Package 'gginference'

October 13, 2022

Type Package

Title Visualise the Results of Inferential Statistics using 'ggplot2'

Version 0.1.3

Date 2020-10-25

Description Visualise the results of F test to compare two variances, Student's ttest, test of equal or given proportions, Pearson's chisquared test for count data and test for association/correlation between paired samples.

Maintainer Kleanthis Koupidis <koupidis.okfgr@gmail.com>

URL https://github.com/okgreece/gginference

BugReports https://github.com/okgreece/gginference/issues

Depends R (>= 3.5.0)

License GPL-2 | file LICENSE

Encoding UTF-8

LazyData true

Imports ggplot2, rlang, stats, utils

RoxygenNote 7.1.1

Suggests knitr, MASS, rmarkdown

NeedsCompilation no

Author Charalampos Bratsas [aut], Anastasia Foudouli [aut], Kleanthis Koupidis [aut, cre]

Repository CRAN

Date/Publication 2020-10-31 23:20:02 UTC

R topics documented:

accidentsData .					 •							•	•		 					•			•			2
BirthDeath													•		 											3
BirthDeath2000	•	•	•	•	 •	•		•	•	•	•		•	 •	 •		•	•	•	•	•	•	•	•		3

accidentsData

15

births	4
DieselbioRon95	4
FuelConsumption	5
ggaov	5
ggchisqtest	6
ggcortest	7
ggproptest	8
ggttest	9
ggvartest	9
LaptopRates	10
LivLab	11
MilkConsumption	11
m_anova	12
profits_df	12
questionnaire	13
randexperiment	13
Salary_Gender	14

Index

accidentsData Car accident data

Description

A data frame showing the use of seat belt and the driver status after a car accident in Greece.

Usage

accidentsData

Format

A data frame with 383 observations of 2 columns:

record factor representing the driver status

seatBelt factor indicating whether the driver wore a seatbelt

Source

BirthDeath

Description

A data frame containing the number of births and deaths along with their rates from 1932 to 2016.

Usage

BirthDeath

Format

A data frame with 71 observations of 5 columns:

Year years 1932-2016 Deaths number of deaths DeathsRate number of deaths per 1000 citizen Births number of births BirthRate number of births per 1000 citizen

Source

The original data are available at Hellenic Statistical Authority

BirthDeath2000	Birth and Deaths before and after 2000	
----------------	--	--

Description

A data frame containing samples with the number of births and deaths before and after 2000.

Usage

BirthDeath2000

Format

A data frame with 30 observations of 3 columns:

deaths number of deaths

births number of births

type factor indicating if the number of births and deaths correspond before 2000 or after 2000

Source

births

Description

A data frame giving the number of births per 1000 people in Greece from 1976 to 1989.

Usage

births

Format

A data frame with 14 observations of 2 columns:

year years from 1976 to 1989

rate number of births per 1000 people

Source

The original data are available at Hellenic Statistical Authority

DieselbioRon95 Bio diesel and RON 95 consumption

Description

A data frame including a sample of bio diesel and RON 95 consumption in Greece.

Usage

DieselbioRon95

Format

A data frame with 24 observations of 5 columns:

region factor of Greek regions

DieselBio_consumption2006 metric tons of bio-diesel consumption in 2006 DieselBio_consumption2016 metric tons of bio-diesel consumption in 2016 RON95_consumption2006 metric tons of ron 95 consumption in 2006 RON95_consumption2016 metric tons of ron 95 consumption in 2016

Source

FuelConsumption FuelConsumption

Description

A data frame containing the fuel consumption in Greece.

Usage

FuelConsumption

Format

A data frame with 50 observations of 8 columns:

Geographic.area factor with geographic area of Greece

Regions factor with regions of Greece

Runits factor with regional units of Greece

RON95 metric tons of ron 95 consumption

RON98_100 metric tons of ron 98 consumption

DieselBio metric tons of bio diesel consumption

LPG metric tons of liquefied petroleum gas consumption

DieselC metric tons of heating oil consumption

Source

The original data are available at Hellenic Statistical Authority

ggaov

Anova F test plot

Description

Visualise anova F-test to determine whether group means are equal

Usage

```
ggaov(t, alpha=0.05, colaccept="lightsteelblue1",
colreject="grey84", colstat="navyblue")
```

Arguments

t	an object of class aov
alpha	alpha level for finding critical F value
colaccept	color for the acceptance region of the test
colreject	color for the area of rejection of the test
colstat	color of the statistic of the test line

Examples

```
# 21-th day
chick21 <- ChickWeight[ChickWeight$Time == 21,]
chickaov <- aov(weight~Diet, data = chick21)
summary(chickaov)
```

```
ggaov(chickaov, colaccept = "grey89", colreject = "black")
```

ggchisqtest

Plot for Pearson's Chi-squ	ared Test for Count Date
----------------------------	--------------------------

Description

Visualise chi-squared contingency table tests and goodness-of-fit tests.

Usage

```
ggchisqtest(t, colaccept="lightsteelblue1", colreject="gray84",
colstat="navyblue", alpha=0.05)
```

Arguments

t	a list result of chisq.test of "htest" class
colaccept	color the acceptance area of the test
colreject	color for the rejection area of the test
colstat	color for the test statistic vline
alpha	default set to 0.05, choose confidence level for the plot as it is not stated in chisqtest

ggcortest

Examples

```
## Chi-squared test for given probabilities
```

```
x <- c(A = 20, B = 15, C = 25)
chisq_test <- chisq.test(x)
chisq_test
ggchisqtest(chisq_test)
```

```
x <- c(10, 86, 45, 38, 10)
p <- c(0.10, 0.40, 0.20, 0.20, 0.10)
chisq_test2 <- chisq.test(x, p = p)
chisq_test2
ggchisqtest(chisq_test2)
```

Pearson's Chi-squared test

```
library(MASS)
sex_smoke <- table(survey$Sex, survey$Smoke)
chisq_test3 <- chisq.test(sex_smoke)
chisq_test3
ggchisqtest(chisq_test3)</pre>
```

ggcortest

```
Plot test for association between paired samples
```

Description

Visualise test for association between paired samples, using Pearson's product moment correlation coefficient.

Usage

```
ggcortest(t, colaccept="lightskyblue1", colreject="grey94", colstat="navy")
```

Arguments

t	a list result of cor.test of "htest" class
colaccept	color the acceptance area of the test
colreject	color for the rejection area of the test
colstat	color for the test statistic vline

Examples

```
corr_test <- cor.test(iris$Sepal.Length, iris$Sepal.Width)
corr_test
ggcortest(corr_test)</pre>
```

ggproptest

Plot test of Equal or Given Proportions

Description

Visualise prop.test for testing the null that the proportions (probabilities of success) in several groups are the same, or that they equal certain given values.

Usage

```
ggproptest(t, alpha=0.05,colaccept="lightsteelblue1",
colreject="gray84", colstat="navyblue")
```

Arguments

t	a list result of prop.test of "htest" class
alpha	alpha level for ploting distribution, when prop.test is used on more than 2 samples
colaccept	color the acceptance area of the test
colreject	color for the rejection area of the test
colstat	color for the test statistic vline

Examples

```
x <- c(5, 8, 12)
y <- c(8, 9, 13)
pr_test <- prop.test(x, y)
pr_test
ggproptest(pr_test)
```

8

ggttest

Description

Visualise one and/or two sample t-tests on vectors of data.

Usage

```
ggttest(t, colaccept="lightsteelblue1", colreject="grey84", colstat="navyblue")
```

Arguments

t	a list result of t.test of "htest" class
colaccept	color the acceptance area of the test
colreject	color for the rejection area of the test
colstat	color for the test statistic vline

Examples

```
t_test <- t.test(sleep$extra ~ sleep$group)
t_test
ggttest(t_test)</pre>
```

t_test2 <- t.test(x = 1:10, y = c(7:20))
t_test2
ggttest(t_test2)</pre>

ggvartest

F test plot

Description

Visualise F test to compare two variances

Usage

```
ggvartest(t, colaccept = "lightsteelblue1",
colreject = "gray84", colstat = "navyblue")
```

Arguments

t	a list result of var.test of "htest" class
colaccept	color the acceptance area of the test, see colors
colreject	color for the rejection area of the test
colstat	color for the test statistic vline

Examples

```
x <- rnorm(50, mean = 0, sd = 2)
y <- rnorm(30, mean = 1, sd = 1)
var_test <- var.test(x, y)
var_test
ggvartest(var_test)
```

LaptopRates

LaptopRates

Description

A data frame that contains sample ratings of 18 laptops, by three experts.

Usage

LaptopRates

Format

A data frame with 54 observations of 3 columns:

laptop laptop id, 1-18

expert a character of expert1, expert2, expert3 values

rating ratings-5 likert scale, 5 indicates a very good rate

LivLab

Description

A data frame containing a sample with the results of neuropsychological assessment before and after serious game intervention in the living lab, Thess-AHALL (Thessaloniki Active and Healthy Aging Living Lab) of Medical Physics Laboratory of Aristotle University of Thessaloniki.

Usage

LivLab

Format

A data frame with 10 observations of 2 columns:

before score in a neuropsychological test before serious game intervention

after score in a neuropsychological test after serious game intervention

Source

<http://aha-livinglabs.com/>

MilkConsumption Milk consumption

Description

A data frame containing a sample of the number of cow, sheep and goat milk bottles sold.

Usage

MilkConsumption

Format

A data frame with 13 observations of 3 columns:

Cow.Milk number of cow milk bottles

Sheep.Milk number of sheep milk bottles

Goat.Milk number of goat milk bottles

Source

m_anova

Description

A data frame with the volume of new stores by category for urban, suburban and rural areas.

Usage

m_anova

Format

A data frame with 54 observations of 4 columns:

Categories integer representing three categories

UrbanAreas coding for urban, suburban and rural areas

Month integer representing three months

Volume volume in cubic meters

Source

The original data are available at Hellenic Statistical Authority

profits_df	Profits		

Description

A data frame with the profits of some companies for 5 months, constructed for teaching purposes.

Usage

profits_df

Format

A data frame with 26 companies (rows) of 5 months (columns).

questionnaire

Description

A data frame containing a sample with the answers of students.

Usage

questionnaire

Format

A data frame with 50 observations of 8 columns:

gender A factor with the student gender writing.hand A factor with the writing hand of the students(left, right) fold.arm A factor with the top hand when the students fold their arms pulse Integer with the pulse rate of students (beats per minute) exercise A factor with the frequency the students exercises (none, some,frequently) smoke A factor with the frequency the students smokes (heavy, regularly, occasionally, never) height Integer with the height of the students (in centimeters) age Integer with the age of the students

randexperiment Random experiment results

Description

A data frame with 128 sample results of a repeated experiment. Success is noted with 1 and failure with 0.

Usage

randexperiment

Format

A data frame with 128 observations of 1 column.

Salary_Gender

Description

A sample data frame with female and male salaries of a company.

Usage

Salary_Gender

Format

A data frame with 100 observations of 2 columns:

Male_sal male salaries

Female_sal female salaries

Index

accidentsData, 2 BirthDeath, 3 BirthDeath2000, 3 births, 4chisq.test, 6colors, 10 cor.test,7 DieselbioRon95,4 FuelConsumption, 5 ggaov, 5 ggchisqtest, 6 ggcortest, 7 ggproptest, 8ggttest, 9 ggvartest, 9 LaptopRates, 10 LivLab, 11 m_anova, 12 MilkConsumption, 11 profits_df, 12 prop.test, 8 questionnaire, 13 randexperiment, 13 Salary_Gender, 14 t.test,9 var.test, 10