
Calculating the minimum planar graph

Sam Doctolero and Alex M Chubaty

2025-01-14

Contents
Overview . 1
Finding the Minimum Planar Graph . 2
Technical reference to the MPG engine written in C++ 2

Terminology . 4
Data Structures . 4
Type Definitions . 5
The Engine Class . 5
How to Use the Engine . 16

Overview
The Minimum Planar Graph (MPG) is a spatial representation of a mathematical graph or network
that is useful for modelling dense two-dimensional landscape networks (see Fall et al. 2007). It
can efficiently approximate pairwise connections between graph nodes, and this can assist in the
visualization and analysis of how a set of patches is connected. The MPG also has the useful
property that the proximity, size and shape of patches in the network combined with the pattern
of resistance presented by the landscape collectively influence the paths among patches and the
end-points of those links. In this sense the MPG can be said to be spatially-explicit, and therefore
to be a property of the entire landscape under analysis (or alternatively a property of the digital
resistance map used to represent the landscape).

The MPG achieves this spatially-explicit property by finding Voronoi polygons that describe regions
of proximity in resistance units around focal patches (Fall et al. 2007). The algorithm that is used
to find the Voronoi boundaries and approximate the least cost-paths between patches and their
end-points is described below.

1

Finding the Minimum Planar Graph
In grainscape, the boundaries of Voronoi polygons are found by using a spreading or marching
algorithm. This is done beginning in each perimeter cell of a patch and spreading out to adjacent
cells that are not part of any patch and have not been visited yet by the algorithm. These cells are
then given a patch ID to mark the Voronoi territory. A Voronoi boundary is found when a cell is
visited twice by two different Voronoi territories or IDs originating from different patches (see Fall
et al. 2007).

Using a marching algorithm to find the Voronoi boundaries makes it possible to implement a linking
algorithm that can run in parallel with the marching algorithm. As a cell is spread into (let’s call
it a child cell) it then creates a link or connection between the child cell and the cell that it spread
from, which we call a parent cell.

Finding the least-cost path in this way is only possible because the algorithm stores the child cells
(which will eventually become parent cells) in a queuing table that sorts the cells in a certain order.
The child cells are sorted by increasing effective distance (i.e., resistance or cost) between the child
cell and their origin cell, the perimeter cell that the connection originally spawned from. A link or
path between patches is then created at the first Voronoi boundary between two patches.

The MPG algorithm has the following general steps. These are represented in more detail in a flow
chart in Figure 1.

1. Create Active Cells.
2. Check if the Active Cells are ready to spread.
3. Spread to all 4 adjacent cells for all the Active Cells that ready to spread.
4. The cells that have been recently spread in to become new Active Cells.
5. Repeat.

The linking algorithm is embedded within the spreading functions of the MPG algorithm. When
an ActiveCell spreads, a link map creates a connection between the parent ActiveCell to the
new (child) ActiveCell. Linking is assisted by the queue when finding the least-cost paths.

Technical reference to the MPG engine written in C++
The following is intended to provide an overview of the C++ engine provided by the package that
implements the MPG algorithm. It may be useful for those who wish to implement MPG extraction
in other programming languages. Reading and interpretation of this section is not required for the
use of grainscape in R. An interface to this code has been abstracted to R functions using the
Rcpp package (Eddelbuettel et al. 2024).

2

Figure 1: Overview of the MPG algorithm.

3

Terminology

• Cell: A box or element in a map.
• Active Cell: A type of cell that is currently being evaluated. It refers to the child cell

mentioned above.
• Time: An index of the iteration.
• Object: An instance of a certain data type, class, or data structure (e.g., Cell c, refers to an

object c of type Cell).

Data Structures

• Cell: stores its own position (row and column) and an ID.
• ActiveCell: inherits the properties of a Cell and has its own properties such as distance,

originCell, parentCell, resistance, and time (or iterations). This type of cell is used to
keep track of which cells are currently being evaluated.

• LinkCell: inherits the properties of a Cell and has its own properties such as cost, distance,
fromCell, and originCell. This type of cell is used to create LinkMap.

Figure 2: Schematic representation of Cell type data structures.

• ActiveCellHolder: a type of container that stores a vector of ActiveCells in an order.
• ActiveCellQueue: contains an ActiveCellHolder. Its main purpose is to properly store

the ActiveCellHolder in a vector in order of increasing effective distance (i.e., resistance or
cost).

• InputData: contains all the data that is needed for the engine to operate. The user of the
engine has to create an instance of it and initialize all the properties before giving the address

4

of the object to the engine’s constructor.
• Link: stores all the links (directly and indirectly) between the patches. Links are given a

negative ID to distinguish them from patch IDs.
• OutputData: similar to InputData but it acts as a container for all the data that are calculated

by the engine and gives that data to the user.
• Patch: a patch or a cluster are the habitats that are found in the resistance map, given a

value for habitat.

Figure 3: Schematic representation of additional data structures.

Type Definitions

• lcCol: a vector of LinkCells.
• LinkMap: a vector of lcCols, which in turn creates a Map. This type stores the connections

between cells.
• flCol: a vector of floating point values.
• flMap: a vector of flCol, which in turn creates a Map that contains floating point values in

each element or cell.

The Engine Class

The main calculator of the program. It creates the minimum planar graph (MPG) using the MPG
algorithm, finds least cost links or paths, and finds patches or clusters.

Fields/Properties

5

Figure 4: Schematic representation of type definitions.

Property Data Type Description
in_data InputData Pointer Points to an InputData object.

This is where the engine gets all
the initialization values from.

out_data OutputData Pointer Points to an OutputData object.
The engine stores all the
calculated values in this variable.

maxCost Float The maximum resistance or cost
in the resistance map.

costRes Float The minimum resistance or cost
in the resistance map.

active_cell_holder ActiveCellQueue Holds or stores all the
ActiveCells.

temporary_active_cell_holder ActiveCellQueue Similar to active_cell_holder,
except it acts as an intermediate
or temporary holder of
ActiveCells. Required for vector
resizing and comparing.

spread_list vector of ActiveCells Stores all the ActiveCells that
are ready to spread to all 4
adjacent cells, if possible.

iLinkMap LinkMap A map that keeps track of all the
connections between cells due to
the spreading and queuing
functions.

voronoi_map flMap A map that contains floating
point values, it stores the Voronoi
boundaries/polygons.

cost_map flMap A map that contains the
resistance or cost in each
cell/element.

error_message Char Pointer Stores the error messages that
occur in the engine. It acts as a
way to diagnose problems in the
engine.

6

Figure 5: Schematic representation of the Engine Class

7

Methods/Functions After instantiating an Engine object, the connectivity engine is run by
first calling initialize() and then start(). The call graphs for each of these principal functions
are presented below.

8

initialize

cellIsZero findPatches updateOutputMap writeErrorMessage

outOfBounds combinePatches getIndexFromList

Figure 6: Call diagram for Engine::initialize()

9

start

activeCellSpreadChecker createActiveCell updateOutputMap writeErrorMessage

calcDistance

cellsEqual

connectCell findPath outOfBounds

lookForIndirectPath parseMap prunePaths

Figure 7: Call diagram for Engine::start()

10

Public Functions These are the functions that are visible to the user.

Function Return Type Input Arguments Description
Engine Instance of an Engine None Default Engine

constructor.
Engine Instance of an Engine InputData Pointer,

OutputData Pointer, Char
Pointer

Engine constructor.

initialize Boolean None Prepares the engine
for calculation.

start Void None Runs the MPG
algorithm.

11

Patch Finding Functions The functions are responsible for identifying the patches (clusters)
in a resistance map, given a value for a habitat.

Function Return Type Input Arguments Description
findPatches Void Nothing Finds all the patches in

the patch vector and
assign patch IDs.

getIndexFromList Int Float, Vector of Patches Finds the index in the
vector of patches that
the given ID correspond
to.

combinePatches Int Int, Int, Vector of Patches Given two indices and
the list of patches.
Extract the two patches
from the list and
combine those two into
one patch. Insert the
new patch into the list
and return the index
value of the new patch.

12

Linking Functions These functions create the links between cells and finds the least cost (direct
or indirect) paths between patches.

Function Return Type Input Arguments Description
findPath Void LinkCell Pointer, LinkCell

Pointer, Vector of Links
Finds the least cost
path between two
patches.

connectCell Void ActiveCell Pointer, Integer,
Integer, Float

Connects the child cell
to the parent cell.

parseMap Cell LinkCell, Link Given a starting Cell
it follows the
connections until it
reaches a patch. The
last cell in the
connection is returned.

lookForIndirectPathBool Vector of Links, Link Tries to find an
indirect link and
updates the second
argument.

prunePaths Void Vector of Links Removes paths
between nodes that are
not the least cost ones.

13

Common Functions Common functions are used in almost all of the functions in the engine.

Function Return Type Input Arguments Description
outOfBounds Bool Int, Int, Int, Int Checks to see if the given

row and column is still
within the resistance
map’s dimensions.

cellIsEqual Bool Cell, Cell Compares the two Cells’
row and column if they
match.

14

Static Functions Static functions are functions that can be used without declaring an object of
the class.

Function Return Type Input Arguments Description
emax Float Vector of Floats Finds the maximum

value from the vector
of floating point
values

emin Float Vector of Floats Finds the minimum
value from the vector
of floating point
values

calcDistance Float Cell, Cell Finds the Euclidean
distance between two
Cells

15

How to Use the Engine

1. Create InputData and OutputData objects.
2. Initialize the InputData object’s fields. Keep in mind that the vectors in the InputData and

OutputData structures are all of type float.
3. Create an array of Char with the length of MAX_CHAR_SIZE or a larger value.
4. Create an Engine object and give the address of the InputData and OutputData objects, the

Char array and the size of the array as arguments.
5. Call the initialization function from the Engine object.
6. If the initialization is successful, call the start function from the Engine object. If the ini-

tialization is not successful, the array of char will contain the reason for the initialization
failure.

7. Once the engine is done calculating, extract all the fields needed in the OutputData object.

A snippet of C++ code is shown on the next page as an example.

Note that the current Engine has two lines of code that are meant for interfacing with R via Rcpp
(Eddelbuettel et al. 2024). In order to make the Engine run with any programming or scripting
language, remove those two lines. One of them is an include statement for Rcpp, at the very top of
source code, and the other is inside the start function, the first line inside the while loop. Those
two lines are convenient for R users when they want to interrupt or stop the MPG algorithm safely,
without crashing their console and possibly losing their data.

16

vector<float> EngineInterface(vector<float> resistance, vector<float> patches,
int nrow, int ncol)

{
// InputData and OutputData objects
InputData inObj;
OutputData outObj;

// Initialize InputData object
inObj.cost_vec = resistance;
inObj.nrow = nrow;
inObj.ncol = ncol;
inObj.patch_vec = patches;

// Array of chars with a size of MAX_CHAR_SIZE
char error[MAX_CHAR_SIZE];

// Engine object while passing in the InputData and OutputData objects'
// address and the array of chars
Engine engineObj(&inObj, &outObj, error, MAX_CHAR_SIZE);

// Initialize the engineObj;
// If it fails output the reason why and exit the function
if (engineObj.initialize() == false)
{

cout << error << endl;
return outObj.voronoi_map;

}

// start the calculation
engineObj.start();

//extract the data needed, in this case the voronoi_map
return outObj.voronoi_map;

}

Eddelbuettel, Dirk, Romain Francois, JJ Allaire, Kevin Ushey, Qiang Kou, Nathan Russell, Iñaki
Ucar, Doug Bates, and John Chambers. 2024. Rcpp: Seamless r and c++ Integration. https:
//www.rcpp.org.

Fall, Andrew, Marie-Josée Fortin, Micheline Manseau, and Dan O’Brien. 2007. “Spatial Graphs:
Principles and Applications for Habitat Connectivity.” Ecosystems 10 (3): 448–61. https:
//doi.org/10.1007/s10021-007-9038-7.

17

https://www.rcpp.org
https://www.rcpp.org
https://doi.org/10.1007/s10021-007-9038-7
https://doi.org/10.1007/s10021-007-9038-7

	Overview
	Finding the Minimum Planar Graph
	Technical reference to the MPG engine written in C++
	Terminology
	Data Structures
	Type Definitions
	The Engine Class
	How to Use the Engine

