
Package ‘diyar’
November 13, 2023

Type Package

Title Record Linkage and Epidemiological Case Definitions in 'R'

Date 2023-11-12

Version 0.5.1

URL https://olisansonwu.github.io/diyar/index.html

BugReports https://github.com/OlisaNsonwu/diyar/issues

Author Olisaeloka Nsonwu

Maintainer Olisaeloka Nsonwu <olisa.nsonwu@gmail.com>

Description An R package for iterative and batched record linkage,
and applying epidemiological case definitions.
'diyar' can be used for deterministic and probabilistic record linkage,
or multistage record linkage combining both approaches.
It features the implementation of nested match criteria, and mechanisms to
address missing data and conflicting matches during stepwise record linkage.
Case definitions are implemented by assigning records to groups based on
match criteria such as person or place, and overlapping time or duration of
events e.g. sample collection dates or periods of hospital stays.
Matching records are assigned a unique group ID. Index and duplicate records
are removed or further analyses as required.

License GPL-3

Encoding UTF-8

LazyData true

Imports methods, utils, ggplot2, rlang

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat, covr

VignetteBuilder knitr

Language en-GB

NeedsCompilation no

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2023-11-12 23:13:18 UTC

1

https://olisansonwu.github.io/diyar/index.html
https://github.com/OlisaNsonwu/diyar/issues

2 attr_eval

R topics documented:

attr_eval . 2
bys_funcs . 3
combi . 5
custom_sort . 5
delink . 6
d_report . 7
encode . 8
epid-class . 9
episodes . 11
episodes_wf_splits . 15
links . 16
link_wf . 20
listr . 23
make_ids . 24
make_pairs . 25
make_s4_ids . 26
merge_identifiers . 28
number_line . 29
number_line-class . 32
overlaps . 34
pane-class . 37
partitions . 39
pid-class . 41
predefined_tests . 43
reframe . 44
schema . 45
set_operations . 47
staff_records . 48
sub_criteria . 50
windows . 53

Index 55

attr_eval Sub-criteria attributes.

Description

Recursive evaluation of a function (func) on each attribute (vector) in a sub_criteria.

Usage

attr_eval(x, func = length, simplify = TRUE)

bys_funcs 3

Arguments

x [sub_criteria]

func [function]

simplify If TRUE (default), coerce to a vector.

Value

vector; list

Examples

x <- sub_criteria(rep(1, 5), rep(5 * 10, 5))
attr_eval(x)
attr_eval(x, func = max)
attr_eval(x, func = max, simplify = FALSE)
attr_eval(sub_criteria(x, x), func = max, simplify = FALSE)

bys_funcs Vectorised approach to group operations.

Description

Vectorised approach to group operations.

Usage

bys_count(by)

bys_rank(..., by = NULL, from_last = FALSE)

bys_position(val, by = NULL, from_last = FALSE, ordered = TRUE)

bys_val(..., val, by = NULL, from_last = FALSE)

bys_nval(..., val, by = NULL, from_last = FALSE, n = 1, nmax = FALSE)

bys_min(val, by = NULL, na.rm = TRUE)

bys_max(val, by = NULL, na.rm = TRUE)

bys_sum(val, by = NULL, na.rm = TRUE)

bys_prod(val, by = NULL, na.rm = TRUE)

bys_cummin(val, by = NULL, na.rm = TRUE)

bys_cummax(val, by = NULL, na.rm = FALSE)

4 bys_funcs

bys_cumsum(val, by = NULL, na.rm = TRUE)

bys_cumprod(val, by = NULL, na.rm = TRUE)

bys_lag(val, by = NULL, n = 1)

bys_lead(val, by = NULL, n = 1)

Arguments

by [atomic]. Groups.

... [atomic]. Sort levels

from_last [logical] Sort order - TRUE (descending) or FALSE (ascending).

val [atomic]. Value

ordered If TRUE, values are sequential.

n [integer] Position.

nmax [logical] If TRUE, use length([by]) when n is greater than the number of
records in a group.

na.rm If TRUE, remove NA values

Value

[atomic]

Examples

x <- data.frame(
group = c(2, 2, 1, 2, 1, 1, 1, 2, 1, 1),
value = c(13, 14, 20, 9, 2, 1, 8, 18, 3, 17))

bys_count(x$group)
bys_position(x$value, by = x$group, from_last = TRUE)
bys_rank(by = x$group, val = x$value, from_last = TRUE)
bys_val(x$value, by = x$group, val = x$value, from_last = TRUE)
bys_nval(x$value, by = x$group, val = x$value, from_last = TRUE, n = 2)
bys_min(by = x$group, val = x$value)
bys_max(by = x$group, val = x$value)
bys_sum(by = x$group, val = x$value)
bys_prod(by = x$group, val = x$value)
bys_cummin(by = x$group, val = x$value)
bys_cummax(by = x$group, val = x$value)
bys_cumsum(by = x$group, val = x$value)
bys_cumprod(by = x$group, val = x$value)
bys_lag(by = x$group, val = x$value)
bys_lead(by = x$group, val = x$value)

combi 5

combi Vector combinations

Description

Numeric codes for unique combination of vectors.

Usage

combi(...)

Arguments

... [atomic]

Value

numeric

Examples

x <- c("A", "B", "A", "C", "B", "B")
y <- c("X", "X", "Z", "Z", "X", "Z")
combi(x, y)

The code above is equivalent to but quicker than the one below.
z <- paste0(y, "-", x)
z <- match(z, z)
z

custom_sort Nested sorting

Description

Returns a sort order after sorting by a vector within another vector.

Usage

custom_sort(..., decreasing = FALSE, unique = FALSE)

Arguments

... Sequence of atomic vectors. Passed to order.

decreasing Sort order. Passed to order.

unique If FALSE (default), ties get the same rank. If TRUE, ties are broken.

6 delink

Value

numeric sort order.

Examples

a <- c(1, 1, 1, 2, 2)
b <- c(2, 3, 2, 1, 1)

custom_sort(a, b)
custom_sort(b, a)
custom_sort(b, a, unique = TRUE)

delink Unlink group identifiers

Description

Unlink records from an episode (epid), record group (pid) or pane (pane) object.

Usage

delink(x, lgk, ...)

S3 method for class 'epid'
delink(x, lgk, ...)

S3 method for class 'pane'
delink(x, lgk, ...)

S3 method for class 'pid'
delink(x, lgk, ...)

Arguments

x [epid|pid|pane]

lgk [logical]. Subset of records to unlink.

... Other arguments.

Value

epid; pid; pane

d_report 7

Examples

ep <- episodes(1:8)
unlinked_ep <- delink(ep, ep@sn %in% c(3, 8))
ep; unlinked_ep

pn <- partitions(1:8, length.out = 2, separate = TRUE)
unlinked_pn <- delink(pn, pn@.Data == 5)
pn; unlinked_pn

pd <- links(list(c(1, 1, 1, NA, NA),
c(NA, NA, 2, 2, 2)))

unlinked_pd <- delink(pd, pd@pid_cri == 1)
pd; unlinked_pd

A warning is given if an index record is unlinked as this will lead to seemly impossible links.
ep2 <- episodes(1:8, 2, episode_type = "rolling")
unlinked_ep2 <- delink(ep2, ep2@sn %in% c(3, 5))
schema(ep2, custom_label = decode(ep2@case_nm), seed = 2)
schema(unlinked_ep2, custom_label = decode(unlinked_ep2@case_nm), seed = 2)

d_report d_report

Description

d_report

Usage

S3 method for class 'd_report'
plot(
x,
...,
metric = c("cumulative_duration", "duration", "max_memory", "records_checked",

"records_skipped", "records_assigned")
)

S3 method for class 'd_report'
as.list(x, ...)

S3 method for class 'd_report'
as.data.frame(x, ...)

Arguments

x [d_report].
... Arguments passed to other methods
metric Report information

8 encode

encode Labelling in diyar

Description

Encode and decode character and numeric values.

Usage

encode(x, ...)

decode(x, ...)

Default S3 method:
encode(x, ...)

S3 method for class 'd_label'
encode(x, ...)

Default S3 method:
decode(x, ...)

S3 method for class 'd_label'
decode(x, ...)

S3 method for class 'd_label'
rep(x, ...)

S3 method for class 'd_label'
x[i, ..., drop = TRUE]

S3 method for class 'd_label'
x[[i, ..., drop = TRUE]]

Arguments

x [d_label|atomic]

... Other arguments.

i i

drop drop

Details

To minimise memory usage, most components of pid, epid and pane are integer objects with
labels. encode() and decode() translates these codes and labels as required.

epid-class 9

Value

d_label; atomic

Examples

cds <- encode(rep(LETTERS[1:5], 3))
cds

nms <- decode(cds)
nms

epid-class epid object

Description

S4 objects storing the result of episodes.

Usage

is.epid(x)

as.epid(x, ...)

S3 method for class 'epid'
format(x, ...)

S3 method for class 'epid'
unique(x, ...)

S3 method for class 'epid'
summary(object, ...)

S3 method for class 'epid_summary'
print(x, ...)

S3 method for class 'epid'
as.data.frame(x, ..., decode = TRUE)

S3 method for class 'epid'
as.list(x, ..., decode = TRUE)

S4 method for signature 'epid'
show(object)

S4 method for signature 'epid'
rep(x, ...)

10 epid-class

S4 method for signature 'epid'
x[i, j, ..., drop = TRUE]

S4 method for signature 'epid'
x[[i, j, ..., exact = TRUE]]

S4 method for signature 'epid'
c(x, ...)

Arguments

x x
... ...
object object
decode If TRUE, data is decoded
i i
j j
drop drop
exact exact

Slots

sn Unique record identifier.
.Data Unique episode identifier.
wind_id Unique reference ID for each match.
wind_nm Type of window i.e. "Case" or "Recurrence".
case_nm Record type in regards to case assignment.
dist_wind_index Unit difference between each record and its window’s reference record.
dist_epid_index Unit difference between each record and its episode’s reference record.
epid_dataset Data sources in each episode.
epid_interval The start and end dates of each episode. A number_line object.
epid_length The duration or length of (epid_interval).
epid_total The number of records in each episode.
iteration The iteration when a record was matched to it’s group (.Data).
options Some options passed to the instance of episodes.

Examples

A test for `epid` objects
ep <- episodes(date = 1)
is.epid(ep); is.epid(2)

ep <- episodes(date = 1)
is.epid(ep); is.epid(2)

episodes 11

episodes Group dated events into episodes.

Description

Dated events (records) within a certain duration of an index event are assigned to a unique group.
Each group has unique ID and are described as "episodes". "episodes" can be "fixed" or
"rolling" ("recurring"). Each episodes has a "Case" and/or "Recurrent" record while all
other records within the group are either "Duplicates" of the "Case" or "Recurrent" event.

Usage

episodes(
date,
case_length = Inf,
episode_type = "fixed",
recurrence_length = case_length,
episode_unit = "days",
strata = NULL,
sn = NULL,
episodes_max = Inf,
rolls_max = Inf,
case_overlap_methods = 8,
recurrence_overlap_methods = case_overlap_methods,
skip_if_b4_lengths = FALSE,
data_source = NULL,
data_links = "ANY",
custom_sort = NULL,
skip_order = Inf,
reference_event = "last_record",
case_for_recurrence = FALSE,
from_last = FALSE,
group_stats = c("case_nm", "wind", "epid_interval"),
display = "none",
case_sub_criteria = NULL,
recurrence_sub_criteria = case_sub_criteria,
case_length_total = 1,
recurrence_length_total = case_length_total,
skip_unique_strata = TRUE,
splits_by_strata = 1,
batched = "semi"

)

links_wf_episodes(
date,
case_length = Inf,
episode_type = "fixed",

12 episodes

strata = NULL,
sn = NULL,
display = "none"

)

episodes_af_shift(
date,
case_length = Inf,
sn = NULL,
strata = NULL,
group_stats = FALSE,
episode_type = "fixed",
data_source = NULL,
episode_unit = "days",
data_links = "ANY",
display = "none"

)

Arguments

date [date|datetime|integer|number_line]. Record date or period.

case_length [integer|number_line]. Duration from an index event distinguishing one
"Case" from another.

episode_type [character]. Options are "fixed" (default) or "rolling". See Details.
recurrence_length

[integer|number_line]. Duration from an index event distinguishing a "Recurrent"
event from its "Case" or prior "Recurrent" event.

episode_unit [character]. Unit of time for case_length and recurrence_length. Op-
tions are "seconds", "minutes", "hours", "days" (default), "weeks", "months" or
"years". See diyar::episode_unit.

strata [atomic]. Subsets of the dataset. Episodes are created separately by each
strata.

sn [integer]. Unique record ID.

episodes_max [integer]. Maximum number of episodes permitted within each strata.

rolls_max [integer]. Maximum number of times an index event can recur. Only used if
episode_type is "rolling".

case_overlap_methods

[character|integer]. Specific ways a period (record) most overlap with a
"Case" event. See (overlaps).

recurrence_overlap_methods

[character|integer]. Specific ways a period (record) most overlap with a
"Recurrent" event. See (overlaps).

skip_if_b4_lengths

[logical]. If TRUE (default), events before a lagged case_length or recurrence_length
are skipped.

episodes 13

data_source [character]. Source ID for each record. If provided, a list of all sources in
each episode is returned. See epid_dataset slot.

data_links [list|character]. data_source required in each epid. An episode without
records from these data_sources will be unlinked. See Details.

custom_sort [atomic]. Preferential order for selecting index events. See custom_sort.

skip_order [integer]. End episode tracking in a strata when the an index event’s custom_sort
order is greater than the supplied skip_order.

reference_event

[character]. Specifies which of the records are used as index events. Options
are "last_record" (default), "last_event", "first_record" or "first_event".

case_for_recurrence

[logical]. If TRUE, a case_length is applied to both "Case" and "Recurrent"
events. If FALSE (default), a case_length is applied to only "Case" events.

from_last [logical]. Track episodes beginning from the earliest to the most recent record
(FALSE) or vice versa (TRUE).

group_stats [character]. A selection of group metrics to return for each episode. Most
are added to slots of the epid object. Options are NULL or any combination of
"case_nm", "wind" and "epid_interval".

display [character]. Display progress update and/or generate a linkage report for the
analysis. Options are; "none" (default), "progress", "stats", "none_with_report",
"progress_with_report" or "stats_with_report".

case_sub_criteria

[sub_criteria]. Additional nested match criteria for events in a case_length.
recurrence_sub_criteria

[sub_criteria]. Additional nested match criteria for events in a recurrence_length.
case_length_total

[integer|number_line]. Minimum number of matched case_lengths re-
quired for an episode.

recurrence_length_total

[integer|number_line]. Minimum number of matched recurrence_lengths
required for an episode.

skip_unique_strata

[logical]. If TRUE, a strata with a single event is skipped.
splits_by_strata

[integer]. Split analysis into n parts. This typically lowers max memory usage
but increases run time.

batched [character]. Create and compare records in batches. Options are "yes", "no",
and "semi". typically, the ("semi") option will have a higher max memory and
shorter run-time while ("no") will have a lower max memory but longer run-
time

Details

episodes() links dated records (events) that are within a set duration of each other in iterations.
Every record is linked to a unique group (episode; epid object). These episodes represent occur-
rences of interest as specified by function’s arguments and defined by a case definition.

14 episodes

Two main type of episodes are possible;

• "fixed" - An episode where all events are within a fixed duration of an index event.

• "rolling" - An episode where all events are within a recurring duration of an index event.

Every record in each episode is categorised as one of the following;

• "Case" - Index event of the episode (without a nested match criteria).

• "Case_CR" - Index event of the episode (with a nested match criteria).

• "Duplicate_C" - Duplicate of the index event.

• "Recurrent" - Recurrence of the index event (without a nested match criteria).

• "Recurrent_CR" - Recurrence of the index event (with a nested match criteria).

• "Duplicate_R" - Duplicate of the recurrent event.

• "Skipped" - Skipped records.

If data_links is supplied, every element of the list must be named "l" (links) or "g" (groups).
Unnamed elements are assumed to be "l".

• If named "l", groups without records from every listed data_source will be unlinked.

• If named "g", groups without records from any listed data_source will be unlinked.

All records with a missing (NA) strata or date are skipped.

Wrapper functions or alternative implementations of episodes() for specific use cases or benefits:

• episodes_wf_splits() - Identical records are excluded from the main analysis.

• episodes_af_shift() - A mostly vectorised approach.

• links_wf_episodes() - The same functionality achieved with links.

See vignette("episodes") for further details.

Value

epid; list

See Also

episodes_wf_splits; custom_sort; sub_criteria; epid_length; epid_window; partitions;
links; overlaps;

Examples

data(infections)
data(hospital_admissions)

One 16-day (15-day difference) fixed episode per type of infection
episodes(date = infections$date,

strata = infections$infection,
case_length = 15,
episodes_max = 1,

episodes_wf_splits 15

episode_type = "fixed")

Multiple 16-day episodes with an 11-day recurrence period
episodes(date = infections$date,

strata = NULL,
case_length = 15,
episodes_max = Inf,
episode_type = "rolling",
recurrence_length = 10)

Overlapping periods of hospital stays
dfr <- hospital_admissions[2:3]

dfr$admin_period <-
number_line(dfr$admin_dt,dfr$discharge_dt)

dfr$ep <-
episodes(date = dfr$admin_period,

strata = NULL,
case_length = index_window(dfr$admin_period),
case_overlap_methods = "inbetween")

dfr
as.data.frame(dfr$ep)

episodes_wf_splits Link events to chronological episodes.

Description

episodes_wf_splits is a wrapper function of episodes. It’s designed to be more efficient with
larger datasets. Duplicate records which do not affect the case definition are excluded prior to
episode tracking. The resulting episode identifiers are then recycled for the duplicate records.

Usage

episodes_wf_splits(..., duplicates_recovered = "ANY", reframe = FALSE)

Arguments

... Arguments passed to episodes.
duplicates_recovered

[character]. Determines which duplicate records are recycled. Options are
"ANY" (default), "without_sub_criteria", "with_sub_criteria" or "ALL".
See Details.

reframe [logical]. Determines if the duplicate records in a sub_criteria are re-
framed (TRUE) or excluded (FALSE).

16 links

Details

episodes_wf_splits() reduces or re-frames a dataset to the minimum datasets required to imple-
ment a case definition. This leads to the same outcome but with the benefit of a shorter processing
time.

The duplicates_recovered argument determines which identifiers are recycled. Selecting the
"with_sub_criteria" option will force only identifiers created resulting from a matched sub_criteria
("Case_CR" and "Recurrent_CR") are recycled. However, if "without_sub_criteria" is se-
lected then only identifiers created that do not result from a matched sub_criteria ("Case" and
"Recurrent") are recycled Excluded duplicates of "Duplicate_C" and "Duplicate_R" are always
recycled.

The reframe argument will either reframe or subset a sub_criteria. Both will require slightly
different functions for match_funcs or equal_funcs.

Value

epid; list

See Also

episodes; sub_criteria

Examples

With 2,000 duplicate records of 20 events,
`episodes_wf_splits()` will take less time than `episodes()`
dates <- seq(from = as.Date("2019-04-01"), to = as.Date("2019-04-20"), by = 1)
dates <- rep(dates, 2000)

system.time(
ep1 <- episodes(dates, 1)

)
system.time(

ep2 <- episodes_wf_splits(dates, 1)
)

Both leads to the same outcome.
all(ep1 == ep2)

links Multistage record linkage

Description

Assign records to unique groups based on an ordered set of match criteria.

links 17

Usage

links(
criteria,
sub_criteria = NULL,
sn = NULL,
strata = NULL,
data_source = NULL,
data_links = "ANY",
display = "none",
group_stats = FALSE,
expand = TRUE,
shrink = FALSE,
recursive = "none",
check_duplicates = FALSE,
tie_sort = NULL,
batched = "yes",
repeats_allowed = FALSE,
permutations_allowed = FALSE,
ignore_same_source = FALSE

)

Arguments

criteria [list|atomic]. Ordered list of attributes to be compared. Each element of the
list is a stage in the linkage process. See Details.

sub_criteria [list|sub_criteria]. Nested match criteria. This must be paired to a stage
of the linkage process (criteria). See sub_criteria

sn [integer]. Unique record ID.
strata [atomic]. Subsets of the dataset. Record-groups are created separately for each

strata. See Details.
data_source [character]. Source ID for each record. If provided, a list of all sources in

each record-group is returned. See pid_dataset slot.
data_links [list|character]. data_source required in each pid. A record-group with-

out records from these data_sources will be unlinked. See Details.
display [character]. Display progress update and/or generate a linkage report for the

analysis. Options are; "none" (default), "progress", "stats", "none_with_report",
"progress_with_report" or "stats_with_report".

group_stats [character]. A selection of group specific information to be return for each
record-group. Most are added to slots of the pid object. Options are NULL or
any combination of "XX", "XX" and "XX".

expand [logical]. If TRUE, a record-group gains new records if a match is found at the
next stage of the linkage process. Not interchangeable with shrink.

shrink [logical]. If TRUE, a record-group loses existing records if no match is found
at the next stage of the linkage process. Not interchangeable with expand.

recursive [logical]. If TRUE, within each iteration of the process, a match can spawn
new matches. Ignored when batched is "no".

18 links

check_duplicates

[logical]. If TRUE, within each iteration of the process, duplicates values of an
attributes are not checked. The outcome of the logical test on the first instance
of the value will be recycled for the duplicate values. Ignored when batched is
"no".

tie_sort [atomic]. Preferential order for breaking match ties within an iteration of
record linkage.

batched [character] Determines if record-pairs are created and compared in batches.
Options are "yes", "no" or "semi".

repeats_allowed

[logical] If TRUE, pairs made up of repeat records are not created and com-
pared. Only used when batched is "no".

permutations_allowed

[logical] If TRUE, permutations of record-pairs are created and compared.
Only used when batched is "no".

ignore_same_source

[logical] If TRUE, only records-pairs from a different data_source are created
and compared.

Details

The priority of matches decreases with each subsequent stage of the linkage process. Therefore, the
attributes in criteria should be in an order of decreasing relevance.

Records with missing data (NA) for each criteria are skipped at the respective stage, while records
with missing data strata are skipped from every stage.

If a record is skipped from a stage, another attempt will be made to match the record at the next
stage. If a record is still unmatched by the last stage, it is assigned a unique group ID.

A sub_criteria adds nested match criteria to each stage of the linkage process. If used, only
records with a matching criteria and sub_criteria are linked.

In links, each sub_criteria must be linked to a criteria. This is done by adding each sub_criteria
to a named element of a list - "cr" concatenated with the corresponding stage’s number. For exam-
ple, 3 sub_criteria linked to criteria 1, 5 and 13 will be;

list(cr1 = subcriteria(...), cr5 = subcriteria(...), cr13 = subcriteria(...))

Any unlinked sub_criteria will be ignored.

Every element in data_links must be named "l" (links) or "g" (groups). Unnamed elements of
data_links will be assumed to be "l".

• If named "l", groups without records from every listed data_source will be unlinked.

• If named "g", groups without records from any listed data_source will be unlinked.

See vignette("links") for more information.

Value

pid; list

links 19

See Also

links_af_probabilistic; episodes; predefined_tests; sub_criteria

Examples

data(patient_records)
dfr <- patient_records
An exact match on surname followed by an exact match on forename
stages <- as.list(dfr[c("surname", "forename")])
p1 <- links(criteria = stages)

An exact match on forename followed by an exact match on surname
p2 <- links(criteria = rev(stages))

Nested matches
Same sex OR birth year
m.cri.1 <- sub_criteria(

format(dfr$dateofbirth, "%Y"), dfr$sex,
operator = "or")

Same middle name AND a 10 year age difference
age_diff <- function(x, y){

diff <- abs(as.numeric(x) - as.numeric(y))
wgt <- diff %in% 0:10 & !is.na(diff)
wgt

}
m.cri.2 <- sub_criteria(

format(dfr$dateofbirth, "%Y"), dfr$middlename,
operator = "and",
match_funcs = c(age_diff, exact_match))

Nested match criteria 'm.cri.1' OR 'm.cri.2'
n.cri <- sub_criteria(

m.cri.1, m.cri.2,
operator = "or")

Record linkage with additional match criteria
p3 <- links(

criteria = stages,
sub_criteria = list(cr1 = m.cri.1,

cr2 = m.cri.2))

Record linkage with additonal nested match criteria
p4 <- links(

criteria = stages,
sub_criteria = list(cr1 = n.cri,

cr2 = n.cri))

dfr$p1 <- p1; dfr$p2 <- p2
dfr$p3 <- p3; dfr$p4 <- p4

head(dfr)

20 link_wf

link_wf Record linkage

Description

Deterministic and probabilistic record linkage Assign unique identifiers to records based on partial,
nested or calculated probabilities.

Usage

links_af_probabilistic(
attribute,
blocking_attribute = NULL,
cmp_func = diyar::exact_match,
attr_threshold = 1,
probabilistic = TRUE,
m_probability = 0.95,
u_probability = NULL,
score_threshold = 1,
repeats_allowed = FALSE,
permutations_allowed = FALSE,
data_source = NULL,
ignore_same_source = TRUE,
display = "none"

)

links_wf_probabilistic(
attribute,
blocking_attribute = NULL,
cmp_func = diyar::exact_match,
attr_threshold = 1,
probabilistic = TRUE,
m_probability = 0.95,
u_probability = NULL,
score_threshold = 1,
id_1 = NULL,
id_2 = NULL,
return_weights = FALSE,
...

)

prob_score_range(attribute, m_probability = 0.95, u_probability = NULL)

link_wf 21

Arguments

attribute [atomic|list|data.frame|matrix|d_attribute]. Attributes to compare.
blocking_attribute

[atomic]. Passed to criteria in links.

cmp_func [list|function]. String comparators for each attribute. See Details.

attr_threshold [list|numeric|number_line]. Weight-thresholds for each cmp_func. See
Details.

probabilistic [logical]. If TRUE, scores are assigned base on Fellegi-Sunter model for prob-
abilistic record linkage. See Details.

m_probability [list|numeric]. The probability that a matching records are the same entity.

u_probability [list|numeric]. The probability that a matching records are not the same
entity.

score_threshold

[numeric|number_line]. Score-threshold for linked records. See Details.
repeats_allowed

[logical] Passed to repeats_allowed in links.
permutations_allowed

[logical] Passed to permutations_allowed in links.

data_source [character]. Passed to data_source in links.
ignore_same_source

[logical] Passed to ignore_same_source in links.

display [character]. Passed to display in links.

id_1 [list|numeric]. Record id or index of one half of a record-pair.

id_2 [list|numeric]. Record id or index of one half of a record-pair.

return_weights If TRUE, returns the match-weights and score-thresholds for record pairs.

... Arguments passed to links

Details

links_wf_probabilistic() - A wrapper function of links with a with a specific sub_criteria
and to achieve to achieve probabilistic record linkage It excludes functionalities for the nested and
multi-stage linkage. links_wf_probabilistic() requires a score_threshold in advance. To
help with this, prob_score_range() can be used to return the range of scores attainable for a given
set of attribute, m and u-probabilities. Additionally, id_1 and id_2 can be used to link specific
records pairs, aiding the review of potential scores.

links_af_probabilistic() - A simpler version of links. It excludes functionalities for the
batched, nested and multi-stage linkage. links_af_probabilistic() requires a score_threshold
in advance, however, since it exports the match weights, the score_threshold can be changed after
the analysis.

Value

pid; list

22 link_wf

References

Fellegi, I. P., & Sunter, A. B. (1969). A Theory for Record Linkage. Journal of the Statistical
Association, 64(328), 1183 - 1210. https://doi.org/10.1080/01621459.1969.10501049

Asher, J., Resnick, D., Brite, J., Brackbill, R., & Cone, J. (2020). An Introduction to Probabilistic
Record Linkage with a Focus on Linkage Processing for WTC Registries. International journal of
environmental research and public health, 17(18), 6937. https://doi.org/10.3390/ijerph17186937.
See vignette("links") for more information.

See Also

links

Examples

data(patient_records)
Weighted (probabilistic) comparison of forename, middlename and surname
criteria_1 <- as.list(patient_records[c("forename", "middlename", "surname")])

Possible scores when m-probability is 0.95
prob_scores <- prob_score_range(attribute = criteria_1,

m_probability = 0.95,
u_probability = NULL)

Not run:
Probabilistic record linkage with 'links_af_probabilistic()'
pids_1a <- links_af_probabilistic(attribute = criteria_1,

cmp_func = exact_match,
attr_threshold = 1,
probabilistic = TRUE,
m_probability = 0.95,
score_threshold = prob_scores$mid_scorce,
display = "stats")

Equivalent with 'links_wf_probabilistic()'
pids_1b <- links_wf_probabilistic(attribute = criteria_1,

cmp_func = exact_match,
attr_threshold = 1,
probabilistic = TRUE,
m_probability = 0.95,
score_threshold = prob_scores$mid_scorce,
display = "progress",
recursive = TRUE,
check_duplicates = TRUE)

Less thorough but faster equivalent with `links_wf_probabilistic()`
pids_1c <- links_wf_probabilistic(attribute = criteria_1,

cmp_func = exact_match,
attr_threshold = 1,
probabilistic = TRUE,
m_probability = 0.95,
score_threshold = prob_scores$mid_scorce,
display = "progress",

listr 23

recursive = FALSE,
check_duplicates = FALSE)

Each implementation can lead to different results
summary(pids_1a$pid)
summary(pids_1b$pid)
summary(pids_1c$pid)

End(Not run)

Weighted (non-probabilistic) comparison of forename, middlename and age difference
criteria_2 <- as.list(patient_records[c("forename", "middlename", "dateofbirth")])
age_diff <- function(x, y){

diff <- abs(as.numeric(x) - as.numeric(y))
wgt <- diff %in% 0:(365 * 10) & !is.na(diff)
wgt

}

pids_2a <- links_af_probabilistic(attribute = criteria_2,
blocking_attribute = patient_records$surname,
cmp_func = c(exact_match, exact_match, age_diff),
score_threshold = number_line(3, 5),
probabilistic = FALSE,
display = "stats")

Larger weights can be assigned to particular attributes through `cmp_func`
For example, a smaller age difference can contribute a higher score (e.g 0 to 3)
age_diff_2 <- function(x, y){

diff <- as.numeric(abs(x - y))
wgt <- diff %in% 0:(365 * 10) & !is.na(diff)
wgt[wgt] <- match(as.numeric(cut(diff[wgt], 3)), 3:1)
wgt

}
pids_2b <- links_af_probabilistic(attribute = criteria_2,

blocking_attribute = patient_records$surname,
cmp_func = c(exact_match, exact_match, age_diff_2),
score_threshold = number_line(3, 5),
probabilistic = FALSE,
display = "stats")

head(pids_2a$pid_weights, 10)
head(pids_2b$pid_weights, 10)

listr Grammatical lists.

Description

A convenience function to format atomic vectors as a written list.

24 make_ids

Usage

listr(x, sep = ", ", conj = " and ", lim = Inf)

Arguments

x atomic vector.

sep Separator.

conj Final separator.

lim Elements to include in the list. Other elements are abbreviated to " ...".

Value

character.

Examples

listr(1:5)
listr(1:5, sep = "; ")
listr(1:5, sep = "; ", conj = " and")
listr(1:5, sep = "; ", conj = " and", lim = 2)

make_ids Convert an edge list to record identifiers.

Description

Convert an edge list to record identifiers.

Usage

make_ids(x_pos, y_pos, id_length = max(x_pos, y_pos))

Arguments

x_pos [integer]. Index of first half of a record-pair.

y_pos [integer]. Index of second half of a record-pair.

id_length Length of the record identifier.

Details

Record groups from non-recursive links have the lowest record ID (sn) in the set as their group ID.

Value

list

make_pairs 25

Examples

make_ids(x_pos = rep(7, 7), y_pos = 1:7)
make_ids(x_pos = c(1, 6), y_pos = 6:7)
make_ids(x_pos = 1:5, y_pos = c(1, 1, 2, 3, 4))

make_pairs Combinations and permutations of record-sets.

Description

Combinations and permutations of record-sets.

Usage

sets(n, r, permutations_allowed = TRUE, repeats_allowed = TRUE)

make_sets(
x,
r,
strata = NULL,
permutations_allowed = TRUE,
repeats_allowed = TRUE

)

make_pairs(
x,
strata = NULL,
repeats_allowed = TRUE,
permutations_allowed = FALSE

)

make_pairs_wf_source(..., data_source = NULL)

Arguments

n [integer]. Size of Vector.
r [integer]. Number of elements in a set.
permutations_allowed

[logical]. If TRUE, permutations of the same set are included.
repeats_allowed

[logical]. If TRUE, repeat values are included in each set.
x [atomic]. Vector.
strata Subsets of x. Blocking attribute. Limits the creation of combinations or permu-

tations to those from the same strata.
... Arguments passed to make_pairs.
data_source [character]. Data source identifier. Limits the creation of combinations or

permutations to those from a different data_source

26 make_s4_ids

Details

set() - Create r-set combinations or permutations of n observations.

make_set() - Create r-set combinations or permutations of vector x.

make_pairs() - Create 2-set combinations or permutations of vector x.

make_pairs_wf_source() - Create 2-set combinations or permutations of vector x that are from
different sources (data_source).

Value

A list of a vector’s elements and corresponding indexes.

See Also

eval_sub_criteria

Examples

sets(4, 2)
sets(4, 2, repeats_allowed = FALSE, permutations_allowed = FALSE)
make_sets(month.abb[1:4], 2)
make_sets(month.abb[1:4], 3)

make_pairs(month.abb[1:4])
make_pairs(month.abb[1:4], strata = c(1, 1, 2, 2))
make_pairs_wf_source(month.abb[1:4], data_source = c(1, 1, 2, 2))

make_s4_ids Create epid and pid objects with index of matching records

Description

Create epid and pid objects with index of matching records

Usage

make_episodes(
x_pos,
y_pos,
x_val,
date,
case_nm,
wind_id,
wind_nm,
from_last,
data_source,

make_s4_ids 27

data_links,
iteration,
options,
episode_unit

)

make_pids(
x_pos,
y_pos,
x_val,
link_id,
pid_cri,
data_source,
data_links,
iteration

)

Arguments

x_pos [integer]. Index of one half of a record pair.

y_pos [integer]. Index of one half of a record pair.

x_val [integer]. Value of one half of a record pair.

date [date|datetime|integer|number_line]. Record date or period.

case_nm [integer|character] Record type in regards to case assignment (sub_criteria[Encoded]).

wind_id [integer]. Unique reference ID for each match.

wind_nm [list]. Type of window i.e. "Case" or "Recurrence".

from_last [logical]. Chronological order of episode tracking i.e. ascending (TRUE) or
descending (FALSE).

data_source [character]. Source ID for each record.

data_links [list|character]. data_source required in each record-group. A record-
group without records from these data_sources will be unlinked.

iteration The iteration when a record was matched to it’s group (.Data).

options [list]. Some options passed to the instance of episodes.

episode_unit [character]. Time unit for case_length and recurrence_length. See episodes

link_id [integer]. Unique reference ID for each match.

pid_cri Match stage of the step-wise linkage.

28 merge_identifiers

merge_identifiers Merge group identifiers

Description

Consolidate two group identifiers.

Usage

merge_ids(...)

Default S3 method:
merge_ids(id1, id2, tie_sort = NULL, expand = TRUE, shrink = FALSE, ...)

S3 method for class 'pid'
merge_ids(id1, id2, tie_sort = NULL, expand = TRUE, shrink = FALSE, ...)

S3 method for class 'epid'
merge_ids(id1, id2, tie_sort = NULL, expand = TRUE, shrink = FALSE, ...)

S3 method for class 'pane'
merge_ids(id1, id2, tie_sort = NULL, expand = TRUE, shrink = FALSE, ...)

Arguments

... Other arguments

id1 [integer|epid|pid|pane].

id2 [integer|epid|pid|pane].

tie_sort [atomic]. Preferential order for breaking tied matches.

expand [logical]. If TRUE, id1 gains new records if id2 indicates a match. Not inter-
changeable with shrink.

shrink [logical]. If TRUE, id1 loses existing records id2 does not indicate a match.
Not interchangeable with expand.

Details

Groups in id1 are expanded or shrunk by groups in id2.

A unique group with only one record is considered a non-matching record.

Note that the expand and shrink features are not interchangeable. The outcome when shrink is
TRUE is not the same when expand is FALSE. See Examples.

See Also

links; links_af_probabilistic

number_line 29

Examples

id1 <- rep(1, 5)
id2 <- c(2, 2, 3, 3, 3)
merge_ids(id1, id2, shrink = TRUE)

id1 <- c(rep(1, 3), 6, 7)
id2 <- c(2,2,3,3,3)
merge_ids(id1, id2, shrink = TRUE)
merge_ids(id1, id2, expand = FALSE)

id1 <- rep(1, 5)
id2 <- c(1:3, 4, 4)
merge_ids(id1, id2, shrink = TRUE)
merge_ids(id1, id2, expand= FALSE)

data(missing_staff_id)
dfr <- missing_staff_id
id1 <- links(dfr[[5]])
id2 <- links(dfr[[6]])
merge_ids(id1, id2)

number_line number_line

Description

A range of numeric values.

Usage

number_line(l, r, id = NULL, gid = NULL)

as.number_line(x)

is.number_line(x)

left_point(x)

left_point(x) <- value

right_point(x)

right_point(x) <- value

start_point(x)

start_point(x) <- value

30 number_line

end_point(x)

end_point(x) <- value

number_line_width(x)

reverse_number_line(x, direction = "both")

shift_number_line(x, by = 1)

expand_number_line(x, by = 1, point = "both")

invert_number_line(x, point = "both")

number_line_sequence(
x,
by = NULL,
length.out = 1,
fill = TRUE,
simplify = FALSE

)

Arguments

l [numeric-based]. Left point of the number_line.

r [numeric-based]. Right point of the number_line. Must be able to be coerced
to a numeric object.

id [integer]. Unique element identifier. Optional.

gid [integer]. Unique group identifier. Optional.

x [number_line]

value [numeric based]

direction [character]. Type of number_line reverse. Options are; "increasing",
"decreasing" or "both" (default).

by [integer]. Increment or decrement. Passed to seq() in number_line_sequence().

point [character]. "start", "end", "left" or "right" point.

length.out [integer]. Number of splits. For example, 1 for two parts or 2 for three parts.
Passed to seq().

fill [logical]. Retain (TRUE) or drop (FALSE) the remainder of an uneven split.

simplify [logical]. If TRUE, returns a sequence of finite numbers.

Details

A number_line object represents a range of numbers. It is made up of a start and end point as the
lower and upper ends of the range respectively. The location of the start point - left or right,
determines whether it is an "increasing" or "decreasing" number_line. This is the direction
of the number_line.

number_line 31

reverse_number_line() - reverse the direction of a number_line. A reversed number_line has
its left and right points swapped. The direction argument specifies which type of number_line
will be reversed. number_line with non-finite start or end points (i.e. NA, NaN and Inf) can’t be
reversed.

shift_number_line() - Shift a number_line towards the positive or negative end of the number
line.

expand_number_line() - Increase or decrease the width of a number_line.

invert_number_line() - Change the left or right points from a negative to positive value or
vice versa.

number_line_sequence() - Split a number_line into equal parts (length.out) or by a fixed
recurring width (by).

Value

number_line

See Also

overlaps; set_operations; episodes; links

Examples

number_line(-100, 100)

Also compatible with other numeric based object classes
number_line(as.POSIXct("2019-05-15 13:15:07", tz = "UTC"),

as.POSIXct("2019-05-15 15:17:10", tz = "UTC"))

Coerce compatible object classes to `number_line` objects
as.number_line(5.1); as.number_line(as.Date("2019-10-21"))

A test for number_line objects
a <- number_line(as.Date("2019-04-25"), as.Date("2019-01-01"))
is.number_line(a)

Structure of a number_line object
left_point(a); right_point(a); start_point(a); end_point(a)

Reverse number_line objects
reverse_number_line(number_line(as.Date("2019-04-25"), as.Date("2019-01-01")))
reverse_number_line(number_line(200, -100), "increasing")
reverse_number_line(number_line(200, -100), "decreasing")

c <- number_line(5, 6)
Shift number_line objects towards the positive end of the number line
shift_number_line(x = c(c, c), by = c(2, 3))
Shift number_line objects towards the negative end of the number line
shift_number_line(x = c(c, c), by = c(-2, -3))

Change the duration, width or length of a number_line object

32 number_line-class

d <- c(number_line(3, 6), number_line(6, 3))

expand_number_line(d, 2)
expand_number_line(d, -2)
expand_number_line(d, c(2,-1))
expand_number_line(d, 2, "start")
expand_number_line(d, 2, "end")

Invert `number_line` objects
e <- c(number_line(3, 6), number_line(-3, -6), number_line(-3, 6))
e
invert_number_line(e)
invert_number_line(e, "start")
invert_number_line(e, "end")

Split number line objects
x <- number_line(Sys.Date() - 5, Sys.Date())
x
number_line_sequence(x, by = 2)
number_line_sequence(x, by = 4)
number_line_sequence(x, by = 4, fill = FALSE)
number_line_sequence(x, length.out = 2)

number_line-class number_line object

Description

S4 objects representing a range of numeric values

Usage

S4 method for signature 'number_line'
show(object)

S4 method for signature 'number_line'
rep(x, ...)

S4 method for signature 'number_line'
x[i, j, ..., drop = TRUE]

S4 method for signature 'number_line'
x[[i, j, ..., exact = TRUE]]

S4 replacement method for signature 'number_line'
x[i, j, ...] <- value

S4 replacement method for signature 'number_line'
x[[i, j, ...]] <- value

number_line-class 33

S4 method for signature 'number_line'
x$name

S4 replacement method for signature 'number_line'
x$name <- value

S4 method for signature 'number_line'
c(x, ...)

S3 method for class 'number_line'
unique(x, ...)

S3 method for class 'number_line'
seq(x, precision = NULL, fill = FALSE, ...)

S3 method for class 'number_line'
sort(x, decreasing = FALSE, ...)

S3 method for class 'number_line'
format(x, ...)

S3 method for class 'number_line'
as.list(x, ...)

S3 method for class 'number_line'
as.data.frame(x, ...)

Arguments

object object

x x

... ...

i i

j j

drop drop

exact exact

value value

name slot name

precision Round precision

fill [logical]. Retain (TRUE) or drop (FALSE) the remainder of an uneven split.

decreasing If TRUE, sort in descending order.

Slots

start First value in the range.

34 overlaps

id Unique element id. Optional.

gid Unique group id. Optional.

.Data Length, duration or width of the range.

overlaps Overlapping number line objects

Description

Identify overlapping number_line objects

Usage

overlaps(x, y, methods = 8)

overlap(x, y)

none(x, y)

exact(x, y)

across(x, y)

x_across_y(x, y)

y_across_x(x, y)

chain(x, y)

x_chain_y(x, y)

y_chain_x(x, y)

aligns_start(x, y)

x_aligns_start_y(x, y)

y_aligns_start_x(x, y)

aligns_end(x, y)

x_aligns_end_y(x, y)

y_aligns_end_x(x, y)

inbetween(x, y)

overlaps 35

x_inbetween_y(x, y)

y_inbetween_x(x, y)

overlap_method(x, y)

include_overlap_method(methods)

exclude_overlap_method(methods)

overlap_method_codes(methods)

overlap_method_names(methods)

Arguments

x [number_line]

y [number_line]

methods [charater|integer]. Type of overlap. See as.data.frame(diyar::overlap_methods$options)
for options.

Details

There are 6 mutually exclusive types of overlap;

• exact() - identical start_point and end_point points.

• inbetween() - Both start_point and end_point of one number_line object are within the
start_point and end_point of another.

• across() - Only the start_point or end_point of one number_line object is in between
the start_point and end_point of another.

• chain() - end_point of one number_line object is identical to the start_point of another.

• aligns_start() - identical start_point only.

• aligns_end() - identical end_point only.

Except exact(), each type of overlap has two variations;

• x_‘method‘_y() - number_line-x starts before number_line-y.

• y_‘method‘_x() - number_line-y starts before number_line-x.

There are two mutually inclusive types of overlap;

• overlap() - a convenient option to select "ANY" and "ALL" type of overlap.

• none() - a convenient option to select "NO" type of overlap.

Selecting multiple types of overlap;

• overlaps() - select specific type(s) of overlap.

36 overlaps

• overlap_method() - return the type of overlap for a pair of number_line objects.

• overlap_method_codes() - return the corresponding overlap method code for a specific
type(s) of overlap.

• overlap_method_names() - return the corresponding type(s) of overlap for a specific overlap
code.

• include_overlap_method() - return a character(1) value for specified type(s) of overlap.

• exclude_overlap_method() - return a character(1) value for all type(s) of overlap except
those specified.

Value

logical; character

See Also

number_line; set_operations

Examples

a <- number_line(-100, 100)
g <- number_line(100, 100)
overlaps(a, g)

It's neither an "exact" or "chain"-overlap
overlaps(a, g, methods = "exact|chain")

It's an "aligns_end"-overlap
overlap_method(a, g)
overlaps(a, g, methods = "exact|chain|x_aligns_end_y")

Corresponding overlap code
overlap_method_codes("exact|chain|x_aligns_end_y")
include_overlap_method(c("exact", "chain", "x_aligns_end_y"))

Corresponding overlap name
overlap_method_names(overlap_method_codes("exact|chain|x_aligns_end_y"))

Every other type overlap
exclude_overlap_method(c("exact", "chain", "x_aligns_end_y"))
overlap_method_names(exclude_overlap_method(c("exact", "chain", "x_aligns_end_y")))

All the above is based on tests for each specific type of overlap as seen below
none(a, g)
exact(a, g)
across(a, g)
x_across_y(a, g)
y_across_x(a, g)
chain(a, g)
x_chain_y(a, g)
y_chain_x(a, g)
inbetween(a, g)

pane-class 37

x_inbetween_y(a, g)
y_inbetween_x(a, g)
aligns_start(a, g)
x_aligns_start_y(a, g)
y_aligns_start_x(a, g)
aligns_end(a, g)
x_aligns_end_y(a, g)
y_aligns_end_x(a, g)

pane-class pane object

Description

S4 objects storing the result of partitions.

Usage

is.pane(x)

as.pane(x)

S3 method for class 'pane'
format(x, ...)

S3 method for class 'pane'
unique(x, ...)

S3 method for class 'pane'
summary(object, ...)

S3 method for class 'pane_summary'
print(x, ...)

S3 method for class 'pane'
as.data.frame(x, ..., decode = TRUE)

S3 method for class 'pane'
as.list(x, ..., decode = TRUE)

S4 method for signature 'pane'
show(object)

S4 method for signature 'pane'
rep(x, ...)

S4 method for signature 'pane'

38 pane-class

x[i, j, ..., drop = TRUE]

S4 method for signature 'pane'
x[[i, j, ..., exact = TRUE]]

S4 method for signature 'pane'
c(x, ...)

Arguments

x x

... ...

object object

decode If TRUE, data is decoded

i i

j j

drop drop

exact exact

Slots

sn Unique record identifier.

.Data Unique pane identifier.

case_nm Record type in regards to index assignment.

window_list A list of considered windows for each pane.

dist_pane_index The difference between each event and it’s index event.

pane_dataset Data sources in each pane.

pane_interval The start and end dates of each pane. A number_line object.

pane_length The duration or length of (pane_interval).

pane_total The number of records in each pane.

options Some options passed to the instance of partitions.

window_matched A list of matched windows for each pane.

Examples

A test for pane objects
pn <- partitions(date = 1, by = 1)
is.pane(pn); is.pane(2)

partitions 39

partitions Distribute events into specified intervals.

Description

Distribute events into groups defined by time or numerical intervals. Each set of linked records are
assigned a unique identifier with relevant group-level data.

Usage

partitions(
date,
window = NULL,
windows_total = 1,
separate = FALSE,
sn = NULL,
strata = NULL,
data_links = "ANY",
custom_sort = NULL,
group_stats = FALSE,
data_source = NULL,
by = NULL,
length.out = NULL,
fill = TRUE,
display = "none",
precision = 1

)

Arguments

date [date|datetime|integer|number_line]. Event date or period.

window [integer|number_line]. Numeric or time intervals.

windows_total [integer|number_line]. Minimum number of matched windows required for
a pane. See details

separate [logical]. If TRUE, events matched to different windows are not linked.

sn [integer]. Unique record identifier. Useful for creating familiar pane identi-
fiers.

strata [atomic]. Subsets of the dataset. Panes are created separately for each strata.

data_links [list|character]. A set of data_sources required in each pane. A pane
without records from these data_sources will be unlinked. See Details.

custom_sort [atomic]. Preferred order for selecting "index" events.

group_stats [logical]. If TRUE (default), the returned pane object will include group spe-
cific information like panes start and end dates.

data_source [character]. Unique data source identifier. Adds the list of datasets in each
pane to the pane. Useful when the data is from multiple sources.

40 partitions

by [integer]. Width of splits.

length.out [integer]. Number of splits.

fill [logical]. Retain (TRUE) or drop (FALSE) the remainder of an uneven split.

display [character]. Display a status update. Options are; "none" (default), "progress"
or "stats".

precision Round precision

Details

Each assigned group is referred to as a pane A pane consists of events within a specific time or
numerical intervals (window).

Each window must cover a separate interval. Overlapping windows are merged before events are
distributed into panes. Events that occur over two windows are assigned to the last one listed.

Alternatively, you can create windows by splitting a period into equal parts (length.out), or into a
sequence of intervals with fixed widths (by).

By default, the earliest event is taken as the "Index" event of the pane. An alternative can be chosen
with custom_sort. Note that this is simply a convenience option because it has no bearing on how
groups are assigned.

partitions() will categorise records into 3 types;

• "Index" - Index event/record of the pane.

• "Duplicate_I" - Duplicate of the "Index" record.

• "Skipped" - Records that are not assigned to a pane.

Every element in data_links must be named "l" (links) or "g" (groups). Unnamed elements of
data_links will be assumed to be "l".

• If named "l", only groups with records from every listed data_source will be retained.

• If named "g", only groups with records from any listed data_source will be retained.

NA values in strata excludes records from the partitioning process.

See vignette("episodes") for more information.

Value

pane

See Also

pane; number_line_sequence; episodes; links; overlaps; number_line; schema

pid-class 41

Examples

events <- c(30, 2, 11, 10, 100)
windows <- number_line(c(1, 9, 25), c(3, 12, 35))

events
partitions(date = events, length.out = 3, separate = TRUE)
partitions(date = events, by = 10, separate = TRUE)
partitions(date = events, window = windows, separate = TRUE)
partitions(date = events, window = windows, separate = FALSE)
partitions(date = events, window = windows, separate = FALSE, windows_total = 4)

pid-class pid objects

Description

S4 objects storing the result of links.

Usage

is.pid(x)

as.pid(x, ...)

S3 method for class 'pid'
format(x, ...)

S3 method for class 'pid'
unique(x, ...)

S3 method for class 'pid'
summary(object, ...)

S3 method for class 'pid_summary'
print(x, ...)

S3 method for class 'pid'
as.data.frame(x, ..., decode = TRUE)

S3 method for class 'pid'
as.list(x, ..., decode = TRUE)

S4 method for signature 'pid'
show(object)

S4 method for signature 'pid'

42 pid-class

rep(x, ...)

S4 method for signature 'pid'
x[i, j, ..., drop = TRUE]

S4 method for signature 'pid'
x[[i, j, ..., exact = TRUE]]

S4 method for signature 'pid'
c(x, ...)

Arguments

x x

... ...

object object

decode If TRUE, data is decoded

i i

j j

drop drop

exact exact

Slots

sn Unique record identifier.

.Data Unique group identifier.

link_id Unique reference ID for each match.

pid_cri Match stage of the step-wise linkage.

pid_dataset Data sources in each group.

pid_total The number of records in each group.

iteration The iteration when a record was matched to it’s group (.Data).

Examples

A test for pid objects
pd <- links(criteria = 1)
is.pid(pd); is.pid(2)

predefined_tests 43

predefined_tests Predefined logical tests in diyar

Description

A collection of predefined logical tests used with sub_criteria objects

Usage

exact_match(x, y)

range_match(x, y, range = 10)

prob_link(
x,
y,
cmp_func,
attr_threshold,
score_threshold,
probabilistic,
return_weights = FALSE

)

true(x, y)

false(x, y)

Arguments

x Attribute(s) to be compared against.

y Attribute(s) to be compared by.

range Difference between y and x.

cmp_func Logical tests such as string comparators. See links_wf_probabilistic.

attr_threshold Matching set of weight thresholds for each result of cmp_func. See links_wf_probabilistic.
score_threshold

Score threshold determining matched or linked records. See links_wf_probabilistic.

probabilistic If TRUE, matches determined through a score derived base on Fellegi-Sunter
model for probabilistic linkage. See links_wf_probabilistic.

return_weights If TRUE, returns the match-weights and score-thresholds for record pairs.

Details

exact_match() - test that x == y

range_match() - test that x ≤ y ≤ (x + range)

44 reframe

prob_link() - Test that a record-pair relate to the same entity based on Fellegi and Sunter (1969)
model for deciding if two records belong to the same entity.

In summary, record-pairs are created and categorised as matches and non-matches (attr_threshold)
with user-defined functions (cmp_func). If probabilistic is TRUE, two probabilities (m and u) are
used to calculate weights for matches and non-matches. The m-probability is the probability that
matched records are actually from the same entity i.e. a true match, while u-probability is the prob-
ability that matched records are not from the same entity i.e. a false match. Record-pairs whose
total score are above a certain threshold (score_threshold) are assumed to belong to the same
entity.

Agreement (match) and disagreement (non-match) scores are calculated as described by Asher et
al. (2020).

For each record pair, an agreement for attribute i is calculated as;

log2(mi/ui)

For each record pair, a disagreement score for attribute i is calculated as;

log2((1−mi)/(1− ui))

where mi and ui are the m and u-probabilities for each value of attribute i.

Note that each probability is calculated as a combined probability for the record pair. For example, if
the values of the record-pair have u-probabilities of 0.1 and 0.2 respectively, then the u-probability
for the pair will be 0.02.

Missing data (NA) are considered non-matches and assigned a u-probability of 0.

Examples

`exact_match`
exact_match(x = 1, y = 1)
exact_match(x = 1, y = 2)

`range_match`
range_match(x = 10, y = 16, range = 6)
range_match(x = 16, y = 10, range = 6)

reframe Modify sub_criteria objects

Description

Modify the attributes of a sub_criteria object.

schema 45

Usage

reframe(x, ...)

S3 method for class 'sub_criteria'
reframe(x, func = identity, ...)

Arguments

x [sub_criteria].

... Arguments passed to methods.

func [function]. Transformation function.

See Also

sub_criteria; eval_sub_criteria; attr_eval

Examples

s_cri <- sub_criteria(month.abb, month.name)
reframe(s_cri, func = function(x) x[12])
reframe(s_cri, func = function(x) x[12:1])
reframe(s_cri, func = function(x) attrs(x[1:6], x[7:12]))

schema Schema diagram for group identifiers

Description

Create schema diagrams for number_line, epid, pid and pane objects.

Usage

schema(x, ...)

S3 method for class 'number_line'
schema(x, show_labels = c("date", "case_overlap_methods"), ...)

S3 method for class 'epid'
schema(
x,
title = NULL,
show_labels = c("length_arrow"),
show_skipped = TRUE,
show_non_finite = FALSE,
theme = "dark",
seed = NULL,
custom_label = NULL,

46 schema

...
)

S3 method for class 'pane'
schema(
x,
title = NULL,
show_labels = c("window_label"),
theme = "dark",
seed = NULL,
custom_label = NULL,
...

)

S3 method for class 'pid'
schema(
x,
title = NULL,
show_labels = TRUE,
theme = "dark",
orientation = "by_pid",
seed = NULL,
custom_label = NULL,
...

)

Arguments

x [number_line|epid|pid|pane]

... Other arguments.
show_labels [logical|character]. Show/hide certain parts of the schema. See Details.
title [character]. Plot title.
show_skipped [logical]. Show/hide "Skipped" records.
show_non_finite

[logical]. Show/hide records with non-finite date values.
theme [character]. Options are "dark" or "light".
seed [integer]. See set.seed. Used to get a consistent arrangement of items in the

plot.
custom_label [character]. Custom label for each record of the identifier.
orientation [character]. Show each record of a pid object within its group id ("by_pid")

or its pid_cri ("by_pid_cri")

Details

A visual aid to describe the data linkage (links), episode tracking (episodes) or partitioning pro-
cess (partitions).

show_labels options (multi-select)

set_operations 47

• schema.epid - TRUE, FALSE, "sn", "epid", "date", "case_nm", "wind_nm", "length", "length_arrow",
"case_overlap_methods" or "recurrence_overlap_methods"

• schema.pane - TRUE, FALSE, "sn", "pane", "date", "case_nm" or "window_label"
• schema.pid - TRUE, FALSE, "sn" or "pid"

Value

ggplot objects

Examples

schema(number_line(c(1, 2), c(2, 1)))

schema(episodes(1:10, 2))

schema(partitions(1:10, by = 2, separate = TRUE))

schema(links(list(c(1, 1, NA, NA), c(NA, 1, 1, NA))))

set_operations Set operations on number line objects

Description

Perform set operations on a pair of [number_line]s.

Usage

union_number_lines(x, y)

intersect_number_lines(x, y)

subtract_number_lines(x, y)

Arguments

x [number_line]

y [number_line]

Details

union_number_lines() - Combined the range of x and that of y

intersect_number_line() - Subset of x that overlaps with y and vice versa

subtract_number_lines() - Subset of x that does not overlap with y and vice versa.

The direction of the returned [number_line] will be that of the widest one (x or y). If x and y
have the same length, it’ll be an "increasing" direction.

If x and y do not overlap, NA ("NA ?? NA") is returned.

48 staff_records

Value

[number_line]; list

See Also

number_line; overlaps

Examples

nl_1 <- c(number_line(1, 5), number_line(1, 5), number_line(5, 9))
nl_2 <- c(number_line(1, 2), number_line(2, 3), number_line(0, 6))

Union
nl_1; nl_2; union_number_lines(nl_1, nl_2)

nl_3 <- number_line(as.Date(c("01/01/2020", "03/01/2020","09/01/2020"), "%d/%m/%Y"),
as.Date(c("09/01/2020", "09/01/2020","25/12/2020"), "%d/%m/%Y"))

nl_4 <- number_line(as.Date(c("04/01/2020","01/01/2020","01/01/2020"), "%d/%m/%Y"),
as.Date(c("05/01/2020","05/01/2020","03/01/2020"), "%d/%m/%Y"))

Intersect
nl_3; nl_4; intersect_number_lines(nl_3, nl_4)

Subtract
nl_3; nl_4; subtract_number_lines(nl_3, nl_4)

staff_records Datasets in diyar package

Description

Datasets in diyar package

Usage

data(staff_records)

data(missing_staff_id)

data(infections)

data(infections_2)

data(infections_3)

staff_records 49

data(infections_4)

data(hospital_admissions)

data(patient_list)

data(patient_list_2)

data(hourly_data)

data(Opes)

data(episode_unit)

data(overlap_methods)

data(patient_records)

Format

data.frame

data.frame

data.frame

data.frame

data.frame

data.frame

data.frame

data.frame

An object of class data.frame with 5 rows and 4 columns.

data.frame

data.frame

list

list

data.frame

Details

staff_records - Staff record with some missing data

missing_staff_id - Staff records with missing staff identifiers

infections, infections_2, infections_3 and infections_4 - Reports of bacterial infections

hospital_admissions - Hospital admissions and discharges

patient_list & patient_list_2 - Patient list with some missing data

Hourly data

50 sub_criteria

Opes - List of individuals with the same name

Duration in seconds for each ’episode_unit’

Permutations of number_line overlap methods

Examples

data(staff_records)
data(missing_staff_id)
data(infections)
data(infections_2)
data(infections_3)
data(infections_4)
data(hospital_admissions)
data(patient_list)
data(patient_list_2)
data(hourly_data)
data(Opes)
data(episode_unit)
data(overlap_methods)
data(patient_records)

sub_criteria Match criteria

Description

Match criteria for record linkage with links and episodes

Usage

sub_criteria(
...,
match_funcs = c(exact = diyar::exact_match),
equal_funcs = c(exact = diyar::exact_match),
operator = "or"

)

attrs(..., .obj = NULL)

eval_sub_criteria(x, ...)

S3 method for class 'sub_criteria'
print(x, ...)

S3 method for class 'sub_criteria'
format(x, show_levels = FALSE, ...)

S3 method for class 'sub_criteria'

sub_criteria 51

eval_sub_criteria(
x,
x_pos = seq_len(max(attr_eval(x))),
y_pos = rep(1L, length(x_pos)),
check_duplicates = TRUE,
depth = 0,
...

)

Arguments

... [atomic] Attributes passed to or eval_sub_criteria() or eval_sub_criteria()
Arguments passed to methods for eval_sub_criteria()

match_funcs [function]. User defined logical test for matches.

equal_funcs [function]. User defined logical test for identical record sets (all attributes of
the same record).

operator [character]. Options are "and" or "or".

.obj [data.frame|list]. Attributes.

x [sub_criteria]. Attributes.

show_levels [logical]. If TRUE, show recursive depth for each logic statement of the match
criteria.

x_pos [integer]. Index of one half of a record pair.

y_pos [integer]. Index of one half of a record pair.
check_duplicates

[logical]. If FALSE, does not check duplicate values. The result of the initial
check will be recycled.

depth [integer]. First order of recursion.

Details

sub_criteria() - Create a match criteria as a sub_criteria object. A sub_criteria object
contains attributes to be compared, logical tests for the comparisons (see predefined_tests for
examples) and another set of logical tests to determine identical records.

attrs() - Create a d_attribute object - a collection of atomic objects that can be passed to
sub_criteria() as a single attribute.

eval_sub_criteria() - Evaluates a sub_criteria object.

At each iteration of links or episodes, record-pairs are created from each attribute of a sub_criteria
object. eval_sub_criteria() evaluates each record-pair using the match_funcs and equal_funcs
functions of a sub_criteria object. See predefined_tests for examples of match_funcs and
equal_funcs.

User-defined functions are also permitted as match_funcs and equal_funcs. Such functions must
meet three requirements:

1. It must be able to compare the attributes.

52 sub_criteria

2. It must have two arguments named `x` and `y`, where `y` is the value for one observation
being compared against all other observations (`x`).

3. It must return a logical object i.e. TRUE or FALSE.

attrs() is useful when the match criteria requires an interaction between the multiple attributes.
For example, attribute 1 + attribute 2 > attribute 3.

Every attribute, including those in attrs(), must have the same length or a length of 1.

Value

sub_criteria

See Also

predefined_tests; links; episodes; eval_sub_criteria

Examples

Attributes
attr_1 <- c(30, 28, 40, 25, 25, 29, 27)
attr_2 <- c("M", "F", "U", "M", "F", "U", "M")

A match criteria
Example 1 - A maximum difference of 10 in attribute 1
s_cri1 <- sub_criteria(attr_1, match_funcs = range_match)
s_cri1

Evaluate the match criteria
Compare the first element of 'attr_1' against all other elements
eval_sub_criteria(s_cri1)
Compare the second element of 'attr_1' against all other elements
x_pos_val <- seq_len(max(attr_eval(s_cri1)))
eval_sub_criteria(s_cri1,

x_pos = x_pos_val,
y_pos = rep(2, length(x_pos_val)))

Example 2 - `s_cri1` AND an exact match on attribute 2
s_cri2 <- sub_criteria(
s_cri1,
sub_criteria(attr_2, match_funcs = exact_match),
operator = "and")

s_cri2

Example 3 - `s_cri1` OR an exact match on attribute 2
s_cri3 <- sub_criteria(
s_cri1,
sub_criteria(attr_2, match_funcs = exact_match),
operator = "or")

s_cri3

Evaluate the match criteria
eval_sub_criteria(s_cri2)

windows 53

eval_sub_criteria(s_cri3)

Alternatively, using `attr()`
AND_func <- function(x, y) range_match(x$a1, y$a1) & x$a2 == y$a2
OR_func <- function(x, y) range_match(x$a1, y$a1) | x$a2 == y$a2

Create a match criteria
s_cri2b <- sub_criteria(attrs(.obj = list(a1 = attr_1, a2 = attr_2)),

match_funcs = AND_func)
s_cri3b <- sub_criteria(attrs(.obj = list(a1 = attr_1, a2 = attr_2)),

match_funcs = OR_func)

Evaluate the match criteria
eval_sub_criteria(s_cri2b)
eval_sub_criteria(s_cri3b)

windows Windows and lengths

Description

Covert windows to and from case_lengths and recurrence_lengths.

Usage

epid_windows(date, lengths, episode_unit = "days")

epid_lengths(date, windows, episode_unit = "days")

index_window(date, from_last = FALSE)

Arguments

date As used in episodes.
lengths The duration (lengths) between a date and window.
episode_unit Time unit of lengths. Options are "seconds", "minutes", "hours", "days", "weeks",

"months" or "years". See diyar::episode_unit

windows The range (windows) relative to a date for a given duration (length).
from_last As used in episodes.

Details

epid_windows - returns the corresponding window for a given a date, and case_length or recurrence_length.

epid_lengths - returns the corresponding case_length or recurrence_length for a given date
and window.

index_window - returns the corresponding case_length or recurrence_length for the date only.

index_window(date = x) is a convenience function for epid_lengths(date = x, window = x).

54 windows

Value

number_line.

Examples

Which `window` will a given `length` cover?
date <- Sys.Date()
epid_windows(date, 10)
epid_windows(date, number_line(5, 10))
epid_windows(date, number_line(-5, 10))
epid_windows(date, -5)

Which `length` is required to cover a given `window`?
date <- number_line(Sys.Date(), Sys.Date() + 20)
epid_lengths(date, Sys.Date() + 30)
epid_lengths(date, number_line(Sys.Date() + 25, Sys.Date() + 30))
epid_lengths(date, number_line(Sys.Date() - 10, Sys.Date() + 30))
epid_lengths(date, Sys.Date() - 10)

Which `length` is required to cover the `date`?
index_window(20)
index_window(number_line(15, 20))

Index

∗ datasets
staff_records, 48

[,epid-method (epid-class), 9
[,number_line-method

(number_line-class), 32
[,pane-method (pane-class), 37
[,pid-method (pid-class), 41
[.d_label (encode), 8
[<-,number_line-method

(number_line-class), 32
[[,epid-method (epid-class), 9
[[,number_line-method

(number_line-class), 32
[[,pane-method (pane-class), 37
[[,pid-method (pid-class), 41
[[.d_label (encode), 8
[[<-,number_line-method

(number_line-class), 32
$,number_line-method

(number_line-class), 32
$<-,number_line-method

(number_line-class), 32

across (overlaps), 34
aligns_end (overlaps), 34
aligns_start (overlaps), 34
as.data.frame.d_report (d_report), 7
as.data.frame.epid (epid-class), 9
as.data.frame.number_line

(number_line-class), 32
as.data.frame.pane (pane-class), 37
as.data.frame.pid (pid-class), 41
as.epid (epid-class), 9
as.list.d_report (d_report), 7
as.list.epid (epid-class), 9
as.list.number_line

(number_line-class), 32
as.list.pane (pane-class), 37
as.list.pid (pid-class), 41
as.number_line (number_line), 29

as.pane (pane-class), 37
as.pid (pid-class), 41
attr_eval, 2, 45
attrs (sub_criteria), 50

bys_count (bys_funcs), 3
bys_cummax (bys_funcs), 3
bys_cummin (bys_funcs), 3
bys_cumprod (bys_funcs), 3
bys_cumsum (bys_funcs), 3
bys_funcs, 3
bys_lag (bys_funcs), 3
bys_lead (bys_funcs), 3
bys_max (bys_funcs), 3
bys_min (bys_funcs), 3
bys_nval (bys_funcs), 3
bys_position (bys_funcs), 3
bys_prod (bys_funcs), 3
bys_rank (bys_funcs), 3
bys_sum (bys_funcs), 3
bys_val (bys_funcs), 3

c,epid-method (epid-class), 9
c,number_line-method

(number_line-class), 32
c,pane-method (pane-class), 37
c,pid-method (pid-class), 41
chain (overlaps), 34
combi, 5
custom_sort, 5, 13, 14

d_report, 7
decode (encode), 8
decoded, 10, 38, 42
delink, 6

encode, 8
end_point, 35
end_point (number_line), 29
end_point<- (number_line), 29

55

56 INDEX

epid, 6, 8, 13, 14, 16, 28, 45, 46
epid-class, 9
epid_length, 14
epid_lengths (windows), 53
epid_window, 14
epid_windows (windows), 53
episode_unit (staff_records), 48
episodes, 9, 10, 11, 15, 16, 19, 27, 31, 40, 46,

50–53
episodes_af_shift (episodes), 11
episodes_wf_splits, 14, 15
eval_sub_criteria, 26, 45, 52
eval_sub_criteria (sub_criteria), 50
exact (overlaps), 34
exact_match (predefined_tests), 43
exclude_overlap_method (overlaps), 34
expand_number_line (number_line), 29

false (predefined_tests), 43
format.epid (epid-class), 9
format.number_line (number_line-class),

32
format.pane (pane-class), 37
format.pid (pid-class), 41
format.sub_criteria (sub_criteria), 50

hospital_admissions (staff_records), 48
hourly_data (staff_records), 48

inbetween (overlaps), 34
include_overlap_method (overlaps), 34
index_window (windows), 53
infections (staff_records), 48
infections_2 (staff_records), 48
infections_3 (staff_records), 48
infections_4 (staff_records), 48
intersect_number_lines

(set_operations), 47
invert_number_line (number_line), 29
is.epid (epid-class), 9
is.number_line (number_line), 29
is.pane (pane-class), 37
is.pid (pid-class), 41

left_point (number_line), 29
left_point<- (number_line), 29
link_wf, 20
links, 14, 16, 18, 21, 22, 28, 31, 40, 41, 46,

50–52

links_af_probabilistic, 19, 28
links_af_probabilistic (link_wf), 20
links_wf (link_wf), 20
links_wf_episodes (episodes), 11
links_wf_probabilistic, 43
links_wf_probabilistic (link_wf), 20
listr, 23

make_episodes (make_s4_ids), 26
make_ids, 24
make_pairs, 25, 25
make_pairs_wf_source (make_pairs), 25
make_pids (make_s4_ids), 26
make_s4_ids, 26
make_sets (make_pairs), 25
merge_identifiers, 28
merge_ids (merge_identifiers), 28
missing_staff_id (staff_records), 48

none (overlaps), 34
number_line, 10, 12, 13, 21, 27, 29, 34–36,

38–40, 45–48, 50, 54
number_line-class, 32
number_line_sequence, 40
number_line_sequence (number_line), 29
number_line_width (number_line), 29

Opes (staff_records), 48
order, 5
overlap (overlaps), 34
overlap_method (overlaps), 34
overlap_method_codes (overlaps), 34
overlap_method_names (overlaps), 34
overlap_methods (staff_records), 48
overlaps, 12, 14, 31, 34, 40, 48

pane, 6, 8, 28, 39, 40, 45, 46
pane-class, 37
partitions, 14, 37, 38, 39, 46
patient_list (staff_records), 48
patient_list_2 (staff_records), 48
patient_records (staff_records), 48
pid, 6, 8, 17, 18, 21, 28, 45, 46
pid-class, 41
plot.d_report (d_report), 7
predefined_tests, 19, 43, 51, 52
print.epid_summary (epid-class), 9
print.pane_summary (pane-class), 37
print.pid_summary (pid-class), 41

INDEX 57

print.sub_criteria (sub_criteria), 50
prob_link (predefined_tests), 43
prob_score_range (link_wf), 20

range_match (predefined_tests), 43
reframe, 16, 44
rep,epid-method (epid-class), 9
rep,number_line-method

(number_line-class), 32
rep,pane-method (pane-class), 37
rep,pid-method (pid-class), 41
rep.d_label (encode), 8
reverse_number_line (number_line), 29
right_point (number_line), 29
right_point<- (number_line), 29

schema, 40, 45
seq.number_line (number_line-class), 32
set_operations, 31, 36, 47
sets (make_pairs), 25
shift_number_line (number_line), 29
show,epid-method (epid-class), 9
show,number_line-method

(number_line-class), 32
show,pane-method (pane-class), 37
show,pid-method (pid-class), 41
sort.number_line (number_line-class), 32
staff_records, 48
start_point, 35
start_point (number_line), 29
start_point<- (number_line), 29
sub_criteria, 2, 3, 13–19, 21, 27, 43–45, 50,

52
subtract_number_lines (set_operations),

47
summary.epid (epid-class), 9
summary.pane (pane-class), 37
summary.pid (pid-class), 41

true (predefined_tests), 43

union_number_lines (set_operations), 47
unique.epid (epid-class), 9
unique.number_line (number_line-class),

32
unique.pane (pane-class), 37
unique.pid (pid-class), 41
unlinked, 13, 17, 27

windows, 53

x_across_y (overlaps), 34
x_aligns_end_y (overlaps), 34
x_aligns_start_y (overlaps), 34
x_chain_y (overlaps), 34
x_inbetween_y (overlaps), 34

y_across_x (overlaps), 34
y_aligns_end_x (overlaps), 34
y_aligns_start_x (overlaps), 34
y_chain_x (overlaps), 34
y_inbetween_x (overlaps), 34

	attr_eval
	bys_funcs
	combi
	custom_sort
	delink
	d_report
	encode
	epid-class
	episodes
	episodes_wf_splits
	links
	link_wf
	listr
	make_ids
	make_pairs
	make_s4_ids
	merge_identifiers
	number_line
	number_line-class
	overlaps
	pane-class
	partitions
	pid-class
	predefined_tests
	reframe
	schema
	set_operations
	staff_records
	sub_criteria
	windows
	Index

