Perform variable selection in settings with possibly missing data based on extrinsic (algorithm-specific) and intrinsic (population-level) variable importance. Uses a Super Learner ensemble to estimate the underlying prediction functions that give rise to estimates of variable importance. For more information about the methods, please see Williamson and Huang (2023+) <doi:10.48550/arXiv.2202.12989>.
| Version: | 0.0.4 | 
| Depends: | R (≥ 3.1.0) | 
| Imports: | SuperLearner, dplyr, magrittr, tibble, caret, mvtnorm, kernlab, rlang, ranger | 
| Suggests: | vimp, stabs, testthat, knitr, rmarkdown, mice, xgboost, glmnet, polspline | 
| Published: | 2023-11-30 | 
| DOI: | 10.32614/CRAN.package.flevr | 
| Author: | Brian D. Williamson | 
| Maintainer: | Brian D. Williamson <brian.d.williamson at kp.org> | 
| BugReports: | https://github.com/bdwilliamson/flevr/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/bdwilliamson/flevr | 
| NeedsCompilation: | no | 
| Materials: | README, NEWS | 
| CRAN checks: | flevr results | 
| Reference manual: | flevr.html , flevr.pdf | 
| Vignettes: | Extrinsic variable selection (source, R code) Intrinsic variable selection (source, R code) Introduction to 'flevr' (source, R code) | 
| Package source: | flevr_0.0.4.tar.gz | 
| Windows binaries: | r-devel: flevr_0.0.4.zip, r-release: flevr_0.0.4.zip, r-oldrel: flevr_0.0.4.zip | 
| macOS binaries: | r-release (arm64): flevr_0.0.4.tgz, r-oldrel (arm64): flevr_0.0.4.tgz, r-release (x86_64): flevr_0.0.4.tgz, r-oldrel (x86_64): flevr_0.0.4.tgz | 
Please use the canonical form https://CRAN.R-project.org/package=flevr to link to this page.