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How Are The Simulations Accomplished?

The linear sweep voltammetry, cyclic voltammetry, and chronoamperomety simulations in this package use
the explicit finite difference computational method outlined in Gosser, D. K. Cyclic Voltammetry Simulation
and Analysis of Reaction Mechanisms, VCH, New York, 1993, and in Brown, J. H. “Development and Use of
a Cyclic Voltammetry Simulator to Introduce Undergraduate Students to Electrochemical Simulations” J.
Chem. Educ., 2015, 92, 1490–1496; chronocoulometry simulations are completed by integrating the result of
the corresponding chronoamperometry experiment. Although Gosser’s and Brown’s treatements are developed
to simulate cyclic voltammetry experiments, their approach is easy to generalize to other diffusion-controlled
electrochemistry experiments.

Each simulation uses separate diffusion grids to calculate and to store the concentrations of Ox and Red—and,
for an EC or a CE mechanism, the concentrations of Z—as a function of distance from the electrode’s
surface and as a function of elapsed time (and, therefore, of applied potential in chronoamperometry, cyclic
voltammetry, and linear sweep voltammetry). Each diffusion grid is a matrix with ni rows and nj columns
where a row is a discrete moment in time and a column is a discrete distance from the electrode’s surface;
thus, for example, matrix element [Ox]i, j gives the concentration of Ox at time i and at distance j.

The mass transfer of Ox, Red, and Z are governed by Fick’s Second Law of Diffusion

δC

δt
= D

δ2C

δx2

where C is a species’ concentration, D is its diffusion coefficient, and δt and δx are increments in time and
distance, respectively. When using the explicit finite difference method for an E-only mechanism, Fick’s
Second Law is approximated as

Ci,j − Ci−1,j

∆t = D

[
Ci−1,j−1 − 2Ci−1,j + Ci−1,j+1

∆x2

]
which means that the element Ci,j in a diffusion grid is approximated

Ci,j = Ci−1,j + λ [Ci−1,j−1 − 2Ci−1,j + Ci−1,j+1]

where λ is equivalent to D∆t
∆x2 . In essence, this approximation assumes that for each unit of time, diffusion

is limited to movement between adjacent locations in the diffusion grid. For a mechanism that includes
a chemical reaction, the concentrations of Ox, Red, and Z are modified to include a contribution from
the chemical reaction. For example, the concentration of Ox in a CE mechanism, where Ox exists is an
equilibrium with Z, is approximated as

Ci,j = Ci−1,j + λ [Ci−1,j−1 − 2Ci−1,j + Ci−1,j+1] + kchem,f∆tCi−1,j − kchem,r∆tCi−1,j

where kchem,f and kchem,r are the homogeneous first-order rate constants for the chemical reaction’s forward
and reverse directions.

Because each matrix element in a diffusion grid is calculated using values from the immediately preceding
increment in time and using values from distances that are immediately adjacent, we cannot use this approach
to calculate elements in a diffusion grid’s first column, in its last column, and in its first row. The elements
in a diffusion grid’s last column, which is the distance furthest from the electrode’s surface, are filled using
that species’ initial concentration in bulk solution; that is, the diffusion grid’s width, which is defined as
6×
√
Dttotal, where ttotal is the time to complete the experiment, is sufficient to ensure that the diffusion
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layer never extends beyond the diffusion grid’s last column. The elements in a diffusion grid’s first row, which
is for time t = 0, also are filled using that species’ concentration in bulk solution.

To calculate the concentrations of Ox and of Red at the electrode’s surface—that is, to fill in the diffusion
grid’s first column—we first calculate the flux of Ox, JOx, to the electrode’s surface using the concentrations
of Ox and of Red in the increment immediately adjacent to the electrode

JOx = −kf [Ox]i,2 − kb[Red]i,2
1 + kf ∆x

D + kb∆x
D

Next, we calcualte the potential-dependent, heterogeneous electron-transfer rate constants, kf and kb, using
the Butler-Volmer equation

kf = koe−αnF (E−Eo′)/RT

kb = koe(1−α)nF (E−Eo′)/RT

where ko is the potential-independent, heterogeneous electron-transfer rate constant, α is the transfer
coefficient, n is the number of electrons in the redox reaction, E is the applied potential, Eo′ is the redox
couple’s standard state formal potential, F is Faraday’s constant, R is the gas constant, and T is the
temperature in Kelvin. The concentration of Ox at the electrode’s surface, therefore, is

[Ox]i,1 = [Ox]i,2 + JOx∆x
D

Because the flux of Red is equal in magnitude but opposite in sign to that for Ox, we also know that

JRed = −JOx

[Red]i,1 = [Red]i,2 + JRed∆x
D

By definition, the flux of Z at the electrode surface is zero and

[Z]i,1 = [Z]i,2

Finally, the total current at each increment in time is calculated using the flux for Ox

i = −nFAJOx

where A is the electrode’s surface area.

How Accurate Is A Simluations?

An important constraint on these simulations is that diffusion is limited to adjacent points on the diffusion
grid, which, in turn, requires that

D∆t
∆x2 ≤ 0.5

As ∆t = ttotal
n∆t

and ∆x = xtotal
∆x = 6

√
D×ttotal
n∆x

, the number of increments in distance, n∆x, and the number of
increments in time, n∆t, must satisfy the relationship

n∆x <
√

18× n∆t

When this is not the case, the simulation produces oscillations in the calculated current; for this reason, the
simulations include a check to ensure that n∆x and n∆t satisify this criterion.

The accuracy of a simulation improves if there are more discrete time units and more discrete distance units
as these determine the increments in time, ∆t, and in distance, ∆x, both of which affect the calculated values
for Ci,j , for JOx and for JRed, and for i. In addition, for linear-sweep voltammetry and for cyclic voltammetry,
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the number of time units determines the increments in applied potential, ∆E, which affects the calculated
values for kf and kb, and, therefore, the calculated values for JOx, JRed, and i.

Although increasing the number of time units improves accuracy, it requires an increase in the time needed
to complete the computation. For example, Table 1 shows how the number of time units and of distance
units affects the accuracy of a cyclic voltammetry simultion—defined here as ∆E, which has an expected
value of 59 mV for the function’s default conditions—and the time needed to complete the computations.

Table 1: Effect of Diffusion Grid’s Size on Computation Time and
Accuracy

number of time units number of distance units computation time (s) ∆E (V)
200 50 0.02 80
1000 100 0.20 69
2000 180 0.60 66
4000 260 1.80 62
10000 420 7.30 61

The default option for all simulations is 2000 discrete intervals in time and 180 discrete intervals in distance—a
total of 360,000 individual elements per diffusion grid—which provides a reasonable compromise between
accuracy and run-time. The user may adjust these values to meet the needs of a particular simulation.

When simulating a linear-sweep voltammetry or a cyclic voltammetry experiment with an EC or a CE
mechanism, Gosser suggests that accuracy is reasonable if the number of increments in time satisfies the
relationship

n∆t ≥ 4× texp × kchem

where texp is the time to complete the scan and kchem is the homogeneous chemical rate constant. This places
constraints on the scan rate and on the chemical rate constants, kchem,f and kchem,r. The simulations include
a check to ensure that n∆t satisfies this criterion.
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