Package 'depCensoring'

March 12, 2025

Type Package

Title Statistical Methods for Survival Data with Dependent Censoring

Version 0.1.7

Maintainer Negera Wakgari Deresa <negera.deresa@gmail.com>

Description Several statistical methods for analyzing survival data under various forms of dependent censoring are implemented in the package. In addition to accounting for dependent censoring, it offers tools to adjust for unmeasured confounding factors. The implemented approaches allow users to estimate the dependency between survival time and dependent censoring time, based solely on observed survival data. For more details on the methods, refer to Deresa and Van Keilegom (2021) <doi:10.1093/biomet/asaa095>, Czado and Van Keilegom (2023) <doi:10.1093/biomet/asaa067>, Crommen et al. (2024) <doi:10.1007/s11749-023-00903-9>, Deresa and Van Keilegom (2024) <doi:10.1080/01621459.2022.2161387>, Rutten et al. (2024+) <doi:10.48550/arXiv.2403.11860> and Ding and Van Keilegom (2024).

Imports survival, foreach, parallel, doParallel, pbivnorm, stats,

MASS, nleqslv, OpenMx, methods, Matrix, EnvStats, mvtnorm, rafalib, rvinecopulib, matrixcalc, nloptr, stringr, numDeriv, copula, R6, lubridate, splines2

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0), rkriging

Config/testthat/edition 3

NeedsCompilation no

Author Ilias Willems [aut] (<https://orcid.org/0009-0001-9463-9942>), Gilles Crommen [aut] (<https://orcid.org/0000-0001-8380-1900>), Negera Wakgari Deresa [aut, cre] (<https://orcid.org/0000-0002-1302-3725>), Jie Ding [aut] (<https://orcid.org/0000-0002-6083-7529>), Claudia Czado [aut] (<https://orcid.org/0000-0002-6329-5438>), Ingrid Van Keilegom [aut] (<https://orcid.org/0000-0001-8827-7642>)

Repository CRAN

Date/Publication 2025-03-11 23:10:10 UTC

Contents

A_step	5
boot.fun	5
boot.funI	7
boot.nonparTrans	8
Bspline.unit.interval	9
Bvprob	9
cbMV	10
check.args.pisurv	10
chol2par	11
chol2par.elem	12
Chronometer	12
clear.plt.wdw	14
CompC	14
control.arguments	15
copdist.Archimedean	15
cophfunc	16
coppar.to.ktau	16
cr.lik	17
D.hat	18
dat.sim.reg.comp.risks	18
dchol2par	19
dchol2par.elem	20
dD.hat	21
Distance	22
dLambda_AFT_ll	22
dLambda_Cox_wb	23
dm.bar	23
do.optimization.Mstep	24
draw.sv.init	24
DYJtrans	25
EAM	25
EAM.converged	27
EI	28
estimate.cf	28
estimate.cmprsk	29
E_step	
feasible_point_search	
fitDepCens	33
fitIndepCens	35
G.box	37
G.cd	38
G.cd.mc	39
G.hat.	40
G.spline	42
generator.Archimedean	43
get.anchor.points	43

Contents

get.cond.moment.evals															
get.cvLLn	•														. 44
get.deriv.mom.func															. 45
get.dmi.tens															. 46
get.extra.Estep.points															. 46
get.instrumental.function.evals .															
get.mi.mat															
get.next.point															
get.starting.values															
get.test.statistic															
gridSearch															
gs.algo.bidir															
gs.binary															
gs.interpolation															
gs.regular															
insert.row															
IYJtrans															
Kernel															
ktau.to.coppar															
Lambda_AFT_ll															
Lambda_Cox_wb															
Lambda_inverse_AFT_ll															
Lambda_inverse_Cox_wb															
lf.delta.beta1	•	•	 •	 •	•	•	•••	•	 •	 •		 •	•		. 56
lf.ts	•	•						•							. 58
LikCopInd	•												•		. 58
Likelihood.Parametric															. 59
Likelihood.Profile.Kernel															. 60
Likelihood.Profile.Solve															
Likelihood.Semiparametric															
LikF.cmprsk															
likF.cmprsk.Cholesky															
LikGamma1															
LikGamma2															
LikI.bis															
LikI.cmprsk															
LikI.cmprsk.Cholesky															
likIFG.cmprsk.Cholesky															
loglike.clayton.unconstrained															
loglike.frank.unconstrained															. 69
•															
loglike.gaussian.unconstrained .															
loglike.gumbel.unconstrained															
loglike.indep.unconstrained															
log_transform															
Longfun															
LongNPT															
m.bar															
MSpoint															. 74

M_step		75
NonParTrans		76
normalize.covariates		77
normalize.covariates2		78
Omega.hat		79
optimlikelihood		80
parafam.d		80
parafam.p		81
parafam.trunc		81
ParamCop		82
Parameters.Constraints		83
pi.surv		83
plot_addpte		
plot_addpte.eval		86
plot_base		86
power_transform		87
PseudoL		87
S.func		
ScoreEqn		
SearchIndicate		
set.EAM.hyperparameters		89
set.GS.hyperparameters		90
set.hyperparameters		91
Sigma.hat		92
SolveH		93
SolveHt1		94
SolveL		
SolveLI		
SolveScore		
summary.depFit		
summary.indepFit		
SurvDC		
SurvDC.GoF		
SurvFunc.CG		
SurvFunc.KM		
SurvMLE		
SurvMLE.Likelihood		
TCsim		
test.point_Bei		
test.point_Bei_MT		
uniformize.data		
variance.cmprsk		
YJtrans		
1 Juans	•••	115

A_step

Description

This function performs the approximation step in the EAM algorithm. More specifically, it fits a Gaussian-process regression model (Kriging) to the evaluated data points $(\theta, c(\theta))$.

Usage

A_step(evaluations, verbose = 0)

Arguments

evaluations	Matrix containing each point that was already evaluated, alongside the corre-
	sponding test statistic and critical value, as its rows.
verbose	Verbosity parameter.

Value

Results of the A-step.

See Also

Package rkriging.

boot.fun

Nonparametric bootstrap approach for the dependent censoring model

Description

This function estimates the bootstrap standard errors for the finite-dimensional model parameters and for the non-parametric cumulative hazard function. Parallel computing using foreach has been used to speed up the estimation of standard errors.

Usage

boot.fun(
 init,
 resData,
 X,
 W,
 lhat,
 cumL,
 dist,

```
k,
lb,
ub,
Obs.time,
cop,
n.boot,
n.iter,
ncore,
eps
```

Arguments

)

init	Initial values for the finite dimensional parameters obtained from the fit of fitDepCens
resData	Data matrix with three columns; $Z =$ the observed survival time, $d1 =$ the censoring indicator of T and $d2 =$ the censoring indicator of C.
Х	Data matrix with covariates related to T
W	Data matrix with covariates related to C. First column of W should be a vector of ones
lhat	Initial values for the hazard function obtained from the fit of fitDepCens based on the original data.
cumL	Initial values for the cumulative hazard function obtained from the fit of fitDepCens based on the original data.
dist	The distribution to be used for the dependent censoring time C. Only two dis- tributions are allowed, i.e, Weibull and lognormal distributions. With the value "Weibull" as the default.
k	Dimension of X
lb	lower boundary for finite dimensional parameters
ub	Upper boundary for finite dimensional parameters
Obs.time	Observed survival time, which is the minimum of T, C and A, where A is the administrative censoring time.
сор	Which copula should be computed to account for dependency between T and C. This argument can take one of the values from c("Gumbel", "Frank", "Normal").
n.boot	Number of bootstraps to use in the estimation of bootstrap standard errors.
n.iter	Number of iterations; the default is n.iter = 20. The larger the number of iterations, the longer the computational time.
ncore	The number of cores to use for parallel computation is configurable, with the default ncore = 7.
eps	Convergence error. This is set by the user in such away that the desired convergence is met; the default is $eps = 1e-3$

Value

Bootstrap standard errors for parameter estimates and for estimated cumulative hazard function.

6

boot.funI

Description

This function estimates the bootstrap standard errors for the finite-dimensional model parameters and for the non-parametric cumulative hazard function under the assumption of independent censoring. Parallel computing using foreach has been used to speed up the computation.

Usage

boot.funI(init, resData, Χ, W, lhat, cumL, dist, k, 1b, ub, Obs.time, n.boot, n.iter, ncore, eps

Arguments

)

init	Initial values for the finite dimensional parameters obtained from the fit of fitIndepCens
resData	Data matrix with three columns; $Z =$ the observed survival time, d1 = the censoring indicator of T and d2 = the censoring indicator of C.
Х	Data matrix with covariates related to T
W	Data matrix with covariates related to C. First column of W should be a vector of ones
lhat	Initial values for the hazard function obtained from the fit of fitIndepCens based on the original data
cumL	Initial values for the cumulative hazard function obtained from the fit of fitIndepCens based on the original data
dist	The distribution to be used for the dependent censoring time C. Only two dis- tributions are allowed, i.e, Weibull and lognormal distributions. With the value "Weibull" as the default

k	Dimension of X
1b	lower boundary for finite dimensional parameters
ub	Upper boundary for finite dimensional parameters
Obs.time	Observed survival time, which is the minimum of T, C and A, where A is the administrative censoring time.
n.boot	Number of bootstraps to use in the estimation of bootstrap standard errors.
n.iter	Number of iterations; the default is n.iter = 20. The larger the number of iterations, the longer the computational time
ncore	The number of cores to use for parallel computation is configurable, with the default ncore = 7.
eps	Convergence error. This is set by the user in such away that the desired convergence is met; the default is $eps = 1e-3$

Value

Bootstrap standard errors for parameter estimates and for estimated cumulative hazard function.

<pre>boot.nonparTrans</pre>	Nonparametric bootstrap approach for a Semiparametric transforma-
	tion model under dependent censpring

Description

This function estimates the bootstrap standard errors for the finite-dimensional model parameters and for the non-parametric transformation function. Parallel computing using foreach has been used to speed up the estimation of standard errors.

Usage

```
boot.nonparTrans(init, resData, X, W, n.boot, n.iter, eps)
```

init	Initial values for the finite dimensional parameters obtained from the fit of NonParTrans
resData	Data matrix with three columns; $Z =$ the observed survival time, d1 = the censoring indicator of T and d2 = the censoring indicator of C.
Х	Data matrix with covariates related to T
W	Data matrix with covariates related to C.
n.boot	Number of bootstraps to use in the estimation of bootstrap standard errors.
n.iter	Number of iterations; the default is n.iter = 15. The larger the number of iterations, the longer the computational time.
eps	Convergence error. This is set by the user in such away that the desired convergence is met; the default is $eps = 1e-3$

Value

Bootstrap standard errors for parameter estimates and for estimated cumulative hazard function.

Bspline.unit.interval Evaluate the specified B-spline, defined on the unit interval

Description

This function evaluates the specified B-spline defined on the unit interval, when considering n.if.per.cov B-splines. Currently, the implementation is based on the one in Andrews, Shi 2013 (supplementary materials).

Usage

```
Bspline.unit.interval(x, spline.index, n.if.per.cov, degree = 3)
```

Arguments

х	value inside the unit interval at which to evaluate the spline.
spline.index	Index of the spline to evaluate.
n.if.per.cov	Number of B-splines to consider over the unit interval.
degree	Degree of the B-splines. Default is degree = 3.

References

Andrews, D.W.K. and Shi, X. (2013). Inference based on confitional moment inequalities. Econometrica. 81(2):609-666.

```
Bvprob
```

Compute bivariate survival probability

Description

This function calculates a bivariate survival probability based on multivariate normal distribution.

Usage

Bvprob(lx, ly, rho)

lx	The first lower bound of integration
ly	The second lower bound
rho	Association parameter

cbMV

Description

This function combines a list of individual identified intervals to a single one based on majority vote. Note that the intersection of all intervals can be viewed as a majority vote as well, so that it is included as a special case.

Usage

cbMV(results.list, threshold)

Arguments

results.list	List object containing the individual identified intervals.
threshold	Threshold proportion of identified intervals a given value should be contained in in order for it to be included in the combined identified interval. For intersection bounds, set this value to 1.

Value

The combined identified interval.

check.args.pisurv Check argument consistency.

Description

This function checks whether the arguments supplied to the main estimation function pi.surv are valid. When arguments are invalid, the an exception is thrown.

Usage

```
check.args.pisurv(
   data,
   idx.param.of.interest,
   idxs.c,
   t,
   par.space,
   search.method,
   add.options
)
```

chol2par

Arguments

data	Data frame containing the data on which to fit the model. The columns should be named as follows: 'Y' = observed timed, 'Delta' = censoring indicators, 'X0' = intercept column, 'X1' - 'Xp' = covariates.
idx.param.of.i	nterest
	Index of element in the covariate vector for which the identified interval should be estimated. It can also be specified as idx.param.of.interest = "all", in which case identified intervals will be computed for all elements in the parame- ter vector. Note that idx.param.of.interest = 1 corresponds to the intercept parameter.
idxs.c	Vector of indices of the continuous covariates. Suppose the given data contains 5 covariates, of which 'X2' and 'X5' are continuous, this argument should be specified as $idxs.c = c(2, 5)$.
t	Time point for which to estimate the identified set of $\beta(t)$.
par.space	Matrix containing bounds on the space of the parameters. The first column cor- responds to lower bounds, the second to upper bounds. The i'th row corresponds to the bounds on the i'th element in the parameter vector.
search.method	The search method to be used to find the identified interval. Default is search.method = "GS".
add.options	List of additional options to be specified to the method. Notably, it can be used to select the link function $\Lambda(t)$) that should be considered. Currently, the link function leading to an accelerated failure time model ("AFT_11", default) and the link function leading to a Cox proportional hazards model ("Cox_wb") are implemented. Other options can range from 'standard' hyperparameters such as the confidence level of the test and number of instrumental functions to be used, to technical hyperparameters regarding the search method and test implementation. For the latter, we refer to the documentations of set.hyperparameters, set.EAM.hyperparameters, unless you really know what you are doing.

chol2par

Transform Cholesky decomposition to covariance matrix

Description

This function transforms the parameters of the Cholesky de- composition to the covariance matrix, represented as a the row-wise con- catenation of the upper-triangular elements.

Usage

chol2par(par.chol1)

Arguments

par.chol1 The vector of Cholesky parameters.

Covariance matrix corresponding to the provided Cholesky decomposition.

chol2par.elem Transform Cholesky decomposition to covariance matrix parameter element.

Description

This function transforms the parameters of the Cholesky de- composition to a covariance matrix element. This function is used in chol2par.R.

Usage

chol2par.elem(a, b, par.chol1)

Arguments

а	The row index of the covariance matrix element to be computed.
b	The column index of the covariance matrix element to be computed.
par.chol1	The vector of Cholesky parameters.

Value

Specified element of the covariance matrix resulting from the provided Cholesky decomposition.

Chronometer Chronometer object

Description

R6 object that mimics a chronometer. It can be started, paused, record legs and stopped.

Methods

Public methods:

- Chronometer\$show()
- Chronometer\$reset()
- Chronometer\$start()
- Chronometer\$stop()
- Chronometer\$record.leg()
- Chronometer\$get.chronometer.data()
- Chronometer\$get.total.time()

Chronometer

- Chronometer\$accumulate.legs()
- Chronometer\$clone()

Method show(): Display the values stored in this chronometer object.

Usage: Chronometer\$show()

Method reset(): Reset the chronometer.

Usage: Chronometer\$reset()

Method start(): Start the chronometer

Usage: Chronometer\$start()

Method stop(): Stop the chronometer

Usage: Chronometer\$stop(leg.name = NULL)

Arguments:

leg.name (optional) Name for the stopped leg.

Method record.leg(): Record a leg time. The chronometer will continue running.

Usage: Chronometer\$record.leg(leg.name = NULL)

Arguments:

leg.name Name for the recorded leg.

Method get.chronometer.data(): Like show method, but more rudimentary.

Usage:

Chronometer\$get.chronometer.data()

Method get.total.time(): Return the total time span between start and stop.

Usage:

Chronometer\$get.total.time(force = FALSE)

Arguments:

force Boolean variable. If TRUE, avoids error when calling this function while chronometer has not been stopped yet.

Method accumulate.legs(): Return total time spent per leg category (using leg names).

Usage:

Chronometer\$accumulate.legs(force = FALSE)

Arguments:

force force Boolean variable. If TRUE, avoids error when calling this function while chronometer has not been stopped yet. Method clone(): The objects of this class are cloneable with this method.

Usage: Chronometer\$clone(deep = FALSE) Arguments: deep Whether to make a deep clone.

clear.plt.wdw Clear plotting window

Description

This function clears the plotting window

Usage

clear.plt.wdw()

CompC

Compute phi function

Description

This function estimates phi function at fixed time point t

Usage

CompC(theta, t, X, W, ld, cop, dist)

theta	Estimated parameter values/initial values for finite dimensional parameters
t	A fixed time point
Х	Data matrix with covariates related to T
W	Data matrix with covariates related to C. First column of W should be ones
ld	Output of SolveL function at a fixed time t
сор	Which copula should be computed to account for dependency between T and C. This argument can take one of the values from c("Gumbel", "Frank", "Normal"). The default copula model is "Frank".
dist	The distribution to be used for the dependent censoring C. Only two distributions are allowed, i.e, Weibull and lognormal distributions. With the value "Weibull" as the default.

control.arguments *Prepare initial values within the control arguments*

Description

Prepare initial values within the control arguments

Usage

```
control.arguments(maxit = 300, eps = 1e-06, trace = TRUE, ktau.inits = NULL)
```

Arguments

maxit	a positive integer that denotes the maximum iteration number in optimization.
eps	a positive small numeric value that denotes the tolerance for convergence.
trace	a logical value that judges whereh the tracing information on the progress of the model fitting should be produced. The default value if TRUE.
ktau.inits	a numeric vector that contains initial values of the Kendall's tau.

copdist.Archimedean The distribution function of the Archimedean copula

Description

The distribution function of the Archimedean copula

Usage

```
copdist.Archimedean(x, copfam, ktau, coppar = NULL)
```

х	the value at which the distribution function will be calculated at.
copfam	a character string that denotes the copula family.
ktau	a numeric value that denotes the Kendall's tau.
coppar	a numeric value that denotes the copula parameter.

cophfunc

Description

The h-function of the copula

Usage

```
cophfunc(x, coppar, copfam, condvar = 1)
```

Arguments

Х	the value at which the h-function will be calculated at.
coppar	a numeric value that denotes the copula parameter.
copfam	a character string that denotes the copula family.
condvar	a numeric value that specifies the type of the h-function.

coppar.to.ktau	Convert the copula parameter the Kendall's tau
----------------	--

Description

Convert the copula parameter the Kendall's tau

Usage

```
coppar.to.ktau(coppar, copfam)
```

coppar	a numeric value that denotes the copula parameter.
copfam	a character string that denotes the copula family.

cr.lik

Description

This function implements the second step likelihood function of the competing risk model defined in Willems et al. (2024+).

Usage

```
cr.lik(
    n,
    s,
    Y,
    admin,
    cens.inds,
    M,
    Sigma,
    beta.mat,
    sigma.vct,
    rho.mat,
    theta.vct
)
```

Arguments

n	The sample size.
S	The number of competing risks.
Υ	The observed times.
admin	Boolean value indicating whether or not administrative censoring should be taken into account.
cens.inds	matrix of censoring indicators (each row corresponds to a single observation).
М	Design matrix, consisting of [intercept, exo.cov, Z, cf]. Note that cf represents the multiple ways of 'handling' the endogenous covariate Z, see also the documentation of 'estimate.cmprsk.R'. When there is no confounding, M will be [intercept, exo.cov].
Sigma	The covariance matrix.
beta.mat	Matrix containing all of the covariate effects.
sigma.vct	Vector of standard deviations. Should be equal to sqrt(diag(Sigma)).
rho.mat	The correlation matrix.
theta.vct	Vector containing the parameters of the Yeo-Johnsontrans- formations.

Value

Evaluation of the log-likelihood function

References

Willems et al. (2024+). Flexible control function approach under competing risks (in preparation).

D	.ł	۱a	t
---	----	----	---

Obtain the diagonal matrix of sample variances of moment functions

Description

This function computes the diagonal matrix of the sample variance-covariance matrix.

Usage

D.hat(input, beta = NULL, t = NULL, hp = NULL, m.avg = NULL, mi.mat = NULL)

Arguments

input	Can either be the variance-covariance matrix obtained from the function Sigma.hat, or the data frame.
beta	The coefficient vector. Only needs to be supplied when the argument for input is the data frame.
t	The time point of interest. Only needs to be supplied when the argument for input is the data frame.
hp	List of hyperparameters. Only needs to be supplied when the argument for input is the data frame.
m.avg	See documentation of Sigma.hat. Only needs to be supplied when the argument for input is the data frama.
mi.mat	See documentation of Sigma.hat. Only needs to be supplied when the argument for input is the data frama.

dat.sim.reg.comp.risks

Data generation function for competing risks data

Description

This function generates competing risk data that can be used in simulation studies.

dchol2par

Usage

```
dat.sim.reg.comp.risks(
    n,
    par,
    iseed,
    s,
    conf,
    Zbin,
    Wbin,
    type.cov,
    A.upper = 15
```

)

Arguments

n	The sample size of the generated data set.
par	List of parameter vectors for each component of the transformation model.
iseed	Random seed.
S	The number of competing risks. Note that the given parameter vector could specify the parameters for the model with more than s competing risks, but in this case only the first s sets of parameters will be considered.
conf	Boolean value indicating whether the data set should contain confounding.
Zbin	Indicator whether the confounded variable is binary Zbin = 1 or not Zbin = 0. If conf = FALSE, this variable is ignored.
Wbin	Indicator whether the instrument is binary ($Zbin = 1$) or not $Zbin = 0$.
type.cov	Vector of characters "c" and "b", indicating which exogenous covariates should be continuous "c" or binary "b".
A.upper	The upper bound on the support of the administrative censoring distribution. This can be used to control for the amount of administrative censoring in the data. Default is A.upper = 15. A.upper = NULL will return a data set without administrative censoring.

Value

A generated data set

dchol2par

Derivative of transform Cholesky decomposition to covariance matrix.

Description

This function defines the derivative of the transformation function that maps Cholesky parameters to the full covariance matrix.

Usage

```
dchol2par(par.chol1)
```

Arguments

par.chol1 The vector of Cholesky parameters.

Value

Derivative of the function that transforms the cholesky parameters to the full covariance matrix.

dchol2par.elem	Derivative of transform Cholesky decomposition to covariance matrix
	element.

Description

This function defines the derivative of the transformation function that maps Cholesky parameters to a covariance matrix element. This function is used in dchol2par.R.

Usage

dchol2par.elem(k, q, a, b, par.chol1)

Arguments

k	The row index of the parameter with respect to which to take the derivative.
q	the column index of the parameter with respect to which to take the derivative.
а	The row index of the covariance matrix element to be computed.
b	The column index of the covariance matrix element to be computed.
par.chol1	The vector of Cholesky parameters.

Value

Derivative of the function that transforms the cholesky parameters to the specified element of the covariance matrix, evaluated at the specified arguments.

20

dD.hat

Description

This function computes the matrix of sample derivatives of the sample variances.

Usage

```
dD.hat(
   data,
   beta,
   t,
   hp,
   mi.mat = NULL,
   m.avg = NULL,
   dm.avg = NULL,
   dmi.tens = NULL
)
```

Arguments

data	Data frame.
beta	Vector of coefficients.
t	Time point at which to evaluate the (derivatives of) the moment functions. Also allowed to be a vector of time points (used in estimating the model under as- sumed time- independent coefficients).
hp	List of hyperparameters.
mi.mat	A precomputed matrix of moment function evaluations at each observation. If supplied, some computations can be skipped. Default is mi.mat = NULL.
m.avg	A precomputed vector of the sample average of the moment functions. If not supplied, this vector is computed. Default is $m.avg = NULL$.
dm.avg	Matrix of precomputed sample averages of the derivatives of the moment func- tions. Default is dm.avg = NULL.
dmi.tens	3D tensor of precomputed evaluations of the derivatives of the moment func- tions. Default is dmi.tens = NULL.

Value

A matrix containing the partial derivatives of the variances of the moment functions. Each row corresponds to a moment function, each column corresponds to a covariate.

Distance

Description

This function computes distance between two vectors based on L2-norm

This function computes distance between two vectors based on L2-norm

Usage

Distance(b, a)

Distance(b, a)

Arguments

b	Second vector
а	First vector

dLambda_AFT_11 Derivative of link function (AFT m

Description

This function defines the derivative of the AFT link function.

Usage

dLambda_AFT_ll(t)

Arguments

t time parameter.

dLambda_Cox_wb Derivative of link function (Cox model)

Description

This function defines the derivative of the Cox PH link function.

Usage

dLambda_Cox_wb(t)

Arguments

t

time parameter.

dm.bar

Vector of sample average of each moment function $(\bar{m}_n(\theta))$ *.*

Description

This function computes the matrix containing the sample average of the partial derivatives of the moment functions.

Usage

dm.bar(data, beta, t, hp, dmi.tens = NULL)

Arguments

data	Data frame.
beta	Vector of coefficients.
t	Time point at which to compute the derivative of the moment functions. Also allowed to be a vector of time points (used in estimating the model under assumed time- independent coefficients).
hp	List of hyperparameters.
dmi.tens	Tensor of derivative moment function evaluations. Can be used to avoid some computation. Default is dmi.tens = NULL.

Value

A matrix containing the sample average of the partial derivatives of the moment functions. Each row corresponds to a moment function, each column corresponds to a coefficient.

do.optimization.Mstep Optimize the expected improvement

Description

This function finds the point for which the expected improvement is optimal, based on a given set of starting values. (M_step.R)

Usage

do.optimization.Mstep(start.vals, EI.Mstep, hyperparams)

Arguments

start.vals	Starting values for optimization.
EI.Mstep	Function to compute expected improvements.
hyperparams	List of hyperparameters.

Value

Maximum of the expected imrpovement function.

draw.sv.init	Draw initial set of starting values for optimizing the expected improve-
	ment.

Description

Used in the M-step (get.starting.values.R). ToDo: Adapt this code so as to also perform sample space contractions as in the MatLab implementation of Bei (2024).

Usage

```
draw.sv.init(theta.hash, dir, hyperparams, EI.fun)
```

theta.hash	Tentative optimal value for theta, i.e., the largest or smallest feasible value for theta (if dir = 1 or dir = -1 , respectively). A 'feasible value' is one that satisfies all moment restrictions.
dir	Search direction. dir = 1 corresponds to looking for an upper bound. dir = -1 corresponds to looking for a lower bound.
hyperparams	List of hyperparameters.
EI.fun	Function used to compute the expected improvement. See also EI.

DYJtrans

Value

Initial set of starting values.

References

Bei, X. (2024). Local linearieation based subvector inference in moment inequality models. Journal of Econometrics. 238:105549-

DYJtrans

Derivative of the Yeo-Johnson transformation function

Description

Evaluates the derivative of the Yeo-Johnson transformation at the provided argument.

Usage

DYJtrans(y, theta)

Arguments

У	The argument to be supplied to the derivative of the Yeo-Johnson transformation.
theta	The parameter of the Yeo-Johnson transformation. This should be a number in
	the range [0,2].

Value

The transformed value of y.

EAM

Main function to run the EAM algorithm

Description

This function implements the EAM search strategy as described in Kaido, Molinari and Stoye (2019). This is a generic function, requiring the specification of a test function (test.fun), as well as the specification of the parameter space (hyperparams).

Usage

```
EAM(
    dir,
    test.fun,
    hyperparams,
    evaluations = NULL,
    time.run.duration = FALSE,
    verbose = 0,
    picturose = FALSE
)
```

Arguments

dir	The direction of the test. $dir = 1$ corresponds to finding the upper bound of the identified set, $dir = -1$ corresponds to finding the lower bound.
test.fun	The test function to be inverted in order to obtain the identified set. It should take a scalar parameter as argument (i.e. the specified value of a component of the full parameter vector) and return a list with named elements list(theta, t.stat, crit.val), where theta is the scalar value that was tested, t.stat is the value of the test statistic and crit.val is the critical value to be used in determining whether to reject or not reject.
hyperparams	A list of hyperparameters needed in order for this method to run (see set. EAM. hyperparameters.R).
evaluations	Matrix of already evaluated points, of which at least one is feasible. When evaluations = NULL (default), the initial feasible point search will be executed first.
time.run.duration	
	Boolean value indicating whether to time each step in the EAM algorithm. Re- quires chronometer.R. Default is time.run.duration = FALSE.
verbose	Boolean value indicating whether or not to print run time updates to the console. Default is verbose = FALSE.
picturose	Boolean value indicating whether or not to visualize the identified set search. Default is picturose = FALSE.

Value

List containing the evaluations of the test statistic and critical values, convergence information, and run times.

References

Kaido et al. (2019). Confidence intervals for projections of partially identified parameters. Econometrica. 87(4):1397-1432.

26

Description

This function checks the convergence of the EAM algorithm. ToDo: Get rid of hard coding stop of algorithm when no more improvement of theta values (maybe related to parameter space contraction, since the problem is that the given points to check in the E-step of the following iteration can always be the same and always be rejected (except of course for the randomly chosen one), while the most promising theta value continues to be the same, infeasible value. In this way, it is possible that theta.hash - mp.theta.next at some point will never decrease).

Usage

```
EAM.converged(
   opt.val.prev,
   evaluations,
   mp.theta.next,
   iter.nbr,
   dir,
   hyperparams,
   verbose
)
```

Arguments

opt.val.prev	Previous optimal theta value.
evaluations	Matrix of violation curve evaluations.
mp.theta.next	Most promising value of theta for which to run the E-step in the following iteration
iter.nbr	Number of iterations of the EAM algorithm run so far.
dir	Search direction.
hyperparams	List of hyperparameters used in the EAM algorithm.
verbose	Verbosity parameter.

Value

Boolean value whether or not algorithm has converged.

Description

Used in the M-step (M_step.R). Note: predict(fit.krige, ...) has weird behaviour when making predictions for a single value in terms of standard error. We work around this issue in this implementation.

Usage

EI(theta, test.fun, fit.krige, theta.hash, dir)

Arguments

theta	Vector of coefficients.
test.fun	Test function (cf. EstimationAlgorithmBei.R).
fit.krige	Fitted Kriging model.
theta.hash	Tentative optimal value for theta, i.e., the largest or smallest feasible value for theta (if dir = 1 or dir = -1 , respectively). A 'feasible value' is one that satisfies all moment restrictions.
dir	Search direction. dir = 1 corresponds to looking for an upper bound. dir = -1 corresponds to looking for a lower bound.

Value

The expected improvement.

estimate.cf Estimate the control function

Description

This function estimates the control function for the endogenous variable based on the provided covariates. This function is called inside estimate.cmprsk.R.

Usage

```
estimate.cf(XandW, Z, Zbin, gammaest = NULL)
```

ΕI

estimate.cmprsk

Arguments

XandW	Design matrix of exogenous covariates.
Z	Endogenous covariate.
Zbin	Boolean value indicating whether endogenous covariate is binary.
gammaest	Vector of pre-estimated parameter vector. If NULL, this function will first esti- mate gammaest. Default value is gammaest = NULL.

Value

List containing the vector of values for the control function and the regression parameters of the first step.

estimate.cmprsk Estimate the competing risks model of Rutten, Willems et al. (20XX).

Description

This function estimates the parameters in the competing risks model described in Willems et al. (2024+). Note that this model extends the model of Crommen, Beyhum and Van Keilegom (2024) and as such, this function also implements their methodology.

Usage

```
estimate.cmprsk(
   data,
   admin,
   conf,
   eoi.indicator.names = NULL,
   inst = "cf",
   realV = NULL,
   compute.var = TRUE,
   eps = 0.001
)
```

Arguments

data

A data frame, adhering to the following formatting rules:

- The first column, named "y", contains the observed times.
- The next columns, named "delta1", delta2, etc. contain the indicators for each of the competing risks.
- The next column, named da, contains the censoring indicator (independent censoring).
- The next column should be a column of all ones (representing the intercept), names x0.

	• The subsequent columns should contain the values of the covariates, named x1, x2, etc.
	• When applicable, the next column should contain the values of the endoge- nous variable. This column should be named z.
	• When z is provided and an instrument for z is available, the next column, named w, should contain the values for the instrument.
admin	Boolean value indicating whether the data contains administrative censoring.
conf	Boolean value indicating whether the data contains confounding and hence in- dicating the presence of z and, possibly, w.
eoi.indicator.	names
	Vector of names of the censoring indicator columns pertaining to events of in- terest. Events of interest will be modeled allowing dependence between them, whereas all censoring events (corresponding to indicator columns not listed in eoi.indicator.names) will be treated as independent of every other event. If eoi.indicator.names == NULL, all events will be modeled dependently.
Zbin	Indicator value indicating whether (Zbin = TRUE) or not Zbin = FALSE the en- dogenous covariate is binary. Default is Zbin = NULL, corresponding to the case when conf == FALSE.
inst	Variable encoding which approach should be used for dealing with the con- founding. inst = "cf" indicates that the control function approach should be used. inst = "W" indicates that the instrumental variable should be used 'as is'. inst = "None" indicates that Z will be treated as an exogenous covariate. Fi- nally, when inst = "oracle", this function will access the argument realV and use it as the values for the control function. Default is inst = "cf".
realV	Vector of numerics with length equal to the number of rows in data. Used to provide the true values of the instrumental function to the estimation procedure.
compute.var	Boolean value indicating whether the variance of the parameter estimates should be computed as well (this can be very computationally intensive, so may want to be disabled). Default is estimate.var = TRUE.
eps	Value that will be added to the diagonal of the covariance matrix during estima- tion in order to ensure strictly positive variances.

Value

A list of parameter estimates in the second stage of the estimation algorithm (hence omitting the estimates for the control function), as well as an estimate of their variance and confidence intervals.

References

Willems et al. (2024+). Flexible control function approach under competing risks (in preparation).

Crommen, G., Beyhum, J., and Van Keilegom, I. (2024). An instrumental variable approach under dependent censoring. Test, 33(2), 473-495.

estimate.cmprsk

Examples

```
n <- 200
# Set parameters
gamma <- c(1, 2, 1.5, -1)
theta <- c(0.5, 1.5)
eta1 <- c(1, -1, 2, -1.5, 0.5)
eta2 <- c(0.5, 1, 1, 3, 0)
# Generate exogenous covariates
x0 <- rep(1, n)
x1 <- rnorm(n)
x2 <- rbinom(n, 1, 0.5)
# Generate confounder and instrument
w <- rnorm(n)
V <- rnorm(n, 0, 2)
z <- cbind(x0, x1, x2, w) %*% gamma + V</pre>
realV <- z - (cbind(x0, x1, x2, w) %*% gamma)
# Generate event times
err <- MASS::mvrnorm(n, mu = c(0, 0), Sigma =</pre>
matrix(c(3, 1, 1, 2), nrow = 2, byrow = TRUE))
bn <- cbind(x0, x1, x2, z, realV) %*% cbind(eta1, eta2) + err</pre>
Lambda_T1 <- bn[,1]; Lambda_T2 <- bn[,2]
x.ind = (Lambda_T1>0)
y.ind <- (Lambda_T2>0)
T1 <- rep(0,length(Lambda_T1))</pre>
T2 <- rep(0,length(Lambda_T2))</pre>
T1[x.ind] = ((theta[1]*Lambda_T1[x.ind]+1)^(1/theta[1])-1)
T1[!x.ind] = 1-(1-(2-theta[1])*Lambda_T1[!x.ind])^(1/(2-theta[1]))
T2[y.ind] = ((theta[2]*Lambda_T2[y.ind]+1)^(1/theta[2])-1)
T2[!y.ind] = 1-(1-(2-theta[2])*Lambda_T2[!y.ind])^(1/(2-theta[2]))
# Generate adminstrative censoring time
C <- runif(n, 0, 40)
# Create observed data set
y <- pmin(T1, T2, C)
delta1 <- as.numeric(T1 == y)</pre>
delta2 <- as.numeric(T2 == y)</pre>
da <- as.numeric(C == y)</pre>
data <- data.frame(cbind(y, delta1, delta2, da, x0, x1, x2, z, w))</pre>
colnames(data) <- c("y", "delta1", "delta2", "da", "x0", "x1", "x2", "z", "w")
# Estimate the model
admin <- TRUE
                            # There is administrative censoring in the data.
conf <- TRUE
                            # There is confounding in the data (z)
eoi.indicator.names <- NULL \# We will not impose that T1 and T2 are independent
                      # The confounding variable z is not binary
Zbin <- FALSE
inst <- "cf"
                           # Use the control function approach
```

E_step

E-step in the EAM algorithm as described in KMS19.

Description

This function performs the estimation step in the EAM algorithm.

Usage

E_step(thetas, test.fun, dir, evaluations, verbose)

Arguments

thetas	Points at which to perform the E-step. Usually the result of the M-step.
test.fun	Function returning the test statistic, as well as the critical value.
dir	Direction in which to optimize. For finding upper bounds, set $dir = 1$, for finding lower bounds, set $dir = -1$.
evaluations	Matrix containing each point that was already evaluated, alongside the corresponding test statistic and critical value, as its rows.
verbose	Verbosity parameter.

Value

Results of the E-step.

feasible_point_search Method for finding initial points of the EAM algorithm

Description

Also called the 'initialization' step in KMS19, this method tries to find at least one initial feasible point, which is required to run the EAM algorithm. ToDo: Investigate whether the feasible point search of Bei (2024) is better. If so, implement it.

32

fitDepCens

Usage

```
feasible_point_search(
  test.fun,
  hyperparams,
  verbose,
  picturose = FALSE,
  parallel = FALSE
)
```

Arguments

test.fun	Function that takes a parameter vector as a first argument and returns the test statistic, as well as the critical value.
hyperparams	List of hyperparameters.
verbose	Verbosity parameter.
picturose	Picturosity flag. If TRUE, a plot illustrating the workings of the algorithm will updated during runtime. Default is picturose = FALSE.
parallel	Flag for whether or not parallel computing should be used. Default is parallel = FALSE.

Value

Results of the initial feasible point search.

References

Kaido et al. (2019). Confidence intervals for projections of partially identified parameters. Econometrica. 87(4):1397-1432.

fitDepCens

Fit Dependent Censoring Models

Description

This function allows to estimate the dependency parameter along all other model parameters. First, estimates the cumulative hazard function, and then at the second stage it estimates other model parameters assuming that the cumulative hazard function is known. The details for implementing the dependent censoring methodology can be found in Deresa and Van Keilegom (2024).

Usage

```
fitDepCens(
   resData,
   X,
   W,
   cop = c("Frank", "Gumbel", "Normal"),
```

```
dist = c("Weibull", "lognormal"),
start = NULL,
n.iter = 50,
bootstrap = TRUE,
n.boot = 150,
ncore = 7,
eps = 1e-04
)
```

Arguments

resData	Data matrix with three columns; $Z =$ the observed survival time, $d1 =$ the censoring indicator of T and $d2 =$ the censoring indicator of C.
Х	Data matrix with covariates related to T.
W	Data matrix with covariates related to C. First column of W should be a vector of ones.
сор	Which copula should be computed to account for dependency between T and C. This argument can take one of the values from c("Gumbel", "Frank", "Normal").
dist	The distribution to be used for the censoring time C. Only two distributions are allowed, i.e, Weibull and lognormal distributions. With the value "Weibull" as the default.
start	Initial values for the finite dimensional parameters. If start is NULL, the initial values will be obtained by fitting a Cox model for survival time T and a Weibull model for dependent censoring C.
n.iter	Number of iterations; the default is n.iter = 50. The larger the number of iterations, the longer the computational time.
bootstrap	A boolean indicating whether to compute bootstrap standard errors for making inferences.
n.boot	Number of bootstrap samples to use in the estimation of bootstrap standard errors if bootstrap = TRUE. The default is $n.boot = 150$. But, higher values of $n.boot$ are recommended for obtaining good estimates of bootstrap standard errors.
ncore	The number of cores to use for parallel computation in bootstrapping, with the default ncore = 7.
eps	Convergence error. This is set by the user in such away that the desired convergence is met; the default is $eps = 1e-4$.

Value

This function returns a fit of dependent censoring model; parameter estimates, estimate of the cumulative hazard function, bootstrap standard errors for finite-dimensional parameters, the nonparametric cumulative hazard function, etc.

References

Deresa and Van Keilegom (2024). Copula based Cox proportional hazards models for dependent censoring, Journal of the American Statistical Association, 119:1044-1054.

34

fitIndepCens

Examples

```
# Toy data example to illustrate implementation
n = 300
beta = c(0.5)
lambd = 0.35
eta = c(0.9, 0.4)
X = cbind(rbinom(n, 1, 0.5))
W = cbind(rep(1,n),rbinom(n,1,0.5))
# generate dependency structure from Frank
frank.cop <- copula::frankCopula(param = 5,dim = 2)</pre>
U = copula::rCopula(n,frank.cop)
T1 = (-\log(1-U[,1]))/(lambd*exp(X*beta))
                                                     # Survival time
T2 = (-\log(1-U[,2]))^{(1.1)} \exp(W% * \% eta)
                                                     # Censoring time
A = runif(n, 0, 15)
                                                     # administrative censoring time
Z = pmin(T1,T2,A)
d1 = as.numeric(Z==T1)
d2 = as.numeric(Z==T2)
resData = data.frame("Z" = Z,"d1" = d1, "d2" = d2) # should be data frame
colnames(W) <- c("ones","cov1")</pre>
colnames(X) <- "cov.surv"</pre>
# Fit dependent censoring model
fit <- fitDepCens(resData = resData, X = X, W = W, bootstrap = FALSE)</pre>
# parameter estimates
fit$parameterEstimates
# summary fit results
summary(fit)
# plot cumulative hazard vs time
plot(fit$observedTime, fit$cumhazardFunction, type = "1",xlab = "Time",
ylab = "Estimated cumulative hazard function")
```

fitIndepCens

Fit Independent Censoring Models

Description

This function allows to estimate all model parameters under the assumption of independent censoring. First, estimates the cumulative hazard function, and then at the second stage it estimates other model parameters assuming that the cumulative hazard is known.

Usage

```
fitIndepCens(
  resData,
  X,
  W,
  dist = c("Weibull", "lognormal"),
  start = NULL,
  n.iter = 50,
  bootstrap = TRUE,
  n.boot = 150,
  ncore = 7,
  eps = 1e-04
)
```

Arguments

resData	Data matrix with three columns; $Z =$ the observed survival time, d1 = the censoring indicator of T and d2 = the censoring indicator of C.
Х	Data matrix with covariates related to T.
W	Data matrix with covariates related to C. First column of W should be ones.
dist	The distribution to be used for the censoring time C. Only two distributions are allowed, i.e, Weibull and lognormal distributions. With the value "Weibull" as the default.
start	Initial values for the finite dimensional parameters. If start is NULL, the initial values will be obtained by fitting a Cox model for survival time T and a Weibull model for censoring time C.
n.iter	Number of iterations; the default is n.iter = 50. The larger the number of iterations, the longer the computational time.
bootstrap	A boolean indicating whether to compute bootstrap standard errors for making inferences.
n.boot	Number of bootstrap samples to use in the estimation of bootstrap standard errors if $bootstrap = TRUE$. The default is n.boot = 150. But, higher values of n.boot are recommended for obtaining good estimates of bootstrap standard errors.
ncore	The number of cores to use for parallel computation is configurable, with the default ncore = 7.
eps	Convergence error. This is set by the user in such away that the desired convergence is met; the default is $eps = 1e-4$.

Value

This function returns a fit of independent censoring model; parameter estimates, estimate of the cumulative hazard function, bootstrap standard errors for finite-dimensional parameters, the non-parametric cumulative hazard function, etc.

36
G.box

Examples

```
# Toy data example to illustrate implementation
n = 300
beta = c(0.5)
lambd = 0.35
eta = c(0.9, 0.4)
X = cbind(rbinom(n, 1, 0.5))
W = cbind(rep(1,n), rbinom(n,1,0.5))
# generate dependency structure from Frank
frank.cop <- copula::frankCopula(param = 5,dim = 2)</pre>
U = copula::rCopula(n,frank.cop)
T1 = (-\log(1-U[,1]))/(lambd*exp(X*beta))
                                                            # Survival time'
T2 = (-log(1-U[,2]))^(1.1)*exp(W%*%eta)
                                                            # Censoring time
                                                           # administrative censoring time
A = runif(n, 0, 15)
Z = pmin(T1,T2,A)
d1 = as.numeric(Z==T1)
d2 = as.numeric(Z==T2)
resData = data.frame("Z" = Z,"d1" = d1, "d2" = d2)
                                                         # should be data frame
colnames(W) <- c("ones","cov1")</pre>
colnames(X) <- "cov.surv"</pre>
# Fit independent censoring model
fitI <- fitIndepCens(resData = resData, X = X, W = W, bootstrap = FALSE)</pre>
# parameter estimates
fitI$parameterEstimates
# summary fit results
summary(fitI)
# plot cumulative hazard vs time
 plot(fitI$observedTime, fitI$cumhazardFunction, type = "l",xlab = "Time",
 ylab = "Estimated cumulative hazard function")
```

G.box

Family of box functions

Description

This function defined the class of box functions as defined in Willems et al. (2024+).

Usage

```
G.box(
    x,
    g.idx,
    data,
    n.box.per.cov,
    norm.func,
    cov.ranges = NULL,
    norm.cov.out = NULL,
    ...
)
```

Arguments

x	Vector of covariates to be normalized alongside the data. Default is x = NULL.
g.idx	Index of the instrumental function, in {1,, n.inst.func}.
data	Data frame.
n.box.per.cov	Number of box functions to consider per continuous covariate.
norm.func	Function to be used to normalize the covariates.
cov.ranges	Matrix of ranges of the covariates. Used for normalizing the data to the unit interval before applying the instrumental functions. Default is cov.ranges = NULL.
norm.cov.out	Output of a preliminary call to the supplied covariate normalization function.
	Additional arguments will be ignored. Useful for allowing compatibility with the implementations of other instrument function families. Specifically, it allows to ignore the degree argument used in 'G.spline.R' and 'G.cd.R'.

G.cd

Family of continuous/discrete instrumental function

Description

The function normalizes the continuous covariates to lie in the unit interval and then evaluates the subvector of continuous covariates on the specified family of instrumental function. For the discrete elements, indicator functions are used for each level.

Usage

```
G.cd(
    x,
    g.idx,
    data,
    n.if.per.cov,
    idxs.c,
```

38

G.cd.mc

```
G.c,
norm.func,
discrete.covariate.levels = NULL,
cov.ranges = NULL,
norm.cov.out = NULL,
degree = 3
```

Arguments

x	The vector of covariates at which to evaluate the B-splines	
g.idx	The index of the instrumental function.	
data	Data frame containing the data.	
n.if.per.cov	Number of instrumental functions per continuous covariate.	
idxs.c	Vector of indices of the continuous elements in the vector of covariates.	
G.c	Family of instrumental functions to use for the subvector of continuous covari- ates.	
norm.func	Function to be used to normalize the covariates.	
discrete.covariate.levels		
	Matrix containing as rows all possible 'combined' levels of the discrete covari- ates. Default is discrete.covariate.levels = NULL.	
cov.ranges	Matrix containing as its rows the lower and upper bounds for each continuous covariate. Default is cov.ranges = NULL.	
norm.cov.out	Output of a preliminary call to a covariate normalization function (defined above). This is used to speed up computations. Note that this argument should only apply to continuous covariates!! Default is norm.cov.out = NULL.	
degree	Degree of the spline functions to be used as instrumental functions for the con- tinuous covariates (if applicable). Default is degree = 3.	

G.cd.mc	Family of discrete/continuous instrumental functions, in the case of
	many covariates.

Description

This function defines the family of discrete/continuous instrumental functions in the case of many covariates. It does so by considering a instrumental functions for each pair of entries in the given covariate vector.

Usage

```
G.cd.mc(
    x,
    g.idx,
    data,
    n.if.per.cov,
    idxs.c,
    G.c,
    norm.func,
    info.manycov = NULL,
    cov.ranges = NULL,
    norm.cov.out = NULL,
    degree = 3,
    ...
)
```

Arguments

x	The vector of covariates at which to evaluate the B-splines
g.idx	The index of the instrumental function.
data	Data frame containing the data.
n.if.per.cov	Number of instrumental functions per continuous covariate.
idxs.c	Vector of indices of the continuous elements in the vector of covariates.
G.c	Family of instrumental functions to use for the subvector of continuous covariates.
norm.func	Function to be used to normalize the covariates.
info.manycov	Data frame containing some information about the global structure of the in- strumental functions of this class. If info.manycov = NULL, it will be computed during execution. Default is info.manycov = NULL.
cov.ranges	Matrix containing as its rows the lower and upper bounds for each continuous covariate. Default is cov.ranges = NULL.
norm.cov.out	Output of function that normalizes the covariates.
degree	Degree of the spline functions to be used as instrumental functions for the con- tinuous covariates (if applicable). Default is degree = 3.
	Arguments specified here will be ignored. Used for compatibility with other instrumental function classes.

G.hat

Compute the Gn matrix in step 3b of Bei (2024).

Description

Compute the Gn matrix in step 3b of Bei (2024).

40

G.hat

Usage

```
G.hat(
   data,
   beta,
   t,
   hp,
   mi.mat = NULL,
   m.avg = NULL,
   dm.avg = NULL,
   dmi.tens = NULL,
   D = NULL
)
```

Arguments

data	Data frame.
beta	Vector of coefficients.
t	Time point at which to evaluate the (derivatives of) the moment functions.
hp	List of hyperparameters.
mi.mat	A precomputed matrix of moment function evaluations at each observation. If supplied, some computations can be skipped. Default is mi.mat = NULL.
m.avg	A precomputed vector of the sample average of the moment functions. If not supplied, this vector is computed. Default is m.avg = NULL.
dm.avg	Matrix of precomputed sample averages of the derivatives of the moment func- tions. Default is dm.avg = NULL.
dmi.tens	3D tensor of precomputed evaluations of the derivatives of the moment functions. Default is dmi.tens = NULL.
D	Diagonal of D-matrix.

Value

A matrix containing the partial derivatives of the variances of the moment functions. Each row corresponds to a moment function, each column corresponds to a covariate.

References

Bei, X. (2024). Local linearieation based subvector inference in moment inequality models. Journal of Econometrics. 238:105549-

G.spline

Description

This function normalizes the covariates to lie in the unit interval and then evaluates each B-spline at each observation, multiplying together the results per observation.

Usage

```
G.spline(
    x,
    g.idx,
    data,
    n.if.per.cov,
    norm.func,
    cov.ranges = NULL,
    norm.cov.out = NULL,
    degree = 3
)
```

Arguments

х	The vector of covariates at which to evaluate the B-splines	
g.idx	The index of the instrumental function. Note that g.idx ranges between 1 and n.if.per.cov^n.cov, as an instrumental function is the product of the appropriate B-spline evaluation for each element in the covariate vector.	
data	Data frame containing the data.	
n.if.per.cov	Number of instrumental variables to be used per covariate.	
norm.func	Function to be used to normalize the covariates.	
cov.ranges	Matrix of ranges of the covariates. Used for normalizing the covariates. If cov.ranges = NULL, the data will be normalized in a data-dependent way. Default is cov.ranges = NULL.	
norm.cov.out	Output of a preliminary call to the given covariate normalization function. Default is norm.cov.out = NULL.	
degree	Degree of B-splines to use. Default value is degree = 3.	

generator. Archimedean The generator function of the Archimedean copula

Description

The generator function of the Archimedean copula

Usage

```
generator.Archimedean(x, coppar, copfam, inverse = FALSE)
```

Arguments

х	the value at which the generator function will be calculated at.
coppar	a numeric value that denotes the copula parameter.
copfam	a character string that denotes the copula family.
inverse	a logical value that specifies whether the inverse function will be used.

get.anchor.points Get anchor points on which to base the instrumental functions

Description

The points returned by this function can be used as corner points in the family of box functions, or as knots in the family of B-spline functions.

Usage

```
get.anchor.points(data, n.if.per.cov, normalized = FALSE)
```

Arguments

data	Data set.
n.if.per.cov	Number of instrumental functions to use per continuous covariate.
normalized	Boolean value indicating whether the covariates in the given data frame have been normalized. Default is normalized = FALSE.

get.cond.moment.evals Compute the conditional moment evaluations

Description

This function computes the $1(Y \le t)$ - Lambda(X^T beta(t)) and Lambda(X^T beta(t)) - $1(Y \le t, Delta = 1)$ parts of the moment functions. (Used in function get.mi.mat.R)

Usage

```
get.cond.moment.evals(data, beta, t, hp)
```

Arguments

data	Data frame.
beta	Vector of coefficients.
t	Time point of interest.
hp	List of hyperparameters.

Value

A vector of 2n elements containing in the first n positions the evaluations of $1(Y \le t)$ - Lambda(X^T beta(t)) and in the last n positions the evaluations of Lambda(X^T beta(t)) - $1(Y \le t)$, Delta = 1).

get.cvLLn	<i>Compute the critical value of the test statistic.</i>	
8		

Description

This function computes the critical value following the algorithm of Section 4.3 in Bei (2024).

Usage

```
get.cvLLn(
   BetaI.r,
   data,
   t,
   hp,
   c,
   r,
   par.space,
   inst.func.evals = NULL,
   alpha = 0.95
)
```

BetaI.r	Matrix containing in its columns the minimizers of the S-function leading to the test statistic.	
data	Data frame.	
t	Time point of interest. Also allowed to be a vector of time points (used in estimating the model under assumed time- independent coefficients).	
hp	List of hyperparameters.	
с	Projection vector.	
r	Result of projection of parameter vector onto c.	
par.space	Bounds on the parameter space.	
inst.func.evals		
	Matrix of precomputed instrumental function evaluations for each observation in the data set. If NULL, the evaluations will be computed during execution of this function. Default is inst.func.evals = NULL.	
alpha	Confidence level.	

Value

The critical value for the test statistic.

References

Bei, X. (2024). Local linearieation based subvector inference in moment inequality models. Journal of Econometrics. 238:105549-

get.deriv.mom.func Matrix of derivatives of conditional moment functions

Description

This function evaluates the derivatives of the conditional moment function at each observation. Used in get.dmi.tens.R

Usage

```
get.deriv.mom.func(data, beta, t, hp)
```

Arguments

data	Data frame.
beta	Parameter vector.
t	Time point of interest.
hp	List of hyperparameters.

get.dmi.tens

Description

This function provides a faster implementation of obtaining the evaluations of the derivative of the moment functions at each observation (wrt the previous implementation using 'dm.comp' and 'dm.R'). Used in the function G.hat.R

Usage

```
get.dmi.tens(data, beta, t, hp, inst.func.evals = NULL)
```

Arguments

data	Data frame.
beta	Vector of coefficients.
t	Time point of interest. Also allowed to be a vector of time points (used in estimating the model under assumed time- independent coefficients).
hp	List of hyperparameters.
inst.func.evals	
	Precomputed matrix of instrumental function evaluations. Defaults is inst.func.evals = NULL, in which case the evaluations will be done inside this function.

get.extra.Estep.points

Get extra evaluation points for E-step

Description

Function used to obtain extra theta values to be supplied to the E-step in the next iteration ($M_{step.R}$). Note: this function should be changed when implementing the sample space contractions (see comment made in documentation of M_{step}).

Usage

get.extra.Estep.points(dir, theta.hash, maxviol.hash, hyperparams)

dir	Search direction. dir = 1 corresponds to looking for an upper bound. dir = -1 corresponds to looking for a lower bound.
theta.hash	Tentative optimal value for theta, i.e., the largest or smallest feasible value for theta (if dir = 1 or dir = -1 , respectively). A 'feasible value' is one that satisfies all moment restrictions.
maxviol.hash	Violation curve evaluated at theta.hash.
hyperparams	List of hyperparameters.

Value

Points to evaluate in E-step.

get.instrumental.function.evals

Evaluate each instrumental function at each of the observations.

Description

Obtain the evaluations of each observation on each of the instrumental functions. (Used in function get.mi.mat.R)

Usage

get.instrumental.function.evals(data, hp)

Arguments

data	Data frame.
hp	List of hyperparameters. Notably, it contains the instrumental function to be used in an element named G.

get.mi.mat	Faster implementation of vector of moment functions.	
------------	--	--

Description

This function obtains the moment function evaluations.

Usage

```
get.mi.mat(data, beta, t, hp, inst.func.evals = NULL)
```

data	Data frame.	
beta	Vector of coefficients.	
t	Time point at which to compute the moment function. Also allowed to be a vector of time points (used in estimating the model under assumed time- independent coefficients).	
hp	List of hyperparameters	
inst.func.evals		
	Matrix of instrumental function evaluations. If NULL, it will be computed during execution of this function. Default value is inst.func.evals = NULL.	

get.next.point

Obtain next point for feasible point search.

Description

Function to obtain the next point to evaluate in the search for a feasible point. This function evaluates the entire parameter space of the component of theta as evenly as possible. Used in the initialization step (feasible_point_search.R)

Usage

get.next.point(evaluations, lb.theta, ub.theta)

Arguments

evaluations	Matrix of evaluations performed so far.
lb.theta	Lower bound on the parameter of interest.
ub.theta	Upper bound on the parameter of interest.

Value

Next point in the feasible point search.

get.starting.values Main function for obtaining the starting values of the expected improvement maximization step.

Description

Obtain starting values used in the M-step (M_step.R).

Usage

```
get.starting.values(theta.hash, dir, EI.Mstep, hyperparams)
```

Arguments

theta.hash	Tentative optimal value for theta, i.e., the largest or smallest feasible value for theta (if dir = 1 or dir = -1 , respectively). A 'feasible value' is one that satisfies all moment restrictions.
dir	Search direction. dir = 1 corresponds to looking for an upper bound. dir = -1 corresponds to looking for a lower bound.
EI.Mstep	Function to compute expected improvements.
hyperparams	List of hyperparameters.

Value

Vector of starting values

<pre>get.test.statistic</pre>	Obtain the test statistic by minimizing the S-function over the feasible
	region $\beta(r)$.

Description

Obtain the test statistic by minimizing the S-function over the feasible region $\beta(r)$.

Usage

```
get.test.statistic(
   beta.init,
   data,
   par.space,
   t,
   hp,
   c,
   r,
   inst.func.evals = NULL
)
```

beta.init	Starting value of minimization algorithm.	
data	Data frame.	
par.space	Matrix containing the bounds on the parameter space.	
t	Time point at which to evaluate beta. Also allowed to be a vector of time points (used in estimating the model under assumed time- independent coefficients).	
hp	List of hyperparameters.	
с	Projection vector	
r	hypothesised value of the projection.	
inst.func.evals		
	Matrix of precomputed instrumental function evaluations for each observation	
	in the data set. If NULL, the evaluations will be computed during execution of this function. Default is inst.func.evals = NULL.	
	m_{1} m_{1	

Value

A list containing the value of the test statistic and the parameter at which this value was attained.

gridSearch

Grid search algorithm for finding the identified set

Description

This function implements the gridsearch and binary search algorithms used to compute the roots of the violation curve and hence in estimating the identified intervals.

Usage

```
gridSearch(
  dir,
  test.fun,
  hyperparams,
  evaluations = NULL,
  time.run.duration = FALSE,
  verbose = 0,
  picturose = FALSE
)
```

Arguments

Search direction. dir

50

The test function to be inverted in order to obtain the identified set. It should take a scalar parameter as argument (i.e. the specified value of a component of the full parameter vector) and return a list with named elements list(theta, t.stat, crit.val), where theta is the scalar value that was tested, t.stat is the value of the test statistic and crit.val is the critical value to be used in determining whether to reject or not reject.		
List of hyperparameters.		
Matrix of already evaluated points, of which at least one is feasible. When evaluations = NULL (default), the initial feasible point search will be executed first.		
time.run.duration		
Boolean value indicating whether to time each step in the EAM algorithm. Requires chronometer.R. Default is time.run.duration = FALSE.		
Boolean value indicating whether or not to print run time updates to the console. Default is verbose = FALSE.		
Boolean value indicating whether or not to visualize the identified set search. Default is FALSE.		

Value

List containing the evaluations of the test statistic and critical values, convergence information, and run times.

gs.algo.bidir	Rudimentary, bidirectional 1D grid search algorithm.

Description

This function implements a rudimentary, bidirectional search algorithm. It works by expanding a grid with given step.size in both directions, starting from an initial feasible point.

Usage

```
gs.algo.bidir(test.results, max.iter, step.size)
```

Arguments

test.results	Matrix containing the evaluations of the test statistic and critical value.
max.iter	Maximum number of iterations.
step.size	Step size based on which the grid is constructed.

Value

The next point to evaluate in the grid search.

gs.binary

Description

This function implements the binary search algorithm, that starts from a given feasible point and looks in the given direction for the root of the violation curve.

Usage

```
gs.binary(evaluations, dir, iter.nbr, hp)
```

Arguments

evaluations	Matrix of evaluated test statistics and critical values.
dir	Search direction.
iter.nbr	Iteration number.
hp	List of hyperparameters.

Value

The next point to evaluate.

gs.interpolation Return the next point to evaluate when doing interpolation search

Description

This function implements the interpolation search algorithm, that starts from a given feasible point and looks in the given direction for the root of the violation curve.

Usage

```
gs.interpolation(evaluations, dir, iter.nbr, hp)
```

Arguments

evaluations	Matrix of evaluated test statistics and critical values.
dir	Search direction.
iter.nbr	Iteration number.
hp	List of hyperparameters.

Value

The next point to evaluate.

gs.regular

Description

This function implements a unidirectional grid search, that works by expanding a grid starting from a given feasible point in the given direction.

Usage

gs.regular(evaluations, dir, iter.nbr, hp)

Arguments

evaluations	Matrix of evaluated test statistics and critical values.
dir	Search direction.
iter.nbr	Iteration number.
hp	List of hyperparameters.

Value

Next point to evaluate in the search algorithm.

nto a matrix at a given row index	insert.row
-----------------------------------	------------

Description

Used in initalization step (feasible_point_search.R).

Usage

```
insert.row(evaluations, row, idx.after)
```

Arguments

evaluations	Matrix of violation function evaluations.
row	Row (evaluations) to be added to the evaluation matrix.
idx.after	Index of the row of evaluations after which the given row should be placed.

Value

Evaluation matrix.

IYJtrans

Description

Computes the inverse Yeo-Johnson transformation of the provided argument.

Usage

IYJtrans(y, theta)

Arguments

У	The argument to be supplied to the inverse Yeo-Johnson transformation.
theta	The parameter of the inverted Yeo-Johnson transformation. This should be a number in the range $[0,2]$.

Value

The transformed value of y.

Kernel

Calculate the kernel function

Description

Calculate the kernel function

Usage

Kernel(u, name = "Gaussian")

Arguments

u	the value in which the kernel function will be calculated at.
name	a character used to specify the type of kernel function.

ktau.to.coppar

Description

Convert the Kendall's tau into the copula parameter

Usage

ktau.to.coppar(ktau, copfam)

Arguments

ktau	a numeric value that denotes the Kendall's tau.
copfam	a character string that denotes the copula family.

Lambda_AFT_11	Link function (AFT model)	
---------------	---------------------------	--

Description

This function defines the AFT link function.

Usage

Lambda_AFT_ll(t)

Arguments t

time parameter.

Lambda_Cox_wb Link function (Cox model)

Description

This function defines the Cox PH link function.

Usage

Lambda_Cox_wb(t)

Arguments

t time parameter.

Lambda_inverse_AFT_11 Inverse of link function (AFT model)

Description

This function defines the inverse of the AFT link function.

Usage

```
Lambda_inverse_AFT_ll(p)
```

Arguments

р

probability.

Lambda_inverse_Cox_wb Inverse of link function (Cox model)

Description

This function defines the inverse of the Cox PH link function.

Usage

```
Lambda_inverse_Cox_wb(p)
```

Arguments

p probability.

lf.delta.beta1 Loss function to compute Delta(beta).

Description

This function defines the loss function used in computing the penalized local linear approximation of the test statistic in order to construct the bootstrap distribution of the test statistic.

lf.delta.beta1

Usage

```
lf.delta.beta1(
   Delta.sub,
   vnb,
   phi,
   Gn,
   Omegan,
   beta,
   c,
   r,
   data,
   par.space,
   epsilon.n,
   lambda.n
```

```
)
```

Arguments

Delta.sub	Subvector of Delta.
vnb	Bootstrapped stochastic process.
phi	Moment selection functions.
Gn	First-order approximation matrix.
Omegan	Correlation matrix of sample moment functions.
beta	Coefficient vector.
С	Projection vector.
r	Value of projected coefficient vector.
data	Data frame.
par.space	Matrix containing the bounds on the parameter space.
epsilon.n	Parameter used in constructing the feasible region as in Example 4.1 in Bei (2024). Not used in this function.
lambda.n	Weight of penalty term.

Value

Loss function evaluation evaluated at the given Delta.

References

Bei, X. (2024). Local linearieation based subvector inference in moment inequality models. Journal of Econometrics. 238:105549-

Description

This function implements the loss function used in computing the test statistic.

Usage

```
lf.ts(beta.sub, data, t, hp, c, r, inst.func.evals = NULL)
```

Arguments

beta.sub	Subvector of coefficient vector.	
data	Data frame.	
t	Time point of interest. Also allowed to be a vector of time points (used in estimating the model under assumed time- independent coefficients).	
hp	List of hyperparameters.	
с	Unit vector containing unity at the location of the parameter of interest.	
r	Value of the parameter of interest that is tested.	
inst.func.evals		
	Pre-computed matrix of insturmental function evaluations. If not supplied, it will be computed during execution of this function.	

Value

S-functions evaluation for the specified parameter vector.

LikCopInd

Loglikehood function under independent censoring

Description

Loglikehood function under independent censoring

Usage

LikCopInd(theta, resData, X, W, lhat, cumL, dist)

theta	Estimated parameter values/initial values for finite dimensional parameters
resData	Data matrix with three columns; $Z =$ the observed survival time, d1 = the censoring indicator of T and d2 = the censoring indicator of C.
Х	Data matrix with covariates related to T
W	Data matrix with covariates related to C. First column of W should be ones
lhat	The estimated hazard function obtained from the output of SolveLI.
cumL	The estimated cumulative hazard function from the output of SolveLI.
dist	The distribution to be used for the dependent censoring C. Only two distributions are allowed, i.e, Weibull and lognormal distributions. With the value "Weibull" as the default. @importFrom stats nlminb pnorm qnorm sd

Value

Maximized log-likelihood value

Likelihood.Parametric	Calculate the likelihood function for the fully parametric joint distri-
	bution

Description

Calculate the likelihood function for the fully parametric joint distribution

Usage

Likelihood.Parametric(param, yobs, delta, copfam, margins, cure = FALSE)

Arguments

param	a vector contains all parametric parameters.
yobs	a numeric vector that indicated the observed survival times.
delta	a numeric vector that stores the right-censoring indicators.
copfam	a character string that specifies the copula family.
margins	a list used to define the distribution structures of both the survival and censoring margins.
cure	a logical value that indicates whether the existence of a cured fraction should be considered.

```
Likelihood.Profile.Kernel
```

Calculate the profiled likelihood function with kernel smoothing

Description

Calculate the profiled likelihood function with kernel smoothing

Usage

Likelihood.Profile.Kernel(param, yobs, delta, copfam, margins, cure = FALSE)

Arguments

param	a vector contains all parametric parameters.
yobs	a numeric vector that indicated the observed survival times.
delta	a numeric vector that stores the right-censoring indicators.
copfam	a character string that specifies the copula family.
margins	a list used to define the distribution structures of both the survival and censoring margins.
cure	a logical value that indicates whether the existence of a cured fraction should be considered.

Likelihood.Profile.Solve

Solve the profiled likelihood function

Description

Solve the profiled likelihood function

Usage

```
Likelihood.Profile.Solve(
  yobs,
  delta,
  copfam,
  margins,
  ktau.init,
  parapar.init,
  cure,
  curerate.init,
  constraints,
  maxit,
  eps
)
```

yobs	a numeric vector that indicated the observed survival times.
delta	a numeric vector that stores the right-censoring indicators.
copfam	a character string that specifies the copula family.
margins	a list used to define the distribution structures of both the survival and censoring margins.
ktau.init	initial value of Kendall's tau.
parapar.init	initial value of parametric parameters.
cure	a logical value that indicates whether the existence of a cured fraction should be considered.
curerate.init	initial value of cure rate.
constraints	constraints of parameters.
maxit	a positive integer that denotes the maximum iteration number in optimization.
eps	a positive small numeric value that denotes the tolerance for convergence.

Likelihood.Semiparametric

Calculate the semiparametric version of profiled likelihood function

Description

Calculate the semiparametric version of profiled likelihood function

Usage

```
Likelihood.Semiparametric(
  param,
  Syobs,
  yobs,
  delta,
  copfam,
  margins,
  cure = FALSE
)
```

Arguments

param	a vector contains all parametric parameters.
Syobs	values of survival function at observed time points.
yobs	a numeric vector that indicated the observed survival times.
delta	a numeric vector that stores the right-censoring indicators.
copfam	a character string that specifies the copula family.

62

margins	a list used to define the distribution structures of both the survival and censoring margins.
cure	a logical value that indicates whether the existence of a cured fraction should be considered.

LikF.cmprsk

Second step log-likelihood function.

Description

This function defines the log-likelihood used to estimate the second step in the competing risks extension of the model described in Willems et al. (2024+).

Usage

LikF.cmprsk(par, data, admin, conf, cf)

Arguments

par	Vector of all second step model parameters, consisting of the regression parameters, variance-covariance matrix elements and transformation parameters.
data	Data frame resulting from the 'uniformize.data.R' function.
admin	Boolean value indicating whether the data contains administrative censoring.
conf	Boolean value indicating whether the data contains confounding and hence in- dicating the presence of Z and W.
cf	"Control function" to be used. This can either be the (i) estimated control func- tion, (ii) the true control function, (iii) the instrumental variable, or (iv) nothing (cf = NULL). Option (ii) is used when comparing the two-step estimator to the oracle estimator, and option (iii) is used to compare the two-step estimator with the naive estimator.

Value

Log-likelihood evaluation of the second step.

References

Willems et al. (2024+). Flexible control function approach under competing risks (in preparation).

likF.cmprsk.Cholesky Wrapper implementing likelihood function using Cholesky factorization.

Description

This function parametrizes the covariance matrix using its Cholesky decomposition, so that optimization of the likelihood can be done based on this parametrization, and positive-definiteness of the covariance matrix is guaranteed at each step of the optimization algorithm.

Usage

```
likF.cmprsk.Cholesky(par.chol, data, admin, conf, cf, eps = 0.001)
```

Arguments

par.chol	Vector of all second step model parameters, consisting of the regression param- eters, Cholesky decomposition of the variance-covariance matrix elements and transformation parameters.
data	Data frame resulting from the 'uniformize.data.R' function.
admin	Boolean value indicating whether the data contains administrative censoring.
conf	Boolean value indicating whether the data contains confounding and hence in- dicating the presence of Z and W.
cf	"Control function" to be used. This can either be the (i) estimated control func- tion, (ii) the true control function, (iii) the instrumental variable, or (iv) nothing (cf = NULL). Option (ii) is used when comparing the two-step estimator to the oracle estimator, and option (iii) is used to compare the two-step estimator with the naive estimator.
eps	Minimum value for the diagonal elements in the covariance matrix. Default is $eps = 0.001$.

Value

Log-likelihood evaluation of the second step.

LikGamma1

First step log-likelihood function for Z continuous

Description

This function defines the maximum likelihood used to estimate the control function in the case of a continuous endogenous variable.

Usage

LikGamma1(gamma, Z, M)

Arguments

gamma	Vector of coefficients in the linear model used to estimate the control function.
Z	Endogenous covariate.
М	Design matrix, containing an intercept, the exogenous covariates and the instru- mental variable.

Value

Returns the log-likelihood function corresponding to the data, evaluated at the point gamma.

LikGamma2First step log-likelihood function for Z binary.	
---	--

Description

This function defines the maximum likelihood used to estimate the control function in the case of a binary endogenous variable.

Usage

LikGamma2(gamma, Z, M)

Arguments

gamma	Vector of coefficients in the logistic model used to estimate the control function.
Z	Endogenous covariate.
М	Design matrix, containing an intercept, the exogenous covariates and the instru- mental variable.

Value

Returns the log-likelihood function corresponding to the data, evaluated at the point gamma.

64

LikI.bis

Second likelihood function needed to fit the independence model in the second step of the estimation procedure.

Description

This function defines the log-likelihood used in estimating the second step in the competing risks extension of the model described in Willems et al. (2024+). The results of this function will serve as starting values for subsequent optimizations (LikI.comprsk.R and LikF.cmprsk.R)

Usage

LikI.bis(par, data, admin, conf, cf)

Arguments

par	Vector of all second step model parameters, consisting of the regression parameters, variance-covariance matrix elements and transformation parameters.
data	Data frame resulting from the 'uniformize.data.R' function.
admin	Boolean value indicating whether the data contains administrative censoring.
conf	Boolean value indicating whether the data contains confounding and hence indicating the presence of ${\rm Z}$ and W
cf	"Control function" to be used. This can either be the (i) estimated control func- tion, (ii) the true control function, (iii) the instrumental variable, or (iv) nothing (cf = NULL). Option (ii) is used when comparing the two-step estimator to the oracle estimator, and option (iii) is used to compare the two-step estimator with the naive estimator.

Value

Starting values for subsequent optimization function used in the second step of the estimation procedure.

References

Willems et al. (2024+). Flexible control function approach under competing risks (in preparation).

```
LikI.cmprsk
```

Description

This function defines the log-likelihood used to estimate the second step in the competing risks extension assuming independence of some of the competing risks in the model described in Willems et al. (2024+).

Usage

```
LikI.cmprsk(par, data, eoi.indicator.names, admin, conf, cf)
```

Arguments

par	Vector of all second step model parameters, consisting of the regression parameters, variance-covariance matrix elements and transformation parameters.
data	Data frame resulting from the 'uniformize.data.R' function.
eoi.indicator.r	names
	Vector of names of the censoring indicator columns pertaining to events of in- terest. Events of interest will be modeled allowing dependence between them, whereas all censoring events (corresponding to indicator columns not listed in eoi.indicator.names) will be treated as independent of every other event.
admin	Boolean value indicating whether the data contains administrative censoring.
conf	Boolean value indicating whether the data contains confounding and hence indicating the presence of Z and W $$
cf	"Control function" to be used. This can either be the (i) estimated control func- tion, (ii) the true control function, (iii) the instrumental variable, or (iv) nothing (cf = NULL). Option (ii) is used when comparing the two-step estimator to the oracle estimator, and option (iii) is used to compare the two-step estimator with the naive estimator.

Value

Log-likelihood evaluation for the second step in the esimation procedure.

References

Willems et al. (2024+). Flexible control function approach under competing risks (in preparation).

LikI.cmprsk.Cholesky Wrapper implementi

Wrapper implementing likelihood function assuming independence between competing risks and censoring using Cholesky factorization.

Description

This function does the same as LikI.cmprsk (in fact, it even calls said function), but it parametrizes the covariance matrix using its Cholesky decomposition in order to guarantee positive definiteness. This function is never used, might not work and could be deleted.

Usage

```
LikI.cmprsk.Cholesky(
  par.chol,
  data,
  eoi.indicator.names,
  admin,
  conf,
  cf,
  eps = 0.001
)
```

Arguments

par.chol	Vector of all second step model parameters, consisting of the regression parameters, Cholesky decomposition of the variance-covariance matrix elements and transformation parameters.
data	Data frame resulting from the 'uniformize.data.R' function.
eoi.indicator.n	ames
	Vector of names of the censoring indicator columns pertaining to events of in- terest. Events of interest will be modeled allowing dependence between them, whereas all censoring events (corresponding to indicator columns not listed in eoi.indicator.names) will be treated as independent of every other event.
admin	Boolean value indicating whether the data contains administrative censoring.
conf	Boolean value indicating whether the data contains confounding and hence indicating the presence of Z and W. $\!\!\!$
cf	"Control function" to be used. This can either be the (i) estimated control func- tion, (ii) the true control function, (iii) the instrumental variable, or (iv) nothing (cf = NULL). Option (ii) is used when comparing the two-step estimator to the oracle estimator, and option (iii) is used to compare the two-step estimator with the naive estimator.
eps	Minimum value for the diagonal elements in the covariance matrix. Default is $eps = 0.001$.

Value

Log-likelihood evaluation for the second step in the estimation procedure.

likIFG.cmprsk.Cholesky

Full likelihood (including estimation of control function).

Description

This function defines the 'full' likelihood of the model. Specifically, it includes the estimation of the control function in the computation of the likelihood. This function is used in the estimation of the variance of the estimates (variance.cmprsk.R).

Usage

```
likIFG.cmprsk.Cholesky(
  parhatG,
  data,
  eoi.indicator.names,
  admin,
  conf,
  Zbin,
  inst
)
```

Arguments

parhatG	The full parameter vector.
data	Data frame.
<pre>eoi.indicator.n</pre>	ames
	Vector of names of the censoring indicator columns pertaining to events of in- terest. Events of interest will be modeled allowing dependence between them, whereas all censoring events (corresponding to indicator columns not listed in eoi.indicator.names) will be treated as independent of every other event. If eoi.indicator.names == NULL, all events will be modelled dependently.
admin	Boolean value indicating whether the data contains administrative censoring.
conf	Boolean value indicating whether the data contains confounding and hence indicating the presence of Z and W.
Zbin	Boolean value indicating whether the confounding variable is binary.
inst	Type of instrumental function to be used.

Value

Full model log-likelihood evaluation.

loglike.clayton.unconstrained

Log-likelihood function for the Clayton copula.

Description

This likelihood function is maximized to estimate the model parameters under the Clayton copula.

Usage

```
loglike.clayton.unconstrained(para, Y, Delta, Dist.T, Dist.C)
```

Arguments

para	Estimated parameter values/initial values.
Υ	Follow-up time.
Delta	Censoring indicator.
Dist.T	The distribution to be used for the survival time T. This argument can take one of the values from c("lnorm", "weibull") and has to be the same as Dist.C.
Dist.C	The distribution to be used for the censoring time C. This argument can take one of the values from c("lnorm", "weibull") and has to be the same as Dist.T.

Value

Maximized log-likelihood value.

loglike.frank.unconstrained

Log-likelihood function for the Frank copula.

Description

This likelihood function is maximized to estimate the model parameters under the Frank copula.

Usage

loglike.frank.unconstrained(para, Y, Delta, Dist.T, Dist.C)

para	Estimated parameter values/initial values.
Υ	Follow-up time.
Delta	Censoring indicator.
Dist.T	The distribution to be used for the survival time T. This argument can take one of the values from c("lnorm", "weibull", "llogis").
Dist.C	The distribution to be used for the censoring time C. This argument can take one of the values from c("lnorm", "weibull", "llogis").

Value

Maximized log-likelihood value.

loglike.gaussian.unconstrained Log-likelihood function for the Gaussian copula.

Description

This likelihood function is maximized to estimate the model parameters under the Gaussian copula.

Usage

```
loglike.gaussian.unconstrained(para, Y, Delta, Dist.T, Dist.C)
```

Arguments

para	Estimated parameter values/initial values.
Υ	Follow-up time.
Delta	Censoring indicator.
Dist.T	The distribution to be used for the survival time T. This argument can only the value "lnorm".
Dist.C	The distribution to be used for the censoring time C. This argument can only the value "lnorm".

Value

Maximized log-likelihood value.

loglike.gumbel.unconstrained

Log-likelihood function for the Gumbel copula.

Description

This likelihood function is maximized to estimate the model parameters under the Gumbel copula.

Usage

```
loglike.gumbel.unconstrained(para, Y, Delta, Dist.T, Dist.C)
```

Arguments

para	Estimated parameter values/initial values.
Υ	Follow-up time.
Delta	Censoring indicator.
Dist.T	The distribution to be used for the survival time T. This argument can take one of the values from c("lnorm", "weibull") and has to be the same as Dist.C.
Dist.C	The distribution to be used for the censoring time C. This argument can take one of the values from c("lnorm", "weibull") and has to be the same as Dist.T.

Value

Maximized log-likelihood value.

loglike.indep.unconstrained

Log-likelihood function for the independence copula.

Description

This likelihood function is maximized to estimate the model parameters under the independence copula.

Usage

```
loglike.indep.unconstrained(para, Y, Delta, Dist.T, Dist.C)
```

para	Estimated parameter values/initial values.
Υ	Follow-up time.
Delta	Censoring indicator.
Dist.T	The distribution to be used for the survival time T. This argument can take one of the values from c("lnorm", "weibull", "llogis").
Dist.C	The distribution to be used for the censoring time C. This argument can take one of the values from c("lnorm", "weibull", "llogis").

Value

Maximized log-likelihood value.

log_transform

Logarithmic transformation function.

Description

Computes the logarithm of a number.

Usage

log_transform(y)

Arguments

у

Numerical value of which the logarithm is computed.

Value

This function returns the logarithm of the provided argument y if it is greater than zero. If y is smaller than zero, it will return 0.
Longfun

Long format

Description

Change hazard and cumulative hazard to long format

Usage

Longfun(Z, T1, lhat, Lhat)

Arguments

Z	Observed survival time, which is the minimum of T, C and A, where A is the administrative censoring time.
T1	Distinct observed survival time
lhat	Hazard function estimate
Lhat	Cumulative hazard function estimate

	LongNPT	Change H to long format	
--	---------	-------------------------	--

Description

Change a nonparametric transformation function to long format

Usage

LongNPT(Z, T1, H)

Z	Observed survival time, which is the minimum of T, C and A, where A is the administrative censoring time.
T1	Distinct observed survival time
Н	Nonparametric transformation function estimate

m.bar

Description

This function obtains the vector of sample averages of each moment function.

Usage

m.bar(data, beta, t, hp, mi.mat = NULL)

Arguments

data	Data frame.
beta	Vector of coefficients.
t	Time point at which to compute the moment functions. Also allowed to be a vector of time points (used in estimating the model under assumed time- independent coefficients).
hp	List of hyperparameters.
mi.mat	Matrix of moment function evaluations. Can be used to avoid some computa- tion. Default is mi.mat = NULL.

MSpoint	Analogue to KMS_AUX4_MSpoints() (2024).	in MATLAB code of Bei
	(2024).	

Description

Create starting values for EI maximization. Used in the M-step (get.starting.values.R).

Usage

MSpoint(draws.init)

Arguments

draws.init Initial draws.

References

Bei, X. (2024). Local linearieation based subvector inference in moment inequality models. Journal of Econometrics. 238:105549-

M_step

Description

This function performs the maximization step in the EAM algorithm. More specifically, it maximizes the expected improvement. ToDo: implement sample space contractions (see comment made in documentation of draw.sv.init).

Usage

```
M_step(
    dir,
    evaluations,
    theta.hash,
    fit.krige,
    test.fun,
    c,
    par.space,
    hyperparams,
    verbose
)
```

dir	Direction to search in. dir = 1 corresponds to finding the upper bound of the confidence interval. dir = -1 corresponds to finding the lower bound.
evaluations	Matrix containing each point that was already evaluated, alongside the corresponding test statistic and critical value, as its rows.
theta.hash	Tentative best value of theta. Obtained from the E-step.
fit.krige	Kriging model obtained from the A-step.
test.fun	The test function to be inverted in order to obtain the identified set.
с	Projection vector.
par.space	Bounds of the parameter space.
hyperparams	Parameters used in obtaining initial values for the maximization algorithm. If NULL, default values are used. Default is hyperparams = NULL.
verbose	Verbosity parameter.

NonParTrans

Description

This function allows to estimate the dependency parameter along all other model parameters. First, estimates a non-parametric transformation function, and then at the second stage it estimates other model parameters assuming that the non-parametric function is known. The details for implementing the dependent censoring methodology can be found in Deresa and Van Keilegom (2021).

Usage

```
NonParTrans(
   resData,
   X,
   W,
   start = NULL,
   n.iter = 15,
   bootstrap = FALSE,
   n.boot = 50,
   eps = 0.001
)
```

Arguments

resData	Data matrix with three columns; $Z =$ the observed survival time, $d1 =$ the censoring indicator of T and $d2 =$ the censoring indicator of C.
Х	Data matrix with covariates related to T
W	Data matrix with covariates related to C
start	Initial values for the finite dimensional parameters. If start is NULL, the initial values will be obtained by fitting an Accelerated failure time models.
n.iter	Number of iterations; the default is n.iter = 20. The larger the number of iterations, the longer the computational time.
bootstrap	A boolean indicating whether to compute bootstrap standard errors for making inferences.
n.boot	Number of bootstrap samples to use in the estimation of bootstrap standard errors if bootstrap = TRUE. The default is n.boot = 50. But, higher values of n.boot are recommended for obtaining good estimates of bootstrap standard errors.
eps	Convergence error. This is set by the user in such away that the desired convergence is met; the default is $eps = 1e-3$.

Value

This function returns a fit of a semiparametric transformation model; parameter estimates, estimate of the non-parametric transformation function, bootstrap standard errors for finite-dimensional parameters, the nonparametric cumulative hazard function, etc.

normalize.covariates

References

Deresa, N. and Van Keilegom, I. (2021). On semiparametric modelling, estimation and inference for survival data subject to dependent censoring, Biometrika, 108, 965–979.

Examples

```
# Toy data example to illustrate implementation
n = 300
beta = c(0.5, 1); eta = c(1, 1.5); rho = 0.70
sigma = matrix(c(1,rho,rho,1),ncol=2)
err = MASS::mvrnorm(n, mu = c(0,0) , Sigma=sigma)
err1 = err[,1]; err2 = err[,2]
x1 = rbinom(n, 1, 0.5); x2 = runif(n, -1, 1)
X = matrix(c(x1,x2),ncol=2,nrow=n); W = X # data matrix
T1 = X%*%beta+err1
C = W%*%eta+err2
T1 = exp(T1); C = exp(C)
A = runif(n,0,8); Y = pmin(T1,C,A)
d1 = as.numeric(Y==T1)
d2 = as.numeric(Y==C)
resData = data.frame("Z" = Y,"d1" = d1, "d2" = d2) # should be data frame
colnames(X) = c("X1", "X2")
colnames(W) = c("W1", "W2")
# Bootstrap is false by default
output = NonParTrans(resData = resData, X = X, W = W, n.iter = 2)
```

```
output$parameterEstimates
```

normalize.covariates Normalize the covariates of a data set to lie in the unit interval by scaling based on the ranges of the covariates.

Description

This function normalized the covariates in the data to lie in the unit interval based on either the empirical or known ranges of the covariates. It is useful to perform this step when defining the instrumental functions later on. This function is used in G.box.R, G.spline.R and by extension in G.cd.R.

Usage

```
normalize.covariates(
   data = NULL,
   x = NULL,
   cov.ranges = NULL,
   idxs.c = "all",
   norm.cov.out = NULL,
```

) ...

Arguments

data	(optional) Data set to be used to construct the normalizing transformation. De- fault is data = NULL.
x	(optional) Vector of covariates to be normalized alongside the data. Default is x = NULL.
cov.ranges	(optional) Matrix that specifies the range of each of the covariates in the data set. Each column corresponds to a covariate. The first row contains the lower bound, the second row contains the upper bound. If not supplied, the data will be normalized based on the minimum and maximum detected values. If supplied, the non data-dependent transformation function listed in the appendix of Andrews, Shi 2013 will be used. Default is cov.ranges = NULL.
idxs.c	(optional) Vector of indices of covariates that are continuous. Note that that in- dices are relative to the covariate vector, not the full data set. Default value is idxs.c = "all", which indicates that all elements should be regarded as contin- uous. If $idxs.c = NULL$, all elements are regarded as discrete.
norm.cov.out	(optional) The output of a previous call to this function. Can be used to speed up computation. If both data and norm.cov.out are supplied to the function, this method will throw an error. Default is norm.cov.out = NULL.
	Allows easier interchangeability between covariate normalization functions. All arguments specified under will be ignored.

References

Andrews, D.W.K. and Shi, X. (2013). Inference based on confitional moment inequalities. Econometrica. 81(2):609-666.

normalize.covariates2 Normalize the covariates of a data set to lie in the unit interval by transforming based on PCA.

Description

This function normalized the covariates in the data to lie in the unit interval based on a principal component analysis. It is useful to perform this step when defining the instrumental functions later on. This function is used in G.box, G.spline and by extension G.cd.

Usage

```
normalize.covariates2(
  data = NULL,
  x = NULL,
  idxs.c = "all",
```

Omega.hat

```
norm.cov.out = NULL,
    ...
)
```

Arguments

data	(optional) Data set to be used to construct the normalizing transformation. Default is data = NULL.
x	(optional) Vector of covariates to be normalized alongside the data. Default is x = NULL.
idxs.c	(optional) Vector of indices of covariates that are continuous. Note that that in- dices are relative to the covariate vector, not the full data set. Default value is idxs.c = "all", which indicates that all elements should be regarded as contin- uous. If $idxs.c = NULL$, all elements are regarded as discrete.
norm.cov.out	(optional) The output of a previous call to this function. Can be used to speed up computation. If both data and norm.cov.out are supplied to the function, the function will throw an error. Default is norm.cov.out = NULL
	Allows easier interchangeability between covariate normalization functions. All arguments specified under will be ignored.

Omega.hat	Obtain the correlation matrix of the moment functions

Description

This function computes the correlation matrix corresponding to the variance-covariance matrix as returned by Sigma.hat.R

Usage

```
Omega.hat(Sigma)
```

Arguments

Sigma The output of the function Sigma.hat

optimlikelihood

Description

Estimates the model parameters by maximizing the log-likelihood.

Usage

optimlikelihood(Y, Delta, Copula, Dist.T, Dist.C, start)

Arguments

Y	Follow-up time.
Delta	Censoring indicator.
Copula	The copula family. This argument can take values from c("frank", "gumbel", "clayton", "gaussian",
Dist.T	The distribution to be used for the survival time T. This argument can take one of the values from c("lnorm", "weibull", "llogis").
Dist.C	The distribution to be used for the censoring time C. This argument can take one of the values from c("lnorm", "weibull", "llogis").
start	Starting values

Value

A list containing the minimized negative log-likelihood using the independence copula model, the estimated parameter values for the model with the independence copula, the minimized negative log-likelihood using the specified copula model and the estimated parameter values for the model with the specified copula.

parafam.d

Obtain the value of the density function

Description

Obtain the value of the density function

Usage

```
parafam.d(x, parameter, distribution, truncation = NULL)
```

parafam.p

Arguments

х	the value in which the density function will be calculated at.
parameter	the parameter of the specified distribution
distribution	the specified distribution function.
truncation	a positive numeric value thats denotes the value of truncation for the assumed distribution.

parafam.p

Obtain the value of the distribution function

Description

Obtain the value of the distribution function

Usage

parafam.p(x, parameter, distribution, truncation = NULL)

Arguments

х	the value in which the distribution function will be calculated at.	
parameter	the parameter of the specified distribution	
distribution	the specified distribution function.	
truncation	a positive numeric value thats denotes the value of truncation for the assumed distribution.	

parafam.trunc Obtain the adjustment value of truncation

Description

Obtain the adjustment value of truncation

Usage

```
parafam.trunc(truncation, parameter, distribution)
```

truncation	a positive numeric value thats denotes the value of truncation for the assumed distribution.
parameter	the parameter of the specified distribution
distribution	the specified distribution function.

ParamCop

Estimation of a parametric dependent censoring model without covariates.

Description

Note that it is not assumed that the association parameter of the copula function is known, unlike most other papers in the literature. The details for implementing the methodology can be found in Czado and Van Keilegom (2023).

Usage

```
ParamCop(Y, Delta, Copula, Dist.T, Dist.C, start = c(1, 1, 1, 1))
```

Arguments

Υ	Follow-up time.
Delta	Censoring indicator.
Copula	The copula family. This argument can take values from c("frank", "gumbel", "clayton", "gaussian",
Dist.T	The distribution to be used for the survival time T. This argument can take one of the values from c("lnorm", "weibull", "llogis").
Dist.C	The distribution to be used for the censoring time C. This argument can take one of the values from c("lnorm", "weibull", "llogis").
start	Starting values

Value

A table containing the minimized negative log-likelihood using the independence copula model, the estimated parameter values for the model with the independence copula, the minimized negative log-likelihood using the specified copula model and the estimated parameter values for the model with the specified copula.

References

Czado and Van Keilegom (2023). Dependent censoring based on parametric copulas. Biometrika, 110(3), 721-738.

Examples

```
tau = 0.75
Copula = "frank"
Dist.T = "weibull"
Dist.C = "lnorm"
par.T = c(2,1)
par.C = c(1,2)
n=1000
```

Parameters.Constraints

simdata<-TCsim(tau,Copula,Dist.T,Dist.C,par.T,par.C,n)
Y = simdata[[1]]
Delta = simdata[[2]]
ParamCop(Y,Delta,Copula,Dist.T,Dist.C)</pre>

Parameters.Constraints

Generate constraints of parameters

Description

Generate constraints of parameters

Usage

```
Parameters.Constraints(copfam, margins, cure)
```

Arguments

copfam	a character string that specifies the copula family.
margins	a list used to define the distribution structures of both the survival and censoring margins.
cure	a logical value that indicates whether the existence of a cured fraction should be considered.

pi.surv

Estimate the model of Willems et al. (2024+).

Description

This function estimates bounds on the coefficients the single- index model $\Lambda(x^{\top}\beta(t))$ for the conditional cumulative distribution function of the event time.

Usage

```
pi.surv(
   data,
   idx.param.of.interest,
   idxs.c,
   t,
   par.space,
   search.method = "GS",
```

```
add.options = list(),
verbose = 0,
picturose = FALSE,
parallel = FALSE
)
```

Arguments

data	Data frame containing the data on which to fit the model. The columns should be named as follows: 'Y' = observed timed, 'Delta' = censoring indicators, 'X0' = intercept column, 'X1' - 'Xp' = covariates.
idx.param.of.im	nterest
	Index of element in the covariate vector for which the identified interval should be estimated. It can also be specified as idx.param.of.interest = "all", in which case identified intervals will be computed for all elements in the parame- ter vector. Note that idx.param.of.interest = 1 corresponds to the intercept parameter.
idxs.c	Vector of indices of the continuous covariates. Suppose the given data contains 5 covariates, of which 'X2' and 'X5' are continuous, this argument should be specified as $idxs.c = c(2, 5)$.
t	Time point for which to estimate the identified set of $\beta(t)$.
par.space	Matrix containing bounds on the space of the parameters. The first column cor- responds to lower bounds, the second to upper bounds. The i'th row corresponds to the bounds on the i'th element in the parameter vector.
search.method	The search method to be used to find the identified interval. Default is search.method = "GS".
add.options	List of additional options to be specified to the method. Notably, it can be used to select the link function $\Lambda(t)$) that should be considered. Currently, the link function leading to an accelerated failure time model ("AFT_11", default) and the link function leading to a Cox proportional hazards model ("Cox_wb") are implemented. Other options can range from 'standard' hyperparameters such as the confidence level of the test and number of instrumental functions to be used, to technical hyperparameters regarding the search method and test implementa- tion. For the latter, we refer to the documentations of set.hyperparameters, set.EAM.hyperparameters and set.GS.hyperparameters. We recommend to use the default parameters, unless you really know what you are doing.
verbose	Verbosity level. The higher the value, the more verbose the method will be. Default is verbose = 0.
picturose	Picturosity flag. If TRUE, a plot illustrating the workings of the algorithm will updated during runtime. Default is picturose = FALSE.
parallel	<pre>Flag for whether or not parallel computing should be used. Default is parallel = FALSE. When parallel = TRUE, this implementation will use min(detectCores() - 1, 10) cores to construct the parallel back-end.</pre>

Value

Matrix containing the identified intervals of the specified coefficients, as well as corresponding convergence information of the estimation algorithm.

pi.surv

References

Willems, I., Beyhum, J. and Van Keilegom, I. (2024+). Partial identification for a class of survival models under dependent censoring. (In preparation).

Examples

```
# Clear workspace
rm(list = ls())
# Load the survival package
library(survival)
# Set random seed
set.seed(123)
# Load and preprocess data
data <- survival::lung</pre>
data[, "intercept"] <- rep(1, nrow(data))</pre>
data[, "status"] <- data[, "status"] - 1</pre>
data <- data[, c("time", "status", "intercept", "age", "sex")]</pre>
colnames(data) <- c("Y", "Delta", "X0", "X1", "X2")</pre>
# Standardize age variable
data[, "X1"] <- scale(data[, "X1"])</pre>
## Example:
## - Link function: AFT link function (default setting)
## - Number of IF: 5 IF per continuous covariate (default setting)
## - Search method: Binary search
## - Type of IF: Cubic spline functions for continuous covariate, indicator
## function for discrete covariate (default setting).
# Settings for main estimation function
idx.param.of.interest <- 2 # Interest in effect of age</pre>
idxs.c <- 1
                            # X1 (age) is continuous
t <- 200
                           # Model imposed at t = 200
search.method <- "GS"</pre>
                           # Use binary search
par.space <- matrix(rep(c(-10, 10), 3), nrow = 3, byrow = TRUE)</pre>
add.options <- list()</pre>
picturose <- TRUE
parallel <- FALSE
# Estimate the identified intervals
pi.surv(data, idx.param.of.interest, idxs.c, t, par.space,
        search.method = search.method, add.options = add.options,
        picturose = picturose, parallel = parallel)
```

plot_addpte

Description

This function draws the points to be evaluated.

Usage

plot_addpte(pte, col = "orange")

Arguments

pte	Vector of points to be evaluated.
col	Color of the points.

plot_addpte.eval	Draw evaluated points.	
------------------	------------------------	--

Description

This function draws evaluated points. Feasible points are indicated in green, red points correspond to infeasible points.

Usage

```
plot_addpte.eval(evaluations)
```

Arguments

evaluations Matrix of evaluations to be drawn.

plot_base Draw base plot

Description

This functon draws the base plot, used when picturose = TRUE.

Usage

plot_base(c, hp)

С	Projection vector
hp	List of hyperparameters

power_transform Power transformation function.

Description

Computes a given power of a number.

Usage

```
power_transform(y, pw)
```

Arguments

У	The number which one wants to raise to a certain power pw.
pw	The power to which to raise y.

Value

This function returns the result of raising y to the power pw when y > 0. Otherwise, it will return 1.

PseudoL

Likelihood function under dependent censoring

Description

The PseudoL function is maximized in order to estimate the finite dimensional model parameters, including the dependency parameter. This function assumes that the cumulative hazard function is known.

Usage

```
PseudoL(theta, resData, X, W, lhat, cumL, cop, dist)
```

theta	Estimated parameter values/initial values for finite dimensional parameters
resData	Data matrix with three columns; $Z =$ the observed survival time, $d1 =$ the censoring indicator of T and $d2 =$ the censoring indicator of C.
Х	Data matrix with covariates related to T
W	Data matrix with covariates related to C. First column of W should be ones
lhat	The estimated hazard function obtained from the output of SolveL.
cumL	The estimated cumulative hazard function from the output of SolveL.

сор	Which copula should be computed to account for dependency between T and C. This argument can take one of the values from c("Gumbel", "Frank", "Normal"). The default copula model is "Frank".
dist	The distribution to be used for the dependent censoring C. Only two distributions are allowed, i.e, Weibull and lognormal distributions. With the value "Weibull" as the default.

Value

maximized log-likelihood value

S.func	S-function		
--------	------------	--	--

Description

This function computes the loss function at a given point.

Usage

S.func(m, Sigma)

Arguments

m	Vector of averages of moment functions.
Sigma	Sample variance-covariance matrix of moment functions.

Value

S(m, Sigma).

ScoreEqn

Score equations of finite parameters

Description

This function computes the score vectors and the Jacobean matrix for finite model parameters.

Usage

ScoreEqn(theta, resData, X, W, H)

SearchIndicate

Arguments

theta	Vector of parameters in the semiparametric transformation model.
resData	Data matrix with three columns; $Z =$ the observed survival time, $d1 =$ the censoring indicator of T and $d2 =$ the censoring indicator of C.
Х	Data matrix with covariates related to T.
W	Data matrix with covariates related to C.
н	The estimated non-parametric transformation function for a given value of theta

SearchIndicate Search function

Description

Function to indicate position of t in observed survival time

Usage

SearchIndicate(t, T1)

Arguments

t	fixed time t
T1	distinct observed survival time

set.EAM.hyperparameters

Set default hyperparameters for EAM algorithm

Description

This function returns a list with the (default) hyperparameters used in the EAM algorithm

Usage

set.EAM.hyperparameters(options)

Arguments

options	A list of user-specified values for (some of) the hyperparameters. These hyper- parameters can include:
	min.dist/max.dist: The minimum/maximum distance of sampled points from the current best value for the coefficient of interest.
	min.eval/max.eval: The minimum/maximum number of points evaluated in the initial feasible point search.
	nbr.init.sample.points: The total number of drawn points required in the initial drawing process.
	nbr.init.unif: The total number of uniformly drawn points in the initial set of starting values.
	nbr.points.per.iter.init: Number of points sampled per iteration in the initial drawing process.
	nbr.start.vals: Number of starting values for which to run the optimization algorithm for the expected improvement.
	nbr.opt.EI: Number of optimal theta values found by the optimization algorithm to return.
	nbr.extra: Number of extra randomly drawn points to add to the set of optimal theta values (to be supplied to the next E-step).
	min.improvement: Minimum amount that the current best root of the violation curve should improve by wrt. the its previous value.
	min.possible.improvement: Minimum amount that the next iteration should be able to improve upon the current best value of the root.
	EAM.min.iter: Minimum amount of EAM iterations to run.
	max.iter: Maximum amount of EAM iterations to run.

Value

List of hyperparameters for the EAM algotithm.

set.GS.hyperparameters

Set default hyperparameters for grid search algorithm

Description

This function returns a list with the (default) hyperparameters used in the grid search algorithm

Usage

set.GS.hyperparameters(options)

Arguments

opt	options	A list of user-specified values for (some of) the hyperparameters. These hyper- parameters could include:
		min.eval/max.eval: Minimum and maximum number of evaluations.
		next.gs.point: Function that determines the next point in the grid search sequence.
		step.size: Step size of the grid.
		bin.search.tol: Binary search tolerance.
		max.iter: Maximum number of iterations that the algorithm can run.

Value

List of hyperparameters for the gridsearch and binary search algorithms.

set.hyperparameters Define the hyperparameters used for finding the identified interval

Description

This function defines all the necessary hyperparameters used to run the methodology.

Usage

set.hyperparameters(data, par.space, c, search.method, options)

data	Data frame.
par.space	Bounds on the parameter space.
С	Projection vector.
search.method	Search method to use ("EAM" or "GS")
options	List of user specified hyperparameters that will substitute the corresponding de- fault values. This list can contain the entries:
	cov.ranges: known bounds on each of the covariates in the data set.
	norm.func.name: Name of the normalization function to be used. Can be either "normalize.covariates1" or "normalize.covariates2" (default). The former is a simple elementwise rescaling. The latter uses the PCA approach as discussed in Willems et al. (2024+).
	inst.func.family: Family of instrumental functions to be used for all covariates. Options are "box", "spline" and "cd". The former two are only applicable for continuous covariates. The latter can also handle discrete covariates. Default is "cd".

- **G.c:** The class of instrumental functions used for the continuous covariates in the model, in case "cd" is selected as inst.func.family:. Options are "box" and "spline". Default is "spline".
- **degree:** The degree of the B-spline functions, should they be used as instrumental functions for the continuous covariates. Default is 3.
- **link.function:** Name of the link function to be used. Options are "AFT_ll" for the AFT model with log-logistic baseline, or "Cox_wb" for the Cox PH model (originally with Weibull baseline, but now for a general) baseline hazard).
- **K.bar:** Number of refinement steps when obtaining the critical value. See Bei (2024).
- **B:** Number of bootstrap samples to be used when obtaining the bootstrap distribution of the test statistic.
- **ignore.empty.IF:** Boolean value indicating whether instrumental functions with empty support should be ignored (cf. Willems et al., 2024). Default is FALSE. The feature ignore.empty.IF = TRUE is experimental, so there might exist edge cases for which the implementation will fail to run.

Other (hidden) options can also be overwritten, though we highly discourage this. If necessary, you can consult the source code of this functions to find the names of the desired parameters and add their name alongside their desired value as an entry in options (e.g. options\$min.var <- 1e-4. Again, not recommended!).

Value

The list of hyperparameters.

Sigma.hat

Compute the variance-covariance matrix of the moment functions.

Description

This function comptutes the empricical variance-covariance matrix of the moment functions.

Usage

```
Sigma.hat(data, beta, t, hp, m.avg = NULL, mi.mat = NULL)
```

data	Data frame.
beta	Coefficient vector.
t	Time point of interest.
hp	List of hyperparameters.

SolveH

SolveH Estimate a nonparametric transformation function	
---	--

Description

This function estimates the nonparametric transformation function H when the survival time and censoring time are dependent given covariates. The estimating equation of H was derived based on the martingale ideas. More details about the derivation of a nonparametric estimator of H and its estimation algorithm can be found in Deresa and Van Keilegom (2021).

Usage

SolveH(theta, resData, X, W)

Arguments

theta	Vector of parameters in the semiparametric transformation model.
resData	Data matrix with three columns; $Z =$ the observed survival time, d1 = the censoring indicator of T and d2 = the censoring indicator of C.
Х	Data matrix with covariates related to T.
W	Data matrix with covariates related to C.

Value

Returns the estimated transformation function H for a fixed value of parameters theta.

References

Deresa, N. and Van Keilegom, I. (2021). On semiparametric modelling, estimation and inference for survival data subject to dependent censoring, Biometrika, 108, 965–979.

SolveHt1

Description

This function obtains an estimating equation of H at the first observed survival time t1.

Usage

SolveHt1(Ht1, Z, nu, t, X, W, theta)

Arguments

Ht1	The solver solves for an optimal value of Ht1 by equating the estimating equa- tion to zero.
Z	The observed survival time, which is the minimum of T, C and A.
nu	The censoring indicator for T or C
t	A fixed time point
Х	Data matrix with covariates related to T.
W	Data matrix with covariates related to C.
theta	Vector of parameters

SolveL	Cumulative hazard function of survival time under dependent censor-
	ing

Description

This function estimates the cumulative hazard function of survival time (T) under dependent censoring (C). The estimation makes use of the estimating equations derived based on martingale ideas.

Usage

```
SolveL(
  theta,
  resData,
  X,
  W,
  cop = c("Frank", "Gumbel", "Normal"),
  dist = c("Weibull", "lognormal")
)
```

SolveL

Arguments

theta	Estimated parameter values/initial values for finite dimensional parameters
resData	Data matrix with three columns; $Z =$ the observed survival time, $d1 =$ the censoring indicator of T and $d2 =$ the censoring indicator of C.
Х	Data matrix with covariates related to T
W	Data matrix with covariates related to C. First column of W should be ones
сор	Which copula should be computed to account for dependency between T and C. This argument can take one of the values from c("Gumbel", "Frank", "Normal"). The default copula model is "Frank".
dist	The distribution to be used for the dependent censoring C. Only two distributions are allowed, i.e, Weibull and lognormal distributions. With the value "Weibull" as the default.

Value

This function returns an estimated hazard function, cumulative hazard function and distinct observed survival times;

Examples

```
n = 200
beta = c(0.5)
lambd = 0.35
eta = c(0.9,0.4)
X = cbind(rbinom(n, 1, 0.5))
W = cbind(rep(1,n), rbinom(n,1,0.5))
frank.cop <- copula::frankCopula(param = 5,dim = 2)</pre>
U = copula::rCopula(n,frank.cop)
T1 = (-log(1-U[,1]))/(lambd*exp(X*beta))
                                                # Survival time'
T2 = (-log(1-U[,2]))^(1.1)*exp(W%*%eta)
                                                  # Censoring time
A = runif(n, 0, 15)
                                                   # administrative censoring time
Z = pmin(T1, T2, A)
d1 = as.numeric(Z==T1)
d2 = as.numeric(Z==T2)
resData = data.frame("Z" = Z,"d1" = d1, "d2" = d2)
theta = c(0.3, 1, 0.3, 1, 2)
# Estimate cumulative hazard function
cumFit <- SolveL(theta, resData,X,W)</pre>
cumhaz = cumFit$cumhaz
time = cumFit$times
# plot hazard vs time
plot(time, cumhaz, type = "1",xlab = "Time",
ylab = "Estimated cumulative hazard function")
```

SolveLI

Description

This function estimates the cumulative hazard function of survival time (T) under the assumption of independent censoring. The estimating equation is derived based on martingale ideas.

Usage

SolveLI(theta, resData, X)

Arguments

theta	Estimated parameter values/initial values for finite dimensional parameters
resData	Data matrix with three columns; $Z =$ the observed survival time, $d1 =$ the censoring indicator of T and $d2 =$ the censoring indicator of C.
Х	Data matrix with covariates related to T

Value

This function returns an estimated hazard function, cumulative hazard function and distinct observed survival times;

Examples

```
n = 200
beta = c(0.5)
lambd = 0.35
eta = c(0.9, 0.4)
X = cbind(rbinom(n, 1, 0.5))
W = cbind(rep(1,n), rbinom(n,1,0.5))
frank.cop <- copula::frankCopula(param = 5,dim = 2)</pre>
U = copula::rCopula(n,frank.cop)
T1 = (-\log(1-U[,1]))/(lambd*exp(X*beta))
                                                      # Survival time'
T2 = (-log(1-U[,2]))^{(1.1)*exp(W%*%eta)}
                                                      # Censoring time
A = runif(n, 0, 15)
                                                      # administrative censoring time
Z = pmin(T1, T2, A)
d1 = as.numeric(Z==T1)
d2 = as.numeric(Z==T2)
resData = data.frame("Z" = Z,"d1" = d1, "d2" = d2)
theta = c(0.3, 1, 0.3, 1)
# Estimate cumulative hazard function
cumFit_ind <- SolveLI(theta, resData,X)</pre>
```

SolveScore

```
cumhaz = cumFit_ind$cumhaz
time = cumFit_ind$times
# plot hazard vs time
plot(time, cumhaz, type = "1",xlab = "Time",
ylab = "Estimated cumulative hazard function")
```

SolveScore

Estimate finite parameters based on score equations

Description

This function estimates the model parameters

Usage

```
SolveScore(theta, resData, X, W, H, eps = 0.001)
```

Arguments

theta	Vector of parameters in the semiparametric transformation model.
resData	Data matrix with three columns; $Z =$ the observed survival time, d1 = the censoring indicator of T and d2 = the censoring indicator of C.
Х	Data matrix with covariates related to T.
W	Data matrix with covariates related to C.
Н	The estimated non-parametric transformation function for a given value of theta.
eps	Convergence error.

summary.depFit Summary of depCensoringFit object

Description

Summary of depCensoringFit object

Usage

```
## S3 method for class 'depFit'
summary(object, ...)
```

SurvDC

Arguments

object	Output of fitDepCens function
	Further arguments

Value

Summary of dependent censoring model fit in the form of table

summary.indepFit Summary of indepCensoringFit object

Description

Summary of indepCensoringFit object

Usage

S3 method for class 'indepFit'
summary(object, ...)

Arguments

object	Output of fitIndepCens function
	Further arguments

Value

Summary of independent censoring model fit in the form of table

SurvDC

Semiparametric Estimation of the Survival Function under Dependent Censoring

Description

Provide semiparametric approaches that can be used to model right-censored survival data under dependent censoring (without covariates). The copula-based approach is adopted and there is no need to explicitly specify the association parameter. One of the margins can be modeled nonparametrically. As a byproduct, both marginal distributions of survival and censoring times can be considered as fully parametric. The existence of a cured fraction concerning survival time can also be taken into consideration.

SurvDC

Usage

```
SurvDC(
   yobs,
   delta,
   tm = NULL,
   copfam = "frank",
   margins = list(survfam = NULL, censfam = "lnorm"),
   cure = FALSE,
   Var = list(do = TRUE, nboot = 200, level = 0.05),
   control = list(maxit = 300, eps = 1e-06, trace = TRUE, ktau.inits = NULL)
)
```

yobs	a numeric vector that indicated the observed survival times.
delta	a numeric vector that stores the right-censoring indicators.
tm	a numeric vector that contains interested non-negative time points at which the survival probabilities will be evluated. Note that if we omit the definition of this argument (the default value becomes NULL), our function will automatically output survival probabilities at all oberserved time points, that is, yobs.
copfam	a character string that specifies the copula family. Currently, it supports Archimedean copula families, including "frank" (the default value), "clayton", "gumbel", and "joe". The degenerated independent censoring case can be considered as well by setting "indep". (other options will be added in the near future!)
margins	a list used to define the distribution structures of both the survival and censoring margins. Specifically, it contains the following elements:
	<pre>survfam a character string that defines the assumed distribution for the sur- vival time random variable, including "lnorm" for log-normal distribution, "weibull" for weibull distribution (other options will be added in the near future).</pre>
	censfam a character string that defines the assumed distribution for the censor- ing time random variable, and the details are the same as those shown in survfam.
	survtrunc a positive numeric value thats denotes the value of truncation for the assumed distribution, that is, survfam.
	censtrunc a positive numeric value thats denotes the value of truncation for the assumed distribution, that is, censfam.
	Note if one of the marginal distributions should be modeled nonparametrically, one can let the corresponding argument to be NULL directly. For example if a semiparametric framework that defines the survival margin to be nonparametric and the censoring margin to be parametric, say log-normal, is desired, we can let survfam = NULL and censfam = "lnorm", which is indeed the default value. Furthermore, if no truncation is imposed in survfam (or censfam), one can directly omit the specification of survtrunc (or censtrunc), which is the default specification. We also remark here that when a cured fraction is included

	(cure = TRUE), if survfam is not NULL and survtrunc = NULL, we will automat- ically let survtrunc to be max(yobs). If we wants to model the data with a non-truncated survival distribution when there is a cured fraction, we can set survtrunc = Inf.
cure	a logical value that indicates whether the existence of a cured fraction should be considered.
Var	a list that controls the execution of the bootstrap for variance estimation, and it contains two elements: do is a logical value with default FALSE to tell the function whether the boostrap-based variances should be calculated; nboot is a numeric integer that specifies the number of bootstrap samples.
control	indicates more detailed control of the underlying model fitting procedures. It is a list of the following three arguments:
	maxit a positive integer that denotes the maximum iteration number in opti- mization. The default value is 300.
	eps a positive small numeric value that denotes the tolerance for convergence. The default value is 1e-6.
	trace a logical value that judges whereh the tracing information on the progress of the model fitting should be produced. The default value if TRUE.
	ktau.inits a numeric vector that contains initial values of the Kendall's tau. The default value is NULL, meaning that a grids of initial values will be automatically generated within our function.

Details

This unified function provide approaches that can be used to model right-censored survival data under dependent censoring (without covariates). Various specifications of marginal distributions can be considered by choosing different combinations of the provided arguments. Generally speaking, the following two scenarios are what we mainly focused on:

- nonparametric survival margin and parametric censoring margin (without cure) survfam = NULL, censfam is not NULL and cure = FALSE.
- nonparametric survival margin and parametric censoring margin (with cure) survfam = NULL, censfam is not NULL and cure = TRUE.

As byproducts, several other scenarios (the distribution of the underlying survival time is not nonparametric but fully parametric) can also be considered by this R function:

- parametric survival and censoring margins (without cure) both survfam and censfam are not NULL and cure = FALSE.
- parametric survival and censoring margins (with cure) both survfam and censfam are not NULL and cure = TRUE.
- parametric survival margin and nonparametric censoring margin (without cure) survfam is not NULL, censfam = NULL and cure = FALSE.

Furthermore, one might expect that a scenario with "parametric survival margin and nonparametric censoring margin (with cure)" can also be included. Indeed, it can be done based on: survfam is not NULL, censfam = NULL and cure = TRUE. However, from a theoretical perspective of view, whether this type of modeling is reasonable or not still needs further investigations.

SurvDC

We emphasize that the first scenario (in byproducts) has also be considered in another function of this package. Specifically, the scenario of "parametric survival margin and nonparametric censoring margin (without cure)" can be fitted based on ParamCop(). However, the default joint modeling of survival and censoring times are based on their joint survival function in line with the semiparametric case (instead of modeling joint distribution function directly as in Czado and Van Keilegom (2023) <doi:10.1093/biomet/asac067>), but the idea of estimation methodology are exactly the same.

@references Czado and Van Keilegom (2023). Dependent censoring based on parametric copulas. Biometrika, 110(3), 721-738. @references Delhelle and Van Keilegom (2024). Copula based dependent censoring in cure models. TEST (to appear). @references Ding and Van Keilegom (2024). Semiparametric estimation of the survival function under dependent censoring (in preparation).

Value

A list of fitted results is returned. Within this outputted list, the following elements can be found:

probs survival probabilities of the survial margin at tm.

ktau Kendall's tau.

parapar estimation of all parameters (except Kendall's tau) contained in the parametric part.

GoF goodness-of-test results.

curerate cure rate. If cure = FALSE, it is NULL.

Examples

```
#-----#
# Basic preparations before running subsequent examples ####
#------#
# library necessary packages
#-----#
# simulated data from Frank copula log-Normal margins (without cure)
 -----#
# generate the simulated data
# - the sample size of the generated data
n <- 1000
# information on the used copula
copfam.true <- "frank"
ktau.true <- 0.5
coppar.true <- 5.74
# parameters of the underlying log-normal marginal distributions
survpar.true <- c(2.20,1.00)</pre>
censpar.true <- c(2.20,0.25)
# - true underlying survival and censoring times
```

```
set.seed(1)
u.TC <- copula::rCopula(</pre>
          = n,
 n
  copula = copula::archmCopula(
   family = copfam.true,
   param = coppar.true,
    dim
          = 2
  )
)
yobs.T <- qlnorm(1-u.TC[,1],survpar.true[1],survpar.true[2])</pre>
yobs.C <- qlnorm(1-u.TC[,2],censpar.true[1],censpar.true[2])</pre>
# observations
yobs <- pmin(yobs.T,yobs.C)</pre>
delta <- as.numeric(yobs.T<=yobs.C)</pre>
cat("censoring rate is", mean(1-delta))
# model the data under different scenarios
# scenario 1: nonparametric survival margin and parametric censoring margin
set.seed(1)
sol.scenario1 <- SurvDC(</pre>
  yobs
        = yobs,
  delta = delta,
          = quantile(yobs, c(0.25,0.50,0.75)),
  tm
  copfam = copfam.true,
  margins = list(survfam = NULL, censfam = "lnorm"),
          = list(do = FALSE, nboot = 50)
  Var
)
sol.scenario1$probs
sol.scenario1$ktau
sol.scenario1$parapar
# scenario 2: parametric survival and censoring margins
set.seed(1)
sol.scenario2 <- SurvDC(</pre>
  yobs = yobs,
  delta = delta,
  tm
          = quantile(yobs, c(0.25,0.50,0.75)),
  copfam = copfam.true,
  margins = list(survfam = "lnorm", censfam = "lnorm"),
         = list(do = FALSE, nboot = 50)
  Var
)
sol.scenario2$probs
sol.scenario2$ktau
sol.scenario2$parapar
# scenario 3: parametric survival margin and nonparametric censoring margin
set.seed(1)
sol.scenario3 <- SurvDC(</pre>
  yobs = yobs,
  delta = delta,
  tm
          = quantile(yobs, c(0.25,0.50,0.75)),
```

102

SurvDC

```
copfam = copfam.true,
 margins = list(survfam = "lnorm", censfam = NULL),
 Var
        = list(do = FALSE, nboot = 50)
)
sol.scenario3$probs
sol.scenario3$ktau
sol.scenario3$parapar
# simulated data from Frank copula log-Normal margins (with cure)
#-----
# generate the simulated data
# true underlying cure rate
curerate.true <- 0.2
# true underlying survival and censoring times
set.seed(1)
u.TC <- copula::rCopula(</pre>
         = n,
 n
 copula = copula::archmCopula(
   family = copfam.true,
   param = coppar.true,
        = 2
   dim
 )
)
yobs.T <- sapply(u.TC[,1],function(uT){</pre>
 if(uT<=curerate.true){ val <- Inf }else{</pre>
  val <- EnvStats::qlnormTrunc((1-uT)/(1-curerate.true),survpar.true[1],survpar.true[2],0,15)</pre>
 }
 return(val)
})
yobs.C <- qlnorm(1-u.TC[,2],censpar.true[1],censpar.true[2])</pre>
cat("cure rate is",mean(yobs.T==Inf))
# observations
yobs <- pmin(yobs.T,yobs.C)</pre>
delta <- as.numeric(yobs.T<=yobs.C)</pre>
cat("censoring rate is",mean(1-delta))
# model the data under different scenarios (with cure)
# scenario 4: parametric survival and censoring margins
set.seed(1)
sol.scenario4 <- SurvDC(</pre>
 yobs = yobs,
 delta = delta,
        = quantile(yobs, c(0.25,0.50,0.75)),
 tm
 copfam = copfam.true,
 margins = list(survfam = "lnorm", censfam = "lnorm"),
 Var = list(do = FALSE, nboot = 50),
 cure = TRUE
```

```
)
sol.scenario4$probs
sol.scenario4$ktau
sol.scenario4$parapar
sol.scenario4$curerate
# scenario 5: nonparametric survival margin and parametric censoring margin
set.seed(1)
sol.scenario5 <- SurvDC(</pre>
 yobs
         = yobs,
 delta = delta,
         = quantile(yobs, c(0.25,0.50,0.75)),
 tm
 copfam = copfam.true,
 margins = list(survfam = NULL, censfam = "lnorm"),
 Var
         = list(do = FALSE, nboot = 50),
 cure
         = TRUE
)
sol.scenario5$probs
sol.scenario5$ktau
sol.scenario5$parapar
sol.scenario5$curerate
```

SurvDC.GoF

Calculate the goodness-of-fit test statistic

Description

Calculate the goodness-of-fit test statistic

Usage

```
SurvDC.GoF(
  yobs,
  delta,
  copfam,
  margins,
  ktau,
  parapar,
  cure = FALSE,
  curerate = NULL
)
```

Arguments

yobs	a numeric vector that indicated the observed survival times.
delta	a numeric vector that stores the right-censoring indicators.

104

SurvFunc.CG

copfam	a character string that specifies the copula family.
margins	a list used to define the distribution structures of both the survival and censoring margins.
ktau	Kendall's tau.
parapar	parametric parameters.
cure	a logical value that indicates whether the existence of a cured fraction should be considered.
curerate	value of cure rate.

SurvFunc.CG Estimated survival function based on copula-graphic estimator (Archimedean copula only)

Description

Estimated survival function based on copula-graphic estimator (Archimedean copula only)

Usage

SurvFunc.CG(tm = NULL, yobs, delta, copfam, ktau, coppar = NULL)

Arguments

tm	a vector contains all time points that the survival function will be calculated at.
yobs	a numeric vector that indicated the observed survival times.
delta	a numeric vector that stores the right-censoring indicators.
copfam	a character string that denotes the copula family.
ktau	a numeric value that denotes the Kendall's tau.
coppar	a numeric value that denotes the copula parameter.

SurvFunc.KM	Estimated survival function based on Kaplan-Meier estimator
-------------	---

Description

Estimated survival function based on Kaplan-Meier estimator

Usage

```
SurvFunc.KM(tm = NULL, yobs, delta, type = "right")
```

Arguments

tm	a vector contains all time points that the survival function will be calculated at.
yobs	a numeric vector that indicated the observed survival times.
delta	a numeric vector that stores the right-censoring indicators.
type	a character string that specifies the type of the step function. If type="right", it will be a right-continuous function.

SurvMLE

Maximum likelihood estimator for a given parametric distribution

Description

Maximum likelihood estimator for a given parametric distribution

Usage

```
SurvMLE(
  yobs,
  delta,
  distribution,
  truncation = NULL,
  cure = FALSE,
  maxit = 300
)
```

yobs	a numeric vector that indicated the observed survival times.
delta	a numeric vector that stores the right-censoring indicators.
distribution	the specified distribution function.
truncation	a positive numeric value thats denotes the value of truncation for the assumed distribution.
cure	a logical value that indicates whether the existence of a cured fraction should be considered.
maxit	a positive integer that denotes the maximum iteration number in optimization.

SurvMLE.Likelihood Likelihood for a given parametric distribution

Description

Likelihood for a given parametric distribution

Usage

```
SurvMLE.Likelihood(
  param,
  yobs,
  delta,
  distribution,
  truncation = NULL,
  cure = FALSE
```

)

Arguments

param	a vector contains all parametric parameters.
yobs	a numeric vector that indicated the observed survival times.
delta	a numeric vector that stores the right-censoring indicators.
distribution	the specified distribution function.
truncation	a positive numeric value thats denotes the value of truncation for the assumed distribution.
cure	a logical value that indicates whether the existence of a cured fraction should be considered.

TCsim

Function to simulate (Y, Delta) from the copula based model for (T, C).

Description

Generates the follow-up time and censoring indicator according to the specified model.

Usage

```
TCsim(
    tau = 0,
    Copula = "frank",
    Dist.T = "lnorm",
    Dist.C = "lnorm",
    par.T = c(0, 1),
    par.C = c(0, 1),
    n = 10000
)
```

Arguments

tau	Value of Kendall's tau for (T,C). The default value is 0.
Copula	The copula family. This argument can take values from c("frank", "gumbel", "clayton", "gaussian", The default copula model is "frank".
Dist.T	Distribution of the survival time T. This argument can take one of the values from c("lnorm", "weibull", "llogis"). The default distribution is "lnorm".
Dist.C	Distribution of the censoring time C. This argument can take one of the values from c("lnorm", "weibull", "llogis"). The default distribution is "lnorm".
par.T	Parameter values for the distribution of T.
par.C	Parameter values for the distribution of C.
n	Sample size.

Value

A list containing the generated follow-up times and censoring indicators.

Examples

```
tau = 0.5
Copula = "gaussian"
Dist.T = "lnorm"
Dist.C = "lnorm"
par.T = c(1,1)
par.C = c(2,2)
n=1000
simdata <- TCsim(tau,Copula,Dist.T,Dist.C,par.T,par.C,n)
Y = simdata[[1]]
Delta = simdata[[2]]
hist(Y)
mean(Delta)
```

test.point_Bei Perform the test of Bei (2024) for a given point

Description

This function performs the unconditional moment restriction test as described in Bei (2024).

Usage

test.point_Bei(
 r,
 c,
 t,

```
par.space,
data,
hp,
verbose = FALSE,
inst.func.evals = NULL,
alpha = 0.95,
parallel = FALSE
)
```

Arguments

r	Result of the projection for which the test should be carried out.
с	The projection matrix. For now, c is restricted to being an elementary vector, i.e. $c = (0,, 0, 1, 0,, 0)$.
t	The time point at which to evaluate theta.
par.space	Matrix containing 2 columns and d_{θ} rows, where d_{θ} is the dimension of the parameter space. The first column represents the lower left corner of the parameter space, the second column represents the upper right corner. At least for the time being, only rectangular parameter spaces are allowed.
data	Data frame on which to base the test.
hp	List of hyperparameters needed.
verbose	Boolean variable indicating whether to print updates of the estimation process to the console.
inst.func.evals	
	Matrix of precomputed instrumental function evaluations for each observation in the data set. Used to speed up the simulations. If NULL, the evaluations will be computed during execution of this function. Default is inst.func.evals = NULL.
alpha	The significance level at which to perform the test. Default is $alpha = 0.95$.
parallel	Flag for whether or not parallel computing should be used. Default is parallel = FALSE.

References

Bei, X. (2024). Local linearization based subvector inference in moment inequality models. Journal of Econometrics, 238(1), 105549-. https://doi.org/10.1016/j.jeconom.2023.10554

test.point_Bei_MT Perform the test of Bei (2024) simultaneously for multiple time points.

Description

This function performs the unconditional moment restriction test as described in Bei (2024). This function directly extends test.point_Bei by allowing for pairs of moment restrictions over a grid of time points.

Usage

```
test.point_Bei_MT(
   r,
   c,
   t,
   par.space,
   data,
   hp,
   verbose = FALSE,
   inst.func.evals = NULL,
   alpha = 0.95,
   parallel = FALSE
)
```

Arguments

r	Result of the projection for which the test should be carried out.
С	The projection matrix. For now, c is restricted to being an elementary vector, i.e. $c = (0,, 0, 1, 0,, 0)$.
t	The time point at which to evaluate theta. Also allowed to be a vector of time points (used in estimating the model under assumed time- independent coefficients).
par.space	Matrix containing 2 columns and d_{θ} rows, where d_{θ} is the dimension of the parameter space. The first column represents the lower left corner of the parameter space, the second column represents the upper right corner. At least for the time being, only rectangular parameter spaces are allowed.
data	Data frame on which to base the test.
hp	List of hyperparameters needed.
verbose	Boolean variable indicating whether to print updates of the estimation process to the console.
inst.func.eval	s
	Matrix of precomputed instrumental function evaluations for each observation in the data set. Used to speed up the simulations. If NULL, the evaluations will be computed during execution of this function. Default is inst.func.evals = NULL.
alpha	The significance level at which to perform the test. Default is $alpha = 0.95$.
parallel	Flag for whether or not parallel computing should be used. Default is parallel = FALSE.

References

Bei, X. (2024). Local linearization based subvector inference in moment inequality models. Journal of Econometrics, 238(1), 105549-. https://doi.org/10.1016/j.jeconom.2023.10554

110

Description

Checks the required preconditions of the data and possibly restructures the data.

Usage

```
uniformize.data(
    data,
    admin = FALSE,
    conf = FALSE,
    comp.risks = FALSE,
    Zbin = NULL,
    Wbin = NULL
)
```

Arguments

data	A data frame that should contain columns named Y and delta (unless comp.risks = TRUE, see later).
admin	Boolean value indicating whether the provided data frame contains adminis- trative (i.e. independent) censoring on top of the dependent censoring (in the column named delta). The default is admin = FALSE.
conf	Boolean value indicating whether the provided data frame contains a confounded variable and a corresponding instrument. If cond = TRUE, the provided data frame should contain columns named Z and W, corresponding to the confounded variable and instrument, respectively. Moreover, Zbin and Wbin should be specified. The default value is conf = FALSE.
comp.risks	Boolean value indicating whether the provided data frame contains competing risks. If comp.risks = TRUE, the given data frame should contain the columns delta1, delta2, etc., corresponding to the indicators $I(Y = T1)$, $I(Y = T2)$, etc. respectively. The default is comp.risks = FALSE.
Zbin	Boolean or integer value $(0, 1)$ indicating whether the confounded variable is binary. Zbin = TRUE or Zbin = 1 means that Z is binary. Zbin = FALSE or Zbin = 0 means that Z is continuous.
Wbin	Boolean or integer value $(0, 1)$ indicating whether the instrument is binary. Wbin = TRUE or Wbin = 1 means that W is binary. Wbin = FALSE or Wbin = 0 means that W is continuous.

Value

Returns the uniformized data set.

variance.cmprsk

Description

This function computes the variance of the estimates computed by the 'estimate.cmprsk.R' function.

Usage

```
variance.cmprsk(
   parhatc,
   gammaest,
   data,
   admin,
   conf,
   inst,
   cf,
   eoi.indicator.names,
   Zbin,
   use.chol,
   n.trans,
   totparl
)
```

Arguments

parhatc	Vector of estimated parameters, computed in the first part of estimate.cmprsk.R.
gammaest	Vector of estimated parameters in the regression model for the control function.
data	A data frame.
admin	Boolean value indicating whether the data contains administrative censoring.
conf	Boolean value indicating whether the data contains confounding and hence in- dicating the presence of z and, possibly, w.
inst	Variable encoding which approach should be used for dealing with the con- founding. inst = "cf" indicates that the control function approach should be used. inst = "W" indicates that the instrumental variable should be used 'as is'. inst = "None" indicates that Z will be treated as an exogenous covariate. Fi- nally, when inst = "oracle", this function will access the argument realV and use it as the values for the control function. Default is inst = "cf".
cf	The control function used to estimate the second step.
eoi.indicator.names	
	Vector of names of the censoring indicator columns pertaining to events of in- terest. Events of interest will be modeled allowing dependence between them,

Vector of names of the censoring indicator columns pertaining to events of interest. Events of interest will be modeled allowing dependence between them, whereas all censoring events (corresponding to indicator columns not listed in eoi.indicator.names) will be treated as independent of every other event. If eoi.indicator.names == NULL, all events will be modeled dependently.

YJtrans

Zbin	Indicator value indicating whether (Zbin = TRUE) or not Zbin = FALSE the en- dogenous covariate is binary. Default is Zbin = NULL, corresponding to the case when conf == FALSE.
use.chol	Boolean value indicating whether the cholesky decomposition was used in esti- mating the covariance matrix.
n.trans	Number of competing risks in the model (and hence, number of transformation models).
totparl	Total number of covariate effects (including intercepts) in all of the transforma- tion models combined.

Value

Variance estimates of the provided vector of estimated parameters.

YJtrans	Yeo-Johnson transformation function

Description

Computes the Yeo-Johnson transformation of the provided argument.

Usage

YJtrans(y, theta)

Arguments

У	The argument to be supplied to the Yeo-Johnson transformation.
theta	The parameter of the Yeo-Johnson transformation. This should be a number in the range [0,2].

Value

The transformed value of y.

Index

A_step, 5 boot.fun.5 boot.funI,7 boot.nonparTrans, 8 Bspline.unit.interval, 9 Bvprob, 9 cbMV, 10 check.args.pisurv, 10 chol2par, 11 chol2par.elem, 12 Chronometer, 12 clear.plt.wdw, 14 CompC, 14 control.arguments, 15 copdist.Archimedean, 15 cophfunc, 16 coppar.to.ktau, 16 cr.lik,17 D.hat, 18 dat.sim.reg.comp.risks,18 dchol2par, 19 dchol2par.elem, 20 dD.hat.21 Distance, 22 dLambda_AFT_11, 22 dLambda_Cox_wb, 23 dm.bar.23 do.optimization.Mstep, 24 draw.sv.init, 24 DYJtrans, 25 E_step, 32 EAM. 25 EAM. converged, 27 EI. 28 estimate.cf, 28

estimate.cmprsk, 29

feasible_point_search, 32 fitDepCens, 6, 33, 98 fitIndepCens, 7, 35, 98 G.box, 37 G.cd. 38 G.cd.mc. 39 G.hat, 40 G.spline, 42 generator.Archimedean, 43 get.anchor.points, 43 get.cond.moment.evals,44 get.cvLLn, 44 get.deriv.mom.func, 45 get.dmi.tens,46 get.extra.Estep.points, 46 get.instrumental.function.evals, 47 get.mi.mat, 47 get.next.point, 48 get.starting.values, 49 get.test.statistic, 49 gridSearch, 50 gs.algo.bidir, 51 gs.binary, 52 gs.interpolation, 52 gs.regular, 53 insert.row, 53 IYJtrans, 54 Kernel, 54 ktau.to.coppar, 55 Lambda_AFT_11, 55 Lambda_Cox_wb, 55 Lambda_inverse_AFT_11, 56 Lambda_inverse_Cox_wb, 56 lf.delta.beta1, 56 lf.ts, 58 LikCopInd, 58

INDEX

```
Likelihood.Parametric, 59
Likelihood.Profile.Kernel, 60
Likelihood.Profile.Solve, 60
Likelihood.Semiparametric, 61
LikF.cmprsk, 62
likF.cmprsk.Cholesky, 63
LikGamma1, 63
LikGamma2, 64
LikI.bis, 65
LikI.cmprsk, 66
LikI.cmprsk.Cholesky, 67
likIFG.cmprsk.Cholesky, 68
log_transform, 72
loglike.clayton.unconstrained, 69
loglike.frank.unconstrained, 69
loglike.gaussian.unconstrained, 70
loglike.gumbel.unconstrained, 71
loglike.indep.unconstrained, 71
Longfun, 73
LongNPT, 73
m.bar,74
```

M_step, 75 MSpoint, 74

NonParTrans, 8, 76 normalize.covariates, 77 normalize.covariates2, 78

Omega.hat, 79 optimlikelihood, 80

parafam.d, 80
parafam.p, 81
parafam.trunc, 81
ParamCop, 82
Parameters.Constraints, 83
pi.surv, 83
plot_addpte.eval, 86
plot_base, 86
power_transform, 87
PseudoL, 87

S.func, 88 ScoreEqn, 88 SearchIndicate, 89 set.EAM.hyperparameters, 89 set.GS.hyperparameters, 90 set.hyperparameters, 91 Sigma.hat, 92 SolveH, 93 SolveH1, 94 SolveL, *14*, 87, 94 SolveLI, *59*, 96 SolveScore, 97 summary.depFit, 97 summary.indepFit, 98 SurvDC, 98 SurvDC.GoF, 104 SurvFunc.CG, 105 SurvFunc.KM, 105 SurvMLE, 106 SurvMLE.Likelihood, 107

TCsim, 107 test.point_Bei, 108 test.point_Bei_MT, 109

uniformize.data, 111

variance.cmprsk, 112

YJtrans, 113