
densEstBayes: density estimation
via Bayesian inference engines

Matt P. Wand

University of Technology Sydney

15th September, 2020

1 Introduction

Probability density function estimation, or density estimation for short, based on a univariate
sample is a problem of fundamental importance in statistics and data analysis. Approaches
to the density estimation problem number in the hundreds and stretch over several decades,
but shortcomings such as reliable choice of smoothing parameter are typical. Moreover, the
vast majority of density estimation procedures are frequentist with no allowance made for
the variability due to smoothing parameter choice. The R package densEstBayes provides
high-quality Bayesian density estimates based the relatively recent Bayesian inference engine
paradigm. It makes use of the Bayesian inference engines provided by the Stan platform (Car-
penter et al., 2017). Other options include slice sampling (e.g. Neal, 2003) and semiparametric
mean field variational Bayes (e.g. Rohde & Wand, 2016). The infrastructure of densEstBayes
is such that new and improved Bayesian inference engines can be incorporated when they are
developed.

All density estimates provided by densEstBayes are accompanied with pointwise credible
intervals that allow for variability in smoothing parameter selection. The methodology, based
on binning, scales well to very large sample sizes. Full details of the Bayesian inference engine
approach to density estimation are given in Wand & Yu (2020).

2 Ilustrations for the 2011 Old Faithful Geyser Data

The OldFaithful dataset consists of the time intervals, in minutes, for all 3,507 adjacent pairs
of eruptions of the Old Faithful Geyser in Yellowstone National Park, U.S.A., during 2011.
The following R commands:

> library(densEstBayes)

> hist(OldFaithful2011,col = "gold",main = "",probability = TRUE,

+ xlab = "time interval between geyser eruptions (minutes)")

lead to the probability histogram shown in Figure 1:
A quick-to-compute Bayesian density estimate, based on the Bayesian inference engine

paradigm described in Wand & Yu (2020), is obtained via the command:

> destSMFVB <- densEstBayes(OldFaithful2011,method = "SMFVB")

The method = ”SMFVB” specification leads to semiparametric mean field variational Bayes
(e.g. Rohde & Wand, 2016) being used for approximate Bayesian inference. A plot of the
estimate is obtained using:

> plot(destSMFVB,xlab = "time interval between geyser eruptions (minutes)",

+ main = "method = \"SMFVB\" (semiparametric mean field variational Bayes)")

> rug(jitter(OldFaithful2011,amount = 0.2),col = "dodgerblue")

and is shown in Figure 2. The shaded region corresponds to approximate 95% pointwise
credible intervals. A bimodal distribution is apparent, with the main mode at around 90
minutes and a secondary mode at around 65 minutes.

1

time interval between geyser eruptions (minutes)

D
en

si
ty

60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Figure 1: A probability histogram for the time intervals (minutes) between all 3,507 adja-
cent pairs of eruptions of the Old Faithful Geyser during the year 2011. The histogram bins
correspond to the default call to the R function hist().

60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

method = "SMFVB" (semiparametric mean field variational Bayes)

time interval between geyser eruptions (minutes)

de
ns

ity

Figure 2: Bayesian density estimate for the 2011 Old Faithful geyser data introduced in Figure
1. The pale green shaded region corresponds to approximate 95% pointwise credible intervals.
The data are shown as tick marks, with some jittering, at the base of the plot.

A density estimate based on the no-U-turn sampler (Hoffman & Gelman, 2014) as imple-
mented in Stan (Carpenter et al., 2017). Bayesian inference engine is obtained and plotted via
the commands:

> destNUTS <- densEstBayes(OldFaithful2011,method = "NUTS")

> plot(destNUTS,xlab = "time interval between geyser eruptions (minutes)",

+ main = "method = \"NUTS\" (no-U-turn sampler)")

2

> rug(jitter(OldFaithful2011,amount = 0.2),col = "dodgerblue")

with the result displayed in Figure 3. The estimate and variability band are very similar to
those obtained via semiparametric mean field variational Bayes with method = ”SMFVB”. Even
though method = ”SMFVB” can provide a fast Bayesian density estimate, it involves solving
a high-dimensional optimisation problem for which convergence is difficult to guarantee for
general input data sets. Further details on this issue are given in Section 4.1. The Figure 3

60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

method = "NUTS" (no−U−turn sampler)

time interval between geyser eruptions (minutes)

de
ns

ity

Figure 3: Bayesian density estimate for the data from Figure 1 using the no-U-turn sampler.
The pale green shaded region corresponds to approximate 95% pointwise credible intervals. The
data are shown as tick marks, with some jittering, at the base of the plot.

density estimate is based on a version of Markov chain Monte Carlo sampling and at least a
cursory check of the relevant chains is well-advised. The function checkChains() facilitates
graphical checks of the chains corresponding to vertical slices of the density estimate at 5
equally-spaced abscissae. The vertical lines in Figure 4 indicate the locations of the default
vertical slices. The command:

> checkChains(destNUTS)

produces the graphic given in Figure 5. In this case, all chains seem to be well-behaved and
the method = ”NUTS”Bayesian density estimate shown in Figures 3 and 4 is trustworthy.

The commands:

> destDefault <- densEstBayes(OldFaithful2011) ; plot(destDefault)

produce and plot the default densEstBayes() estimate, and is based on slice sampling (method
= ”slice”). Usually the slice sampling-based estimate is computed more quickly than the Stan-
dependent estimates. This is because the underlying C++ code for method = ”slice” focusses
on the specific model used for Bayesian density estimation whereas the method = ”HMC”and
method = ”NUTS” use a Bayesian inference engine that is designed to handle a very general
class of Bayesian models.

3 Controlling the Estimation Procedure

Various settings for Bayesian density estimation via the densEstBayes() can be controlled
using the control argument in calls to the function densEstBayes(). For example, the following

3

60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

method = "NUTS" (no−U−turn sampler)

time interval between geyser eruptions (minutes)

de
ns

ity

Figure 4: The same as for Figure 3 but with the addition of lines that indicate the positions of
the vertical slices for which chains for the log-density estimate are monitored by the function
checkChains().

vertical slice

of log−density

function

trace lag 1 acf

1/6 of range

Series xMat[, j]

2/6 of range

Series xMat[, j]

3/6 of range

Series xMat[, j]

4/6 of range

Series xMat[, j]

5/6 of range

Series xMat[, j]

Figure 5: The graphic produced by the command checkChains(destNUTS) where densNUTS
is the densEstBayes() object corresponding to the estimate shown in Figure 5. The chains
correspond to the estimates of the log-density function at the vertical slices shown in Figure 4.
The second column is a trace (time series) plot of the chain. The third column is a scatterplot
of the chain values against their previous (lag 1) values. The fourth column is the sample
autocorrelation function, based on the R function acf().

command increases the warm-up size to 2, 000, the lengths of the kept chains to 3, 500 and
then thins the kept chains by a factor of 5 when method = ”HMC”:

4

> destLongerChains <- densEstBayes(OldFaithful2011,method = "HMC",

+ control = densEstBayes.control(nWarm = 2000,

+ nKept = 3500,nThin = 5))

> checkChains(destLongerChains)

vertical slice

of log−density

function

trace lag 1 acf

1/6 of range

Series xMat[, j]

2/6 of range

Series xMat[, j]

3/6 of range

Series xMat[, j]

4/6 of range

Series xMat[, j]

5/6 of range

Series xMat[, j]

Figure 6: The chains corresponding to the density estimate object densLongerChains with a
warm-up of size 2, 000, kept samples of size 3, 500 and a thinning factor of 5.

The default number of basis functions for the O’Sullivan penalized splines (e.g. Wand &
Ormerod, 2008) is 50. For the 2011 Old Faithful geyser data it is likely that a much smaller
basis is sufficient to resolve the structure in the data’s density function and that 50 functions
is an overkill for this particular dataset. To reduce the number of basis functions to 20 type:

> destSmallerBasis <- densEstBayes(OldFaithful2011,control =

+ densEstBayes.control(numBasis = 20))

The following code plots destSmallerBasis and compares it with the default density estimate:

> plot(destSmallerBasis,shade = FALSE,estCol = "blue",

+ xlab = "time interval between geyser eruptions (minutes)")

> rug(jitter(OldFaithful2011,amount = 0.2),col = "dodgerblue")

> destDefault <- densEstBayes(OldFaithful2011)

> plot(destDefault,shade = FALSE,estCol = "darkorange",add = TRUE)

> legend("topleft",legend = c("20 spline basis functions",

+ "50 spline basis functions"),lty = rep(1,2),

+ col = c("darkorange","blue"))

The full list of control parameters, and the purpose of each one, can be obtained by issuing
the command:

> help(densEstBayes.control)

5

60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

time interval between geyser eruptions (minutes)

de
ns

ity

50 spline basis functions
20 spline basis functions

Figure 7: Bayesian density estimates for the 2011 Old Faithful geyser data with the densEst-

Bayes() default of 50 basis functions and a simpler one with 20 basis functions specified using
the control argument of densEstBayes().

4 Convergence Issues

Each of the methods used by densEstBayes() for achieving Bayesian density estimation rely
on either an iterative algorithm (method = ”SMFVB”) or Markov chain Monte Carlo sampling
(method = ”HMC”, method = ”NUTS”andmethod = ”slice”) and, hence, are prone to convergence
issues. We now provide some illustrations of such issues.

4.1 Fixed point iteration for semiparametric mean field variational Bayes

When method = ”SMFVB” is specified in the call to densEstBayes() then a fixed point iter-
ative scheme is used to obtain the semiparametric mean field variational Bayes approximate
posterior distributions of spline basis coefficients. For the default number of spline basis func-
tions, the approximation involves a 52-dimensional Multivariate Normal distribution with a
full covariance matrix. The mean and covariance matrices are determined using the fixed point
iterative scheme listed at the bottom of page 29 of Rohde and Wand (2016). Often convergence
is quite rapid, and a fast and high quality Bayesian density estimate results. However, noting
that the number of free parameters is 52 + 1

2 × 52× 53 = 1, 430, guaranteeing convergence for
general input data is a tall order. The following code illustrates this problem, starting with
simulation of 100 observations from the 5th density function in Table 1 of Marron and Wand
(1992), which is such that outliers tend to present:

> set.seed(2) ; x <- rMarronWand(100,5)

> destSMFVB <- densEstBayes(x,method = "SMFVB")

The following error message is returned:

Error:

Call to densEstBayes() with method="SMFVB" has failed due

to a singular matrix and/or non-convergence problem. Use

method="slice", method="NUTS" or method="HMC" instead.

6

If, instead, the default of method = ”slice” is used then the following code:

> destDefault <- densEstBayes(x) ; plot(destDefault)

> rug(x,col = "dodgerblue")

> xg <- seq(destDefault$range.x[1],destDefault$range.x[2],length = 1001)

> trueDensg <- dMarronWand(xg,5)

> lines(xg,trueDensg,col = "indianred3")

> legend("topleft",legend = c("estimate","truth"),lty = rep(1,2),

+ col = c("darkgreen","indianred3"))

produces the estimate shown in Figure 8. The density function from which the data were
simulated is shown for comparison.

−2 −1 0 1 2

0
1

2
3

4

x

de
ns

ity

estimate
truth

Figure 8: The default densEstBayes() estimate for data simulated from the 5th density func-
tion in Table 1 of Marron and Wand (1992) via the function rMarronWand(). The true density
function is also shown. The shaded region corresponds to pointwise 95% credible intervals.

4.2 Markov chain Monte Carlo convergence issues

Consider density estimation for a dataset consisting of the widths of 93 makes of cars. The
data are part of the R package MASS (Ripley, 2020) and the following code obtains and prints
the sorted data:

> library(MASS) ; print(sort(Cars93$Width))

which results in:

[1] 60 63 63 63 63 63 64 65 65 65 66 66 66 66 66 66 66 66 66 66 67 67 67 67 67

[26] 67 67 67 67 67 67 67 67 67 67 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69

[51] 69 69 69 70 70 70 70 70 70 70 71 71 71 71 71 72 72 72 72 72 72 72 73 73 73

[76] 73 74 74 74 74 74 74 74 74 74 74 74 75 77 77 78 78 78

A Bayesian density estimate based on a default call to densEstBayes() and plot involves
the code:

7

> destCarWidths <- densEstBayes(Cars93$Width)

> plot(destCarWidths,xlab = "car width (inches)")

> rug(Cars93$Width,col = "darkred")

> rug(jitter(Cars93$Width),col = "dodgerblue")

> legend("topleft",legend = c("actual data","jittered data"),

+ lty=rep(1,2),col=c("darkred","dodgerblue"))

and leads to the estimate shown in Figure 9 (note that the estimate depends on random draws
within a Markov chain Monte Carlo scheme and is subject to change for different calls to
densEstBayes()). The density estimate is not very visually appealing and is close to a linear

60 65 70 75 80

0
1

2
3

4

car width (inches)

de
ns

ity

actual data
jittered data

Figure 9: Bayesian density estimate for data on widths (inches) of 93 cars from the data frame
Cars93 in the R package MASS. This estimate is produced from a call to the default version of
the function densEstBayes(). The rug plots at the base of the plot show both the actual data,
which has several clusters of identical observations, and a jittering of the data.

combination of point masses at each of the unique data values. To check the chains on which
this estimate is based we issue:

> checkChains(destCarWidths)

and obtain the graphic shown in Figure 10, which indicates that the Bayesian density estima-
tion procedure is suffering from identifiability problems.

The culprit seems to be the degree to which these data have been discretised. The com-
mand:

> table(Cars93$Width)

leads to the output:

60 63 64 65 66 67 68 69 70 71 72 73 74 75 77 78

1 5 1 3 10 15 7 11 7 5 7 4 11 1 2 3

and shows that there are only 16 unique values in a dataset of size 93.
The next set of commands allow for the slice sampling warmup and kept sample sizes to

be much longer. A thinning factor of 10 is applied to the kept chains.

8

vertical slice

of log−density

function

trace lag 1 acf

1/6 of range

Series xMat[, j]

2/6 of range

Series xMat[, j]

3/6 of range

Series xMat[, j]

4/6 of range

Series xMat[, j]

5/6 of range

Series xMat[, j]

Figure 10: The chains of the log-density estimates at five equally-spaced vertical slices for the
slice sampling-based Bayesian density displayed in Figure 9.

> destLongerChains <- densEstBayes(Cars93$Width,

+ control = densEstBayes.control(nWarm = 10000,

+ nKept = 10000,nThin = 10))

> plot(destLongerChains,xlab = "car width (inches)")

> rug(Cars93$Width,col = "darkred")

> rug(jitter(Cars93$Width),col = "dodgerblue")

> legend("topleft",legend = c("actual data","jittered data"),

+ lty = rep(1,2),col = c("darkred","dodgerblue"))

The resulting density estimate is shown in Figure 11 and indicates the slice sampling is con-
verging to the linear combination of point masses density estimate. The command:

> checkChains(destLongerChains)

produces the Figure 12 graphic. The trace plots are flatter, but still not very satisfactory.
The issue seems to be a type of degeneracy that arises in this Bayesian density estimation
procedure when data on a continuous variable are discretised.

If we break the ties in the data by adding a small amount of random noise to each of the
observations via code such as:

> carWidthsJittered <- jitter(Cars93$Width,amount = 0.2)

> destJitteredData <- densEstBayes(carWidthsJittered)

> plot(destJitteredData,xlab = "car width (inches)")

> rug(Cars93$Width,col = "darkred")

> rug(carWidthsJittered,col = "dodgerblue")

> legend("topleft",legend = c("actual data","jittered data"),

+ lty=rep(1,2),col=c("darkred","dodgerblue"))

then a density estimate such as shown in Figure 13 is shown. This estimate is in keeping with
the continuous nature of the car widths variable. A check of the Figure 13 chains via the
command:

9

60 65 70 75 80

0
1

2
3

car width (inches)

de
ns

ity

actual data
jittered data

Figure 11: The same as for Figure 11 except that the chains for the slice sampling are specified
to have a warmup of length 10, 000, kept chains of length 10, 000 and a thinning factor of 10.

vertical slice

of log−density

function

trace lag 1 acf

1/6 of range

Series xMat[, j]

2/6 of range

Series xMat[, j]

3/6 of range

Series xMat[, j]

4/6 of range

Series xMat[, j]

5/6 of range

Series xMat[, j]

Figure 12: The chains of the log-density estimates at five equally-spaced vertical slices for the
slice sampling-based Bayesian density displayed in Figure 12.

> checkChains(destJitteredData)

is shown in Figure 14 and shows that good Markov chain Monte Carlo behaviour is achieved.
To summarise, density estimation via Monte Carlo-based Bayesian inference engines can be

affected by issues such as data discretisation and convergence checks via the checkChains()

function are worthwhile.

10

60 65 70 75 80

0.
00

0.
05

0.
10

0.
15

car width (inches)

de
ns

ity

actual data
jittered data

Figure 13: The same as for Figure 11 but with the default call to densEstBayes() applied to
the jittered data rather than the actual data.

vertical slice

of log−density

function

trace lag 1 acf

1/6 of range

Series xMat[, j]

2/6 of range

Series xMat[, j]

3/6 of range

Series xMat[, j]

4/6 of range

Series xMat[, j]

5/6 of range

Series xMat[, j]

Figure 14: The chains of the log-density estimates at five equally-spaced vertical slices for the
slice sampling-based Bayesian density displayed in Figure 13.

5 Display Options

After obtaining a Bayesian density estimation object using the densEstBayes() function there
are various options for displaying the estimate. There are tweak factors such as the colour of
the estimate curve and whether to use shading or curves for the variability band. Another
display aspect is restriction to a sub-region. Some of these display options are explained and
illustrated here.

The following commands obtain a density estimate of the 2011 Old Faithful geyser data

11

and plot the estimate with user-specified colours. The level of the pointwise credible intervals
is set to 99%.

> dest <- densEstBayes(OldFaithful2011,method = "SMFVB")

> plot(dest,estCol = "darkmagenta",varBandCol = "pink",credLev = 0.99,

+ axisCol = "navy",

+ xlab = "time interval between geyser eruptions (minutes)")

> rug(jitter(OldFaithful2011,amount = 0.2),col = "forestgreen")

The result is shown in Figure 15.

60 80 100 120

0.
00

0.
02

0.
04

0.
06

time interval between geyser eruptions (minutes)

de
ns

ity

Figure 15: Bayesian density estimate for the 2011 Old Faithful geyser data. The pink shaded
region corresponds to approximate 99% pointwise credible intervals. The data are shown as
tick marks, with some jittering, at the base of the plot.

Now suppose that we want to zoom in on the region where the time interval between geyser
eruptions is between 70 minutes and 100 minutes. Due to the normalization requirement, it
is necessary to compute the estimate over the range of the data and then use the predict()

function to obtain the plotting vectors:

> myXgrid <- seq(70,100,length = 501)

> predObj <- predict(dest,newdata = myXgrid,cred.fit = TRUE,credLev = 0.99)

> myEstGrid <- predObj$fit

> myLowGrid <- predObj$credLow.fit

> myUppGrid <- predObj$credUpp.fit

The abscissae plotting vector myXgrid and the ordinate plotting vectors myEstGrid, myLowGrid
and myUppGrid can now be used to assemble the required graphic — with dashed curves used
for the variability band:

> plot(0,type = "n",bty = "l",xlim = range(myXgrid),ylim = c(0,max(myUppGrid)),

+ xlab = "time interval between geyser eruptions (minutes)",

+ ylab = "density")

> abline(h = 0,col = "red")

> myColour <- "lightseagreen"

> lines(myXgrid,myEstGrid,col = myColour,lwd = 3)

12

> lines(myXgrid,myLowGrid,col = myColour,lwd = 3,lty = 2)

> lines(myXgrid,myUppGrid,col = myColour,lwd = 3,lty = 2)

> rug(jitter(OldFaithful2011[(OldFaithful2011>=70)&(OldFaithful2011<=100)],

+ amount = 0.2),col = "maroon")

The result is shown in Figure 16.

70 75 80 85 90 95 100

0.
00

0.
02

0.
04

0.
06

time interval between geyser eruptions (minutes)

de
ns

ity

Figure 16: Bayesian density estimate for the 2011 Old Faithful geyser data over the restricted
interval of 70 to 100 minutes. The dashed curves correspond to approximate 99% pointwise
credible intervals. The data are shown as tick marks, with some jittering, at the base of the
plot.

Finally, we provide an example involving two Bayesian density estimates plotted on the
same axes. The data are part of the data frame carAuction within the R package HRW

(Harezlak, Ruppert and Wand, 2019), which contains observations for 51 variables on 72, 983
cars purchased at automobile auctions by dealerships. Here we study the variable carAuc-
tion$odomRead, which is the odometer reading, in miles, of the car at the time of purchase
and divide the data according to whether or not the car is a considered a bad buy or good buy
by the dealership. The following code creates the required data vectors:

> library(HRW)

> odomReadGoodBuy <- carAuction$odomRead[carAuction$IsBadBuy == 0]

> odomReadBadBuy <- carAuction$odomRead[carAuction$IsBadBuy == 1]

Bayesian density estimates for each data are obtain via:

> destGoodBuy <- densEstBayes(odomReadGoodBuy,method = "SMFVB")

> destBadBuy <- densEstBayes(odomReadBadBuy,method = "SMFVB")

Plotting vectors to display the two density estimates on the same set of axes are computed
using:

> myOdomReadGrid <- seq(20000,120000,length = 1001)

> predObjGoodBuy <- predict(destGoodBuy,newdata = myOdomReadGrid,

+ cred.fit = TRUE)

> estGridGoodBuy <- predObjGoodBuy$fit

13

> lowGridGoodBuy <- predObjGoodBuy$credLow.fit

> uppGridGoodBuy <- predObjGoodBuy$credUpp.fit

> predObjBadBuy <- predict(destBadBuy,newdata = myOdomReadGrid,

+ cred.fit = TRUE)

> estGridBadBuy <- predObjBadBuy$fit

> lowGridBadBuy <- predObjBadBuy$credLow.fit

> uppGridBadBuy <- predObjBadBuy$credUpp.fit

We are now ready to make the desired plot:

> ylimVal <- range(c(lowGridGoodBuy,uppGridGoodBuy,

+ lowGridBadBuy,uppGridBadBuy))

> par(mfrow = c(1,1))

> myGoodColour <- "blue" ; myBadColour <- "darkorange"

> plot(0,type = "n",bty = "l",xlim = range(myOdomReadGrid),ylim = ylimVal,

+ xlab = "odometer reading (miles)",ylab = "density")

> abline(h = 0,col = "slateblue")

> lines(myOdomReadGrid,estGridGoodBuy,col = myGoodColour,lwd = 3)

> lines(myOdomReadGrid,lowGridGoodBuy,col = myGoodColour,lwd = 3,lty = 2)

> lines(myOdomReadGrid,uppGridGoodBuy,col = myGoodColour,lwd = 3,lty = 2)

> lines(myOdomReadGrid,estGridBadBuy,col = myBadColour,lwd = 3)

> lines(myOdomReadGrid,lowGridBadBuy,col = myBadColour,lwd = 3,lty = 2)

> lines(myOdomReadGrid,uppGridBadBuy,col = myBadColour,lwd = 3,lty = 2)

> legend("topleft",legend = c("good buy at auction","bad buy at auction"),

+ lty = rep(1,2),lwd = rep(3,2),col = c(myGoodColour,myBadColour))

The result is shown in Figure 17 and indicates that the density function of odometer reading
values for bad buy cars is shifted to the right compared to that for good buy cars.

20000 40000 60000 80000 100000 1200000.
0e

+
00

1.
0e

−
05

2.
0e

−
05

3.
0e

−
05

odometer reading (miles)

de
ns

ity

good buy at auction
bad buy at auction

Figure 17: Bayesian estimates of the density functions of odometer readings of 72,983 cars
sold at auctions by automobile dealerships in U.S.A. The data have been divided according to
whether or not the car is classified as a good buy (64,007 cars) or a bad buy (8,976 cars). The
dashed curves correspond to pointwise 95% credible intervals.

14

Acknowledgements

The author gratefully acknowledges assistance from James Yu. This research was supported
by Australian Research Council grant DP140100441.

References

Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,
M., Guo, J., Li, P. and Riddell, A. (2017). Stan: A probabilistic programming language.
Journal of Statistical Software, 76, Issue 1, 1–32.

Harezlak, J., Ruppert, D. and Wand, M.P. (2019). HRW: Datasets, functions and scripts for
semiparametric regression supporting Harezlak, Ruppert and Wand (2018). R package
version 1.0. https://CRAN.R-project.org/package=HRW

Hoffman, M.D. & Gelman, A. (2014). The no-U-turn sampler: adaptively setting path lengths
in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 1593–1623.

Marron, J. S. and Wand, M.P. (1992). Exact mean integrated squared error. The Annals of
Statistics, 20, 712–736.

Neal, R. (2003). Slice sampling (with discussion). The Annals of Statistics, 31, 705–767.

Rohde, D. and Wand, M.P. (2016). Semiparametric mean field variational Bayes: General
principles and numerical issues. Journal of Machine Learning Research, 17(172), 1–47.

Ripley, B. (2020). MASS: Functions and datasets to support Venables and Ripley Modern
Applied Statistics with S (4th Edition). R package version 7.3.
http://www.stats.ox.ac.uk/pub/MASS4

Wand, M.P. and Ormerod, J.T. (2008). On semiparametric regression with O’Sullivan penal-
ized splines. Australian and New Zealand Journal of Statistics, 50, 179–198.

Wand, M.P. and Yu, J.F.C. (2020). Density estimation via Bayesian inference engines.
http://arxiv.org/abs/2009.06182

15

