Provides an effective machine learning-based tool that quantifies the gain of passive device installation on wind turbine generators.
  H. Hwangbo, Y. Ding, and D. Cabezon (2019) <doi:10.48550/arXiv.1906.05776>.
| Version: | 0.1.0 | 
| Depends: | R (≥ 3.6.0) | 
| Imports: | fields (≥ 9.0), FNN (≥ 1.1), utils, stats | 
| Suggests: | knitr, rmarkdown | 
| Published: | 2019-06-28 | 
| DOI: | 10.32614/CRAN.package.gainML | 
| Author: | Hoon Hwangbo [aut, cre],
  Yu Ding [aut],
  Daniel Cabezon [aut],
  Texas A&M University [cph],
  EDP Renewables [cph] | 
| Maintainer: | Hoon Hwangbo  <hhwangb1 at utk.edu> | 
| License: | GPL-3 | 
| Copyright: | Copyright (c) 2019 Y. Ding, H. Hwangbo, Texas A&M
University, D. Cabezon, and EDP Renewables | 
| NeedsCompilation: | no | 
| CRAN checks: | gainML results |