominal error type I when we use a random sample from a Geometric distribution.

Usage

```
geom_c_opt(
    alpha = 0.1,
    n = 100,
    theta0 = 0.5,
    c1 = 0.001,
    c2 = 0.999,
    R = 15000,
    delta = 0.005,
    tolerance = 0.01,
    max_iter = 100
)
```

Arguments

alpha	numeric, represents a nominal error type I. Default value is 0.1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the probability parameter under the null hypothesis of a sample from a Geometric distribution. Default value is 0.5.
c1	numeric, represents a lower bound to the critical value. Default value is 1e-03.
c2	numeric, represents an upper bound to the critical value. Default value is 0.99.
R	numeric, represents the number of replicates. Default value is 15000.
delta	numeric, represents a precision parameter. Default value is 0.005.
tolerance	numeric, represents a relative precision with respect a given alpha. Default value is 0.01.
max_iter	integer, represents the maximum number of iterations. Default value is 100.

Value

A list with number of replicates, sample size, nominal error type I, and empirical critical value obtained associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Critical value when we use a random sample of size 80 from a Geometric distribution
# given a nominal error type I equals to 0.1 and R = 10000
# to test H_0: theta = 0.25 vs H_1: theta != 0.25
geom_c_opt(alpha=0.1,n=80,theta0=0.25,R=10000)
```

geom_errorI Empirical Error Type I Associated with a Geometric Distribution

Description

geom_errorI is used to obtain an empirical error type I when we use a random sample from a Geometric distribution.

Usage

 $geom_errorI(c = 1, n = 150, theta0 = 0.5, R = 15000)$

Arguments

с	numeric, represents a positive value that defines a critical region. Default value is 1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the probability parameter under the null hypothesis of a sample from a Geometric distribution. Default value is 0.5.
R	numeric, represents the number of replicates. Default value is 15000.

Value

A list with number of replicates, sample size, and critical value that were used in the calculation of error type I associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press. Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

gumbel_c_opt

Examples

```
# Error type I when we use a random sample of size 60 from a Geometric distribution,
# a critical value c = 0.01 and R = 20000 to test H_0: theta = 0.5 vs H_1: theta != 0.5
geom_errorI(0.01, n=60, theta0=0.5, R=20000)
```

gumbel_c_opt	Critical Value Given a Nominal Error Type I Associated with a Gumbel
	Distribution

Description

gumbel_c_opt is used to obtain a critical value to achieve a nominal error type I when we use a random sample from a Gumbel distribution.

Usage

```
gumbel_c_opt(
    alpha = 0.1,
    n = 100,
    theta0 = 1,
    sigma = 1,
    c1 = 0.001,
    c2 = 0.999,
    R = 1000,
    delta = 0.005,
    tolerance = 0.01,
    max_iter = 100
)
```

Arguments

alpha	numeric, represents a nominal error type I. Default value is 0.1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents a location under the null hypothesis of a sample from a Gumbel distribution. Default value is 0.5.
sigma	numeric, represents the scale parameter of a Gumbel distribution. It is assumed known and its default value is 1.
c1	numeric, represents a lower bound to the critical value. Default value is 1e-03.
c2	numeric, represents an upper bound to the critical value. Default value is 0.99.
R	numeric, represents the number of replicates. Default value is 1000.
delta	numeric, represents a precision parameter. Default value is 0.005.
tolerance	numeric, represents a relative precision with respect a given alpha. Default value is 0.01.
<pre>max_iter</pre>	integer, represents the maximum number of iterations. Default value is 100.

A list with number of replicates, sample size, nominal error type I, and empirical critical value obtained associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Critical value when we use a random sample of size 50 from a Gumbel distribution
# given a nominal error type I equals to 0.1 and R = 100
# to test H_0: theta = 3 vs H_1: theta != 3
gumbel_c_opt(alpha=0.1,n=50,theta0=3,sigma=1,R=100)
```

gumbel_errorI Empirical Error Type I Associated with a Gumbel Distribution

Description

gumbel_errorI is used to obtain an empirical error type I when we use a random sample from a Gumbel distribution.

Usage

```
gumbel_errorI(c = 1, n = 150, theta0 = 0, sigma = 1, R = 15000)
```

Arguments

с	numeric, represents a positive value that defines a critical region. Default value is 1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the location parameter under the null hypothesis of a sample from a Gumbel distribution. Default value is 0.
sigma	numeric, represents the scale parameter of a Gumbel distribution. It is assumed known and its default value is 1.
R	numeric, represents the number of replicates. Default value is 15000.

Value

A list with number of replicates, sample size, and critical value that were used in the calculation of error type I associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Error type I when we use a random sample of size 150 from a Gumbel distribution,
# a critical value c = 0.5 and R = 500 to test H_0: theta = 3 vs H_1: theta != 3
library(gamlss.dist)
gumbel_errorI(0.5,n=150,theta0=3,R=500)
```

invnormal_c_opt	Critical Value Given a Nominal Error Type I Associated with a Inverse
	Normal Distribution

Description

invnormal_c_opt is used to obtain a critical value to achieve a nominal error type I when we use a random sample from a Inverse Normal distribution.

Usage

```
invnormal_c_opt(
    alpha = 0.1,
    n = 100,
    theta0 = 1,
    sigma = 1,
    c1 = 0.001,
    c2 = 0.999,
    R = 1000,
    delta = 0.005,
    tolerance = 0.01,
    max_iter = 100
)
```

Arguments

alpha	numeric, represents a nominal error type I. Default value is 0.1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents a location under the null hypothesis of a sample from a Inverse Normal distribution. Default value is 0.5.
sigma	numeric, represents the scale parameter of a Inverse Normal distribution. It is assumed known and its default value is 1.
c1	numeric, represents a lower bound to the critical value. Default value is 1e-03.
c2	numeric, represents an upper bound to the critical value. Default value is 0.99.
R	numeric, represents the number of replicates. Default value is 1000.
delta	numeric, represents a precision parameter. Default value is 0.005.
tolerance	numeric, represents a relative precision with respect a given alpha. Default value is 0.01.
max_iter	integer, represents the maximum number of iterations. Default value is 100.

Value

A list with number of replicates, sample size, nominal error type I, and empirical critical value obtained associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Critical value when we use a random sample of size 40 from a Inverse Normal distribution
# given a nominal error type I equals to 0.1 and R = 80
# to test H_0: theta = 3 vs H_1: theta != 3
invnormal_c_opt(alpha=0.1,n=40,theta0=3,sigma=1,R=80)
```

invnormal_errorI Empirical Error Type I Associated with a Inverse Normal Distribution

Description

invnormal_errorI is used to obtain an empirical error type I when we use a random sample from a Inverse Normal distribution.

Usage

```
invnormal_errorI(c = 1, n = 150, theta0 = 1, sigma = 1, R = 15000)
```

Arguments

С	numeric, represents a positive value that defines a critical region. Default value is 1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the location parameter under the null hypothesis of a sample from a Inverse Normal distribution. Default value is 1.
sigma	numeric, represents the scale parameter of a Inverse Normal distribution. It is assumed known and its default value is 1.
R	numeric, represents the number of replicates. Default value is 15000.

Value

A list with number of replicates, sample size, and critical value that were used in the calculation of error type I associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Error type I when we use a random sample of size 50 from a Inverse Normal distribution,
# a critical value c = 0.5 and R = 100 to test H_0: theta = 3 vs H_1: theta != 3
library(gamlss.dist)
invnormal_errorI(0.5,n=50,theta0=3,R=100)
```

 $lognorm_c_opt$

Description

lognorm_c_opt is used to obtain a critical value to achieve a nominal error type I when we use a random sample from a Log Normal distribution.

Usage

```
lognorm_c_opt(
    alpha = 0.1,
    n = 100,
    theta0 = 1,
    sdlog = 1,
    c1 = 0.001,
    c2 = 0.999,
    R = 1000,
    delta = 0.005,
    tolerance = 0.01,
    max_iter = 100
)
```

Arguments

alpha	numeric, represents a nominal error type I. Default value is 0.1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents a location under the null hypothesis of a sample from a Log Normal distribution. Default value is 1.
sdlog	numeric, represents the scale parameter of a Log Normal distribution. It is as- sumed known and its default value is 1.
c1	numeric, represents a lower bound to the critical value. Default value is 1e-03.
c2	numeric, represents an upper bound to the critical value. Default value is 0.99.
R	numeric, represents the number of replicates. Default value is 1000.
delta	numeric, represents a precision parameter. Default value is 0.005.
tolerance	numeric, represents a relative precision with respect a given alpha. Default value is 0.01.
max_iter	integer, represents the maximum number of iterations. Default value is 100.

Value

A list with number of replicates, sample size, nominal error type I, and empirical critical value obtained associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Critical value when we use a random sample of size 100 from a Log Normal distribution
# given a nominal error type I equals to 0.1 and R = 200
# to test H_0: theta = 3 vs H_1: theta != 3
lognorm_c_opt(alpha=0.1,n=100,theta0=3,sdlog=1,R=200)
```

lognorm_errorI Empirical Error Type I Associated with a Log Normal Distribution

Description

lognorm_errorI is used to obtain an empirical error type I when we use a random sample from a Log Normal distribution.

Usage

```
lognorm_errorI(c, n = 150, theta0 = 0, sdlog = 1, R = 15000)
```

Arguments

С	numeric, represents a positive value that defines a critical region. Default value is 1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the natural logarithm of location parameter under the null hypothesis of a sample from a Log Normal distribution. Default value is 0.
sdlog	numeric, represents the natural logarithm of scale parameter of a Log normal distribution. It is assumed known and its default value is 1.
R	numeric, represents the number of replicates. Default value is 15000.

Value

A list with number of replicates, sample size, and critical value that were used in the calculation of error type I associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Error type I when we use a random sample of size 50 from an Log Normal distribution,
# a critical value c = 0.5 and R = 500 to test H_0: theta = 0 vs H_1: theta != 0
lognorm_errorI(c=0.5,n=50,theta0=0,sdlog=1,R=500)
```

norm_c_opt	Critical Value Given a Nominal Error Type I Associated with a Normal
	Distribution

Description

norm_c_opt is used to obtain a critical value to achieve a nominal error type I when we use a random sample from a Normal distribution.

Usage

```
norm_c_opt(
    alpha = 0.1,
    n = 100,
    theta0 = 0,
    sd = 1,
    c1 = 0.001,
    c2 = 0.999,
    R = 15000,
    delta = 0.005,
    tolerance = 0.01,
    max_iter = 100
)
```

Arguments

alpha	numeric, represents a nominal error type I. Default value is 0.1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the probability parameter under the null hypothesis of a sample from a Normal distribution. Default value is 0.5.
sd	numeric, represents the scale parameter of a]Normal distribution. It is assumed known and its default value is 1.
c1	numeric, represents a lower bound to the critical value. Default value is 1e-03.
c2	numeric, represents an upper bound to the critical value. Default value is 0.99.

R	numeric, represents the number of replicates. Default value is 15000.
delta	numeric, represents a precision parameter. Default value is 0.005.
tolerance	numeric, represents a relative precision with respect a given alpha. Default value is 0.01.
max_iter	integer, represents the maximum number of iterations. Default value is 100.

Value

A list with number of replicates, sample size, nominal error type I, and empirical critical value obtained associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Critical value when we use a random sample of size 100 from a Normal distribution
# given a nominal error type I equals to 0.1 and R = 10000
# to test H_0: theta = 0 vs H_1: theta != 0
norm_c_opt(alpha=0.1,n=100,theta0=0,sd=1,R=10000)
```

norm_errorI

Empirical Error Type I Associated with a Normal Distribution

Description

norm_errorI is used to obtain an empirical error type I when we use a random sample from a Normal distribution.

Usage

```
norm_errorI(c = 1, n = 100, theta0 = 0, sd = 1, R = 15000)
```

Arguments

С	numeric, represents a positive value that defines a critical region. Default value is 1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the location parameter under the null hypothesis of a sample from a Normal distribution. Default value is 0.
sd	numeric, represents the scale parameter of a Normal distribution. It is assumed known and its default value is 1.
R	numeric, represents the number of replicates. Default value is 15000.

Value

A list with number of replicates, sample size, and critical value that were used in the calculation of error type I associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

Error type I when we use a random sample of size 70 from an Normal distribution, # a critical value c = 0.65 and R = 20000 to test H_0: theta = 0 vs H_1: theta != 0 norm_errorI(0.65,70,theta0=0,sd=1,R=20000)

pois_c_opt	Critical Value Given a Nominal Error Type I Associated with a Poisson
	Distribution

Description

pois_c_opt is used to obtain a critical value to achieve a nominal error type I when we use a random sample from a Poisson distribution.

pois_c_opt

Usage

```
pois_c_opt(
    alpha = 0.1,
    n = 150,
    theta0 = 1,
    c1 = 0.001,
    c2 = 0.99,
    R = 15000,
    delta = 0.005,
    tolerance = 0.01,
    max_iter = 100
)
```

Arguments

alpha	numeric, represents a nominal error type I. Default value is 0.1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the location parameter under the null hypothesis of a sample from a Poisson distribution. Default value is 1.
c1	numeric, represents a lower bound to the critical value. Default value is 1e-03.
c2	numeric, represents an upper bound to the critical value. Default value is 0.99.
R	numeric, represents the number of replicates. Default value is 15000.
delta	numeric, represents a precision parameter. Default value is 0.005.
tolerance	numeric, represents a relative precision with respect a given alpha. Default value is 0.01.
max_iter	integer, represents the maximum number of iterations. Default value is 100.

Value

A list with number of replicates, sample size, nominal error type I, and empirical critical value obtained associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Critical value when we use a random sample of size 200 from a Poisson distribution
# given a nominal error type I equals to 0.1 and R = 15000
# to test H_0: theta = 2 vs H_1: theta != 2
pois_c_opt(alpha=0.1,n=200,theta0=2,R=15000)
```

```
pois_errorI
```

```
Empirical Error Type I Associated with a Poisson Distribution
```

Description

pois_errorI is used to obtain an empirical error type I when we use a random sample from a Poisson distribution.

Usage

 $pois_errorI(c = 1, n = 100, theta0 = 1, R = 15000)$

Arguments

С	numeric, represents a positive value that defines a critical region. Default value is 1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the location parameter under the null hypothesis of a sample from a Poisson distribution. Default value is 1.
R	numeric, represents the number of replicates. Default value is 15000.

Value

A list with number of replicates, sample size, and critical value that were used in the calculation of error type I associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Error type I when we use a random sample of size 200 from an Poisson distribution,
# a critical value c = 0.85 and R = 20000 to test H_0: theta = 2 vs H_1: theta != 2
pois_errorI(0.85,n=100,theta0=2,R=20000)
```

22

weibull_c_opt

Description

weibull_c_opt is used to obtain a critical value to achieve a nominal error type I when we use a random sample from a Weibull distribution.

Usage

```
weibull_c_opt(
    alpha = 0.1,
    n = 100,
    theta0 = 1,
    sigma = 1,
    c1 = 0.001,
    c2 = 0.999,
    R = 1000,
    delta = 0.005,
    tolerance = 0.01,
    max_iter = 100
)
```

Arguments

alpha	numeric, represents a nominal error type I. Default value is 0.1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents a location under the null hypothesis of a sample from a Weibull distribution. Default value is 0.5.
sigma	numeric, represents the scale parameter of a Weibull distribution. It is assumed known and its default value is 1.
c1	numeric, represents a lower bound to the critical value. Default value is 1e-03.
c2	numeric, represents an upper bound to the critical value. Default value is 0.99.
R	numeric, represents the number of replicates. Default value is 1000.
delta	numeric, represents a precision parameter. Default value is 0.005.
tolerance	numeric, represents a relative precision with respect a given alpha. Default value is 0.01.
max_iter	integer, represents the maximum number of iterations. Default value is 100.

Value

A list with number of replicates, sample size, nominal error type I, and empirical critical value obtained associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Critical value when we use a random sample of size 50 from a Weibull distribution
# given a nominal error type I equals to 0.1 and R = 100
# to test H_0: theta = 3 vs H_1: theta != 3
weibull_c_opt(alpha=0.1,n=50,theta0=3,sigma=1,R=100)
```

weibull_errorI Empirical Error Type I Associated with a Weibull Distribution

Description

weibull_errorI is used to obtain an empirical error type I when we use a random sample from a Weibull distribution.

Usage

weibull_errorI(c = 1, n = 150, theta0 = 1, sigma = 1, R = 15000)

Arguments

С	numeric, represents a positive value that defines a critical region. Default value is 1.
n	numeric, represents the size of the sample. Default value is 100.
theta0	numeric, represents the location parameter under the null hypothesis of a sample from a Weibull distribution. Default value is 1.
sigma	numeric, represents the scale parameter of a Weibull distribution. It is assumed known and its default value is 1.
R	numeric, represents the number of replicates. Default value is 15000.

Value

A list with number of replicates, sample size, and critical value that were used in the calculation of error type I associated with a likelihood ratio statistic.

Author(s)

Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.

weibull_errorI

References

Casella, G. and Berger, R. (2003). Statistical Inference, Second Edition. Duxbury Press.

Hogg, R., McKean, J., and Craig, A. (2019) Introduction to Mathematical Statistic. Eighth edition. Pearson.

Examples

```
# Error type I when we use a random sample of size 150 from a Weibull distribution,
# a critical value c = 0.5 and R = 500 to test H_0: theta = 3 vs H_1: theta != 3
library(gamlss.dist)
weibull_errorI(0.5,n=150,theta0=3,R=500)
```

Index

 $ber_c_opt, 2$ ber_errorI, 3 exp_c_opt, 4 exp_errorI, 5 gamma_c_opt, 6 gamma_errorI, 8 geom_c_opt, 9 geom_errorI, 10 gumbel_c_opt, 11 gumbel_errorI, 12 invnormal_c_opt, 13 invnormal_errorI, 15 lognorm_c_opt, 16 lognorm_errorI, 17 norm_c_opt, 18 norm_errorI, 19 pois_c_opt, 20 pois_errorI, 22 weibull_c_opt, 23 weibull_errorI, 24