Package ‘eratosthenes’

June 27, 2025

Title Archaeological Synchronism
Version 0.0.9

Description
Estimation of unknown historical or archaeological dates subject to relationships with other rela-
tive dates and absolute constraints, derived as marginal densities from the full joint condi-
tional, using a two-stage Gibbs sampler with consistent batch means to assess convergence. Fea-
tures reporting on Monte Carlo standard errors, as well as tools for rule-based estima-
tion of dates of production and use of artifact types, aligning and checking relative se-
quences, and evaluating the impact of the omission of relative/absolute events upon one another.

License GPL (>= 3)

Imports stats, graphics, grDevices, Rcpp, Rdpack, paletteer
RdMacros Rdpack

Encoding UTF-8

RoxygenNote 7.3.2

LinkingTo Rcpp

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Stephen A. Collins-Elliott [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5642-6903>)

Maintainer Stephen A. Collins-Elliott <sce@utk.edu>
Repository CRAN
Date/Publication 2025-06-27 19:40:02 UTC

Contents
finds_d2l e 2
finds_12d e e e 3
gibbs_ad 4
gibbs_ad_use L e 7
histogram L 9

https://orcid.org/0000-0002-5642-6903

2 finds_d21
ds_of types e e 12
msd ... e 13
QUAC_ANTEA . .« . .t e 15
QUAC_POSLEA . .« v v e 16
seg_adj e 17
seq_check L 18
SQAISP . . . 19
synth_rank 21
tidy_marginals e e 22
traceploto L 23
Index 26
finds_d21 Convert Finds Data Frame (Context / Find-Type) to List Object
Description
Performs the opposite of finds_12d. Takes a data.frame object of two columns, containing the
context in the first and the find-type in the second, and returns a 1ist object for input in gibbs_ad.
The value of the find id is automatically generated as an integer if not provided in a third column.
Usage
finds_d21(input)
S3 method for class 'data.frame’
finds_d21(input)
Arguments
input A two-column data frame of contexts (first column) and find-types (second col-
umn). An optional third column of an id number may be provided.
Value
A list of finds (each one a list) associated with contexts and their types.
Examples
f1 <- list(id = "find@1", assoc = "D", type = c("typel”, "forml"))
f2 <- list(id = "find@2", assoc = "E", type = c("typel”, "form2"))
f3 <- list(id = "find@3", assoc = "G", type = c("typel”, "forml1"))
f4 <- list(id = "finde@4", assoc = "H", type = c("type2"”, "forml1"))
f5 <- list(id = "find@5", assoc = "I", type = "type2")
f6 <- list(id = "find@6"”, assoc = "H", type = NULL)

artifacts <- list(f1, f2, f3, f4, f5, f6)

finds_12d 3

convert list to data frame
artifacts_df <- finds_l2d(artifacts)

convert data frame to list
artifacts_list <- finds_d2l(artifacts_df)

finds_l2d Convert Finds List Object to Data Frame (Context / Find-Type)

Description

Performs the opposite of finds_d21. Takes a 1ist object of finds and their types, used as input
in gibbs_ad, and returns a data. frame of two columns, containing the context in the first and the
find-type in the second, and the id of the object in the third.

Usage
finds_l2d(input)

S3 method for class 'list'
finds_l2d(input)

Arguments

input A list object of finds (each one a list) of associated contexts and types.

Value

A three-column data frame of contexts (first column) and find-types attested in that context (second
column), along with the id number (third column).

Examples

f1 <- list(id = "find@1", assoc = "D", type = c("typel”, "forml1"))
f2 <- list(id = "find@2", assoc = "E", type = c("typel”, "form2"))
f3 <- list(id = "find@3", assoc = "G", type = c("typel”, "forml1"))
f4 <- list(id = "find@4", assoc = "H", type = c("type2"”, "forml1"))
f5 <- list(id = "find@5", assoc = "I", type = "type2")

f6 <- list(id = "find@6", assoc = "H", type = NULL)

artifacts <- list(f1, f2, f3, f4, f5, f6)

convert list to data frame
artifacts_df <- finds_l2d(artifacts)

4 gibbs_ad

gibbs_ad Gibbs Sampler for Archaeological Dates

Description

A Gibbs sampler for dating archaeological events, to fit relative sequences to absolute, calendrical
dates, along with rule-based production dates of artifact types. Relative events can be associated
with termini post quos (t.p.q.) and termini ante quos (t.a.q.), which are entered as samples from a
given probability density function f(¢). This function may take any form, a single date (i.e., with
a probability of 1), a continuous uniform distribution (any time between two dates), or a bespoke
density (as with calibrated radiocarbon dates). Relative events are modeled on a continuous uniform
density between the latest antecedent event and earliest subsequent event.

Usage

gibbs_ad(
sequences,
finds = NULL,
max_samples = 105,
size = 1073,
mcse_crit = 0.5,
tpg = NULL,
tag = NULL,
alpha_ = -5000,
omega_ = 1950,
trim = TRUE,
rule = "naive”

)

S3 method for class 'list'
gibbs_ad(

sequences,

finds = NULL,

max_samples = 10"5,

size = 1073,

mcse_crit = 0.5,

tpg = NULL,
tag = NULL,
alpha_ = -5000,
omega_ = 1950,
trim = TRUE,
rule = "naive”
)
Arguments

sequences A list of relative sequences of elements (e.g., contexts).

gibbs_ad

finds
max_samples
size

mcse_crit

tpq

taq

alpha_

omega_

trim

rule

Details

Optional. A list of finds related to (contained in) the elements of sequences.
Maximum number of samples to run. Default is 10*5.

The number of samples to take on each iteration of the main Gibbs sampler.
Default is 103.

Criterion for the Monte Carlo standard error to stop the Gibbs sampler, as based
on depositional dates and absolute constraints. The number of Monte Carlo
samples for production dates is identical to that depositional dates.

A list containing termini post quos. Each object in the list consists of:

e id A character ID of the t.p.q., such as a reference or number.
* assoc The element in code to which the z.p.q. is associated.

* samples A vector of samples drawn from the appertaining probability den-
sity function of that #.p.q.

A list containing termini ante quos. Each object in the list consists of:

* id A character ID of the t.a.q., such as a reference or number.
* assoc The element in code to which the z.p.q. is associated.

* samples A vector of samples drawn from the appertaining probability den-
sity function of that 7.p.q.

An initial £.p.q. to limit any elements which may occur before the first provided
t.p.q. Default is -5000.

A final t.a.q. to limit any elements which may occur after the after the last
provided t.a.q. Default is 1950.

A logical value to determine whether elements that occur before the first 7.p.q.
and after the last t.a.q. should be omitted from the results (i.e., to "trim" elements
at the ends of the sequence, whose marginal densities depend on the selection of
alpha_ and omega_). Default is TRUE.

The rule for computing an estimated date of production of a find-type, either
"earliest”, selecting a production date between the earliest deposition of that
type and the next most earliest context, or "naive"” (the default), which will
select a production date any time between the distribution of that "earliest" date
and the depositional date of that artifact.

Gibbs sampling is a conventional method for calibrating and estimating radiocarbon dates in light
of absolute constraints and relative sequences: see Buck et al. (1996); Buck et al. (1999); Bronk
Ramsey (2009), the latter of which uses a mixture of Metropolis-Hastings and Gibbs.

In this implementation, two phases of Gibbs sampling are performed: an initial phase for selecting
starting values and then the main sampler, with convergence evaluated using Monte Carlo standard

errors (MCSE).

The initial Gibbs sampler results in a vector of starting values randomly sampled for each event up
to vk runs, where k is the total number of events. Starting values may therefore take some time to
assign, but this initial sampling is necessary to avoid a catastrophic collapse due to floating point
errors in the initial selection of random values and will also result in closer starting values with
respect to marginal densities.

6 gibbs_ad

The main Gibbs sampler uses consistent batch means (CBM) determine convergence and hence
when to end the main sampling run: there is no motivation to remove burn-in from the main sam-
pling run nor to run multiple chains. CBM is assured to converge in distribution, see Jones et al.
(2006); Flegal et al. (2008). A stopping point for the main sampler is therefore determined using
the mean of the Monte Carlo standard errors (MCSE) across all random variates, which is the input
of mcse_crit (the mean MCSE for all events). The input max_samples indicates the maximum
number of simulations to run, but the sampler will stop if the specified criterion of mcse_crit is
passed. The default mean MCSE is set at mcse_crit = 0.5, as the MCSE is measured in years (i.e.
to allow for an error +/- 1 year), but, to be sure, individual events will have higher or lower MCSE
than this mean criterion, whose primary purpose is as a stopping rule.

Note that the MCSE criterion is applied as a stopping rule for depositional dates and external con-
straints. The number of Monte Carlo samples for production dates of types is chosen to be identical
to that need to pass mcse_crit, such that ultimately the final mean MCSE of all variates may differ
from that of the criterion. Depending on the conditional structure of the relative sequences and the
timescale of investigation, higher or lower MCSE may be more desirable or acceptable.

For the use dates of artifact type production, use, and deposition, see the gibbs_ad_use function.

Value

A list object of class marginals which contains the following:

* deposition A list of samples from the marginal density of each context’s depositional date.

* externals A list of samples of the marginal density of each constraint (z.p.q. and t.a.q.]),
as conditioned upon the occurrence of other depositional

* production If a finds object has been input, samples of the marginal density of the pro-
duction date of finds types will be included in the output. If types are attested in trimmed
contexts,

* mcse The Monte Carlo standard errors (MCSE) of the random variates (fixed t.p./a.q. will
have a MCSE of 0.)

References

Bronk Ramsey C (2009). “Bayesian Analysis of Radiocarbon Dates.” Radiocarbon, 51, 337-360.

Buck CE, Cavanagh WG, Litton CD (1996). Bayesian Approach to Interpreting Archaeological
Data. John Wiley and Sons, Chichester.

Buck CE, Christen JA, James GN (1999). “BCal: An On-line Bayesian Radiocarbon Calibration
Tool” Internet Archaeology, 7. https://intarch.ac.uk/journal/issue7/buck/.

Flegal JM, Haran M, Jones GL (2008). “Markov Chain Monte Carlo: Can We Trust the Third
Significant Figure?” Statistical Science, 23, 250-260. doi:10.1214/08STS257.

Jones GL, Haran M, Caffo BS, Neath R (2006). “Fixed-Width Output Analysis for Markov Chain
Monte Carlo.” Journal of the American Statistical Association, 101, 1537-1547. doi:10.1198/
016214506000000492.

https://intarch.ac.uk/journal/issue7/buck/
https://doi.org/10.1214/08-STS257
https://doi.org/10.1198/016214506000000492
https://doi.org/10.1198/016214506000000492

gibbs_ad_use 7

Examples

x <= c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J")
y <= c("B", "D", "G", "H", "K")

z <= c("F", "K", "L", "M")

contexts <- list(x, y, z)

f1 <- list(id = "find@1", assoc = "D", type = c("typel”, "forml1"))
f2 <- list(id = "find@2", assoc = "E", type = c("typel”, "form2"))
f3 <- list(id = "find@3", assoc = "G", type = c("typel”, "forml1"))
f4 <- list(id = "find@4", assoc = "H", type = c("type2", "forml"))
f5 <- list(id = "find@5", assoc = "I", type = "type2")

f6 <- list(id = "find@6", assoc = "H", type = NULL)

artifacts <- list(f1, f2, f3, f4, f5, f6)

external constraints

coinl <- list(id = "coin1", assoc = "B", type = NULL, samples = runif(100,-320,-300))

coin2 <- list(id = "coin2", assoc = "G", type = NULL, samples = seq(37, 41, length = 100))
seq(37, 41, length = 100) is equivalent in concept to runif (100, 37, 41))

destr <- list(id = "destr"”, assoc = "J"”, type = NULL, samples = 79)

tpg_info <- list(coinl, coin2)
tag_info <- list(destr)

result <- gibbs_ad(contexts, finds = artifacts, tpg = tpg_info, tag = taq_info)

gibbs_ad_use Gibbs Sampler for Archaeological Dates: Artifact Use

Description

Using the results of gibbs_ad, estimate a single density for the date of use of an artifact or artifact
type. Multiple artifacts and types can be given, which will be pooled into a single type. For ex-
ample, one can input several individual finds via their id number as comprising a type, or multiple
(sub)types/classes as a single type, (e.g., "MGS V amphora", "MGS VI amphora", "MGS V/VI
amphora" to construct one group).

Usage

gibbs_ad_use(
marginalized,
finds,
id = NULL,
type = NULL,
type_name = NULL,
max_samples = 10”5,
size = 10"3,

8 gibbs_ad_use

mcse_crit = 0.5

)

S3 method for class 'marginals'
gibbs_ad_use(

marginalized,

finds,

id = NULL,

type = NULL,

type_name = NULL,

max_samples = 10*5,

size = 1073,

mcse_crit = 0.5

Arguments

marginalized A list object of class marginals, the output of gibbs_ad.

finds Either the 1ist object of finds used as input to produce marginals oradata. frame
of two columns, the first listing the context and the second the incidence of the
type in that context.

id A vector of the id of one or more specific finds whose use date is to be estimated.
The values of id must match those in the 1ist of finds. If type is used, id is
ignored.

type A vector of one or more types to estimate a use density for. Must contain a value

if id is NULL.

type_name A customized label for the type (e.g., if one is selecting via id or has combined
subtypes). If only type is used to select finds, the default will be that label
Otherwise the default is simply "Type."

max_samples Maximum number of samples to run. Default is 10*5.

size The number of samples to take on each iteration of the main Gibbs sampler.
Default is 10*3.

mcse_crit Criterion for the Monte Carlo standard error to stop the Gibbs sampler. Only the
MCSE of the use date is used as a stopping rule.

Details

Depending on whether one is using id numbers or type(s), the id or type argument is used, which
takes a vector of the entries’ names. The gibbs_ad_use function samples a use date between
the production and depositional densities from the results of gibbs_ad, and in turn pools those
densities for the production and deposition of the stipulated ids/type; the resulting 1ist object does
not express marginalized densities of production and deposition in light of the estimation of a use
date.

See gibbs_ad for information on consistent batch means and Monte Carlo standard error, which
are used to determined convergence for the use date.

histogram 9

Value

A list of class use_marginals of the density of a use date, conditional upon production and
depositional dates.

Examples

x <- c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J")
y <- c("B", "D", "G", "H", "K")

z <= c("F", "K", "L", "M")

contexts <- list(x, y, z)

f1 <- list(id = "find@1", assoc = "D", type = c("typel”, "forml1"))
f2 <- list(id = "find@2", assoc = "E", type = c("typel”, "form2"))
f3 <- list(id = "find@3", assoc = "G", type = c("typel”, "forml"))
f4 <- list(id = "find@4", assoc = "H", type = c("type2"”, "forml1"))
f5 <- list(id = "find@5", assoc = "I", type = "type2")

f6 <- list(id = "find@6", assoc = "H", type = NULL)

artifacts <- list(f1, f2, f3, f4, f5, f6)

external constraints

coinl <- list(id = "coinl1"”, assoc = "B"”, type = NULL, samples = runif(100,-320,-300))
coin2 <- list(id = "coin2", assoc = "G", type = NULL, samples = seq(37, 41, length = 100))
destr <- list(id = "destr"”, assoc = "J", type = NULL, samples = 79)

tpg_info <- list(coinl, coin2)
tag_info <- list(destr)

result <- gibbs_ad(contexts, finds = artifacts, tpq = tpg_info, taq = tag_info)

use dates by specifying ids
gibbs_ad_use(result, artifacts, id = c("find@4", "find@5"), max_samples = 2000, mcse_crit = 2)

use dates by specifying types
gibbs_ad_use(result, artifacts, type = "typel”, max_samples = 2000, mcse_crit = 2)

histogram Histogram of Marginal Densities

Description

Wrapper around hist to plot density histograms for select marginal densities (up to 12) in a single
plot, from the results of gibbs_ad, or to plot density histograms of the production, deposition, and
use of a type, from the results of gibbs_ad_use].

10 histogram

Usage

histogram(
X’
events = NULL,

n n

aspect = c("production”, "use"”, "deposition"),
display_name = "Type",
breaks = "Freedman-Diaconis”,
xlim = NULL,
ylim = NULL,
xlab = "Year"”,
palette = NULL,
opacity =1,
legend_pos = "topright”
)
S3 method for class 'marginals'
histogram(
X,

events = NULL,
aspect = NULL,
display_name = NULL,

breaks = "Freedman-Diaconis”,
xlim = NULL,
ylim = NULL,
xlab = "Year”,
palette = NULL,
opacity = 1,
legend_pos = "topright”
)
S3 method for class 'use_marginals'
histogram(
X)
events = NULL,
aspect = c("production”, "use"”, "deposition"),
display_name = "Type",
breaks = "Freedman-Diaconis”,
xlim = NULL,
ylim = NULL,
xlab = "Year”,

palette = NULL,
opacity = 0.5,
legend_pos = "topright”

histogram 11

Arguments
X A list object of class marginals, the output of gibbs_ad, or of class use_marginals,
to plot the output of gibbs_ad_usel.
events If plotting a marginals object, a vector or element of the event names to plot.
Maximum number of events is 12.
aspect If plotting a use_marginals object, that is, the output of gibbs_ad_use, a vec-

tor of one or more of c("production”,
is all three.

use”, "deposition”). The default

display_name If plotting a use_marginals object, the name of the artifact type to display in
the histogram legend. Default is "Type".

breaks The number or method of breaks in the histogram. Defaultis "Freedman-Diaconis”.
See hist for more.

x1lim The limits of the x-axis. Default is set to the min/max values of all samples.

ylim The limits of the y-axis. This may need to be adjusted if densities have an
extremely narrow interval.

xlab Label for the x-axis. Default is "Year".

palette A vector providing the color palette of the histogram. The defaultis "colorBlindness: :paletteMartin
(see palettes_d).

opacity The opacity/transparency of the histograms for visualizing overlapping events,
a value between 0 and 1 (default).

legend_pos The position of the legend in the plot. Default is "topright”.

Details

Also see also tidy_marginals for exporting the results of these functions into tidy data frame for
custom plotting in e.g., ggplot2.

Value

A density histogram of the selected events/aspects.

A density histogram of the selected events/aspect.

Examples

x <= c("A", "B", "C", "D", "E", "E", "G", "H", "I", "J")
y <= c("B", "D", "G", "H", "K")

z <= c("F", "K", "L", "M

contexts <- list(x, y, z)

f1 <- list(id = "find@1", assoc = "D", type = c("typel”, "forml1"))
f2 <- list(id = "find@2", assoc = "E", type = c("typel”, "form2"))
f3 <- list(id = "find@3", assoc = "G", type = c("typel”, "forml1"))
f4 <- list(id = "find@4", assoc = "H", type = c("type2", "forml1"))
f5 <- list(id = "find@5", assoc = "I", type = "type2")

f6 <- list(id = "find@6", assoc = "H", type = NULL)

12 ids_of_types

artifacts <- list(f1, f2, f3, f4, f5, f6)

external constraints

coinl <- list(id = "coin1", assoc = "B", type = NULL, samples = runif(100,-320,-300))
coin2 <- list(id = "coin2", assoc = "G", type = NULL, samples = seq(37, 41, length = 100))
destr <- list(id = "destr”, assoc = "J"”, type = NULL, samples = 79)

tpg_info <- list(coinl, coin2)
tag_info <- list(destr)

result <- gibbs_ad(contexts, finds = artifacts, tpg = tpg_info, tag = taq_info)

deposition of "B"
histogram(result, "B")

deposition of "coin2"” and deposition of "G"
histogram(result, c("coin2", "G"), opacity = 0.5)

production of "type2" and deposition of "H"
histogram(result, c("H", "type2"), opacity = 0.5)

production, use, and deposition of "typel”
typel_use <- gibbs_ad_use(result, artifacts, type = "typel”,

max_samples = 1000, size = 500, mcse_crit = 2)
histogram(typel_use)

ids_of_types Ids of Types

Description
Given a list object of finds (with keys of id, assoc, type in each entry), return a vector of the id
elements that belong to one or more specified type.

Usage

ids_of_types(input, type = NULL)

S3 method for class 'list'
ids_of_types(input, type = NULL)

Arguments
input A list object whose elements are a list containing the keys of id, assoc, type.
type A vector or element

Value

A vector of ids within a 1ist object of finds class,

msd

Examples
f1 <- list(id = "find@1",
f2 <- list(id = "finde2",
f3 <- list(id = "find@3",

4
f5
f6

<- list(id = "finde4”,
<- list(id = "findes”,
<- list(id = "finde6”,

artifacts <- list(f1, f2,

ids_of_types(artifacts, type = "typel”)

assoc = "D",
assoc = "E",
assoc = "G",
assoc = "H",
assoc = "I",
assoc = "H",

type
type
type
type
type
type

f3, f4, f5, f6)

C("type‘] n R
c("typel”,
c("typel”,
c("type2",
"type2”)
NULL)

ids_of_types(artifacts, type = c("typel”, "type2"))

"form1"))
"form2"))
"form1"))
"form1"))

13

msd

Mean Squared Displacement of Events

Description

Computes the mean squared displacement (MSD) of all events contained in the relative sequences
and absolute constraints used in the execution of gibbs_ad.

Usage

msd(

marginalized,
sequences,

finds = NULL,
max_samples = 105,
size = 10”3,
mcse_crit = 0.5,
tpqg NULL,

tag = NULL,
alpha_ = -5000,
omega_ = 1950,
rule = "naive”

S3 method for class
msd(

marginalized,
sequences,

finds = NULL,
max_samples = 10%5,
size = 10"3,
mcse_crit = 0.5,
tpg = NULL,

'marginals’

14 msd

tag = NULL,
alpha_ = -5000,
omega_ = 1950,
rule = "naive”
)
Arguments

marginalized The results of gibbs_ad.gibbs_ad.

sequences A list of relative sequences of elements (e.g., contexts) used to compute marginalized.
finds Optional. A list of finds related to (contained in) the elements of sequences.
max_samples Maximum number of samples to run. Default is 10*5.
size The number of samples to take on each iteration of the main Gibbs sampler.

Default is 10*3.
mcse_crit Criterion for the Monte Carlo standard error to stop the Gibbs sampler. A higher

MCSE is recommended for situations with a higher number of events in order
to reduce computational time.

tpg A list containing termini post quos used to compute marginalized. See
gibbs_ad for details.

taq A list containing fermini ante quos used to compute marginalized. See
gibbs_ad for details.

alpha_ An initial £.p.q. to limit any elements which may occur before the first provided
t.p.q. Default is -5000.

omega_ A final t.a.gq. to limit any elements which may occur after the after the last
provided t.a.q. Default is 1950.

rule The rule for computing an estimated date of production. See gibbs_ad for de-
tails.

Details

The MSD entails the following jackknife/leave-one-out style routine:

* Each event is omitted from all relative and absolute sequences, and the function gibbs_ad is
re-run to compute a "jackknifed" Monte Carlo mean for that event.

— The squared difference of this jackknifed Monte Carlo mean and the original is then
computed as its squared "displacement" in time.

— The mean of the squared displacements of all events is then computed and attributed to
the omitted event.

If an event has a low MSD, it bears a low impact on the rest of the events within the full joint
conditional density. If it is has a high MSD, other events depend heavily upon its inclusion in the
full joint density.

Trimming is not implemented in the computation of MSD, and so attention should be paid to the
selection of alpha_ and omega_, and reported. This is owing to the way in which, if an absolute
constraint (tpqg or taq) is omitted that happens to be an earliest or latest bounding event, there still
needs to be earliest and latest thresholds in place.

This function is fairly computationally intensive and thus a lower value of max_samples and a
higher value of mcse_crit may be warranted

quae_antea 15

Value

Output is a list containing a data frame MSD_stats giving the mean MC date, the MCSE, the MSD,
the variance of the squared displacements (not the standard error), and sample size, as well as a
vector bounds of the values of alpha_ and omega_.

Examples

x <= c("A", "B", "C", "D", "E", "F", "G", "H", "I", "I")
b ’ , ’ ’ b ’ , ’

y <= c("B", "D", "G", "H", "K")

Z <_ C(”F”, IIKII’ IILII’ ”M”)

contexts <- list(x, y, z)

f1 <- list(id = "find@1", assoc = "D", type = c("typel”, "forml1"))
f2 <- list(id = "find@2", assoc = "E", type = c("typel”, "form2"))
f3 <- list(id = "find@3", assoc = "G", type = c("typel”, "forml1"))
f4 <- list(id = "finde@4", assoc = "H", type = c("type2"”, "forml1"))
f5 <- list(id = "find@5", assoc = "I", type = "type2")

f6 <- list(id = "find@6", assoc = "H", type = NULL)

artifacts <- list(f1, f2, f3, f4, f5, f6)

external constraints

coinl <- list(id = "coinl1"”, assoc = "B", type = NULL, samples = runif(100,-320,-300))
coin2 <- list(id = "coin2"”, assoc = "G", type = NULL, samples = seq(37, 41, length = 100))
destr <- list(id = "destr", assoc = "J", type = NULL, samples = 79)

tpg_info <- list(coinl, coin2)
tag_info <- list(destr)

result <- gibbs_ad(contexts, finds = artifacts, tpg = tpg_info, tag = taqg_info)

result_msd <- msd(result, contexts, finds = artifacts, max_samples = 5000,
mcse_crit = 2, tpq = tpg_info, tag = taq_info)

quae_antea Quae Antea

Description

For a 1ist of multiple partial sequences (of vector objects), generate another 1ist which, for each
element, gives the elements that occur before it ("quae antea"). This is analogous to a recursive trace
through all partial sequences from right to left. An element "alpha” is added to all sets to avoid
empty vectors. See also quae_postea.

Usage

quae_antea(obj)

16 quae_postea

S3 method for class 'list'
quae_antea(obj)

Arguments

obj A list of vector objects which represent ordered sequences.

Value

A list of vector objects, which contain the elements that occur before any one given element in
the input sequences.

Examples
X <_ C(”A”, NBII’ IICII)
y <= c("B", "D", "E", "C", "F")
7 <= c("c”, 6™
a <- list(x, y, z)

quae_antea(a)

quae_postea Quae Postea

Description

For a 1ist of multiple partial sequences (of vector objects), generate another 1ist which, for each
element, gives all elements that occur after it ("quae postea"). This is analogous to a recursive trace
through all partial sequences from left to right. A final element "omega” is added to all sets to avoid
empty vectors. See also quae_antea.

Usage

quae_postea(obj)

S3 method for class 'list'
quae_postea(obj)
Arguments

obj A list of vector objects which reperesent ordered sequences.

Value

A list of vector objects, which contain the elements that occur after any one given element in the
input sequences.

seq_adj 17

Examples
x <= c("A", "B", "C")
y <= c("B", "D", "E", "C", "F")
7z <- C(”C”, nGn)
a <- list(x, y, z)

quae_postea(a)

seqg_adj Adjust Sequence to Target

Description

Given an "input" sequence of elements and another "target" seqeunce that contains fewer elements
in a different order, shift the order of the input sequence to match that of the target, keeping all other
elements as proximate to one another as possible. This adjusted ranking is accomplished using
piecewise linear interpolation between joint elements ranks. That is, joint rankings are plotted, with
input rankings along the x axis and target rankings on the y axis. Remaining rankings in the input
sequence are assigned a ranking of y based on the piecewise linear function between joint rankings.
If the rank order of elements in the target are identical to those in the input, the result is identical to
the input. A minimum number of three joint elements in both the input and target are required.

Usage

seq_adj(input, target)

S3 method for class 'character'
seqg_adj(input, target)

Arguments
input A vector of elements in a sequence.
target A vector of elements in a sequence, containing at least three of the same ele-
ments as input.
Value

A vector of the adjusted sequence.

Examples

X <_ C(”A”, VIBII’ "C“, IIDII’ IIEIV’ IIFVI, VIGII’ IIHII, IIIII’ IIJIV) # the 1nput sequence
y <= c("D", "A", "J") # the target sequence

seq_adj(x, y)

18 seq_check

seq_check Sequence Check

Description

For a 1ist of partial sequences (of vector objects), check to see that joint elements of each oc-
cur the same order. That is, for two sequences with elements A, B,C, D, E and B, D, F, E, all
joint elements must occur in the same order to pass the check. Two sequences A, B, C, D, E and
A, F, D, C, E would not pass this check as the elements C' and D occur in different orders in either
sequence.

Usage

seq_check(obj)

S3 method for class 'list'
seq_check(obj)
Arguments

obj A list of vector objects which represent a sequence.

Details
Event names alpha and omega are reserved for the ultimate boundaries of the chronological frame-
work and should not be used in naming events in sequences.

Value

TRUE or FALSE

Examples
X <_ C(”A”, NBII’ "C“, IIDII’ IIEII)
y <= c("B", "D", "F", "E")
a <- list(x, y)
seq_check(a)

Z <_ C(”B”, NFII’ IICII)
b <- list(x, y, z)

seq_check(b)

sq_disp 19

sg_disp Squared Displacement for a Target Event

Description

Computes the squared displacement for a target event within the joint conditional density, estimating
how much the omission of another event will change the date of that event. See also msd.

Usage

sq_disp(
marginalized,
target,
sequences,
finds = NULL,
max_samples = 10*5,
size = 1073,
mcse_crit = 0.5,
tpg = NULL,
tag = NULL,
alpha_ = -5000,
omega_ = 1950,
rule = "naive”

)

S3 method for class 'marginals'
sqg_disp(

marginalized,

target,

sequences,

finds = NULL,

max_samples = 10"5,

size = 1073,

mcse_crit = 0.5,

tpg = NULL,
tag = NULL,
alpha_ = -5000,
omega_ = 1950,
rule = "naive”
)
Arguments

marginalized The results of gibbs_ad.gibbs_ad.

target The target event (any event in marginalized) for which to estimate squared
displacement.

20 sq_disp

sequences A list of relative sequences of elements (e.g., contexts) used to compute marginalized.
finds Optional. A list of finds related to (contained in) the elements of sequences.
max_samples Maximum number of samples to run. Default is 10*5.

size The number of samples to take on each iteration of the main Gibbs sampler.

Default is 1043.

mcse_crit Criterion for the Monte Carlo standard error to stop the Gibbs sampler. A higher
MCSE is recommended for situations with a higher number of events in order
to reduce computational time.

tpg A list containing termini post quos used to compute marginalized. See
gibbs_ad for details.

taq A list containing termini ante quos used to compute marginalized. See
gibbs_ad for details.

alpha_ An initial ¢.p.q. to limit any elements which may occur before the first provided
t.p.q. Default is -5000.

omega_ A final f.a.q. to limit any elements which may occur after the after the last
provided t.a.q. Default is 1950.

rule The rule for computing an estimated date of production. See gibbs_ad for de-
tails.

Details

Displacement is computed via the following jackknife/leave-one-out-style routine:

* Each event, excluding the target event itself, is omitted from all relative and absolute se-
quences, and the function gibbs_ad is re-run to compute a "jackknifed" Monte Carlo mean
for the target event.

— The squared difference of this jackknifed Monte Carlo mean and the original is then
computed as its squared "displacement” in time.

If an event has a low squared displacement, it has a low impact on the dating of the target event. If
it is has a high squared displacement, the target event’s date depends heavily upon its inclusion in
the full joint density.

Trimming is not implemented in the estimation of squared displacement, and so attention should be
paid to the selection of alpha_ and omega_, and reported. This is owing to the way in which, if an
absolute constraint (tpq or taq) is omitted that happens to be an earliest or latest bounding event,
there still needs to be earliest and latest thresholds in place.

This function is fairly computationally intensive, and so a lower value of max_samples or higher
value of mcse_crit may be warranted.

Value

Output is a list containing a data frame sq_disp giving the diplacement with respect to all other
events and a vector bounds of the values of alpha_ and omega_.

synth_rank 21

Examples

x <= c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J")
y <- c("B", "D", "G", "H", "K")

z <= c("F", "K", "L", "M")

contexts <- list(x, y, z)

f1 <- list(id = "find@1", assoc = "D", type = c("typel”, "forml1"))
f2 <- list(id = "find@2", assoc = "E", type = c("typel”, "form2"))
f3 <- list(id = "find@3", assoc = "G", type = c("typel”, "forml1"))
f4 <- list(id = "find@4", assoc = "H", type = c("type2"”, "forml1"))
f5 <- list(id = "find@5", assoc = "I", type = "type2")

f6 <- list(id = "find@6", assoc = "H", type = NULL)

artifacts <- list(f1, f2, f3, f4, f5, f6)

external constraints

coinl <- list(id = "coinl1"”, assoc = "B"”, type = NULL, samples = runif(100,-320,-300))
coin2 <- list(id = "coin2"”, assoc = "G", type = NULL, samples = seq(37, 41, length = 100))
destr <- list(id = "destr", assoc = "J", type = NULL, samples = 79)

tpg_info <- list(coinl, coin2)
tag_info <- list(destr)

result <- gibbs_ad(contexts, finds = artifacts, tpq = tpg_info, taq = tag_info)
max_samples lowered and msce_crit raised for examples
squared displacement for depositional context "E”
E_sqdisp <- sq_disp(result, target = "E", sequences = contexts,
max_samples = 3000, mcse_crit = 2, tpq = tpg_info, taq = tag_info)
squared displacement for production of artifact type "typel”

typel_sqdisp <- sq_disp(result, target = "typel”, sequences = contexts, finds = artifacts,
max_samples = 3000, mcse_crit = 2, tpq = tpg_info, tag = tag_info)

synth_rank Synthetic Ranking

Description

Using a 1ist two or more partial sequences, all of which observe the same order of elements, create
a single "synthetic" ranking. This is accomplished by counting the total number of elements after
running a recursive trace through all partial sequences (via quae_postea). If partial sequences are
inconsistent in their rankings, a NULL value is returned.

Usage

synth_rank(obj, ties = "average")

22 tidy_marginals

S3 method for class 'list'

synth_rank(obj, ties = "average")
Arguments
obj A list of vector objects which represent a sequence.
ties The way in which ties are handled per the rank function. The default is "ties
= average".
Value

A single vector containing the synthesized ranking.

Examples
x <= c(”"A", "B", "C", "D", "E")
y <_ C(”B”, IIDII’ IIFII, IIEII)
a <- list(x, y)

synth_rank(a)

tidy_marginals Convert Marginals to Tidy (Molten) Data Frame

Description

Takes the results of gibbs_ad or gibbs_ad_use and "melts" the 1ist into a tidy data frame (Wick-
ham 2014). Each row of the molten data frame will contain the index of the Monte Carlo sample,
the sample itself, and then the event name.

Usage

tidy_marginals(input)

S3 method for class 'marginals'
tidy_marginals(input)

S3 method for class 'use_marginals'
tidy_marginals(input)
Arguments

input An object of class marginals or use_marginals, the output of gibbs_ad or
gibbs_ad_use.

traceplot 23

Value

A data frame giving the MC sampling index (idx), the sample (year), and the event (event).

References

Wickham H (2014). “Tidy Data.” Journal of Statistical Software, 59, 1-23. doi:10.18637/jss.v059.110.

Examples

X <= (A", "B, nCh. wpn. WEM WEW nge apge wn npay
’ ’ b ’ ’ ’ ’ b ’
- n n n n n n n n n n
y <- c("B", "D", "G", "H", "K")
7 <= c("F", K. LY. Mn)

contexts <- list(x, y, z)

f1 <- list(id = "find@1", assoc = "D", type = c("typel”, "forml1"))
f2 <- list(id = "find@2", assoc = "E", type = c("typel”, "form2"))
f3 <- list(id = "find@3", assoc = "G", type = c("typel”, "forml1"))
f4 <- list(id = "find@4", assoc = "H", type = c("type2", "forml1"))
f5 <- list(id = "find@5", assoc = "I", type = "type2")

f6 <- list(id = "find@6", assoc = "H", type = NULL)

artifacts <- list(f1, f2, f3, f4, f5, f6)

external constraints

coinl <- list(id = "coin1", assoc = "B", type = NULL, samples = runif(100,-320,-300))
coin2 <- list(id = "coin2"”, assoc = "G", type = NULL, samples = seq(37, 41, length = 100))
destr <- list(id = "destr”, assoc = "J"”, type = NULL, samples = 79)

tpg_info <- list(coinl, coin2)
tag_info <- list(destr)

result <- gibbs_ad(contexts, finds = artifacts, tpg = tpg_info, tag = taq_info)

tidy_marginals(result)

traceplot Traceplot of Gibbs Samples

Description

Wrapper around plot to make a traceplot of Gibbs samples from gibbs_ad. See histogram for
plotting a density histogram of events.

https://doi.org/10.18637/jss.v059.i10

24 traceplot

Usage
traceplot(

X,

events = NULL,
xlim = NULL,
ylim = NULL,
xlab = "Index",
ylab = "Year”,
palette = NULL,
opacity = 1

legend_pos = "topright”,

)

S3 method for class 'marginals'
traceplot(

X,

events = NULL,

xlim = NULL,

ylim = NULL,

xlab = "Index",

ylab = "Year”,

palette = NULL,

opacity =1

legend_pos = "topright”,

Arguments

X A list object of class marginals or use_marginals, the output of gibbs_ad
or gibbs_ad_use respectively.

events A vector or element of the event names to plot. Maximum number of events is
12.

x1lim The limits of the x-axis (optional).

ylim The limits of the y-axis (optional).

xlab Label for the y-axis. Default is "Index".

ylab Label for the y-axis. Default is "Year".

palette A vector providing the color palette of the histogram. The defaultis "colorBlindness: :paletteMartin
(see palettes_d).

opacity The opacity/transparency of the traceplot, if visualizing overlapping events. A
value between 0 and 1 (default).

legend_pos The position of the legend in the plot. Default is "topright”.

Additional graphical parameters passed to plot.

traceplot 25

Details

Also see tidy_marginals for exporting the results of these functions into tidy data frame for cus-
tom plotting in e.g., ggplot2.

Value

A traceplot of the Gibbs samples of the selected events.

Examples

x <= c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J")
y < c("B", "D", "G", "H", "K")

z <= c("F", "K", "L", "M")

contexts <- list(x, y, z)

f1 <- list(id = "find@1", assoc = "D", type = c("typel”, "forml1"))
f2 <- list(id = "find@2", assoc = "E", type = c("typel”, "form2"))
f3 <- list(id = "find@3", assoc = "G", type = c("typel”, "forml1"))
f4 <- list(id = "find@4", assoc = "H", type = c("type2", "forml1"))
f5 <- list(id = "find@5", assoc = "I", type = "type2")

f6 <- list(id = "find@6", assoc = "H", type = NULL)

artifacts <- list(f1, f2, f3, f4, f5, f6)

external constraints

coinl <- list(id = "coin1", assoc = "B", type = NULL, samples = runif(100,-320,-300))
coin2 <- list(id = "coin2", assoc = "G", type = NULL, samples = seq(37, 41, length = 100))
destr <- list(id = "destr”, assoc = "J"”, type = NULL, samples = 79)

tpg_info <- list(coinl, coin2)
tag_info <- list(destr)

result <- gibbs_ad(contexts, finds = artifacts, tpq = tpg_info, taq = tag_info)

traceplot(result, "B")
traceplot(result, c("coinl1”, "B", "H"), opacity = 0.5)

Index

finds_d21,2, 3
finds_12d, 2,3

gibbs_ad, 2, 3,4,7-9, 11, 13, 14, 19, 20,
22-24
gibbs_ad_use, 6,7,9, 11,22, 24

hist, 9, 11
histogram, 9, 23

ids_of_types, 12
msd, 13, /9

palettes_d, 11, 24
plot, 23, 24

quae_antea, 15, 16
quae_postea, 15, 16, 21

rank, 22

seq_adj, 17
seq_check, 18
sq_disp, 19
synth_rank, 21

tidy_marginals, 11, 22,25
traceplot, 23

26

	finds_d2l
	finds_l2d
	gibbs_ad
	gibbs_ad_use
	histogram
	ids_of_types
	msd
	quae_antea
	quae_postea
	seq_adj
	seq_check
	sq_disp
	synth_rank
	tidy_marginals
	traceplot
	Index

