
Package ‘dissimilarities’
June 28, 2025

Type Package

Title Creating, Manipulating, and Subsetting ``dist'' Objects

Version 0.3.0

Maintainer Minh Long Nguyen <edelweiss611428@gmail.com>

Description Efficiently creates, manipulates, and subsets ``dist'' objects, commonly used in clus-
ter analysis. Designed to minimise unnecessary conversions and computational over-
head while enabling seamless interaction with distance matrices.

License CC BY 4.0

Encoding UTF-8

URL https://github.com/edelweiss611428/dissimilarities

BugReports https://github.com/edelweiss611428/dissimilarities/issues

Imports Rcpp, microbenchmark, proxy, stats

LinkingTo Rcpp

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation yes

Author Minh Long Nguyen [aut, cre]

Repository CRAN

Date/Publication 2025-06-28 15:40:01 UTC

Contents
Dist2Mat . 2
expandDist . 3
fastDist . 4
fastDistAB . 5
get1dFrom2d . 6
get2dFrom1d . 7

1

https://github.com/edelweiss611428/dissimilarities
https://github.com/edelweiss611428/dissimilarities/issues

2 Dist2Mat

subCols . 8
subDist2Dist . 9
subDist2Mat . 10

Index 12

Dist2Mat Dist2Mat conversion

Description

Efficiently converts a "dist" object into a symmetric distance "matrix".

Usage

Dist2Mat(dist)

Arguments

dist A "dist" object, which can be computed via the stats::dist function, representing
pairwise distances between observations.

Details

Converts a "dist" object, typically created using the stats::dist function, into a symmetric matrix
form. This implementation is optimised for speed and performs significantly faster than base::as.matrix
or proxy::as.matrix when applied to "dist" objects.

Row names are retained. If it is null, as.character(1:nObs) will be used as the row and column
names of the resulting matrix instead.

Value

A distance "matrix".

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>

Examples

library("microbenchmark")
x = matrix(rnorm(200), nrow = 50)
dx = dist(x)
#Dist2Mat conversion
microbenchmark(base::as.matrix(dx),

proxy::as.matrix(dx),
Dist2Mat(dx))

#Check if equal
v1 = as.vector(base::as.matrix(dx))
v2 = as.vector(Dist2Mat(dx))

expandDist 3

all.equal(v1, v2)

expandDist Expanding a distance matrix given new data

Description

Efficiently appends new "rows" to an existing "dist" object without explicitly recomputing a full
pairwise distance matrix.

Usage

expandDist(distA, A, B, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)

Arguments

distA A "dist" object, representing the pairwise distance matrix between observations
in matrix A, ideally computed via the distance metric specified in this function.
This requires manual check.

A A numeric matrix.

B A numeric matrix.

method A character string specifying the distance metric to use. Supported methods in-
clude "euclidean", "manhattan", "maximum", "minkowski", "cosine", and
"canberra".

diag A boolean value, indicating whether to display the diagonal entries.

upper A boolean value, indicating whether to display the upper triangular entries.

p A positive integer, required for computing Minkowski distance; by default p = 2
(i.e., Euclidean).

Details

Expands an existing distance matrix of class "dist" for matrix A, given new data B, without explic-
itly computing the distance matrix of rbind(A,B). This supports multiple commonly used distance
measures and is optimised for speed.

Row names are retained. If either rownames(A) or rownames(B) is null, as.character(1:(nrow(A)+nrow(B)))
will be used as row names instead.

Value

A distance matrix of class "dist" for rbind(A,B).

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>

4 fastDist

Examples

A = matrix(rnorm(100), nrow = 20)
B = matrix(rnorm(250), nrow = 50)
AB = rbind(A,B)
distA = fastDist(A)
v1 = as.vector(expandDist(distA, A, B))
v2 = as.vector(fastDist(AB))
all.equal(v1, v2)

fastDist "dist" object computation

Description

Efficiently computes a "dist" object from a numeric matrix using various distance metrics.

Usage

fastDist(X, method = "euclidean", diag = FALSE, upper = FALSE, p = 2L)

Arguments

X A numeric matrix.

method A character string specifying the distance metric to use. Supported methods in-
clude "euclidean", "manhattan", "maximum", "minkowski", "cosine", and
"canberra".

diag A boolean value, indicating whether to display the diagonal entries.

upper A boolean value, indicating whether to display the upper triangular entries.

p A positive integer, required for computing Minkowski distance; by default p = 2
(i.e., Euclidean).

Details

Calculates pairwise distances between rows of a numeric matrix and returns the result as a compact
"dist" object, which stores the lower-triangular entries of a complete distance matrix. Supports mul-
tiple distance measures, including "euclidean", "manhattan", "maximum", "minkowski", "cosine",
and "canberra". This implementation is optimised for speed, especially on large matrices.

Row names are retained. If it is null, as.character(1:nrow(X)) will be used as row names instead.

Value

A distance matrix of class "dist".

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>

fastDistAB 5

Examples

library("microbenchmark")
x = matrix(rnorm(200), nrow = 50)
microbenchmark(stats::dist(x, "minkowski", p = 5),

fastDist(x, "minkowski", p = 5))
v1 = as.vector(stats::dist(x, "minkowski", p = 5))
v2 = as.vector(fastDist(x, "minkowski", p = 5))
all.equal(v1, v2)

fastDistAB Computing pairwise distances between rows of two matrices

Description

Efficiently computes pairwise distances between the rows of two numeric matrices using various
distance metrics.

Usage

fastDistAB(A, B, method = "euclidean", p = 2L)

Arguments

A A numeric matrix.

B A numeric matrix.

method A character string specifying the distance metric to use. Supported methods in-
clude "euclidean", "manhattan", "maximum", "minkowski", "cosine", and
"canberra".

p A positive integer, required for computing Minkowski distance; by default p = 2
(i.e., Euclidean).

Details

This function computes the full pairwise distance matrix between the rows of matrices A and B,
without forming a concatenated matrix or performing unnecessary intermediate conversions. It
supports multiple commonly used distance measures and is optimised for speed.

Row names in A and B are retained. If either rownames(A) or rownames(B) is null, as.character(1:nrow(A))
and as.character(1:nrow(B)) will be used as row and column names of the resulting matrix instead.

Value

A numeric matrix of dimensions nrow(A) by nrow(B), where each entry represents the distance
between a row in A and a row in B.

6 get1dFrom2d

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>

Examples

library("microbenchmark")
X = matrix(rnorm(200), nrow = 50)
A = X[1:25,]
B = X[26:50,]
microbenchmark(proxy::dist(A,B, "minkowski", p = 5),

fastDistAB(A,B, "minkowski", p = 5L))
#Check if equal
v1 = as.vector(proxy::dist(A,B, "minkowski", p = 5))
v2 = as.vector(fastDistAB(A,B, "minkowski", p = 5L))
all.equal(v1, v2)

get1dFrom2d 2D-indexing to 1D-indexing

Description

Efficiently computes 1D-indexing from 2D-indexing

Usage

get1dFrom2d(i,j, N)

Arguments

i An integer specifying the row index

j An integer specifying the column index - must be different from i as "dist" object
does not store the diagonal entries.

N The number of observations in the original data matrix

Details

Converts 2D indexing (a row-column pair) into 1D indexing (as used in R’s "dist" objects), given
the number of observations N.

Currently, name-based indexing is not supported."

Value

An integer specifying the 1d index

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>

get2dFrom1d 7

Examples

N = 5
for(i in 1:4){

for(j in (i+1):5){
print(get1dFrom2d(i,j,N))

}
}

get2dFrom1d 1D-indexing to 2D-indexing

Description

Efficiently computes 2D-indexing from 1D-indexing

Usage

get2dFrom1d(idx1d, N)

Arguments

idx1d An integer vector of 1D indexes

N The number of observations in the original data matrix

Details

Converts 1D indexing (as used in R’s "dist" objects) into 2D indexing (row-column pairs) for a
distance matrix of size N ×N .

Currently, name-based indexing is not supported."

Value

An integer matrix storing the corresponding 2D indexes.

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>

Examples

get2dFrom1d(1:10, 5)

8 subCols

subCols Subsetting a "dist" object by columns

Description

Efficiently extracts a column-wise subset of a "dist" object, returning the corresponding submatrix
of pairwise distances. # nolint

Usage

subCols(dist, idx)

Arguments

dist A "dist" object, which can be computed via the stats::dist function, representing
pairwise distances between observations.

idx An integer vector, specifying the column indices of the subsetted matrix.

Details

This function extracts specified columns from a "dist" object without explicit conversion to a dense
distance "matrix", resulting in better performance and reduced memory overhead. Particularly use-
ful when only a subset of distances is needed for downstream tasks.

Row names are retained. If it is null, as.character(1:nObs) and as.character(idx) will be used as row
and column names of the resulting matrix instead.

Value

A numeric "matrix" containing the pairwise distances between all rows and the specified columns.

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>

Examples

library("microbenchmark")
x = matrix(rnorm(200), nrow = 50)
dx = dist(x)
#Randomly subsetting a 50x10 matrix
idx = sample(1:50, 10)
microbenchmark(base::as.matrix(dx)[1:50,idx],

proxy::as.matrix(dx)[1:50,idx],
subCols(dx, idx))

#Check if equal
v1 = as.vector(base::as.matrix(dx)[1:50,idx])
v2 = as.vector(subCols(dx, idx))
all.equal(v1, v2)

subDist2Dist 9

subDist2Dist Dist2Dist subsetting

Description

Efficiently extracts a subset of observations from a "dist" object and returns a new "dist" object
representing only the selected distances.

Usage

subDist2Dist(dist, idx, diag = FALSE, upper = FALSE)

Arguments

dist A "dist" object, which can be computed via the stats::dist function, representing
the full pairwise distance matrix between observations.

idx An integer vector, specifying the indices of the observations to retain.

diag A boolean value, indicating whether to display the diagonal entries.

upper A boolean value, indicating whether to display the upper triangular entries.

Details

This function subsets a "dist" object directly without explicit conversion to a dense distance "ma-
trix". It extracts only the relevant distances corresponding to the selected indices, improving both
performance and memory efficiency. The result is returned as a subsetted "dist" object, preserving
compatibility with downstream functions that accept this class.

Row names are retained. If it is null, as.character(idx) will be used as row names instead.

Value

A numeric "matrix" storing pairwise distances between the selected observations.

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>

Examples

library("microbenchmark")
x = matrix(rnorm(200), nrow = 50)
dx = dist(x)
#Subsetting the first 10 units
microbenchmark(as.dist(base::as.matrix(dx)[1:10,1:10]),

as.dist(proxy::as.matrix(dx)[1:10,1:10]),
subDist2Dist(dx, 1:10))

#Check if equal
v1 = as.vector(as.dist(base::as.matrix(dx)[1:10,1:10]))

10 subDist2Mat

v2 = as.vector(subDist2Dist(dx, 1:10))
all.equal(v1, v2)

subDist2Mat Dist2Mat subsetting

Description

Efficiently extracts a 2d submatrix of pairwise distances from a "dist" object.

Usage

subDist2Mat(dist, idx1, idx2)

Arguments

dist A "dist" object, which can be computed via the stats::dist function, representing
the full pairwise distance matrix between observations.

idx1 An integer vector, specifying the row indices of the subsetted matrix.

idx2 An integer vector, specifying the column indices of the subsetted matrix.

Details

This function efficiently subsets a "dist" object by row and column indices, returning the corre-
sponding rectangular section as a numeric matrix. It avoids explicit conversion from the "dist"
object to a dense "matrix", improving memory efficiency and computational speed, especially with
large datasets.

Row names are retained. If it is null, as.character(idx1) and as.character(idx2) will be used as row
and column names of the resulting matrix instead.

Value

A numeric matrix storing pairwise distances between observations column-indexed by idx1 and
row-indexed by idx2.

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>

subDist2Mat 11

Examples

library("microbenchmark")
x = matrix(rnorm(200), nrow = 50)
dx = dist(x)
#Randomly subsetting a 10x10 matrix
idx1 = sample(1:50, 10)
idx2 = sample(1:50, 10)
microbenchmark(base::as.matrix(dx)[idx1,idx2],

proxy::as.matrix(dx)[idx1,idx2],
subDist2Mat(dx, idx1, idx2))

#Check if equal
v1 = as.vector(base::as.matrix(dx)[idx1,idx2])
v2 = as.vector(subDist2Mat(dx, idx1, idx2))
all.equal(v1, v2)

Index

Dist2Mat, 2

expandDist, 3

fastDist, 4
fastDistAB, 5

get1dFrom2d, 6
get2dFrom1d, 7

subCols, 8
subDist2Dist, 9
subDist2Mat, 10

12

	Dist2Mat
	expandDist
	fastDist
	fastDistAB
	get1dFrom2d
	get2dFrom1d
	subCols
	subDist2Dist
	subDist2Mat
	Index

