Package 'cmvnorm'

October 12, 2022

Type Package Title The Complex Multivariate Gaussian Distribution Version 1.0-7 **Depends** emulator (>= 1.2-21) Suggests knitr Imports elliptic Maintainer Robin K. S. Hankin <hankin.robin@gmail.com> Description Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes. VignetteBuilder knitr License GPL-2 URL https://github.com/RobinHankin/cmvnorm BugReports https://github.com/RobinHankin/cmvnorm/issues NeedsCompilation no Author Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>) **Repository** CRAN

Date/Publication 2022-01-31 00:00:02 UTC

R topics documented:

cmvnorm-package	2
corr_complex	3
isHermitian	5
Mvcnorm	6
setreal	7
var	8
wishart	9

Index

cmvnorm-package

Description

Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes.

Details

The DESCRIPTION file:

Package:	cmvnorm
Type:	Package
Title:	The Complex Multivariate Gaussian Distribution
Version:	1.0-7
Authors@R:	person(given=c("Robin", "K. S."), family="Hankin", role = c("aut", "cre"), email="hankin.robin@gmail.co
Depends:	emulator (>= 1.2-21)
Suggests:	knitr
Imports:	elliptic
Maintainer:	Robin K. S. Hankin <hankin.robin@gmail.com></hankin.robin@gmail.com>
Description:	Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes.
VignetteBuilder:	knitr
License:	GPL-2
URL:	https://github.com/RobinHankin/cmvnorm
BugReports:	https://github.com/RobinHankin/cmvnorm/issues
Author:	Robin K. S. Hankin [aut, cre] (<https: 0000-0001-5982-0415="" orcid.org="">)</https:>

Index of help topics:

Im<-	Manipulate real or imaginary components of an object
Mvcnorm	Multivariate complex Gaussian density and random deviates
cmvnorm-package	The Complex Multivariate Gaussian Distribution
corr_complex	Complex Gaussian processes
isHermitian	Is a Matrix Hermitian?
var	Variance and standard deviation of complex
	vectors
wishart	The complex Wishart distribution

Generalizing the real multivariate Gaussian distribution to the complex case is not straightforward but one common approach is to replace the real symmetric variance matrix with a Hermitian positive-definite matrix. The **cmvnorm** package provides some functionality for the resulting density function.

corr_complex

Author(s)

NA

Maintainer: Robin K. S. Hankin < hankin.robin@gmail.com>

References

- N. R. Goodman 1963. "Statistical analysis based on a certain multivariate complex Gaussian distribution". *The Annals of Mathematical Statistics*. 34(1): 152–177
- R. K. S. Hankin 2015. "The complex multivariate Gaussian distribution". *R News*, volume 7, number 1.

Examples

```
S1 <- 4+diag(5)
S2 <- S1
S2[1,5] <- 4+1i
S2[5,1] <- 4-1i # Hermitian
```

rcmvnorm(10,sigma=S1)
rcmvnorm(10,mean=rep(1i,5),sigma=S2)

dcmvnorm(rep(1,5),sigma=S2)

corr_complex

Complex Gaussian processes

Description

Various utilities for investigating complex Gaussian processes

Usage

Arguments

z, z1, z2 Points in C^n distance.function

Function giving the (complex) covariance between two points in C^n

means, pos.def.matrix, scales

In function complex_CF(), the mean and covariance matrix of the distribution whose characteristic function is used to give the covariance matrix; scales is used to specify the diagonal of pos.def.matrix if the off-diagonal elements are zero

zold, d, give_log, func, x, Ainv, give.Z,...

Direct analogues of the arguments in interpolant() and scales.likelihood() in the **emulator** package

Details

 Function complex_CF() returns a (slightly reparameterized) characteristic function of a complex Gaussian distribution. The covariance is given by

$$c(\mathbf{t}) = \exp(i\operatorname{Re}(\mathbf{t}^*\mu) - \mathbf{t}^*B\mathbf{t})$$

where $\mathbf{t} = \mathbf{x} - \mathbf{x}'$ is interpreted as the distance between two observations, μ is the mean of the distribution (which is in general a complex vector), and *B* a positive-definite matrix.

• Function corr_complex() is the complex analogue of corr.matrix(). It returns a matrix with entry (i, j) equal to the covariance of the process at observation i and observation j, or $cov(\eta(\mathbf{x}_i), \eta(\mathbf{x}_j))$. The elements are calculated by complex_CF().

This function includes only a single method, that of nested calls to apply(). I could not figure out how to generalize method 1 of corr.matrix() to the complex case.

• Function scales.likelihood.complex() is a complex version of scales.likelihood() which takes a positive definite matrix and a mean. The formula used is

$$(\sigma^2)^{-(n-q)}|A|^{-1}|H^*A^{-1}H|^{-1}$$

. Here and elsewhere, A^* means the complex conjugate of the transpose.

• Function interpolant.quick.complex() is a complex version of interpolant.quick().

$$\mathbf{h}(\mathbf{x})^*\hat{\beta} + \mathbf{t}(\mathbf{x})^*A^{-1}(\mathbf{y} - H\hat{\beta})$$

This is the complex version of Oakley's equation 2.30 or Hankin's equation 5.

More details are given in the package vignette.

Author(s)

Robin K. S. Hankin

References

- Hankin, R. K. S. 2005. "Introducing BACCO, an R bundle for Bayesian Analysis of Computer Code Output", *Journal of Statistical Software*, 14(15)
- J. Oakley 1999. *Bayesian uncertainty analysis for complex computer codes*, PhD thesis, University of Sheffield.

isHermitian

Examples

interpolant.quick.complex(x=0.1i+V[1:3,],d=z,zold=V,Ainv=Ainv,pos.def.matrix=cs,means=cm)

isHermitian Is a Matrix Hermitian?

Description

Returns TRUE if a matrix is Hermitian or Hermitian positive-definite

Usage

```
isHermitian(x, tol = 100 * .Machine$double.eps)
ishpd(x,tol= 100 * .Machine$double.eps)
zapim(x,tol= 100 * .Machine$double.eps)
```

Arguments

х	A square matrix
tol	Tolerance for numerical scruff

Details

Functions isHermitian() and ishpd() return a Boolean, indicating whether the argument is Hermitian or Hermitian positive definite respectively. Function zapim() zaps small imaginary parts of a vector, returning real if all elements are so zapped.

Author(s)

Robin K. S. Hankin

Examples

```
v <- 2^(1:30)
zapim(v+1i*exp(-v))</pre>
```

```
ishpd(matrix(c(1,0.1i,-0.1i,1),2,2)) # should be TRUE
isHermitian(matrix(c(1,3i,-3i,1),2,2)) # should be TRUE
ishpd(rcwis(6,2)) # should be TRUE
```

Mvcnorm

Multivariate complex Gaussian density and random deviates

Description

Density function and a random number generator for the multivariate complex Gaussian distribution.

Usage

```
rcnorm(n)
dcmvnorm(z, mean, sigma, log = FALSE)
rcmvnorm(n, mean = rep(0, nrow(sigma)), sigma = diag(length(mean)),
    method = c("svd", "eigen", "chol"),
    tol= 100 * .Machine$double.eps)
```

Arguments

Z	Complex vector or matrix of quantiles. If a matrix, each row is taken to be a quantile
n	Number of observations
mean	Mean vector
sigma	Covariance matrix, Hermitian positive-definite
tol	numerical tolerance term for verifying positive definiteness
log	In dcmvnorm(), Boolean with default FALSE meaning to return the Gaussian density function, and TRUE meaning to return the logarithm
method	Specifies the decomposition used to determine the positive-definite matrix square root of sigma. Possible methods are eigenvalue decomposition ("eigen", default), and singular value decomposition ("svd")

setreal

Details

Function dcmvnorm() is the density function of the complex multivariate normal (Gaussian) distribution:

$$p\left(\mathbf{z}\right) = \frac{\exp\left(-\mathbf{z}^*\Gamma\mathbf{z}\right)}{|\pi\Gamma|}$$

Function rcnorm() is a low-level function designed to generate observations drawn from a standard complex Gaussian. Function rcmvnorm() is a user-friendly wrapper for this.

Author(s)

Robin K. S. Hankin

References

N. R. Goodman 1963. "Statistical analysis based on a certain multivariate complex Gaussian distribution". *The Annals of Mathematical Statistics*. 34(1): 152–177

Examples

```
S <- emulator::cprod(rcmvnorm(3,mean=c(1,1i),sigma=diag(2)))
rcmvnorm(10,sigma=S)
rcmvnorm(10,mean=c(0,1+10i),sigma=S)
# Now try and estimate the mean (viz 1,1i) and variance (S) from a
# random sample:
n <- 101
z <- rcmvnorm(n,mean=c(0,1+10i),sigma=S)
xbar <- colMeans(z)
Sbar <- cprod(sweep(z,2,xbar))/n</pre>
```

setreal

Description

Manipulate real or imaginary components of an object

Usage

Im(x) <- value
Re(x) <- value</pre>

Arguments

х	Complex-valued object
value	Real-valued object

Author(s)

Robin K. S. Hankin

Examples

A <- matrix(c(1,0.1i,-0.1i,1),2,2) Im(A) <- Im(A)*3 Re(A) <- matrix(c(5,2,2,5),2,2)

Variance and standard deviation of complex vectors

Description

Complex generalizations of stats::sd() and stats::var()

Usage

```
var(x, y=NULL, na.rm=FALSE,use)
sd(x, na.rm=FALSE)
```

Arguments

х,у	Complex vector or matrix
na.rm	Boolean with default FALSE meaning to leave NA values present and TRUE meaning to remove them
use	Ignored

wishart

Details

Intended to be broadly compatible with stats::sd() and stats::var().

If given real values, var() and sd() return the variance and standard deviation as per ordinary real analysis. If given complex values, returns the complex generalization in which Hermitian transposes are used.

If z is a complex matrix, var(z) returns the variance of the rows.

These functions use n - 1 on the denominator purely for consistency with stats::var() (for the record, I disagree with the rationale for n - 1).

Author(s)

Robin K. S. Hankin

Examples

sd(rcnorm(10)) # imaginary component suppressed by zapim()

```
var(rcmvnorm(1e5,mean=c(0,0)))
```

wishart

The complex Wishart distribution

Description

Returns an observation drawn from the complex Wishart distribution. To sample from the inverse complex Wishart distribution (or indeed the complex inverse Wishart distribution), use solve(rcwis(...)).

Usage

rcwis(n, S)

Arguments

n	Integer; degrees of freedom
S	Variance matrix. If an integer, use diag(nrow=S)

Value

Returns a (semi-) positive definite Hermitian matrix the same size as argument S

Note

The first argument of rcwis() is n, by universal statistics convention. But in the R world, functions returning random observations (such as runif()) generally reserve argument n for the number of observations to return. Although rchisq() uses df for the number of degrees of freedom.

wishart

Author(s)

Robin K. S. Hankin

Examples

rcwis(10,2)
eigen(rcwis(7,3),TRUE,TRUE) # all positive
eigen(rcwis(3,7),TRUE,TRUE) # 4 positive, 3 zero

rcwis(10,rcwis(10,3))

Index

* complex isHermitian, 5 Mvcnorm, 6 setreal, 7 * distribution Mvcnorm, 6 * math setreal, 7 * multivariate Mvcnorm, 6 * package cmvnorm-package, 2 cmvnorm(cmvnorm-package), 2 cmvnorm-package, 2 complex_CF (corr_complex), 3 corr_complex, 3 dcmvnorm (Mvcnorm), 6 Im<- (setreal), 7</pre> interpolant.quick.complex (corr_complex), 3 isHermitian, 5 ishpd(isHermitian), 5 Mvcnorm, 6 rcmvnorm (Mvcnorm), 6 rcnorm (Mvcnorm), 6 rcwis(wishart), 9 Re<- (setreal), 7 rwis(wishart),9 scales.likelihood.complex (corr_complex), 3 sd (var), 8 setreal, 7 var,8

wishart,9

zapim(isHermitian), 5