Package ‘cnd’

February 26, 2025
Title Create and Register Conditions
Version 0.1.0

Description An interface for creating new condition generators objects.
Generators are special functions that can be saved in registries and linked
to other functions. Ultilities for documenting your generators, and new
conditions is provided for package development.

License MIT + file LICENSE
BugReports https://github.com/jmbarbone/cnd/issues

URL https://jmbarbone.github.io/cnd/, https://github.com/jmbarbone/cnd
Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

Depends R (>=3.6)

Suggests cli, here, pkgload, rcemdcheck, roxygen2, spelling, testthat
(>=3.0.0), utils

Config/testthat/edition 3
Config/testthat/parallel false
NeedsCompilation no

Author Jordan Mark Barbone [aut, cph, cre]
(<https://orcid.org/0000-0001-9788-3628>)

Maintainer Jordan Mark Barbone <jmbarbone@gmail.com>
Repository CRAN
Date/Publication 2025-02-26 14:00:02 UTC

Contents

cnd_create_registry e e e
cnd_document L e e
CNA_EXPOITS . . « . v o i et e e e e e e e e e

https://github.com/jmbarbone/cnd/issues
https://jmbarbone.github.io/cnd/
https://github.com/jmbarbone/cnd
https://orcid.org/0000-0001-9788-3628

2 cnd_create_registry

CNA_IS . . L e 5
condition e e e 6
format-conditions e e e e e 9
Index 10

cnd_create_registry Create a registration

Description

This function will create a new object with the name as name in the environment where it is called.
This is intended to be your package environment, but could potentially be anywhere you want. If an
object which is not a cnd: registry object is found with the same name, an error will be thrown.

Usage

cnd_create_registry(
registry = get_package(),
overwrite = FALSE,
name = ".__CND_REGISTRY__.",
env = parent.frame()

)
Arguments
registry The name of the registry
overwrite When TRUE will overwrite
name The name of the registry variable. Default is intended to prevent potential con-
flicts with other objects.
env The environment to assign the registry to
Details

Crate a new cnd:registry to the current environment

Value

acnd:registry object, invisibly

Examples

In most cases, just having the function in your R/ scripts is good enough,
and you can use “cnd_create_registry()” with its defaults. The following
examples are for demonstration purposes:

e <- new.env()

cnd_create_registry("EXAMPLE"”, env = e)

cnd_create_registry("EXAMPLE", overwrite = TRUE)

cnd_document 3

cnd_document Document your conditions

Description

Documents your conditions() and conditions()

Usage

cnd_document (
package = get_package(),
registry = package,
file = file.path("R", paste@(package, "-cnd-conditions.R")),
cleanup = TRUE

)

cnd_section(fun)

Arguments
package The package to document
registry The name of the registry
file The file to save the documentation. This can be a file path, a connection object,
or NULL. When file is a path, the directory of the path is searched for files
containing # % Generated by cnd: do not edit by hand. These are
removed if they are not the same as the generated documentation.
cleanup If FALSE will not remove files containing # % Generated by cnd: do not edit by hand
fun The name of a function
Value

* cnd_document () Conditional on the file argument:

— when file is a connection, the connection object

— when file is a path, the path

— when file is NULL, a character vector of the documentation

— if no conditions are found, a warning is thrown and NULL is returned

e cnd_section() A character vector of the documentation

conditions

Conditions are generated through the {cnd} package. The following conditions are associated with
this function:

cnd:cnd_document_conditions/warning

4 cnd_exports

cnd:cnd_document_file/error
cnd:cnd_document_pkg_reg/error
cnd:cnd_generated_cleanup/message

cnd:cnd_generated_write/condition
For more conditions, see: cnd-cnd-conditions

Examples

file <- file()
cnd_document("cnd”, file = file)
readLines(file)

cnd_section("cnd")

cnd_exports Add conditions to functions

Description

[cnd_exports ()] should be used within a package’s building environment.

Usage

cnd_exports(env = parent.frame())

Arguments

env The package environment

Value

Nothing, called for its side-effects

Examples

e <- new.env()
registry <- cnd_create_registry("EXAMPLE", env = e)
local(envir = e, {

my_fun <- function() NULL

condition(
"my_condition”,
package = "example_package”,
exports = "my_fun",
registry = registry

)

cnd_exports()

b

cnd_is

conditions are now added to my_fun():
e$my_fun
conditions(e$my_fun)

cnd_is is functions for cnd

Description

is functions for cnd
Usage
is_condition(x)
is_cnd_condition(x)
is_cnd_generator(x, type = c("error"”, "warning"”, "message"”, "condition"))

is_conditioned_function(x)

Arguments

X An object

type A specific type to check
Value

TRUE or FALSE for the test

Examples

is_condition(simpleCondition(""))
is_cnd_condition(simpleCondition(""))

con <- condition("is")
is_condition(con)

is_cnd_condition(con)

is_condition(con())
is_cnd_condition(con())

is_cnd_generator(con)

is_conditioned_function(cnd)

6 condition

condition Conditions

Description

condition() is used to create a new condition function that itself returns a new condition.

conditions() retrieves all conditions based on search values. The parameters serve as filtering

arguments.
Usage
condition(
class,
message = NULL,
type = c("condition”, "message”, "warning", "error"),

package = get_package(),
exports = NULL,

help = NULL,

registry = package,

register = !lis.null(registry)

conditions(
class = NULL,
type = NULL,
package = NULL,
registry = NULL,
fun = NULL

cond(x)
cnd(condition)

conditions(x, ...) <- value

S3 replacement method for class '~function™'
conditions(x, append = FALSE, ...) <- value

S3 replacement method for class '“cnd::condition_progenitor™'
conditions(x, ...) <- value

Arguments

class The name of the new class

condition

message

type
package
exports
help
registry

register

fun

X
condition
value

append

Details

Conditions

Value

The message to be displayed when the condition is called. When entered as a
character vector, the message is collapsed into a single string. Use explicit line
returns to generate new lines in output messages. When a function is used and a
character vector returned, each element is treated as a new line.

The type of condition: error, warning, or message

The package to which the condition belongs

The exported functions to be displayed when the condition is called
The help message to be displayed for the condition function

The name of the registry to store the condition

Controls registration checks

Additional arguments passed to methods

if a function is passed, then retrieves the "conditions” attribute
An object

A condition_generator object

A condition

If TRUE, adds to the conditions attribute

» condition() a condition_generator object

* conditions() a list of condition_generator objects

* cond() A condition_generator object

* cnd() is a wrapper for calling stop(), warning(), or message(); when condition is a type,
an error is thrown, and likewise for the other types. When an error isn’t thrown, the condition
is returned, invisibly.

condition_generator

A condition_generator is an object (a special function) which can be used to create generate a new
condition, based on specifications applied in condition(). These functions use . .. to absorb extra
arguments and contain a special .call parameter. By default, . call captures the parent call from
where the condition_generator was created, but users may pass their own call to override this. See
call. in conditionCall()

8 condition

condition() conditions

Conditions are generated through the {cnd} package. The following conditions are associated with
this function:

cnd:as_character_cnd_error/error You cannot coerce a condition_generator object to a char-
acter. This may have occurred when trying to put a condition function through stop() or
warning. Instead, call the function first, then pass the result to stop() or warning().

For example:

Instead of this
stop(my_condition)

Do this
stop(my_condition())

cnd:condition_message_generator/error condition_generator objects are not conditions. You
may have made this mistake:

x <- condition("my_condition")
conditionMessage(x)

Condition generators need to be called first before they can be used as conditions. Try this
instead:

x <- condition("my_condition")
conditionMessage(x())
cnd:condition_overwrite/warning

cnd:invalid_condition/error The class, exports, and help parameters must be a single
character string. If you are passing a function, it must be a valid function.

cnd:invalid_condition_message/error Conditions messages are displayed when invoked through
conditionMessage(). You can set a static message by passing through a character vec-
tor, or a dynamic message by passing through a function. The function should return a
character vector.

When message is not set, a default "there was an error" message is used.
cnd:match_arg/error Mostly match.arg() but with a custom condition

cnd:no_package_exports/warning The exports parameter requires a package
For more conditions, see: cnd-cnd-conditions

cnd() conditions

Conditions are generated through the {cnd} package. The following conditions are associated with
this function:

cnd: cond_cnd_class/error cnd() simple calls the appropriate function: stop(), warning(), or
message () based on the type parameter from condition().

For more conditions, see: cnd-cnd-conditions

format-conditions 9

See Also

cnd-package

Examples

create a new condition:
cond_bad_value <- condition("bad_value"”, type = "error")

use the condition
try(stop(cond_bad_value()))
try(cnd(cond_bad_value()))

dynamic messages:

cond_class_error <- condition(
"class_error”,
message = function(x) paste(”class cannot be”, toString(class(x))),
type = "error”

)

try(stop(cond_class_error(list())))

format-conditions Format conditions

Description

Formats condition objects

Usage

S3 method for class '“cnd::condition™'
format(x, ..., cli = getOption("cnd.cli.override"))

S3 method for class '“cnd::condition_generator™'

format(x, ..., cli = getOption("cnd.cli.override”))
Arguments
X A condition object
Not used
cli If TRUE will use formatting from cli. Default uses an option, "cnd.cli.override”,

if available, otherwise checks that cli is installed and ansi colors are available.

Value

A character vector

Examples

format(condition("foo"))

Index

{cnd}, 3,8

cli, 9

cnd, 5

cnd (condition), 6

cnd(), 7, 8

cnd-cnd-conditions, 4, 8

cnd-package, 9

cnd: :condition_generator (condition), 6

cnd: :condition_progenitor (condition), 6

cnd:as_character_cnd_error/error, 8

cnd:cnd_document_conditions/warning, 3

cnd:cnd_document_file/error, 4

cnd:cnd_document_pkg_reg/error, 4

cnd:cnd_generated_cleanup/message, 4

cnd:cnd_generated_write/condition, 4

cnd:cond_cnd_class/error, 8

cnd:condition_message_generator/error,
8

cnd:condition_overwrite/warning, 8

cnd:invalid_condition/error, 8

cnd:invalid_condition_message/error, 8

cnd:match_arg/error, 8

cnd:no_package_exports/warning, 8

cnd_create_registry, 2

cnd_document, 3

cnd_document (), 3

cnd_exports, 4

cnd_is, 5

cnd_section (cnd_document), 3

cnd_section(), 3

cond (condition), 6

cond(), 7

condition, 6, 9

condition(), 6-8

condition_generator, 7, 8

condition_generator (condition), 6

condition_progenitor (condition), 6

conditionCall(), 7

conditionMessage(), 8

10

conditions (condition), 6
conditions(), 3,6, 7
conditions<-(condition), 6

format-conditions, 9

format.cnd: :condition
(format-conditions), 9

format.cnd: :condition_generator
(format-conditions), 9

function, 7

is_cnd_condition (cnd_is), 5
is_cnd_generator (cnd_is), 5
is_condition (cnd_is), 5
is_conditioned_function (cnd_is), 5

match.arg(), 8
message(), 7, 8

stop(), 7, 8

warning, 8
warning(), 7, 8

	cnd_create_registry
	cnd_document
	cnd_exports
	cnd_is
	condition
	format-conditions
	Index

